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Hyperbolic Coxeter polytopes

Giving talks

usually: because of reacent progress;

today: less progress than expected.

• Collect what we know;

• connect to another classification problem.



Coxeter polytopes ...

• are polytopes in Sd, Ed or Hd

whose all dihedral angles are submultiples of π;

• are fundamental domains of discrete reflections groups;

• are represented by Coxeter diagrams

or by Gram matrices.
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Coxeter diagrams

• Nodes ←→ facets fi of P

• Edges: Examples:
if ∠(fifj) = π/mij

if ∠(fifj) = π/2

if ∠(fifj) = π/3

if ∠(fifj) = π/4

if ∠(fifj) = π/5

if fi ∩ fj = ∅
if fi ∩ fj ∈ ∂Hn

mij

6



Gram matrix

P ⊂ Sn,En or Hn −→ Symmetric matrix G = {gij}

• gii = 1, gij =


− cos( π

mij
), if ∠(fifj) = π/mij,

1, if fi is parallel to fj,

− cosh(ρ(fi, fj)), if fi and fj deverge.

Sd Ed Hd

sgn(G) (d+ 1, 0) (d, 0) (d, 1)



Coxeter polytopes ...

• are polytopes in Sd, Ed or Hd

whose all dihedral angles are submultiples of π;

• are fundamental domains of discrete reflections groups;

• are represented by Coxeter diagrams

or by Gram matrices.

• spherical and Euclidean Coxeter polytopes:

– finitely many types in each dimension;

– classified by Coxeter in 1934.



Spherical Coxeter polytopes

• P ⊂ Sn⇒ P is a simplex.

• Coxeter diagram of P is called elliptic, it is a union of

Gm2
m

An

Bn = Cn

Dn

E6

E7

E8

F4

H3

H4



Euclidean Coxeter polytopes

• P ⊂ En⇒ P is a product of simplices.

• Coxeter diagram of P is called parabolic, it is a union of

Ã1 ��� ������ ��� Ẽ6

Ãn Ẽ7

B̃n Ẽ8

C̃n F̃4

D̃n G̃2
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????? Hyperbolic Coxeter polytopes ?????

• Wide veriety of compact and finite-volume polytopes.

− Any number of facets

− Any complexity of combinatorial types

− Arbitrary small dihedral angles

• Thm. [Allcock’05]:

asdasdd Compact polytopes: infinitely many in Hd for all d ≤ 6.

asd Finite volume polytopes: infinitely many in Hd for all d ≤ 19.

• Plan: 1. How badly we don’t know

2. Small bits we know

3. How to add a bit of structure

4. How to use
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1. Hyperbolic Coxeter polytopes: how we don’t know

Absence in large dimensions:

• If P ⊂ Hd is compact then d ≤ 29. [Vinberg’84].

Examples known for d ≤ 8.

Unique Ex. for d = 8 [Bugaenko’92]:

• If P ⊂ Hd is of finite volume than d ≤ 996.

[Prochorov’85, Khovanskiy’86].

Examples known for d ≤ 19 [Vinberg, Kaplinskaya’78],

d = 21 [Borcherds’87].



2. Hyperbolic Coxeter polytopes: bits we know aaaaw

• If P is compact then P is simple.

• Coxeter diagram → combinatorics of P . (Vinberg).

− k-Faces ↔ elliptic subdiagrams of order d− k
( elliptic = Coxeter diagrams of spherical simplices).

− ideal vertices ↔ parabolic subdiagrams of order d

( parabolic = Cox. diagr. of products Eucl. simplices).

− Finite volume ↔ P comb. equiv. to a Euclidean polytope

• [Vinberg’85] Indecomposible, symm. matrix G, sgn(G) = (d, 1)

• [Vinberg’85] ⇒ ∃! P ∈ Hd, G = G(P ).
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1. By dimension.

• dim = 2. [Poincare’1882]:
∑
αi ≤ π(n− 2).

• dim = 3. [Andreev’70]: necessary and suff. condition

for dihedral angles:

aaaaaaaaaaaaa

α+ β + γ > π α+ β + γ < π α+ β + γ + δ < 2π

α β
γ

α β
γ

α

β

γ
δ

• dim ≥ 4. ?????
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2. Compact hyp. Coxeter polytopes: bits we know

1. By dimension.

2. By number of facets.

• n = d+ 1, simplices [Lanner’82], Lanner diagrams

k l

m
1
k + 1

l +
1
m < 1

d = 1 d = 2

d = 3 d = 4
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1. By dimension.

2. By number of facets.

• n = d+ 1, simplices [Lanner’82]: d ≤ 4, fin. many for d > 2.

• n = d+ 2, ∆k ×∆l

− prisms [Kaplinskaya’74]: d ≤ 5, fin. many for d > 3.

− others [Esselmann’96]: d = 4, ∆2 ×∆2, 7 items.

• n = d+ 3, many combinatorial types

[Tumarkin’03]: d ≤ 6 or d = 8, fin. many for d > 3.

• n = d+ 4, really many combinatorial types...

?????
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2. Compact hyp. Coxeter polytopes: bits we know

1. By dimension.

2. By number of facets.

Tools: diagram of missing faces

Lanner subdiagrams ←→ Missing faces

aaa • If L is a Lanner diagram then |L| ≤ 5.

aaa • # of Lanner diagrams of order 4, 5 is finite.

aaa • For any two Lanner subdiagrams s.t. L1 ∩ L2 = ∅,
∃ an edge joining these subdiagrams.

aaaaaaaaaaa Combinatorial type −→ Coxeter polytope



2. Compact hyp. Coxeter polytopes: bits we know

1. By dimension.

2. By number of facets.

• n = d+ 1, simplices [Lanner’82]: d ≤ 4, fin. many for d > 2.

• n = d+ 2, ∆k ×∆l

− prisms [Kaplinskaya’74]: d ≤ 5, fin. many for d > 3.

− others [Esselmann’96]: d = 4, ∆2 ×∆2, 7 items.

• n = d+ 3, many combinatorial types

1. • n = d+ 3 [Tumarkin’03]: d ≤ 6 or d = 8, fin. many for d > 3.

• n = d+ 4, really many combinatorial types...

1. • n = d+ 3 [F,T’05]: d ≤ 9.
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• [Borcherds’98]:
Elliptic subdiagram

without An and D5
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• [Allcock’05]: Angles of this face are easy to find.

• Use “upside-down” technique:
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Tools: Coxeter faces

• [Borcherds’98]:
Elliptic subdiagram

without An and D5
→ Coxeter face

• [Allcock’05]: Angles of this face are easy to find.
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2. Compact hyp. Coxeter polytopes: bits we know

1. By dimension.

2. By number of facets.

• n = d+ 1, simplices [Lanner’82]: d ≤ 4, fin. many for d > 2.

• n = d+ 2, ∆k ×∆l

− prisms [Kaplinskaya’74]: d ≤ 5, fin. many for d > 3.

− others [Esselmann’96]: d = 4, ∆2 ×∆2, 7 items.

• n = d+ 3, many combinatorial types

[Tumarkin’03]: d ≤ 6 or d = 8, fin.many for d > 3.

• n = d+ 4, really many combinatorial types...

[F,T’06]: d ≤ 7, unique example in d = 7.

• n = d+ 5, [F,T’ “06”]: d ≤ 8.
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2. Compact hyp. Coxeter polytopes: bits we know

1. By dimension.

2. By number of facets.

dim

n−dim

298

1) proofs are similar

2) use previous cases

Inductive algorithm?



2. Compact hyp. Coxeter polytopes: bits we know

1. By dimension.

2. By number of facets.

3. By largest denominator:

• Right-angled polytopes [Potyagailo, Vinberg’ 05]:

• asadadasdasdsadadsadasdsad d ≤ 4, examples for d = 2, 3, 4.

• (Some) polytopes with angles π/2 and π/3 [Prokhorov’ 88].
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2. Compact hyp. Coxeter polytopes: bits we know

1. By dimension.

2. By number of facets.

3. By largest denominator.

4. By number of dotted edges.

• p = 0, [F,T’06]: Simplices and Esselmann’s polytopes only.

d ≤ 4, n ≤ d+ 2.

• p = 1, [F,T’07]: Only polytopes with n ≤ d+ 3.

d ≤ 6 and d = 8.

• p ≤ n− d− 2, [F,T,’07]: finitely many polytopes. Algorithm.

• p ≤ n− d− 2 – Implemented the algorithm for d = 4:

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa nothing new.



3. Compact hyp. Coxeter polytopes: structure?

Essential polytopes

A Coxeter polytope P is essential iff

• P generates a maximal reflection group;

• P is not glued of two smaller Coxeter polytopes.

Question: Is the number of essential polytopes finite?

Question: Is there any in dim > 8?

Evidence: Finitely many max. groups in the arithmetic case.

Evidence: [Nikulin’07] and [Agol, Belolipetsky, Storm, Whyte’08].
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A Coxeter polytope P is essential iff

• P generates a maximal reflection group;

• P is not glued of two smaller Coxeter polytopes.

Question: Is the number of essential polytopes finite?

Question: Is there any in dim > 8?
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Since then?

• Some other combinatorial types

- cubes [Jacquemet’ 16; Jacquemet-Tschantz’ 17 ?].

• Some results for finite volume polytopes

- pyramids over products of more than two simplices [Mcleod’ 13];

- n=dim+3, with one non-simple vertex [Roberts’ 15];

- non-arithmetic examples in dim ≤ 12 and dim = 14, 18

asd [Vinberg’ 15].



4. Compact hyp. Coxeter polytopes: how to use?

Another question:

• Quiver = oriented graph;

• Mutation of quiver = local operation.

• Task: Classify quivers with finite mutation class.

• Known: –“quivers from surfaces” are in this class,

• Known: – they are obtained by gluings of small “blocks” of 5 types.

• Idea: – look at minimal quivers non-decomposable into blocks

• Idea: – (mimicking “missing faces = minimal non-faces”);

• Idea: – upside-down technique −→ minimal;

• Idea: – add more vertices one by one −→ all.
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4. Compact hyp. Coxeter polytopes: how to use?

Another question:

• Quiver = oriented graph;

• Mutation of quiver = local operation.

• Task: Classify quivers with finite mutation class.

Thm. [F,Shapiro,T’08]: Let Q be a quiver of finite mutation type.

Thm. Then either Q has 2 vertices,

Thm. Than or Q comes from triangulated surfaces,

Thm. Than or Q mutation-equivalent to one of:



5. Back to polytopes?

Why worked for quivers and not for polytopes?

Why – integer number of arrows / any numbers (distances)

Why – integer number of arrows / any in the polytopes;

Why – don’t know the building blocks;

Why – don’t see how the Coxeter diagram changes

Why – when two polytopes are glued.

So far:

Why • code to search polytopes with p ≤ n− d− 2 and mij small.

Why • Webpage

Why • http://www.maths.dur.ac.uk/users/anna.felikson/Polytopes/polytopes.html
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