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Hyperbolic Coxeter polytopes

Giving talks
usually: because of reacent progress;
today: less progress than expected.

e Collect what we know:

e connect to another classification problem.
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Coxeter polytopes ...

e are polytopes in S¢, E¢ or H?
whose all dihedral angles are submultiples of ;

e are fundamental domains of discrete reflections groups;

e are represented by Coxeter diagrams
or by Gram matrices.



Coxeter diagrams
e Nodes <— facets f; of P

e Edges: Examples:




Gram matrix

PCS"E"or H* —  Symmetric matrix G = {g;;}

/

—cos(n;‘;j), it Z(fif;) = m/mij,
® g =1, gij =4 1, if f; is parallel to f;,
—cosh(p(fi. ;). if fi and f; deverge
i %/\
sgn(G) (d+1,0) (d,0) | (d,1)




Coxeter polytopes ...

e are polytopes in S¢, E¢ or H?
whose all dihedral angles are submultiples of ;

e are fundamental domains of discrete reflections groups;

e are represented by Coxeter diagrams
or by Gram matrices.

e spherical and Euclidean Coxeter polytopes:

— finitely many types in each dimension;
— classified by Coxeter in 1934.



Spherical Coxeter polytopes

e PCS"= P isasimplex.

e Coxeter diagram of P is called elliptic, it is a union of

m E6.'I'.
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Euclidean Coxeter polytopes
e PCE"™= P is a product of simplices.
e Coxeter diagram of P is called parabolic, it is a union of
Zl o0 E6 E
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e Wide veriety of compact and finite-volume polytopes.

— Any number of facets
— Any complexity of combinatorial types
— Arbitrary small dihedral angles

e Thm. [Allcock’05]:

Compact polytopes: infinitely many in H¢ for all d < 6.
Finite volume polytopes: infinitely many in H¢ for all d < 19.

e Plan: 1. How badly we don't know
2. Small bits we know
3. How to add a bit of structure
4. How to use
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Absence in large dimensions:

e If P C HYis compact then d < 29. [Vinberg'84].
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1. Hyperbolic Coxeter polytopes: how we don't know
Absence in large dimensions:
e If P C HYis compact then d < 29. [Vinberg'84].

Examples known for d < 8.
Unique Ex. for d = 8 [Bugaenko'92]:

e If P C H?%is of finite volume than d < 996.
[Prochorov'85, Khovanskiy'86].

Examples known for d < 19 [Vinberg, Kaplinskaya'78],
d = 21 [Borcherds'87].
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2. Hyperbolic Coxeter polytopes: bits we know

If P is compact then P is simple.
Coxeter diagram — combinatorics of P. (Vinberg).

— k-faces < elliptic subdiagrams of order d — k
( elliptic = Coxeter diagrams of spherical simplices).

— ideal vertices <> parabolic subdiagrams of rank d — 1
( parabolic = Cox. diagr. of products Eucl. simplices).

— Finite volume < P comb. equiv. to a Euclidean polytope

[Vinberg'85] Indecomposible, symm. matrix G, sgn(G) = (d, 1)
= JPcH? G =G(P).
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2. Compact hyp. Coxeter polytopes: bits we know

1. By dimension.

o dim = 2. [Poincare'1882]: > «a; < mw(n —2).

e dim = 3. [Andreev'70]: necessary and suff. condition

for dihedral angles:

a+B+y>mw a+B+y<m a+B+v+06<2n

o dim >4. 17777
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2. Compact hyp. Coxeter polytopes: bits we know
1. By dimension.

2. By number of facets.
Tools: diagram of missing faces

e Given a combinatorial type, may try to “reconstruct” the polytope
(i.e. to find its dihedral angles).

Combinatorics: Dihedral angles:
Diagram of missing faces Coxeter diagram
Missing faces  — Lanner subdiagrams

(minimal non-eliptic subd.)

ample: | EEE O



2. Compact hyp. Coxeter polytopes: bits we know
1. By dimension.
2. By number of facets.
Tools: diagram of missing faces
Lanner subdiagrams <— Missing faces
e If L is a Lanner diagram then |L| < 5.
e # of Lanner diagrams of order 4, 5 is finite.

e For any two Lanner subdiagrams s.t. L1 N Ly = 0,
3 an edge joining these subdiagrams.

Combinatorial type — Coxeter polytope



2. Compact hyp. Coxeter polytopes: bits we know
1. By dimension.
2. By number of facets.

e n=d+ 1, simplices [Lanner'82]: d < 4, fin. many for d > 2.

e n=d+2, AFxA
— prisms [Kaplinskaya'74]: d < 5, fin. many for d > 3.
— others [Esselmann’96]: d =4, A% x A?, 7 items.

e n =d+ 3, many combinatorial types
[Tumarkin'03]: d < 6 or d =8, fin. many for d > 3.

e n =d+ 4, really many combinatorial types...
[F, T'05]: d <9.
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1. By dimension.
2. By number of facets.

Tools: Coxeter faces

Elliptic subdiagram

. —  Coxeter face
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e [Borcherds'98|:

o [Allcock’05]: Angles of this face are easy to find.
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2. Compact hyp. Coxeter polytopes: bits we know

1. By dimension.

2. By number of facets.

n =d+ 1, simplices [Lanner'82]: d < 4, fin. many for d > 2.

n=d+2, AFx A’
— prisms [Kaplinskaya'74]: d < 5, fin. many for d > 3.
— others [Esselmann’96]: d =4, A% x A?, 7 items.

n = d + 3, many combinatorial types
[Tumarkin'03]: d < 6 or d =8, fin.many for d > 3.

n = d + 4, really many combinatorial types...
[F, T'06]: d <7, unique example in d = 7.

n=d+5, [F,T' “06"]: d <8,
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2. Compact hyp. Coxeter polytopes: bits we know

1. By dimension.

2. By number of facets.

8

29 dim

_|_

_+_

S
|

S A+
3 -+

A+
++ 4+

+4+

marlle el
-+

1) proofs are similar
2) use previous cases

Inductive algorithm?



2. Compact hyp. Coxeter polytopes: bits we know
1. By dimension.

2. By number of facets.

3. By largest denominator:

e Right-angled polytopes [Potyagailo, Vinberg' 05]:
d < 4, examples for d = 2, 3, 4.

e (Some) polytopes with angles 7/2 and 7/3 [Prokhorov' 88|.
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2. Compact hyp. Coxeter polytopes: bits we know

1.
2.
3.

By dimension.

By number of facets.

By largest denominator.

By number of dotted edges.

e p=20, [F, T'06]: Simplices and Esselmann’s polytopes only.
d<4, n<d+2.

e p=1, [F, T'07]: Only polytopes with n < d + 3.
d < 6 and d = 8.

e p<n-—d-—2, [F,T,07]: finitely many polytopes. Algorithm.

— Implemented the algorithm for d = 4:
nothing new.
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e P generates a maximal reflection group;
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3. Compact hyp. Coxeter polytopes: structure?
Essential polytopes
A Coxeter polytope P is essential iff

e P generates a maximal reflection group;

e P is not glued of two smaller Coxeter polytopes.

Question: Is the number of essential polytopes finite?

Is there any in dim > 87

Evidence: Finitely many max. groups in the arithmetic case.
[Nikulin'07] and [Agol, Belolipetsky, Storm, Whyte'08].



Since then?

e Some other combinatorial types

- cubes [Jacquemet’ 16; Jacquemet-Tschantz' 17 7].

e Some results for finite volume polytopes
- pyramids over products of more than two simplices [Mcleod’ 13];
- n=dim+3, with one non-simple vertex [Roberts" 15];

- non-arithmetic examples in dim < 12 and dim = 14, 18
[Vinberg' 15].
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Another question:

e Quiver = oriented graph;
e Mutation of quiver = local operation.
e [ask: Classify quivers with finite mutation class.
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4. Compact hyp. Coxeter polytopes: how to use?
Another question:

e Quiver = oriented graph;
e Mutation of quiver = local operation.
e [ask: Classify quivers with finite mutation class.

e Known: —"quivers from surfaces” are in this class,
— they are obtained by gluings of small “blocks” of 5 types.

e Ildea: — look at minimal quivers non-decomposable into blocks
(mimicking “missing faces = minimal non-faces” );
— upside-down technique — minimal;
— add more vertices one by one — all.



4. Compact hyp. Coxeter polytopes: how to use?
Another question:

e Quiver = oriented graph;
e Mutation of quiver = local operation.
e [ask: Classify quivers with finite mutation class.

Thm. [F,Shapiro, T'08]: Let ) be a quiver of finite mutation type.
Then either () has 2 vertices,
or () comes from triangulated surfaces,
or () mutation-equivalent to one of:

T —T = W
oo E




5. Back to polytopes?

Why worked for quivers and not for polytopes?

— integer number of arrows / any numbers (distances)
in the polytopes;
— don’'t know the building blocks;
— don't see how the Coxeter diagram changes
when two polytopes are glued.
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5. Back to polytopes?

Why worked for quivers and not for polytopes?

— integer number of arrows / any numbers (distances)
in the polytopes;
— don’'t know the building blocks;
— don't see how the Coxeter diagram changes
when two polytopes are glued.

So far:
e code to search polytopes with p < n —d — 2 and m;; small.

e Webpage

http://www.maths.dur.ac.uk/users/anna.felikson/Polytopes/polytopes.html
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Hyperbolic Coxeter polytopes

« Disclaimer:

o this is an attempt to collect some results concerning classification and properties of hyperbolic Coxeter polytopes.

o This page is under construction. Any corrections, suggestions or other comments are very welcome.
« Arithmetic groups: for detailed discussion of advances in the arithmetic case see the recent survey by M. Belolipetsky [Bel].
« Why "hyperbolic": spherical and Euclidean Coxeter polytopes are classified by H.S.M.Coxeter in 1934 [Cox].

Basic definitions (see [Vin1], [Vin3], [Vin], [Vin7]):

» Definitions of Coxeter polytope, Gram matrix, Coxeter diagram.
» Faces of Coxeter polytopes.
* Existence and Unigueness of a polytope with given Gram matrix.

Absence in large dimensions:

« Compact hyperbolic Coxeter polytopes:

o do not exist in dimensions dim>29 [Vin2];

o examples are known only up to dim=8, the unique known example in dim=8 and both known examples in dim=7 are due to Bugaenko [Bugl].
* Finite volume hyperbolic Coxeter polytopes:

o do not exist in dimensions dim>995 [Pr];

o examples are known in dimensions dim=19 [Vind], [KV] and dim=21 [Bor].

Some known classifications:
By dimension (dim):

« dim=2: there exists a polygon with given angles if and only if the sum of angles is less than 1 [Po].
« dim=3: see Andreev's theorem [And1], [And2], [RHD].

By number of facets (n):

* n=dim+1: compact simplices (Lannér diagrams [Lan], dim=2,3,4) and non-compact simplices (quasi-Lannér diagrams [Ch], [Vin7], [Bou], dim=2,...,.9).
+ n=dim+2:
o Products of two simplices:
= Simplicial prisms exist in dim=3,4,5 [Kap], see also [Vin3].
» Other products of two simplices (exist in dim=4 only): Esselmann polytopes [Ess] and the unique non-compact polytope [Tuml].
o Pyramids over a product of two simplices [Tum1], dim=3,...,13, 17.
e n=dim+3:
o Compact existin dim=2,...,6,8 only; see the list [Tum2]. First high-dimensional results are due to V. Bugaenko [Bug2].
o Finite volume:
= do not existin dim=17 [Tum3], [Tum3'].
= the unique polytope in dim=16 [Tum3], [Tum3".
= polytopes with exactly one non-simple vertex exist in dim=4,...,10, see the list (see pp. 8-33) [Rob].
» n=dim+4: compact polytopes with n=dim+4 facets do not exist in dim>7 [FT7]. There is a unique compact polytope in dim=7 with 11 facets [FT7].
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Basic definitions (see [Vin1], [Vin3], [Vin], [Vin7]):

» Definitions of Coxeter polytope, Gram matrix, Coxeter diagram.
» Faces of Coxeter polytopes.
* Existence and Unigueness of a polytope with given Gram matrix.
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By number of facets (n):

* n=dim+1: compact simplices (Lannér diagrams [Lan], dim=2,3,4) and non-compact simplices (quasi-Lannér diagrams [Ch], [Vin7], [Bou], dim=2,...,.9).
+ n=dim+2:
o Products of two simplices:
= Simplicial prisms exist in dim=3,4,5 [Kap], see also [Vin3].
» Other products of two simplices (exist in dim=4 only): Esselmann polytopes [Ess] and the unique non-compact polytope [Tuml].
o Pyramids over a product of two simplices [Tum1], dim=3,...,13, 17.
e n=dim+3:
o Compact existin dim=2,...,6,8 only; see the list [Tum2]. First high-dimensional results are due to V. Bugaenko [Bug2].
o Finite volume:
= do not existin dim=17 [Tum3], [Tum3'].
= the unique polytope in dim=16 [Tum3], [Tum3".
= polytopes with exactly one non-simple vertex exist in dim=4,...,10, see the list (see pp. 8-33) [Rob].
» n=dim+4: compact polytopes with n=dim+4 facets do not exist in dim>7 [FT7]. There is a unique compact polytope in dim=7 with 11 facets [FT7].




