Bases for cluster algebras from orbifolds

Anna Felikson

Durham University

joint work with P. Tumarkin

4th workshop on combinatorics of moduli spaces, cluster algebras, and topological recursion Moscow, 2014

Introduction

B - skew-symmetrizable $n \times n$ integer matrix, *A*_{*B*} cluster algebra $\subseteq \mathbb{Q}(x_1, \ldots, x_n)$.

As an algebra \mathcal{A}_B is generated by all cluster variables.

Problem: what are the "good" sets to span A_B as a vector space?

[FZ]: "good" means "containing all <u>cluster monomials</u>" (i.e. monomials in variables sitting in any given cluster).

Plan:

- 1. Cluster algebras from surfaces and their bases
- 2. Cluster algebras from orbifolds and their bases
- 3. Why the construction works?

Quiver

cluster variables

Quiver

cluster variables

Quiver

cluster variables

Quiver

cluster variables

 $x_{\gamma} =$ " λ -length of the arc γ " $= e^{l/2}$

1.2. Bases for algebras from surfaces [Musiker, Schiffler, Williams'2011]

built 2 bases (Bangles and Bracelets). Bracelets:

1.2. Bases for algebras from surfaces [Musiker, Schiffler, Williams'2011]

built 2 bases (Bangles and Bracelets). Bracelets:

 $T_k(x)$ Chebyshev polynomial:

 $T_k(x) = xT_{k-1}(x) - T_{k-2}(x), \quad T_0(x) = 2, \quad T_1(x) = x.$

1.2. Bases for algebras from surfaces [Musiker, Schiffler, Williams'2011]

 $x_{\gamma} = x_{\gamma,1}$ $x_{\gamma,k} \in \mathcal{A}$ (skein relations).

- Set of curves $\Sigma := \{ \text{ arcs, bracelets } \}.$
- Compatible subset $C \subset \Sigma$:
 - no two elements cross each other;
 - at most one $Brac_k\gamma$ for a given γ ; at most one copy of it.

Bracelet basis: $\mathcal{B} = \{\prod_{\gamma \in C} x_{\gamma} \mid C \text{ compatible}\}.$

1.2. Bases for algebras from surfaces [Musiker, Schiffler, Williams'2011]

Bracelet basis:
$$\mathcal{B} = \{\prod_{\gamma \in C} x_{\gamma} \mid C \text{ compatible}\}.$$

Thm.[MSW] If S is unpunctured, with at least two marked points (on boundary) then $\overline{\mathcal{B}}$ is a basis for \mathcal{A}_B .

- All cluster monomials are in \mathcal{B} .
- positive: each elt has a positive Laurent expansion in each cluster;
- strictly positive: $q_1, q_2 \in \mathcal{B} \Rightarrow q_1q_2 = \sum_{q_i \in \mathcal{B}} a_i q_i$ with $a_i \ge 0$. [Thurston'2013]
- conj. <u>atomic</u>: if $a \in \mathcal{A}^+$ then $a = \sum a_i q_i$ with $a_i \ge 0$ where \mathcal{A}^+ is the set of all elts which expand positively in each cluster

Aim:

Algebras from surfaces = all but 11 mutationally finite skew-symmetric cluster algebras of rank > 2.

Orbifold construction = all but 22 mutationally finite cluster algebras of rank > 2.

 $\mathcal{O} =$ surface with marked points and orbifold points (i.e. cone points with engle π).

Triangulation: includes orbifold triangles

 $\mathcal{O} =$ surface with marked points and orbifold points (i.e. cone points with engle π).

Triangulation: includes orbifold triangles

Triangulation: includes orbifold triangles

Adjacency matrix:

 $\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$

$$\begin{array}{ccc} 1 & -1 \\ 0 & 1 \\ -2 & 0 \end{array} \right) \quad \text{Or} \quad \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 2 \\ 1 & -1 & 0 \end{array} \right)$$

 $\mathcal{O} =$ surface with marked points and orbifold points (i.e. cone points with engle π).

Triangulation: includes orbifold triangles

Adjacency matrix:depends on label $\begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 2 & -2 & 0 \end{pmatrix}$ or $\begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 2 \\ 1 & -1 & 0 \end{pmatrix}$

 $\rightarrow B =$ sum over all triangles $\rightarrow A_B$

 $\mathcal{O} =$ surface with marked points and orbifold points (i.e. cone points with engle π).

Triangulation: includes orbifold triangles

Adjacency matrix:depends on label $\begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 2 & -2 & 0 \end{pmatrix}$ or $\begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 2 \\ 1 & -1 & 0 \end{pmatrix}$

$$\rightarrow B = \mathsf{sum} \mathsf{ over} \mathsf{ all triangles} \rightarrow \mathcal{A}_B$$

Cluster variables: λ -length of arcs.

$$\begin{array}{c} & & \\$$

For weight 2 orbifold points is more involved, discard for today.

2.2. Bracelet basis for orbifold case

 \mathcal{O} : no punctures; all orbifold pts of wight 1/2; ≥ 2 marked points.

<u>Curves</u>: arcs, pending arcs, bracelets, pending bracelets

Compatibility: no intersections; ≤ 1 (pending) bracelet for each γ

Bracelet basis:

$$\mathcal{B} = \{\prod_{\gamma \in C} x_{\gamma} \mid C \text{ compatible}\}.$$

2.2. Bracelet basis for orbifold case

 \mathcal{O} : no punctures; all orbifold pts of wight 1/2; ≥ 2 marked points.

<u>Curves</u>: arcs, pending arcs, bracelets, pending bracelets

Compatibility: no intersections; ≤ 1 (pending) bracelet for each γ

Bracelet basis:

$$\mathcal{B} = \{\prod_{\gamma \in C} x_{\gamma} \mid C \text{ compatible}\}.$$

3. Why does it work?

Need to prove:

- 1. $\mathcal{B} \in \mathcal{A}_B$
- 2. \mathcal{B} spans \mathcal{A}_B
- 3. \mathcal{B} is linearly independent

3. Why does it work?

Need to prove:

- 1. $\mathcal{B} \in \mathcal{A}_B$
- 2. \mathcal{B} spans \mathcal{A}_B
- 3. \mathcal{B} is linearly independent

skein relations

g-vectors

3. Why does it work?

Need to prove:

1. $\mathcal{B} \in \mathcal{A}_B$ }2. \mathcal{B} spans \mathcal{A}_B \$3. \mathcal{B} is linearly independent \mathbf{g} -vectors

Skein relations: for a multicurve $C = \bigcup \gamma_i$ denote $x(C) = \prod x_{\gamma_i}$, then

$$x\left(\swarrow\right) = x\left(\bigcirc\right) + x\left(\smile\right)$$

Pf in [MSW]: involves technique of snake graphs.

3.1. Skein relations for orbifolds

Pf: from the <u>double cover</u> of the orbifold by a surface.

3.1. Skein relations for orbifolds

How does it help:

1.
$$\mathcal{B} \subset \mathcal{A}_B$$
: $x_{\gamma} \stackrel{?}{\subset} \mathcal{A}_B$

2. B spans
$$\mathcal{A}_B$$
: $x_1 \dots x_k \stackrel{?}{=} \sum q_i, q_i \in \mathcal{B}$
(Yes: resolve crossings, get the sum!)

3.2. Linear independance: g-vectors

- [MSW]: elements with distict **g**-vectors are linear independent; Pf: modification of arguments from [FZ4].
 - elements of \mathcal{B} have distinct **g**-vectors *Pf: based on snake graphs.*

3.2. Linear independance: g-vectors

- [MSW]: elements with distict **g**-vectors are linear independent; Pf: modification of arguments from [FZ4].
 - elements of \mathcal{B} have distinct **g**-vectors *Pf: based on snake graphs.*

Geometric description of g-vectors: tropical duality of Nakanishi-Zelevinsky: $(G_t^{B;t_0})^T = C_{t_0}^{B_t^T;t}$

g-vector
$$\stackrel{NZ}{\longleftrightarrow}$$
 c-vector $\stackrel{FG}{\longleftrightarrow}$ laminations

 $\begin{array}{cccc} \mbox{Elementary laminations} & \longrightarrow & \mbox{distinct} & \longrightarrow & \mbox{lin. independence} \\ \mbox{for distinct multicurves} & \longrightarrow & \mbox{shear coordinates} & \longrightarrow & \mbox{lin. independence} \end{array}$

3.2. Linear independance: g-vectors

More precisely, $\mathbf{g}(x_{\gamma}) = -b_{T^*}(L^*_{\gamma})$, where

1. to obtain T^* we take an initial triangulation T on \mathcal{O} and turn the triangulated orbifold inside-out; denote \mathcal{O}^* the <u>inside-out</u> orbifold.

2. take an elementary lamination L^*_{γ} for $\gamma^* \in \mathcal{O}^*$ $(L^*_{\gamma} \text{ is an image of } -L_{\gamma}, \text{ negative of the elementary lamination on } \mathcal{O}).$

3. $\mathbf{g}(x_{\gamma}) = \underline{\text{shear coordinates}}$ of L_{γ}^* in T^* .

4. Thm. $L \to b_{\gamma}(T, L)$ is a bijection to \mathbb{Z}^n . ([Fomin, Thurston] surface case; [F, Shapiro, Tumarkin] orbifold case)

