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Introduction

B - skew-symmetrizable n X n integer matrix,
Ap cluster algebra C Q(z1,...,x,).

As an algebra Ap is generated by all cluster variables.

Problem: what are the “good” sets to span Ap as a vector space?

[FZ]: “good” means “containing all cluster monomials”
(i.e. monomials in variables sitting in any given cluster).
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Plan:

1. Cluster algebras from surfaces and their bases
2. Cluster algebras from orbifolds and their bases

3. Why the construction works?
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1.1. Cluster algebras from surfaces
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Quiver cluster variables

z, = "Mlength of the arc 4" = ¢l/?
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built 2 bases (Bangles and Bracelets). Bracelets:

1/2

Ly =€ Toy e = Th()
Ti(z) Chebyshev polynomial:

Ti(x) =aTp_1(x) — Tx_o(x), To(x)=2, Ti(x)==.



1.2. Bases for algebras from surfaces
[Musiker, Schiffler, Williams'2011]

Ly = Lyl
T~ €A (skein relations).

e Set of curves ¥ := { arcs, bracelets }.

e Compatible subset C' C X :

— no two elements cross each other:
— at most one Bracgy for a given ~y; at most one copy of it.

Bracelet basis: B ={]] = | C compatible}.
yeCl



1.2. Bases for algebras from surfaces
[Musiker, Schiffler, Williams'2011]

Bracelet basis: B ={]] = | C compatible}.
vyel

Thm.[MSW] If S is unpunctured, with at least two marked points
(on boundary) then B is a basis for Ap.

e All cluster monomials are in B.

e positive: each elt has a positive Laurent expansion in each cluster;

e strictly positive: ¢1,q20 € B = qiq2 = ZqiEB a;q; with a; > 0.
[Thurston'2013]

e conj. atomic: if a € AT then a = a;q; with a; > 0

where AT is the set of all elts which expand positively in each cluster



2.1. Cluster algebras from orbifolds
[F, Shapiro, Tumarkin’ 2011]

Aim:
Algebras from surfaces = all but 11 mutationally finite
skew-symmetric cluster algebras of rank > 2.

Orbifold construction = all but 22 mutationally finite
cluster algebras of rank > 2.
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2.1. Cluster algebras from orbifolds
[F, Shapiro, Tumarkin’ 2011]

(O = surface with marked points and
orbifold points  (i.e. cone points with engle ).

Triangulation: includes orbifold triangles @ @

Adjacency matrix: depends on label (0 1 —1> (0 1 —2>
or

-1 0 1
2 =2 0

— B = sum over all triangles -+ Apg

Cluster variables: A-length of arcs. @ T = el/?

For weight 2 orbifold points is more involved, discard for today.




2.2. Bracelet basis for orbifold case

O: no punctures; all orbifold pts of wight 1/2; > 2 marked points.

Curves: arcs, pending arcs, bracelets, pending bracelets

— O D
— — )

Compatibility: no intersections; < 1 (pending) bracelet for each ~

Bracelet basis: B={]] v | C compatible}.
yel
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3. Why does it work?

Need to prove:

1. BeAg }skein relations
2. B spans Ag
3. B s linearly independent g-vectors

Skein relations: for a multicurve C' = U~y; denote z(C) =]]x,., then

(50) =< (3) ()

Pf in [MSW]: involves technique of snake graphs.




3.1. Skein relations for orbifolds
X=00+X -
X=)(~ +2>_i:><::_< 2) o - o
- v Q&

crample: X = D¢+ X +20¢

Pf: from the double cover of the orbifold by a surface.




3.1. Skein relations for orbifolds

How does it help:

1. BC Ap: a0, C Ag '}4
-G (- QB
(R () F—0

2. Bspans Ag: x1...x1 s > qi, ¢;€B
(Yes: resolve crossings, get the sum!)




3.2. Linear independance: g-vectors

[MSW]: e elements with distict g-vectors are linear independent;
Pf: modification of arguments from [FZ/].

e clements of I3 have distinct g-vectors
Pf: based on snake graphs.




3.2. Linear independance: g-vectors

[MSW]: e elements with distict g-vectors are linear independent;
Pf: modification of arguments from [FZ/].

e clements of I3 have distinct g-vectors
Pf: based on snake graphs.

Geometric description of g-vectors: tropical duality of Nakanishi-Zelevinsky:

B; BT;t
(G tO)T — Ctot

NZ FG —
g-vector <— c-vector <— laminations

Elementary laminations distinct .
. . — . — lin. independence
for distinct multicurves shear coordinates



3.2. Linear independance: g-vectors

More precisely, g(z,) = —br«(L%), where

1. to obtain T we take an initial triangulation 7" on O and turn the
triangulated orbifold inside-out; denote O* the inside-out orbifold.

2. take an elementary lamination L7 for v* € O*
(L§ is an image of —L., negative of the elementary lamination on O).

3. g(wy) = shear coordinates of L7 in T™.

4. Thm. L — b,(T, L) is a bijection to Z".

([Fomin, Thurston] surface case; [F, Shapiro, Tumarkin| orbifold case)



Thanks!




