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1. Quiver mutation

e Quiver is a directed graph without loops and 2-cycles.

e Mutation ug of quivers:

- reverse all arrows incident to k:

- for every path through k with e = . % e and p,q > 0 do:
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1. Quiver mutation

.v.

lterated mutations — many other quivers H1
() — its mutation class 1 il
M3

Property: ug o uk(Q) = @ for any quiver Q. * e

S

Definition. A quiver is of finite mutation type
If its mutation class contains finitely many quivers.

Question. Which quivers are of finite mutation type?




1. Quiver mutation

Question. Which quivers are of finite mutation type?

Quick answer. Not many:

If Q is connected, |Q| > 3 and @ contains arrow — with p > 2,
then () is mutation infinite.

Why: if g>r>0, p>2 then v =pg—r >q>r,
so the weghts grow under alternating mutations 11, us.
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2. Cluster algebra: seed mutation

A seed is a pair (Q,u) where

() is a quiver with n := |@Q)| veritices,
u = (u1,...,uy) is a set of rational functions
in variables (z1,...,2,).

Initial seed: (Qo,uO), where Uy — (5131, e ,CIZ‘n).
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2. Cluster algebra: seed mutation

A seed is a pair (Q,u) where

() is a quiver with n := |@Q)| veritices,
u = (u1,...,uy) is a set of rational functions
in variables (z1,...,2,).
Initial seed: (Qq, ), where ug = (x1,...,x,).

Seed mutation: pug(Q, (u1,...,un)) = (ue(Q), (U}, ..., u.))

where u) = ui( [T wi+ |1 uj)
bk k—j products over all
incoming /outgoing arrows

w, = u; if i # k.
Cluster variable: a function u; in one of the seeds.

Cluster algebra: all one can form from cluster variables, “+", “*¥" and rational numbers.



2. Cluster algebra: seed mutation

How to think about this?

Example:
@3 ®L3
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Y

.$5 .5135

[} . /
Cluster variables: x1,x2, x3, x4, x5, 27, . ..
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2. Cluster algebra: seed mutation
How to think about this?

Example: Markov quiver

) 1¢,.2 2
x =gy +27)
A A
20y %y 2%,y
Markov equation: 2 + y? + 2% = 3zyz

(Zl?,y,Z) — (Syz —X,Y, Z)

So, if (x,y,2) = (1,1,1) then seed mutation produces all Markov triples!
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2. Cluster algebra: Two remarkable properties

P(x1,...,xn)
R(x1,....,xn)"

By definition u; = where P and R are polynomials.

In fact:

e Laurent phenomenon [Fomin, Zelevinsky' 2001]:

: . d
R(x1,...,2,) is a monomial, R = z{'...z%.
It is a miracle as computing u), = uik( [] wi+ [] w;) we divide by uy!
1—k k— 3

e Positivity [Conj.: Fomin, Zelevinsky' 2001; proved: Lee, Schiffler’ 2013]:
P(xy,...,x,) has positive coefficients.

. . .. 3 3
It is a miracle as we divide: aaig — a? — ab + b2



2. Cluster algebra: finite type

A cluster algebra is of finite type
iIf it contains finitely many cluster variables.

Theorem. (Fomin, Zelevinsky' 2002)
A cluster algebra A(Q) is of finite type iff
() i1s mutation-equivalent to an orientation

of a Dynkin diagram A,,, D,,, Es, E7, Es.



2. Cluster algebra: finite type

A cluster algebra is of finite type
iIf it contains finitely many cluster variables.

Theorem. (Fomin, Zelevinsky' 2002)
A cluster algebra A(Q) is of finite type iff
() i1s mutation-equivalent to an orientation

of a Dynkin diagram A,,, D,,, Es, E7, Es.

Es ‘ E~ ‘ Eg ‘

Note: Dynkin diagrams describe:
finite reflection groups, semisimple Lie algebras, surface singularities...




2. Cluster algebra: finite mutation type

A cluster algebra A(Q) is of finite mutation type
if () is of finite mutation type.

mutation cluster

class variables

finite type < OO < OO
finite mutation type < 0 o0
0 0

general quiver

ava) < N\

S N 4




3. Finite mutation type: examples
1. n=2.
2. Quivers arising from triangulated surfaces.

3. Finitely many except that.
(conjectured by Fomin, Shapiro, Thurston)
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4. Quivers from triangulated surfaces

Triangulated surface —  Quiver

edge of triangulation vertex of quiver
two edges of one triangle arrow of quiver
flip of triangulation - mutation of quiver

Remark. @) from a triangulation = weights of arrows < 2.

(as every arc lies at most in two triangles)

Theorem. Every two triangulations of the same surface
(Hatcher, 1991) are connected by a sequence of flips.

Corollary. (a) Quivers from triangulations of the same surface are
mutation-equivalent (and form the whole mutation class).
(b) Quivers from triangulations are mutation-finite.

Question. What else is mutation-finite?



4. Quivers from triangulations: description
(Fomin-Shapiro-Thurston)

Any triangulated surface can be glued of:

4444

_____

The corresponding quiver can be glued of blocks:

o o o Ao \
AN A S

Oo——0O




4. Quivers from triangulations: description
(Fomin-Shapiro-Thurston)

Any triangulated surface can be glued of:

4444

_____

The corresponding quiver can be glued of blocks:

o o o Ao \
AN A S

Oo——0O

Proposition. (Fomin-Shapiro-Thurston)
{Q is from triangualation } < {(@ is block-decomposable }

Question: How to find all mutation-finite
but not block-decomposable quivers?
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How to classify tesselations in hyperbolic space?
1. They correspond to some polytopes (described by some diagrams);
2. Combinatorics of these polytopes is described by:
a. subdiagrams corresponding to finite objects (classified) ;
b. minimal subdiagrams correponding to infinite objects.




4. Quivers from triangulations: description
(Fomin-Shapiro-Thurston)

Question: How to find all mutation-finite
but not block-decomposable quivers?

Interlude:
How to classify tesselations in hyperbolic space?
1. They correspond to some polytopes (described by some diagrams);
2. Combinatorics of these polytopes is described by:
a. subdiagrams corresponding to finite objects (classified) ;
b. minimal subdiagrams correponding to infinite objects.

|dea: Classify minimal non-decomposable quivers.




Lemma 1. If @) is a minimal non-decomposable quiver then |Q| < 7.

Lemma 2. If () is a minimal non-decomposable mutation-finite quiver
then is mutation equivalent to one of

|
R B VAV

Now: - add vertices to these quivers (and their mutations) one by one
- check the obtained quiver is still mutation-finite.




Theorem 1. (A.F, M.Shapiro, P.Tumarkin' 2008)
Let () be a connected quiver of finite mutation type. Then
- either |Q| = 2;
- or () is obtained from a triangulated surface;
- or () is mut.-equivalent to one of the following 11 quivers:

II%%
e e @

| Vi




Proof:



Proof: terrible, technical .... -but follows the same steps
as some classifications of tessellations



Proof: terrible, technical .... -but follows the same steps
as some classifications of tessellations

Example. Logic scheme for a proof of some small lemma:

22 ANNA FELIKSON, MICHAEL SHAPIRO, AND PAVEL TUMARKIN

TABLE 5.1. To the proof of Lemma [55

5
Valsi(m)=4  Vals(n)=3  Valsi(u)=2
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Bonus: proof of Ptolemy Theorem.

ac bd
0+3 B s\ * By

a-(A BCD) b-(A BDA)

o 5
f.(A ABC)
v 5
B o
ef
_

ef=ac-+bd

Proof from:
https://www.cut-the-knot.org/proofs/PtolemyTheoremPWW.shtml




