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Introduction

B - skew-symmetrizable n× n integer matrix,

AB cluster algebra ⊆ Q(x1, . . . , xn).

As an algebra AB is generated by all cluster variables.

Problem: what are the “good” sets to span AB as a vector space?

[FZ]: “good” means “containing all cluster monomials”

(i.e. monomials in variables sitting in any given cluster).
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Plan: asasasasaasdasds

1. Cluster algebras from surfaces and their bases

2. Cluster algebras from orbifolds and their bases

3. Why the construction works?
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[Fomin, Thurston]

Quiver cluster variables

l

xγ = ”λ-length of the arc γ” = el/2



1.2. Bases for algebras from surfaces

[Musiker, Schiffler, Williams’2011]

built 2 bases (Bangles and Bracelets). Bracelets:

γ

Brac3γ

asdsadsadsadaxγ = el/2 xγ,k = Tk(xγ)

Tk(x) Chebyshev polynomial:

Tk(x) = xTk−1(x)− Tk−2(x), T0(x) = 2, T1(x) = x.
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1.2. Bases for algebras from surfaces

[Musiker, Schiffler, Williams’2011]

xγ = xγ,1
xγ,k ∈ A (skein relations).

• Set of curves Σ := { arcs, bracelets }.

• Compatible subset C ⊂ Σ :

– no two elements cross each other;

– at most one Brackγ for a given γ; at most one copy of it.

Bracelet basis: B = {
∏
γ∈C

xγ | C compatible}.



1.2. Bases for algebras from surfaces

[Musiker, Schiffler, Williams’2011]

Bracelet basis: B = {
∏
γ∈C

xγ | C compatible}.

Thm.[MSW] If S is unpunctured, with at least two marked points

(on boundary) then B is a basis for AB.

• All cluster monomials are in B.

• positive: each elt has a positive Laurent expansion in each cluster;

• strictly positive: q1, q2 ∈ B ⇒ q1q2 =
∑
qi∈B aiqi with ai ≥ 0.

[Thurston’2013]

• conj. atomic: if a ∈ A+ then a =
∑
aiqi with ai ≥ 0

where A+ is the set of all elts which expand positively in each cluster



2.1. Cluster algebras from orbifolds

[F, Shapiro, Tumarkin’ 2011]

Aim:

Algebras from surfaces = all but 11 mutationally finite

skew-symmetric cluster algebras of rank > 2.

Orbifold construction = all but 22 mutationally finite

cluster algebras of rank > 2.
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[F, Shapiro, Tumarkin’ 2011]

O = surface with marked points and

orbifold points (i.e. cone points with engle π).

Triangulation: includes orbifold triangles
flip

Adjacency matrix:

2

2

1

3

2

 0 1 −1
−1 0 1

1 −1 0


 0 1 −1
−1 0 1

2 −2 0

 or

 0 1 −2
−1 0 2

1 −1 0


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[F, Shapiro, Tumarkin’ 2011]

O = surface with marked points and

orbifold points (i.e. cone points with engle π).

Triangulation: includes orbifold triangles
1/22

Adjacency matrix: depends on label
 0 1 −1
−1 0 1

2 −2 0

 or

 0 1 −2
−1 0 2

1 −1 0


→ B = sum over all triangles → AB

Cluster variables: λ-length of arcs.
1/2

l

xγ = el/2

asdsdfasdsada For weight 2 orbifold points is more involved, discard for today.



2.2. Bracelet basis for orbifold case

O: no punctures; all orbifold pts of wight 1/2; ≥ 2 marked points.

Curves: arcs, pending arcs, bracelets, pending bracelets

asdsad

Compatibility: no intersections; ≤ 1 (pending) bracelet for each γ

Bracelet basis: B = {
∏
γ∈C

xγ | C compatible}.
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3. Why does it work?

Need to prove:

1. B ∈ AB
2. B spans AB
3. B is linearly independent g-vectors

}skein relations

Skein relations: for a multicurve C = ∪γi denote x(C) =
∏
xγi, then

x

( )
= x

( )
+ x

( )
Pf in [MSW]: involves technique of snake graphs.



3.1. Skein relations for orbifolds

= +

= + + 2

= +

= +

where 1) =

2) =

3) =

asdasdsadsadsasadsasdasdasaExample: = + + 2

Pf: from the double cover of the orbifold by a surface.



3.1. Skein relations for orbifolds

How does it help:

1. B ⊂ AB: xγ
?
⊂ AB =

=

+

+

+

2. B spans AB: x1 . . . xk
?
=
∑
qi, qi ∈ B

(Yes: resolve crossings, get the sum!)



3.2. Linear independance: g-vectors

[MSW]: • elements with distict g-vectors are linear independent;

Pf: modification of arguments from [FZ4].

• elements of B have distinct g-vectors

Pf: based on snake graphs.



3.2. Linear independance: g-vectors

[MSW]: • elements with distict g-vectors are linear independent;

Pf: modification of arguments from [FZ4].

• elements of B have distinct g-vectors

Pf: based on snake graphs.

Geometric description of g-vectors: tropical duality of Nakanishi-Zelevinsky:

(GB;t0
t )T = C

BTt ;t
t0

g-vector
NZ←→ c-vector

FG←→ laminations

Elementary laminations

for distinct multicurves
−→ distinct

shear coordinates
−→ lin. independence



3.2. Linear independance: g-vectors

More precisely, g(xγ) = −bT ∗(L∗γ), where

1. to obtain T ∗ we take an initial triangulation T on O and turn the

triangulated orbifold inside-out; denote O∗ the inside-out orbifold.

2. take an elementary lamination L∗γ for γ∗ ∈ O∗
(L∗γ is an image of −Lγ, negative of the elementary lamination on O).

3. g(xγ) = shear coordinates of L∗γ in T ∗.

4. Thm. L→ bγ(T, L) is a bijection to Zn.
([Fomin, Thurston] surface case; [F, Shapiro, Tumarkin] orbifold case)



a

Thanks!


