

I On classification of hyperbolic Coxeter polytopes

I Application to a classification problem about querver mutation

In Constructing hyperbolic manifolds via quiver mutations

polytopes in S, Fd or HI Coxeter polytopes are whose all dihedral are submultiples et IT angles

- · Coxeter polytopes are
 - fundamental domains of discrete reflection groups
 - a tool to construct hyperbolic manifolds

[by glueings]

How to classify Coxeter polytopes?

- spherical
- · Euclidean

· Hyperbolic

Classified by Coxeter in 1934

In terms of

Coxeter diagram

- · Nodes => facets f; of P
- Edges: m_{ij} if $\angle(f_i f_i) = \frac{\pi}{m_{ij}}$

$$\bullet \qquad \bullet \qquad if \qquad f_i \cap f_j = \emptyset$$

Connected elliptic diagrams

$$A_n \ (n \ge 1)$$
 $\bullet - \bullet - \cdots - \bullet - \bullet$

$$D_n \ (n \ge 4)$$
 $\bullet - \bullet - \cdots - \bullet - \bullet$

$$G_2^{(m)}$$
 • • • •

$$F_4$$

$$E_6$$

$$E_7$$

$$E_8$$

$$H_3$$

$$H_4$$

One way to get this!

Induction Base!
$$n = 3 \qquad \Rightarrow \frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1$$

Step: - add extra node to a diagram checking that no forbidden subdiagram appear

- then check the stanature of Gram matrix

Connected parabolic diagrams

$$\widetilde{A}_1$$

$$\widetilde{A}_n \ (n \ge 2)$$

$$\widetilde{B}_n \ (n \ge 3)$$

$$\widetilde{D}_n \ (n \ge 4)$$

$$\widetilde{G}_2$$

$$\widetilde{F}_4$$

$$\widetilde{E}_6$$

$$\widetilde{E}_7$$

$$\widetilde{E}_8$$

- spherical
 - G positivedefinite

- Euclidean
 - 6 positivesemidefinite

· Hyperbolic

6 of signature (n,1)

Gram matrix G:

$$g_{ii}=1,$$

$$g_{ij} = \begin{cases} -\cos(\frac{\pi}{m_{ij}}), & \text{if } \angle f_i f_j = \frac{\pi}{m_{ij}}; \\ -1, & \text{if } f_i \text{ is parallel to } f_j; \\ -\cosh \rho_{ij}, & \text{if } f_i \text{ and } f_i \text{ diverge and lie at distance } \rho_{ij}. \end{cases}$$

Coxeter diagram

- · Nodes > facets fi of P
- · Edges: mij if $\angle(f_i f_i) = \frac{\pi}{m_{ij}}$
 - $\bullet \qquad \bullet \qquad if \qquad f_i \cap f_j = \emptyset$

 - if finf collin

Coxeter polytopes in S, En and M':

Thm [Vinberg 1985]

Let $G = \{g_{ij}\}$ be an indecomposable symmetric matrix of signature (d,1) with units on the diagonal and non-positive off-diagonal elements everywhere else. Then there exists a convex polytope P in d-dimensional hyperbolic space \mathbb{H}^d such that the Gram matrix G(P) of P coincides with G. The polytope P is unique up to isometry of \mathbb{H}^d .

Gram matrix G:

$$g_{ii}=1,$$

$$g_{ij} = \begin{cases} -\cos(\frac{\pi}{m_{ij}}), & \text{if } \angle f_i f_j = \frac{\pi}{m_{ij}}; \\ -1, & \text{if } f_i \text{ is parallel to } f_j; \\ -\cosh \rho_{ij}, & \text{if } f_i \text{ and } f_i \text{ diverge and lie at distance } \rho_{ij}. \end{cases}$$

Ernest Borisovich Vinberg

26.07, 1937 - 12.05, 2020

· Wide veriety of compact and finite volume polytopes

- Any number of facets
- Any complexity of combinatorial types
- Arbitrary small dihedral angles

Thm
[Allcock '05]:

Compact polytopes: infinitely many in \mathbb{H}^d for all $d \leq 6$. Finite volume polytopes: infinitely many in \mathbb{H}^d for all $d \leq 19$.

· Wide veriety of compact and finite volume polytopes

- Any number of facets
- Any complexity of combinatorial types
- Arbitrary small dihedral angles

Thm

[Allcock '05]:

Compact polytopes: infinitely many in \mathbb{H}^d for all $d \leq 6$. Finite volume polytopes: infinitely many in \mathbb{H}^d for all $d \leq 19$.

- Plan: 1 How badly we don't know

 Small Bits we know
 - 3, some touls
 - 4) More recent rescelts

Absence in large dimensions:

If PCHI is compact, then d = 29. [Vinberg 84]

Why?

1. Vertices => Elliptic subdiagraems

=> mouny right angles

2. Triangular, quadrilateral faces many non-right angles 3, Thm [Nikulin 81] # simple, compact, convex polytope PC # d

 $\forall i < k \in [d/2] \text{ holds}$

$$\alpha_k^i < \binom{d-i}{d-k} \frac{\binom{[d/2]}{i} + \binom{[(d+1)/2]}{i}}{\binom{[d/2]}{k} + \binom{[(d+1)/2]}{k}}$$

average number of i-faces of a k-face of P

4. $\lambda_2' \leq \frac{4(d-\epsilon)}{(d-1-\epsilon)}$ $\epsilon = \{0, \text{ if d is even} \}$ Sides of 2-faces

=> many triangular/quadr.
2-faces!

Absence in large dimensions:

If PCH' is compact, then d < 29, [Vinberg' 84]

Examples known for d < 8

Unique Ex in des [Bugaenko 92]

All known Ex in d=7 [Bugaenko'84]

If PcH1 is of finite volume, then & < 996 [Prochorov'85, Khovansky'86]

Examples known for $d \le 19$ [Vinberg, Kaplinskaya 78] d = 21 [Bordcherds '87]

For compact polytopes

Anoulogues for finite volume:

some exist

some heed more work

1. By dimension.

o dim=2 [Poincaire 1882]:

 $\sum_{i} d_{i} \leq \pi (n-2)$

· dim=3 [Andreev' 70] necessary and subficient condition for dihedral angles

$$\alpha + \beta + \gamma > \pi$$
 $\alpha + \beta + \gamma < \pi$

$$\alpha + \beta + \gamma + \delta < 2\pi$$

• n = d + 1, simplices [Lanner'50]: $d \le 4$, fin. many for d > 2.

$$d = 1$$

$$d = 3$$

$$d = 3$$

$$d = 4$$

1. By dimension

2. By number of facets

- n = d + 1, simplices [Lanner'50]: $d \le 4$, fin. many for d > 2.
- n = d + 2, $\Delta^k \times \Delta^l$
 - prisms [Kaplinskaya'74]: $d \le 5$, fin. many for d > 3.
 - others [Esselmann'96]: d = 4, $\Delta^2 \times \Delta^2$, 7 items:

- 1, by dimension
- 2. By number of facets
 - n = d + 1, simplices [Lanner'50]: $d \le 4$, fin. many for d > 2.
 - n = d + 2, $\Delta^k \times \Delta^l$
 - prisms [Kaplinskaya'74]: $d \le 5$, fin. many for d > 3.
 - others [Esselmann'96]: d = 4, $\Delta^2 \times \Delta^2$, 7 items:
 - n = d + 3, many combinatorial types [Tumarkin'03]: $d \le 6$ or d = 8, fin. many for d > 3.
 - n = d + 4, really many combinatorial types...

$$[F,T'05]: d \leq 7.$$

[F,T'05]:
$$d \le 7$$
. [Burcroff'22]: $d = 4 \Rightarrow 348$ polytopes [F,T'"06"]: $d \le 8$. [Ma, Zheng'22] $d = 5 \Rightarrow 51$ polytopes $d = 6 \Rightarrow ???$ $d = 7 \Rightarrow 1$ (Bugaenke).

• n = d + 5, [F,T' "06"]: $d \le 8$.

- 1. By dimension
- 2. By number of facets
- 3. By largest denominator
 - Right-angled polytopes [Potyagailo, Vinberg' 05]: $d \leq 4 \text{, examples for } d = 2, 3, 4.$
 - (Some) polytopes with angles $\pi/2$ and $\pi/3$ [Prokhorov' 88].

- 1, by dimension
- 2. By number of facets
- 3. By largest denominator
- 4. By number of defted edges

Hope: • everything can be glued from them

Evidence: all but one known
"Building blocks" soutisty p=n-d-2

Potential Bugaenko's 6-polytope counter-evidence: With 34 facets

- p=0, [F,T'06]: Simplices and Esselmann's polytopes only. $d\leq 4, \ n\leq d+2.$
- p=1, [F,T'07]: Only polytopes with $n \leq d+3$. $d \leq 6$ and d=8.
- $p \le n d 2$, [F,T,'07]: finitely many polytopes. Algorithm.
 - Implemented the algorithm for d=4: nothing new.

H		Hyperbolic	Coxefer	polytopes	2. BHS	we we	Know.
1,	By	dimension					
2.	By	number c	of facets				
3.	By	largest o	lenominator				
4.	By	number	of defted ed	905			
5,	By	combinate	orial types				
· · · · · · · · · · · · · · · · · · ·				rkin 102,04;	4		4
		Cubes		uemet 17; Jac	equemet, i	schoen-	tz 18]
			up to dim=5	25 Alexa	ndr911 22		
				a product of	//:		nplices)

Hod Hyperbolic Coxeter polytopes 3. Some tooks Reading combinatories from Coxeter diagram
diagrams of spherical simplices elliptic subdiagrams in the Coxeter diagram faces of P diagrams of Euclidean polytopes ideal vertices parabolic subdiagrams Avagrams of hyperbolle simplices Lanner subdiagrams minimal sets,
not giving a face (or quasi-Lanner)

Hyperbolic Coxeter polytopes 3. Some tooks

Reading combinatories from Coxeter diagram

Coxeter faces

- Elliptic subdiagram • [Borcherds'98]: \rightarrow Coxeter face without A_n and D_5
- [Allcock'05]: Angles of this face are easy to find.

Upside down techique reducing dim]

Hd Hyperbolic Coxeter polytopes 3. Some tooks

Reading combinatories from Coxeter diagram

Coxeter faces

Local determinants [Vinberg 1985]

$$\det(\Sigma, T) = \frac{\det \Sigma}{\det(\Sigma \setminus T)}$$

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$$

$$\det(\Sigma, v) - 1 = \sum_{i=1}^{l} (\det(\Sigma_i, v) - 1).$$

$$\det(\Sigma, \langle v_1, v_2 \rangle) = \det(\Sigma_1, v_1) \det(\Sigma_2, v_2) - a^2,$$

$$\det(\Sigma, v) = 1 - \frac{a^2}{\det(\Sigma \setminus v, u)},$$

Reading combinatories from Coxeter diagram

Coxeter faces

Local determinants:

$$\det(\Sigma, T) = \frac{\det \Sigma}{\det(\Sigma \setminus T)}$$

Geometric constrains on ridges
[Bogachev'22]

New took needed!

Ho Hyperbolic Coxeter polytopes

4. More recent

Naomi Bredon: d = 996

(Still, with the same Looks)

Prop If PCHI, finite volume, then for any dihedral angle 7/m of t • if $d \ge 32$, then $m \le 6$ • if $d \ge 7$, and P has mutually intersecting faces then $m \le 6$ • if $d \ge 4$ and P is ideal, then $m \le 5$.

Naomi Bredon', PhD 2024

Thm If $P \subset HI^d$ has mutually intersecting faces and $m_{\tilde{y}} \leq 6$, [2025] Then P is one of 24 polytopes, and $d \leq 11$

It is one of: simplex
truncated simplex
pyramid

Polytopes/polytopes.html www.maths.dur.ac.uk/users/anna.felikson/Polytopes/polytopes.html

7% 5

Hyperbolic Coxeter polytopes

- Disclaimer:
 - This is an attempt to collect some results concerning classification and properties of hyperbolic Coxeter polytopes.
 - This page is under construction. Any corrections, suggestions or other comments are very welcome.
- Arithmetic groups:
 - For a detailed discussion of advances in the arithmetic case see the recent <u>survey</u> by M. Belolipetsky [Bel].
 - See also the webpage on arithmetic hyperbolic reflection groups by Nikolay Bogachev.
- . Why "hyperbolic": spherical and Euclidean Coxeter polytopes are classified by H.S.M.Coxeter in 1934 [Cox].

Basic definitions (see [Vin1], [Vin3], [Vin6], [Vin7]):

- <u>Definitions</u> of Coxeter polytope, Gram matrix, Coxeter diagram.
- · Faces of Coxeter polytopes.
- Existence and Uniqueness of a polytope with given Gram matrix.

Absence in large dimensions:

- Compact hyperbolic Coxeter polytopes:
 - do not exist in dimensions dim>29 [Vin2];
 - examples are known only up to dim=8, the unique known example in dim=8 and both known examples in dim=7 are due to Bugaenko [Bug1].
- · Finite volume hyperbolic Coxeter polytopes:
 - o do not exist in dimensions dim>995 [Pr1], [Khov];
 - examples are known in dimensions dim≤19 [Vin4], [KV] and dim=21 [Bor].

Some known classifications:

By dimension (dim):

- dim=2: there exists a n-gon with given angles if and only if the sum of angles is less than π(n-2) [Po].
- dim=3: see Andreev's theorem [And1], [And2], [RHD]. See also [Pog].
- dim>31: non-zero dihedral angles are of the form π/m with m<=6 [Br].

By number of facets (n):

- n=dim+1: compact simplices (Lannér diagrams [Lan], dim=2,3,4) and non-compact simplices (quasi-Lannér diagrams [Ch], [Ko], [Ch], [Vin7], [Bou], dim=2,...,9).
- n=dim+2:
 - · Products of two simplices:
 - Simplicial prisms exist in dim=3,4,5 [Kap], see also [Vin3].
 - Other products of two simplices (exist in dim=4 only): Esselmann polytopes [Ess1], [Ess2] and the unique non-compact polytope [Tum1].
 - Pyramids over a product of two simplices [Tum1], dim=3,...,13, 17.

More info, tables, links on the webpage

Hyperbolic

Coxeter polytopes

4. One recent result

Home Lectures and Events Publications Resources

Webpages for Research in Mathematics

General Mathematics

- Conference Listings/Mathematics
- Research seminars
- MathMeetings.net, list for research mathematics conferences, workshops, summer schools
- · AMS Mathematics Calendar
- . The On-Line Encyclopedia of Integer Sequences® (OEIS®)
- . Cut the Knot Interactive Mathematic Miscellany and Puzzles, by Alexander Bogomolny
- . Online Mathematics Textbooks list by George Cain
- · Research Guides, by University of Michgan Library
- The Erdös Number Project, by Jerry Grossman
- Math Stack Exchange
- MathOverflow
- Mathematics Genealogy Project
- · MathWorld from Wolfram
- . DLMFNIST Digital Library of Mathematical Functions NIST Digital Library of Mathematical Functions
- · Mathematics and Areas of Mathematics on Wikipedia

Digital and digitalised publications

- · arXiv, Mathematics
- ICM Proceedings 1893-2018 and ICM Videos 1998-2014, maintained by IMU
- <u>EuDML</u>, European Digital Math Library
- . World Digital Mathematics Library (WDML), by IMU
- AMS Digital Mathematics Registry
- MathSciNet, AMS Mathematical REviews
- Numdum, the French digital mathematics library, set up by Cellule MathDoc
- . DML: Digital Mathematics Library, by Ulf Rehmann (Uni Bielefeld)

Logic

. Directory of links on logic and foundations of mathematics by Sylvain Poirier

Machine learning

- . Machine Learning Mastery by Jason Brownlee
- Analytics Vidhya Data Science community
- · Network Flows Bibliographies by Joseph Malkevitch

Mathematical Biology

· Mathematical Biology Bibliographies by Joseph Malkevitch

Mathematical Physics

- . String Theory Wiki
- Solitons at Work, informal network
- International Society of Nonlinear Mathematical Physics, non-profit Learned Society

Metric Geometry

- Hyperbolic Coxeter Polytopes by Inna Penkson
- Arithmetic Hyperbolic Roff Groups by Nikolay V. Bogachev
- Geometry by Anna Felikson
- . Ptolemy Relation and Friends by Anna Felikson

Number Theory

- . Number Theory Web by Keith Matthews
- . The L-functions and modular forms database (LMFDB)
- · Markov numbers by Anna Felikson
- Continued fractions by Anna Felikson
- · Conferences in arithmetic geometry by Kiran Kedlaya
- · Conferences in number theory by Johann Birnick
- . Motivic stuff Cohomology, homotopy theory, and arithmetic geometry, by Andreas Holmstrom

Numerical Analysis

Numerical Analysis Digest, a weekly newsletter

Operator Algebras

· Quiver = oriented graph Sintlely many vertices

· Quiver mutation $\mathcal{M}_{\mathcal{K}}$ and $\mathcal{M}_{\mathcal{K}}$ and $\mathcal{M}_{\mathcal{K}}$

- reverse all arrows incident to vertex k

[Fomin, Zelevinsky 2000]

Quiver Q is of finite mutation type if there are finitely many quivers obtained from Q by iterated mutations.

Ex: Pro How to de

How to classify?

Infinitely many quivers Built from 5 Blocks

associated to small surfaces

Ihm [F, Shapiro, Tumarkin '08]

Let Q be a quiver of finite mutation type.

Then either Q has 2 vertices, or Q comes from triangulated surfaces or Q is one of the following 11 quivers:

Compare:

Coxeter diagram [signature (n,1)] Quiver

? polytopes to build sey many examples

Lanner subdiagrams [minimal non-elliptie]

Upside-down technique with Coxeter faces

completer search for adding vertices one by one

Lmcet, finite]

5 blocks to Beild of examples

Minimal Subguerrers
not decomposable into blocks

Upside-down technique to list min. non-decomp quives (E_6)

completer search for adding vertices one by one

Classification of quivers of fin mut type classiffication of hyperbolic Coxoter polytopes

worked

Why?

did not

Integer labels only

any label < -1

Small number of blocks from surfaces (classified) Many Basic polytopes to glue from (not classified)

r/= | pq-n

Cluster Algebras Portal

This is a collection of links on cluster algebras and related topics.

Papers

- arXiv
- arXiv full text search (math)
- Google Scholar
- MathSciNet (requires subscription)
- zbMATH
- Book chapters, lecture notes, surveys, and expository articles

Conferences, summer schools, and lecture series

- ▶ 2003-2010 (49 events)
- ▶ 2011-2020 (89 events)
- ▶ 2021 and beyond
- Seminars and working groups
- Courses
- Software and data
- Thematic programs and research labs
- Publicity and awards
- Andrei Zelevinsky, 1953-2013
- Other

By Sergey Fomin

- . IACR International Association for Cryptologic Research
- SIAM Society for Industrial and Applied Mathematicsociety for Industrial and Applied

Category Theory

- . Logic Matters by Peter Smith
- nLab_collaborative project
- . The n-Category Cafe A group blog on math, physics and philosophy [Category The

Classical Analysis and ODEs

Combinatorics

- Catalan Numbers by Igor Dak
- Cluster Algebra Portal by Sergey Fomin
- About the Line Manager Landons by Jon McCammond
- Frieze patterns by Anna Felikson
- Combinatorics of polytopes by Anna Felikson
- Squaring the square, by Stuart Anderson
- Encyclopedia of Combinatorial Polytope Sequences..., by Stefan Forcey
- . Graph Theory and Combinatorics Bibliographies by Joseph Malkevitch
- · Links to Combinatorial Conferences, by Douglas B. West

Commutative Algebra

· commalg.org, the website for the commutative algebra community

Computational Geometry

- · Computational Geometry Pages, by by Jeff Erickson
- · Geometry in Action, by David Eppstein

Idea - Take a quiver Q

- Forget directions of amous

- Get a Coxeter diagram of a Coxeter group 6

* mutate Q = what happens to 6?

It changes, but one can fix this by taking a quotient.

Construction [Barot-Marsh '2011]

- € Let Q be a quiver mutation-equivalent to An, Dn or E,7,8,
- e quiver Q → group G(Q):
- Generators of G nodes of Q.
- Relations of G (R1) $s_i^2=e$ (R2) $(s_is_j)^{m_{ij}}=e$, $m_{ij}=\begin{cases} 2,&\bullet&\bullet\\ 3,&\bullet--\bullet\\ \infty,&otherwise. \end{cases}$

(R3) Cycle relation: for each chordless cycle $1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$ $(s_1 \ s_2s_3\dots s_n\dots s_3s_2)^2=e.$

Construction Barot-Marsh 2011

■ Let Q be a quiver mutation-equivalent to An, Dn or E6,7,8,

Theorem, [Barot-Marsh '2011] Given a quiver Q of finite type, G(Q) is invariant under mutations of Q, i.e. $G(Q) = G(\mu_k(Q))$.

- In particular, G(Q) is a finite Coxeter group.
- If $Q_2 = \mu_k(Q_1)$, s_i generators of $G(Q_1)$, t_i generators of $G(Q_2)$, then

$$t_i = \begin{cases} s_k s_i s_k, & i \longrightarrow k \text{ in } Q_1 \\ s_i, & \text{otherwise} \end{cases}$$

Example:
$$Q_1=A_3=\stackrel{\stackrel{1}{\bullet}\longrightarrow \stackrel{2}{\bullet}\longrightarrow \stackrel{3}{\bullet}$$
 $Q_2=\stackrel{1}{\swarrow}\longrightarrow \stackrel{3}{\bullet}$

$$G(Q_1)=\langle s_1,s_2,s_3\mid s_i^2=(s_1s_2)^3=(s_2s_3)^3=(s_1s_2)^2=e\rangle$$
 finite Coxeter group A_3 , acts on S^2 by reflections, 24 elements:

Example:
$$Q_1 = A_3 = \stackrel{\stackrel{1}{\bullet} \longrightarrow \stackrel{2}{\bullet} \longrightarrow \stackrel{3}{\bullet} \longrightarrow \stackrel{\mu_2}{\longrightarrow} \qquad Q_2 = \stackrel{\stackrel{1}{\bullet} \longleftarrow \stackrel{1}{\longleftarrow} \longrightarrow \stackrel{1}{\bullet} \longrightarrow \stackrel$$

$$G(Q_1)=\langle s_1,s_2,s_3\mid s_i^2=(s_1s_2)^3=(s_2s_3)^3=(s_1s_2)^2=e\rangle$$
 finite Coxeter group A_3 , acts on S^2 by reflections, 24 elements:

$$G(Q_2)=\langle t_1,t_2,t_3\mid t_i^2=(t_it_j)^3=(t_1\;t_2t_3t_2)^2=e
angle$$

$$G_0 \text{ - affine Coxeter group }\widetilde{A}_2\text{, acts on }\mathbb{E}^2\text{ by reflections.}$$

$$(t_1 \ t_2 t_3 t_2)^2 = ?$$

 t_1 $t_2t_3t_2$ - translation by 2 levels

 $(t_1 \ t_2 t_3 t_2)^2$ - translation by 4 levels

Example:
$$Q_1=A_3=\overset{\overset{1}{\bullet}}{\longrightarrow}\overset{\overset{2}{\bullet}}{\longrightarrow}\overset{\overset{3}{\bullet}}{\longrightarrow}$$
 $Q_2=\overset{\overset{1}{\bullet}}{\longrightarrow}$

$$G(Q_1)=\langle s_1,s_2,s_3\mid s_i^2=(s_1s_2)^3=(s_2s_3)^3=(s_1s_2)^2=e\rangle$$
 finite Coxeter group A_3 , acts on S^2 by reflections, 24 elements:

$$G(Q_2)=\langle t_1,t_2,t_3\mid t_i^2=(t_it_j)^3=(t_1\ t_2t_3t_2)^2=e\rangle$$

$$G_0 - \text{affine Coxeter group }\widetilde{A}_2, \text{ acts on }\mathbb{E}^2 \text{ by reflections.}$$

$$(t_1 \ t_2 t_3 t_2)^2 = e = \text{transl. by 4 levels - Identify!}$$

$$G = G_0/NCl((t_1 \ t_2t_3t_2)^2)$$
 – Identify! Identify!

$$G = G(Q_2)$$
 acts on a torus T^2 .

Thm [F-Tumarkin'14] (Manifold property) Taking the quotient does not introduce singularities (re if the Coxeter group Go acts on a manifolds
then GQ) also does

Corollary: can cook hyperbolic manifolds Symmetry graceps. with large

Example:
$$A_4 = \stackrel{\scriptscriptstyle 1}{\bullet} \stackrel{\scriptscriptstyle 2}{>} \stackrel{\scriptscriptstyle 3}{>} \stackrel{\scriptscriptstyle 4}{>} \stackrel{\scriptscriptstyle 4}{>}$$

diagram of hyperbolic simplex

 \Rightarrow Hyperbolic 3-manifold with action of the group A_4 .

TABLE 5.1. Actions on hyperbolic manifolds.

W	Q	Q_1	W	$\dim X$	vol X approx.	number of cusps	$\chi(X)$
A_4	••••	-<	5!	3	W · 0.084578	5	
D_4	- ≺		$2^3 \cdot 4!$	3	$ W \cdot 0.422892$	16	
D_5	<	$\leftarrow \diamondsuit$	2 ⁴ · 5!	4	W · 0.013707	10	2
E_6		$\leftarrow \Box$	$2^7 \cdot 3^4 \cdot 5$	5	$ W \cdot 0.002074$	27	
E_7	• • • • • • • • • • • • • • • • • • • •	\leftarrow	$2^{10}\cdot 3^4\cdot \underline{5}\cdot 7$	6	$ W \cdot 2.962092 \times 10^{-4}$	126	-52
E_8	1	\leftarrow	$2^{14}\cdot 3^5\cdot 5^2\cdot 7$	7	$ W \cdot 4.110677 \times 10^{-5}$	2160	
A_7	••••	\rightarrow	8!	5		70	
D_8	····	$\rightarrow \rightarrow \diamond$	2 ⁷ · 8!	6	W · 0.002665	1120	-832

pyramids
over
a product of 2 simplices

Table 7.1. Actions on hyperbolic manifolds, non-simply-laced case.

W	g	\mathcal{G}_1	W	$\dim(X)$	vol X approx.	number of cusps	$\chi(X)$ (dim X even)
B_3	• 2 • • •	2/2	2 ³ · 3!	2	8π	compact	-4
B_4	• 2 • • • •	-2	2 ⁴ · 4!	3	W · 0.211446	16	
F_4	. 2	2 2	$2^7 \cdot 3^2$	3	$ W \cdot 0.222228$	compact	

- One can build similar groups From other quivers of sinite-mutation type (not only from Dynkin quivers)
- · So that the groups are mutation-invariant
- · However we don't know what groups will arkse (after taking quotient)
 - We can NOT prove the Manifold Property

Is there a webpage

collecting hyperbolic manifolds?

