Anna Felikson

Durham University, UK

(joint with Pavel Tumarkin)

June 2017, CRM.

Giving talks usually: because of reacent progress; today: less progress than expected.

- Collect what we know;
- connect to another classification problem.

• are polytopes in \mathbb{S}^d , \mathbb{E}^d or \mathbb{H}^d whose all dihedral angles are submultiples of π ;

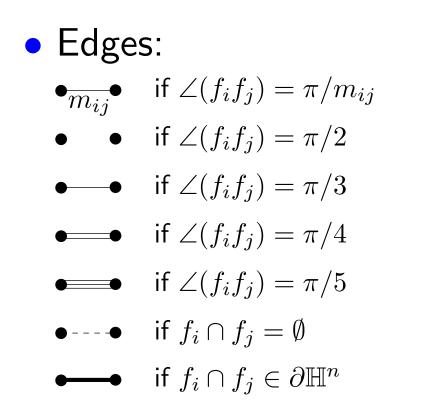
- are polytopes in \mathbb{S}^d , \mathbb{E}^d or \mathbb{H}^d whose all dihedral angles are submultiples of π ;
- are fundamental domains of discrete reflections groups;

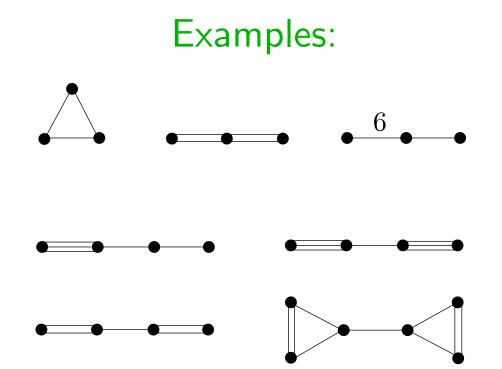
- are polytopes in \mathbb{S}^d , \mathbb{E}^d or \mathbb{H}^d whose all dihedral angles are submultiples of π ;
- are fundamental domains of discrete reflections groups;
- are represented by Coxeter diagrams

or by Gram matrices.

Coxeter diagrams

• Nodes \longleftrightarrow facets f_i of P





Gram matrix

 $P \subset \mathbb{S}^n, \mathbb{E}^n \text{ or } \mathbb{H}^n \longrightarrow \text{Symmetric matrix } G = \{g_{ij}\}$ • $g_{ii} = 1$, $g_{ij} = \begin{cases} -\cos(\frac{\pi}{m_{ij}}), & \text{if } \angle(f_i f_j) = \pi/m_{ij}, \\ 1, & \text{if } f_i \text{ is parallel to } f_j, \\ -\cosh(\rho(f_i, f_j)), & \text{if } f_i \text{ and } f_j \text{ deverge.} \end{cases}$ \mathbb{E}^{d} \mathbb{S}^d \mathbb{H}^d $sgn(G) \mid (d+1,0) \mid (d,0) \mid (d,1)$

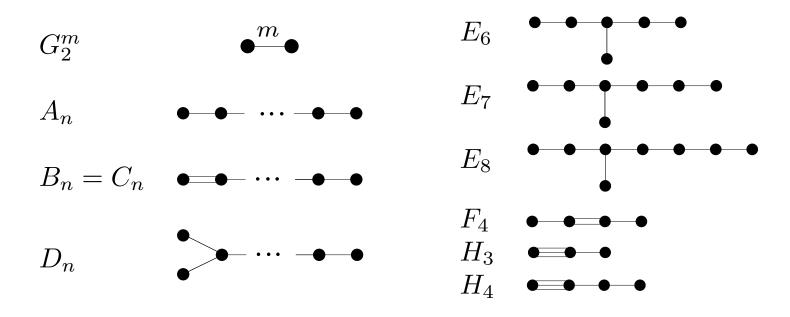
- are polytopes in S^d, E^d or H^d
 whose all dihedral angles are submultiples of π;
- are fundamental domains of discrete reflections groups;
- are represented by Coxeter diagrams

or by Gram matrices.

- spherical and Euclidean Coxeter polytopes:
 - finitely many types in each dimension;
 - classified by Coxeter in 1934.

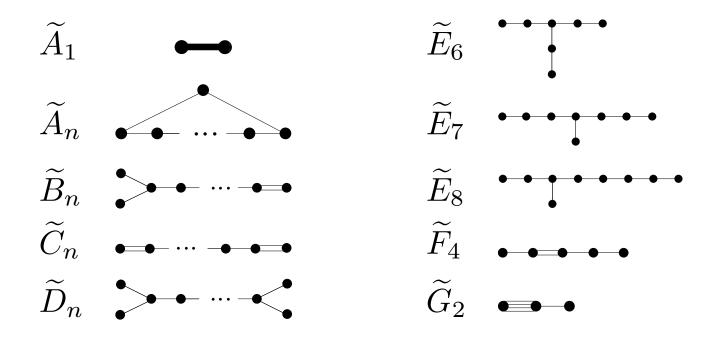
Spherical Coxeter polytopes

- $P \subset \mathbb{S}^n \Rightarrow P$ is a simplex.
- Coxeter diagram of P is called elliptic, it is a union of

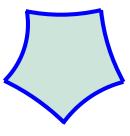


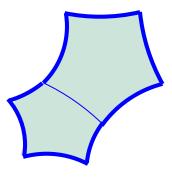
Euclidean Coxeter polytopes

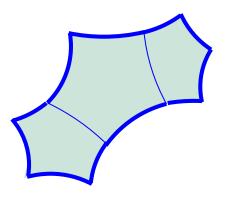
- $P \subset \mathbb{E}^n \Rightarrow P$ is a product of simplices.
- Coxeter diagram of P is called parabolic, it is a union of

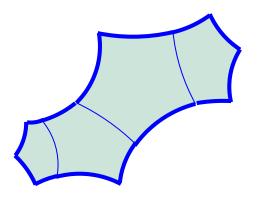


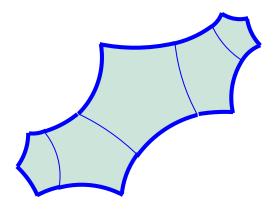
• Wide veriety of compact and finite-volume polytopes.

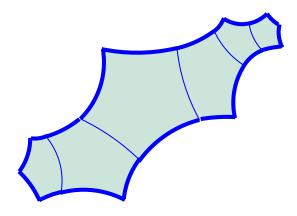


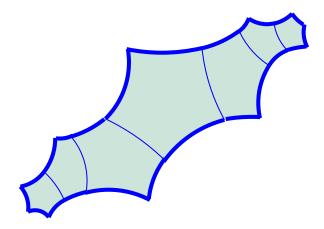












- Wide veriety of compact and finite-volume polytopes.
 - Any number of facets
 - Any complexity of combinatorial types
 - Arbitrary small dihedral angles

- Wide veriety of compact and finite-volume polytopes.
 - Any number of facets
 - Any complexity of combinatorial types
 - Arbitrary small dihedral angles
- Thm. [Allcock'05]:

Compact polytopes: infinitely many in \mathbb{H}^d for all $d \leq 6$. Finite volume polytopes: infinitely many in \mathbb{H}^d for all $d \leq 19$.

????? Hyperbolic Coxeter polytopes **????**

- Wide veriety of compact and finite-volume polytopes.
 - Any number of facets
 - Any complexity of combinatorial types
 - Arbitrary small dihedral angles
- Thm. [Allcock'05]:

Compact polytopes: infinitely many in \mathbb{H}^d for all $d \leq 6$. Finite volume polytopes: infinitely many in \mathbb{H}^d for all $d \leq 19$.

- Plan: 1. How badly we don't know
 - 2. Small bits we know
 - 3. How to add a bit of structure
 - 4. How to use

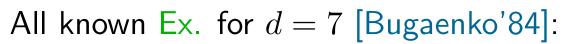
Absence in large dimensions:

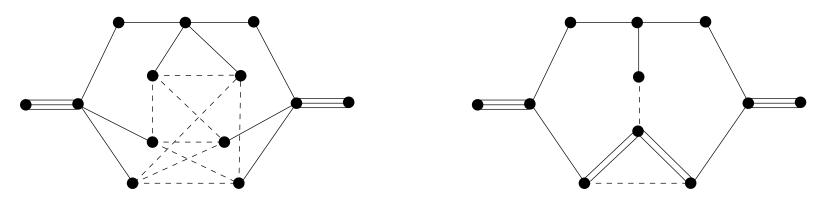
• If $P \subset \mathbb{H}^d$ is compact then $d \leq 29$. [Vinberg'84].

Absence in large dimensions:

• If $P \subset \mathbb{H}^d$ is compact then $d \leq 29$. [Vinberg'84].

Examples known for $d \le 8$. Unique Ex. for d = 8 [Bugaenko'92]:

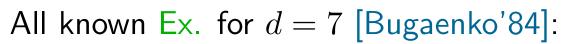


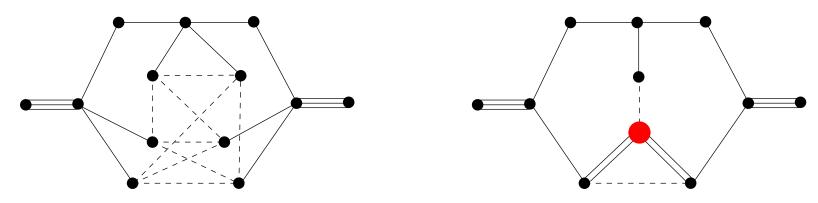


Absence in large dimensions:

• If $P \subset \mathbb{H}^d$ is compact then $d \leq 29$. [Vinberg'84].

Examples known for $d \le 8$. Unique Ex. for d = 8 [Bugaenko'92]:

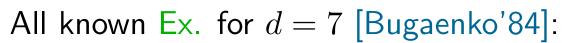


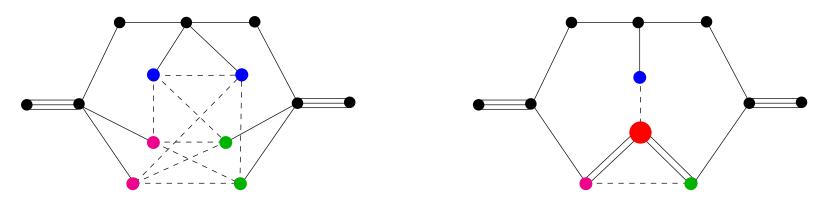


Absence in large dimensions:

• If $P \subset \mathbb{H}^d$ is compact then $d \leq 29$. [Vinberg'84].

Examples known for $d \le 8$. Unique Ex. for d = 8 [Bugaenko'92]:

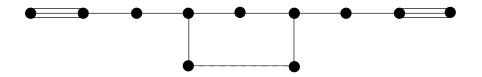




Absence in large dimensions:

• If $P \subset \mathbb{H}^d$ is compact then $d \leq 29$. [Vinberg'84].

Examples known for $d \le 8$. Unique Ex. for d = 8 [Bugaenko'92]:



If P ⊂ ℍ^d is of finite volume than d ≤ 996.
 [Prochorov'85, Khovanskiy'86].

Examples known for $d \le 19$ [Vinberg, Kaplinskaya'78], d = 21 [Borcherds'87].

2. Hyperbolic Coxeter polytopes: bits we know

• If P is compact then P is simple.

2. Hyperbolic Coxeter polytopes: bits we know

- If P is compact then P is simple.
- Coxeter diagram \rightarrow combinatorics of P. (Vinberg).

-k-faces \leftrightarrow elliptic subdiagrams of order d-k(elliptic = Coxeter diagrams of spherical simplices).

- ideal vertices \leftrightarrow parabolic subdiagrams of rank d-1(parabolic = Cox. diagr. of products Eucl. simplices).

- Finite volume $\leftrightarrow P$ comb. equiv. to a Euclidean polytope

2. Hyperbolic Coxeter polytopes: bits we know

- If P is compact then P is simple.
- Coxeter diagram \rightarrow combinatorics of *P*. (Vinberg).

-k-faces \leftrightarrow elliptic subdiagrams of order d-k(elliptic = Coxeter diagrams of spherical simplices).

- ideal vertices \leftrightarrow parabolic subdiagrams of rank d-1(parabolic = Cox. diagr. of products Eucl. simplices).

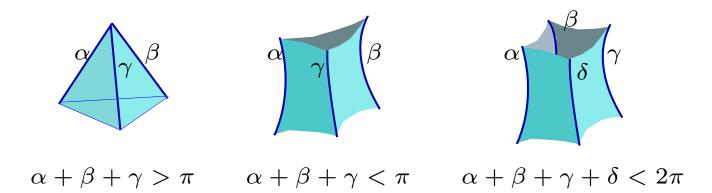
- Finite volume $\leftrightarrow P$ comb. equiv. to a Euclidean polytope
- [Vinberg'85] Indecomposible, symm. matrix G, sgn(G) = (d, 1) $\Rightarrow \exists ! P \in \mathbb{H}^d$, G = G(P).

1. By dimension.

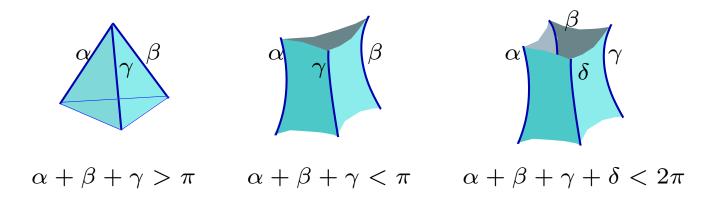
1. By dimension.

• dim = 2. [Poincare'1882]: $\sum \alpha_i \leq \pi(n-2)$.

- 1. By dimension.
 - dim = 2. [Poincare'1882]: $\sum \alpha_i \le \pi(n-2)$.
 - dim = 3. [Andreev'70]: necessary and suff. condition for dihedral angles:



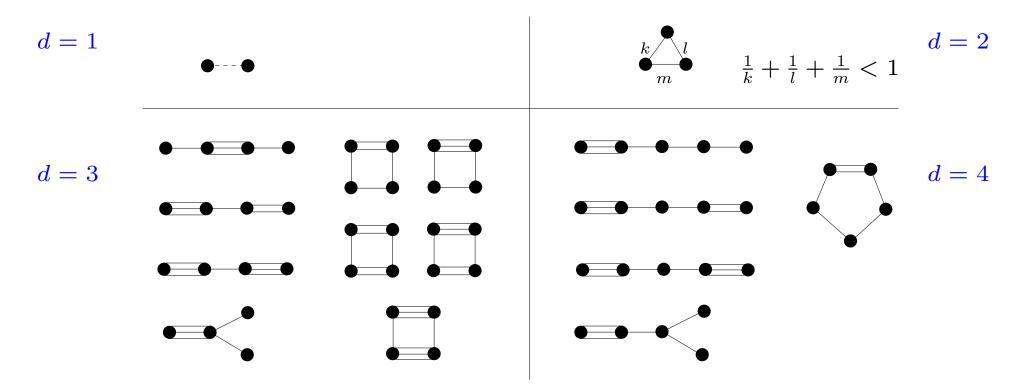
- 1. By dimension.
 - dim = 2. [Poincare'1882]: $\sum \alpha_i \le \pi(n-2)$.
 - dim = 3. [Andreev'70]: necessary and suff. condition for dihedral angles:



- **1**. By dimension.
- 2. By number of facets.

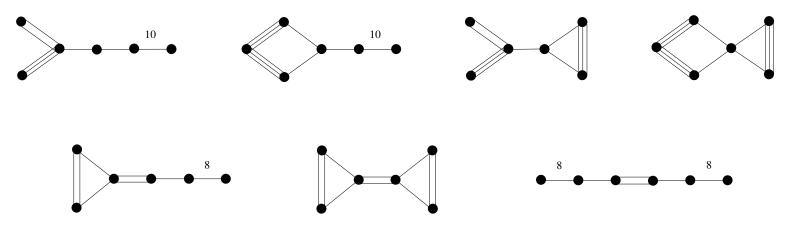
- **1**. By dimension.
- 2. By number of facets.
 - n = d + 1, simplices [Lanner'82]

- 1. By dimension.
- 2. By number of facets.
 - n = d + 1, simplices [Lanner'82], Lanner diagrams



- 1. By dimension.
- 2. By number of facets.
 - n = d + 1, simplices [Lanner'82]: $d \le 4$, fin. many for d > 2.

- 1. By dimension.
- 2. By number of facets.
 - n = d + 1, simplices [Lanner'82]: $d \le 4$, fin. many for d > 2.
 - n = d + 2, $\Delta^k \times \Delta^l$
 - prisms [Kaplinskaya'74]: $d \le 5$, fin. many for d > 3.
 - others [Esselmann'96]: d = 4, $\Delta^2 \times \Delta^2$, 7 items:



- 1. By dimension.
- 2. By number of facets.
 - n = d + 1, simplices [Lanner'82]: $d \le 4$, fin. many for d > 2.

•
$$n = d + 2$$
, $\Delta^k \times \Delta^l$

- prisms [Kaplinskaya'74]: $d \le 5$, fin. many for d > 3.

- others [Esselmann'96]: d = 4, $\Delta^2 \times \Delta^2$, 7 items.
- n = d + 3, many combinatorial types [Tumarkin'03]: $d \le 6$ or d = 8, fin. many for d > 3.

- 1. By dimension.
- 2. By number of facets.
 - n = d + 1, simplices [Lanner'82]: $d \le 4$, fin. many for d > 2.

•
$$n = d + 2$$
, $\Delta^k \times \Delta^l$

- prisms [Kaplinskaya'74]: $d \le 5$, fin. many for d > 3.

- others [Esselmann'96]: d = 4, $\Delta^2 \times \Delta^2$, 7 items.
- n = d + 3, many combinatorial types [Tumarkin'03]: $d \le 6$ or d = 8, fin. many for d > 3.
- n = d + 4, really many combinatorial types... ?????

- 1. By dimension.
- 2. By number of facets.

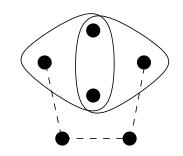
Tools: diagram of missing faces

- Nodes \longleftrightarrow facets of P
- Missing face is a minimal set of facets $f_1, ..., f_k$, such that $\bigcap_{i=1}^k f_i = \emptyset$.
- Missing faces are encircled.

- 1. By dimension.
- 2. By number of facets.

Tools: diagram of missing faces

- Nodes \longleftrightarrow facets of P
- Missing face is a minimal set of facets $f_1, ..., f_k$, such that $\bigcap_{i=1}^k f_i = \emptyset$.
- Missing faces are encircled.



- 1. By dimension.
- 2. By number of facets.

Tools: diagram of missing faces

 Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics: Diagram of missing faces Dihedral angles: Coxeter diagram

Missing faces \leftrightarrow Lanner subdiagrams (minimal non-eliptic subd.)

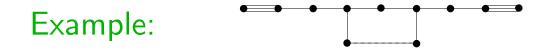
- 1. By dimension.
- 2. By number of facets.

Tools: diagram of missing faces

 Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics: Diagram of missing faces Dihedral angles: Coxeter diagram

Missing faces \leftrightarrow Lanner subdiagrams (minimal non-eliptic subd.)



- 1. By dimension.
- 2. By number of facets.

Tools: diagram of missing faces

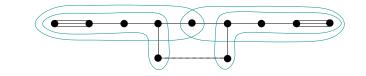
 Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

 \longleftrightarrow

Combinatorics: Diagram of missing faces Dihedral angles: Coxeter diagram

Missing faces

Lanner subdiagrams (minimal non-eliptic subd.)



Example:

1. By dimension.

Example:

2. By number of facets.

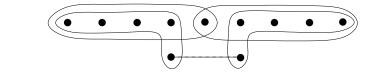
Tools: diagram of missing faces

 Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics: Diagram of missing faces Dihedral angles: Coxeter diagram

 $\mathsf{Missing} \ \mathsf{faces} \qquad \longleftrightarrow$

Lanner subdiagrams (minimal non-eliptic subd.)



- 1. By dimension.
- 2. By number of facets.

Tools: diagram of missing faces

Lanner subdiagrams \leftrightarrow Missing faces

- If L is a Lanner diagram then $|L| \leq 5$.
- # of Lanner diagrams of order 4, 5 is finite.
- For any two Lanner subdiagrams s.t. $L_1 \cap L_2 = \emptyset$, \exists an edge joining these subdiagrams.

Combinatorial type \longrightarrow Coxeter polytope

- 1. By dimension.
- 2. By number of facets.
 - n = d + 1, simplices [Lanner'82]: $d \le 4$, fin. many for d > 2.

•
$$n = d + 2$$
, $\Delta^k \times \Delta^l$

- prisms [Kaplinskaya'74]: $d \le 5$, fin. many for d > 3.

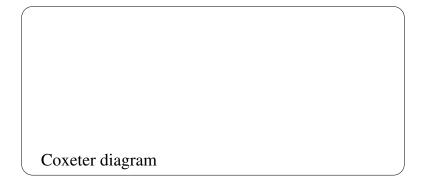
- others [Esselmann'96]: d = 4, $\Delta^2 \times \Delta^2$, 7 items.
- n = d + 3, many combinatorial types [Tumarkin'03]: $d \le 6$ or d = 8, fin. many for d > 3.
- n = d + 4, really many combinatorial types... [F,T'05]: $d \le 9$.

- 1. By dimension.
- 2. By number of facets.

- [Borcherds'98]:
- Elliptic subdiagram without A_n and $D_5 \quad \rightarrow \quad {\rm Coxeter} \ {\rm face}$
- [Allcock'05]: Angles of this face are easy to find.

- 1. By dimension.
- 2. By number of facets.

- [Borcherds'98]:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- [Allcock'05]: Angles of this face are easy to find.
- Use "upside-down" technique:



- **1**. By dimension.
- 2. By number of facets.

- [Borcherds'98]:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- [Allcock'05]: Angles of this face are easy to find.
- Use "upside-down" technique:

Elliptic subdiagram		
Coxeter diagram	Coxeter face)

- **1**. By dimension.
- 2. By number of facets.

- [Borcherds'98]:
- Elliptic subdiagram without A_n and D_5
 - \rightarrow Coxeter face
- [Allcock'05]: Angles of this face are easy to find.
- Use "upside-down" technique:

Elliptic subdiagram		
Coxeter diagram	Coxeter face	

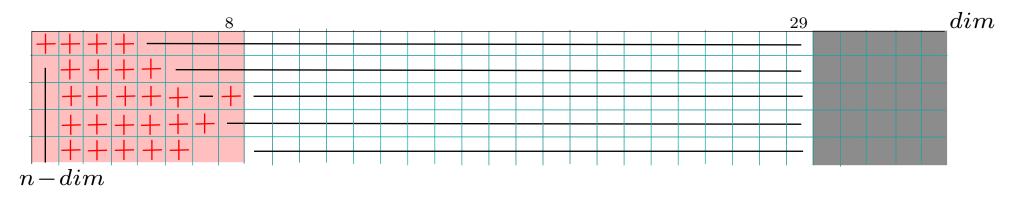
- 1. By dimension.
- 2. By number of facets.
 - n = d + 1, simplices [Lanner'82]: $d \le 4$, fin. many for d > 2.

•
$$n = d + 2$$
, $\Delta^k \times \Delta^l$

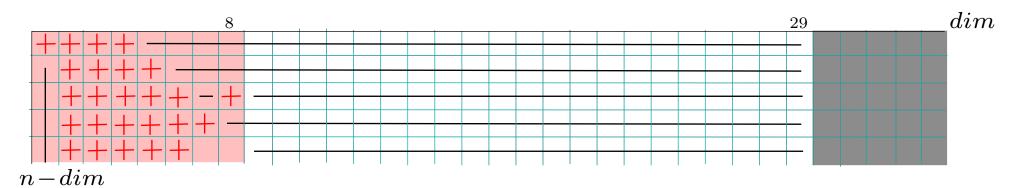
- prisms [Kaplinskaya'74]: $d \leq 5$, fin. many for d > 3.

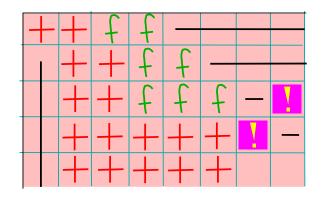
- others [Esselmann'96]: d = 4, $\Delta^2 \times \Delta^2$, 7 items.
- n = d + 3, many combinatorial types [Tumarkin'03]: $d \le 6$ or d = 8, fin.many for d > 3.
- n = d + 4, really many combinatorial types... [F,T'06]: $d \le 7$, unique example in d = 7.
- n = d + 5, [F,T' "06"]: $d \le 8$.

- **1**. By dimension.
- 2. By number of facets.

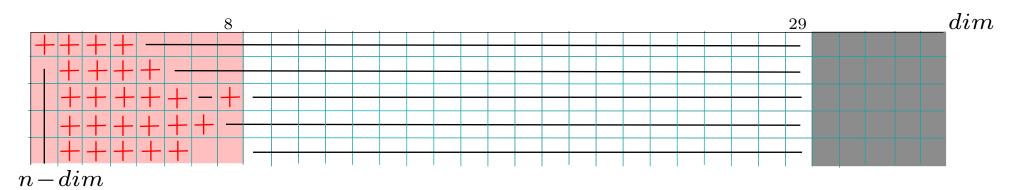


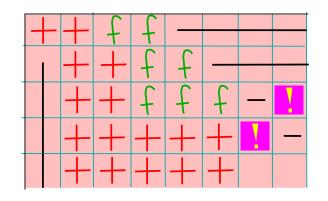
- **1**. By dimension.
- 2. By number of facets.





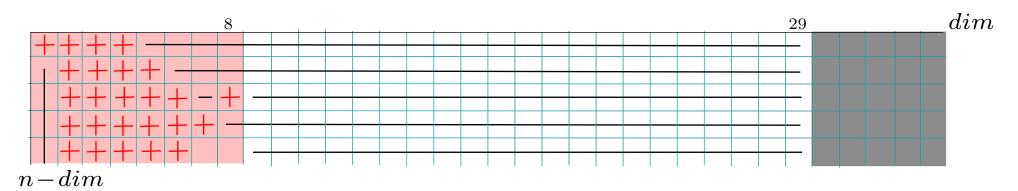
- 1. By dimension.
- 2. By number of facets.

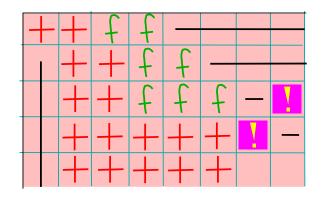




- 1) proofs are similar
- 2) use previous cases

- 1. By dimension.
- 2. By number of facets.





- 1) proofs are similar
- 2) use previous cases

Inductive algorithm?

- 1. By dimension.
- 2. By number of facets.
- 3. By largest denominator:
 - Right-angled polytopes [Potyagailo, Vinberg' 05]: $d \leq 4, \text{ examples for } d = 2, 3, 4.$
 - (Some) polytopes with angles $\pi/2$ and $\pi/3$ [Prokhorov' 88].

- 1. By dimension.
- 2. By number of facets.
- 3. By largest denominator.
- 4. By number of dotted edges.

- 1. By dimension.
- 2. By number of facets.
- 3. By largest denominator.
- 4. By number of dotted edges.
 - p = 0, [F,T'06]: Simplices and Esselmann's polytopes only. $d \le 4$, $n \le d+2$.

- 1. By dimension.
- 2. By number of facets.
- 3. By largest denominator.
- 4. By number of dotted edges.
 - p = 0, [F,T'06]: Simplices and Esselmann's polytopes only. $d \le 4$, $n \le d+2$.
 - p = 1, [F,T'07]: Only polytopes with $n \le d+3$. $d \le 6$ and d = 8.

- 1. By dimension.
- 2. By number of facets.
- 3. By largest denominator.
- 4. By number of dotted edges.
 - p = 0, [F,T'06]: Simplices and Esselmann's polytopes only. $d \le 4$, $n \le d+2$.
 - p = 1, [F,T'07]: Only polytopes with $n \le d+3$. $d \le 6$ and d = 8.
 - $p \le n d 2$, [F,T,'07]: finitely many polytopes. Algorithm.

– Implemented the algorithm for d = 4:

nothing new.

3. Compact hyp. Coxeter polytopes: structure?

Essential polytopes

A Coxeter polytope P is essential iff

- *P* generates a maximal reflection group;
- P is not glued of two smaller Coxeter polytopes.

3. Compact hyp. Coxeter polytopes: structure?

Essential polytopes

A Coxeter polytope P is essential iff

- *P* generates a maximal reflection group;
- P is not glued of two smaller Coxeter polytopes.

Question: Is the number of essential polytopes finite? Is there any in dim > 8? **3. Compact hyp. Coxeter polytopes:** structure?

Essential polytopes

A Coxeter polytope P is essential iff

- *P* generates a maximal reflection group;
- P is not glued of two smaller Coxeter polytopes.

Question: Is the number of essential polytopes finite? Is there any in dim > 8?

Evidence: Finitely many max. groups in the arithmetic case. [Nikulin'07] and [Agol, Belolipetsky, Storm, Whyte'08].

Since then?

- Some other combinatorial types
 - cubes [Jacquemet' 16; Jacquemet-Tschantz' 17 ?].
- Some results for finite volume polytopes
 - pyramids over products of more than two simplices [Mcleod' 13];
 - n=dim+3, with one non-simple vertex [Roberts' 15];
 - non-arithmetic examples in $dim \leq 12$ and dim = 14, 18 [Vinberg' 15].

Another question:

- Quiver = oriented graph;
- Mutation of quiver = local operation.
- Task: Classify quivers with finite mutation class.

Another question:

- Quiver = oriented graph;
- Mutation of quiver = local operation.
- Task: Classify quivers with finite mutation class.
- Known: "quivers from surfaces" are in this class,
 - they are obtained by gluings of small "blocks" of 5 types.

Another question:

- Quiver = oriented graph;
- Mutation of quiver = local operation.
- Task: Classify quivers with finite mutation class.
- Known: "quivers from surfaces" are in this class,
 they are obtained by gluings of small "blocks" of 5 types.
- Idea: look at minimal quivers non-decomposable into blocks (mimicking "missing faces = minimal non-faces");
 - upside-down technique \longrightarrow minimal;
 - add more vertices one by one \longrightarrow all.

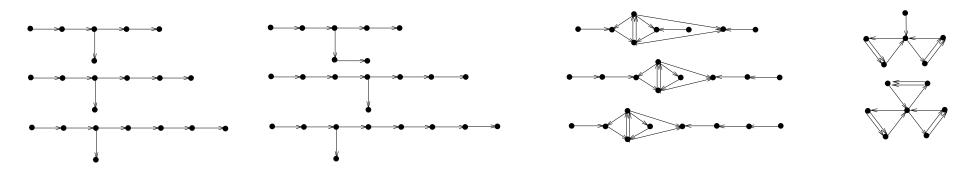
Another question:

- Quiver = oriented graph;
- Mutation of quiver = local operation.
- Task: Classify quivers with finite mutation class.

Thm. [F,Shapiro,T'08]: Let Q be a quiver of finite mutation type. Then either Q has 2 vertices,

or \boldsymbol{Q} comes from triangulated surfaces,

or Q mutation-equivalent to one of:



5. Back to polytopes?

Why worked for quivers and not for polytopes?

- integer number of arrows / any numbers (distances)
 in the polytopes;
- don't know the building blocks;
- don't see how the Coxeter diagram changes when two polytopes are glued.

5. Back to polytopes?

Why worked for quivers and not for polytopes?

- integer number of arrows / any numbers (distances)
 in the polytopes;
- don't know the building blocks;
- don't see how the Coxeter diagram changes when two polytopes are glued.

So far:

• code to search polytopes with $p \leq n - d - 2$ and m_{ij} small.

5. Back to polytopes?

Why worked for quivers and not for polytopes?

- integer number of arrows / any numbers (distances)
 in the polytopes;
- don't know the building blocks;
- don't see how the Coxeter diagram changes when two polytopes are glued.

So far:

- code to search polytopes with $p \leq n d 2$ and m_{ij} small.
- Webpage

http://www.maths.dur.ac.uk/users/anna.felikson/Polytopes/polytopes.html

Mozilla Firefox		
Anna Felikson	× file:///homytopes.html × 🕂	
← → i file:///home/and	na/Dropbox/A/Polytopes/polytopes.html	C Search

Hyperbolic Coxeter polytopes

• Disclaimer:

- o this is an attempt to collect some results concerning classification and properties of hyperbolic Coxeter polytopes.
- This page is under construction. Any corrections, suggestions or other comments are very welcome.
- Arithmetic groups: for detailed discussion of advances in the arithmetic case see the recent survey by M. Belolipetsky [Bel].
- Why "hyperbolic": <u>spherical and Euclidean</u> Coxeter polytopes are classified by <u>H.S.M.Coxeter</u> in 1934 [Cox].

Basic definitions (see [Vin1], [Vin3], [Vin6], [Vin7]):

- Definitions of Coxeter polytope, Gram matrix, Coxeter diagram.
- Faces of Coxeter polytopes.
- Existence and Uniqueness of a polytope with given Gram matrix.

Absence in large dimensions:

- Compact hyperbolic Coxeter polytopes:
 - do not exist in dimensions dim>29 [Vin2];
 - examples are known only up to dim=8, the unique known example in dim=8 and both known examples in dim=7 are due to Bugaenko [Bug1].
- Finite volume hyperbolic Coxeter polytopes:
 - do not exist in dimensions dim>995 [Pr];
 - o examples are known in dimensions dim≤19 [Vin4], [KV] and dim=21 [Bor].

Some known classifications:

By dimension (dim):

- dim=2: there exists a polygon with given angles if and only if the sum of angles is less than π [Po].
- dim=3: see <u>Andreev's theorem [And1]</u>, [And2], [RHD].

By number of facets (n):

- n=dim+1: compact simplices (Lannér diagrams [Lan], dim=2,3,4) and non-compact simplices (quasi-Lannér diagrams [Ch], [Vin7], [Bou], dim=2,...,9).
- n=dim+2:
 - Products of two simplices:
 - <u>Simplicial prisms</u> exist in dim=3,4,5 [Kap], see also [Vin3].
 - Other products of two simplices (exist in dim=4 only): Esselmann polytopes [Ess] and the unique non-compact polytope [Tum1].
 - <u>Pyramids</u> over a product of two simplices [Tum1], dim=3,...,13, 17.
- n=dim+3:
 - Compact: exist in dim=2,...,6,8 only; see the list [Tum2]. First high-dimensional results are due to V. Bugaenko [Bug2].
 - Finite volume:
 - do not exist in dim≥17 [Tum3], [Tum3'].
 - the unique polytope in <u>dim=16</u> [Tum3], [Tum3'].
 - polytopes with exactly one non-simple vertex exist in dim=4,...,10, see the list (see pp. 8-33) [Rob].
- n=dim+4: compact polytopes with n=dim+4 facets do not exist in dim>7 [FT7]. There is a unique compact polytope in dim=7 with 11 facets [FT7].

Mozilla Firefox	
Anna Felikson × file:///homytopes.html × 🕂	
I file:///home/anna/Dropbox/A/Polytopes.html	୯ 🛛 🔍 Search

Hyperbolic Coxeter polytopes

• Disclaimer:

- o this is an attempt to collect some results concerning classification and properties of hyperbolic Coxeter polytopes.
- This page is under construction. Any corrections, suggestions or other comments are very welcome.
- Arithmetic groups: for detailed discussion of advances in the arithmetic case see the recent survey by M. Belolipetsky [Bel].
- Why "hyperbolic": <u>spherical and Euclidean</u> Coxeter polytopes are classified by <u>H.S.M.Coxeter</u> in 1934 [Cox].

Basic definitions (see [Vin1], [Vin3], [Vin6], [Vin7]):

- Definitions of Coxeter polytope, Gram matrix, Coxeter diagram.
- Faces of Coxeter polytopes.
- Existence and Uniqueness of a polytope with given Gram matrix.



By number of facets (n):

- n=dim+1: compact simplices (Lannér diagrams [Lan], dim=2,3,4) and non-compact simplices (quasi-Lannér diagrams [Ch], [Vin7], [Bou], dim=2,...,9).
- n=dim+2:
 - Products of two simplices:
 - <u>Simplicial prisms</u> exist in dim=3,4,5 [Kap], see also [Vin3].
 - Other products of two simplices (exist in dim=4 only): Esselmann polytopes [Ess] and the unique non-compact polytope [Tum1].
 - <u>Pyramids</u> over a product of two simplices [Tum1], dim=3,...,13, 17.
- n=dim+3:
 - Compact: exist in dim=2,...,6,8 only; see the list [Tum2]. First high-dimensional results are due to V. Bugaenko [Bug2].
 - Finite volume:
 - do not exist in dim≥17 [Tum3], [Tum3'].
 - the unique polytope in <u>dim=16</u> [Tum3], [Tum3'].
 - polytopes with exactly one non-simple vertex exist in dim=4,...,10, see the list (see pp. 8-33) [Rob].
- n=dim+4: compact polytopes with n=dim+4 facets do not exist in dim>7 [FT7]. There is a unique compact polytope in dim=7 with 11 facets [FT7].