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1. Coxeter groups

(G,S) = 〈s1, . . . sn ∈ S | s2i = (sisj)
mij = 1 〉

Coxeter diagram
mij

i j

reflections: si and their conjugates

reflection subgroups =

subgroups generated by reflections

Coxeter polytopes = chambers =

=polytopes with angles π/mij



1. Coxeter groups: some results. (joined with P. Tumarkin)

a. Reflection subgroups:

a1. Classification of reflection subgroups in Coxeter groups generated by
hyperbolic simplices.

a2. If W is indecomposable infinite Coxeter group and V ⊂ W is a finite index
reflection subgroup then rank V ≥ rankW .

a3. Classification of odd-angled Coxeter groups containing finite index reflection
subgroups.

b. Hyperbolic Coxeter polytopes:

Classification of compact polytopes with n ≤ d+4 or with p ≤ n− d− 2,
where n = rank G, d = dimension, p = #{ (i, j) | mij =∞}.

c. Applications to Kac-Moody algebras.
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Cluster algebras
(introduced by S. Fomin and A. Zelevinsky in 2000)

A seed is a pair (B, x) (exchange matrix, cluster)
n× n integer , x = (x1, . . . , xn)
Bt = −B rational functions

cluster variables

Seed mutation: µk(B, x) = (B′, x′)

b′ij =

{
−bij, if i = k or j = k;

bij +
|bik|bkj+bik|bkj|

2 , otherwise.

x′i = xi for i 6= k; xkx
′
k =

∏
bkj>0

x
bkj
j +

∏
bkj<0

x
−bkj
j
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Iterated mutations −→ many other seeds

Property: µ2
k = Id

B −→ its mutation class

Definition. Cluster algebra A(B) is a Q-subalgebra of Q(x1, . . . , xn)

generated by all cluster variables.

Elements of the same mutation class define the same cluster algebra

More generally: one starts from skew-symmetrizable matrix B

(i.e. B̂ = BD, B̂t = −B̂ for some positive integer diagonal D).
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Skew-symmetric

exchange matrix B
←→ quiver Q

if bij > 0
bij

i j

Quiver mutation µk:

p q p q

r r′

r + r′ = pq

Java applet for quiver mutation by Bernhard Keller.



Cluster algebra is of finite type if the number of cluster variables is

finite.

Theorem. (Fomin, Zelevinsky’ 2002).

Cluster algebras

of finite type
⇔ finite arithmetic Coxeter groups

(types An, Bn = Cn, Dn, E6, E7, E8, F4, G2)

Example:

A2 A3

x1, x2,
1+x1
x2

, 1+x2
x1

, x1+x2+1
x1x2



Cluster algebra is of finite mutation type if mutation class of B

consists of finitely many matrices.

• If n > 2 and |bij| > 4 for some i, j then mut. class of B is infinite.

finite type

finite mutation type

<∞ <∞

<∞ ∞

∞ ∞

∞ <∞

mutation cluster
class variables



Problem. Classify algebras of finite mutation type.

In skew-symmetric case (Bt = −B):

classify quivers of finite mutation type.

Examples:

1. n = 2.

2. Quivers arising from triangulated surfaces.

3. (conjectured by Fomin, Shapiro, Thurston)

Finitely many are left.



Quivers from triangulated surfaces

Triangulated surface −→ Quiver

edge of triangle vertex of quiver

two edges of one triangle arrow in quiver

flip of triangulation mutation of quiver

Surface can be glued from small pieces:

Quiver may be obtained from blocks (“is block-decomposable”):
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When Q is mutation-finite but is not block-decomposable?

Analogy from Coxeter groups:

Combinatorics of a compact hyperbolic Coxeter polytope is

determined by subdiagrams corresponding to

• Finite Coxeter groups

• Minimal infinite Coxeter groups

(diagrams of hyperbolic simplices, classified).

Idea: find minimal quivers which are not block-decomposable.



Results (with M. Shapiro and P. Tumarkin):

Theorem 1. A connected mutation-finite quiver of order n > 2 is

either built from a triangulated surface or is mutation-equivalent to

one of the following 11 exclusions:

2

2

2

2

2

2

22

Theorem 2. If Q is minimal mutation-infinite quiver then n ≤ 10.

Corollary: criterion for quiver of finite mutation type.



Theorem 1’. Let A(B) be cluster algebra of finite mutation type.

Then either n ≤ 2, or B is obtained from triangulated orbifold, or a

diagram of B is mutation-equivalent to one of 11+7 exclusions.

Theorem 2’. If A(B) is minimal mutation-infinite then n ≤ 10.

Corollary: criterion for cluster algebra of finite mutation type.

Theorem 3’. Let S be a Coxeter diagram of a finite volume

arithmetic hyperbolic simplex. Then there exists an orientation of S

corresponding to a minimal mutation-infinite cluster algebra.




