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0. Prologue: Totally positive matrices

• A minor of a matrix is a determinant of a square submatrix.

• An n× n matrix A is called totally positive

if every minor of A is a positive real number.

Question: How many minors and which ones do one needs to compute

for checking that the matrix is totally positive?

Answer: All is enough, but can do much better:

aaa Example: 2× 2 matrix
(
a b
c d

)
– enough to check a, b, c, ad− bc

or d, b, c, ad− bc
aaa Example: 3× 3 matrix: out of 19 only need 9.

One can go from one criteria to another by local moves:

asdasdsadadsadeach time substituting one of the functions by a new one.
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• A minor of a matrix is a determinant of a square submatrix.

• An n× n matrix A is called totally positive

if every minor of A is a positive real number.

Question: How many minors and which ones do one needs to compute

for checking that the matrix is totally positive?

Answer: All is enough, but we can do better:

aaa Example: 2× 2 matrix
(
a b
c d

)
– enough to check a, b, c, ad− bc

or d, b, c, ad− bc

aaa In general [Fomin, Zelevinsky’ 1999]: need n2.

asdasdsadadsadCan go from one test to another by local moves:

asdasdsadadsadeach time substituting one of the functions by a new one.



1. Cluster algebras: Quiver mutation

Quiver is an oriented graph without loops and 2-cycles.

Mutation µk of a quiver:

aaa • for every path i→ k → j add an arrow i→ j;

aaa • cancel 2-cycles;

aaa • reverse all arrows incident to k.

Example:
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1. Cluster algebras: Seed mutation

A seed s is a pair (Q, {u1, . . . , un}) where ui = ui(x1, . . . , xn),

A seed s is a pair where asdasdsadasdasd x1, . . . , xn – independent variables.

Initial seed s0 = (Q0, {x1, . . . , xn}.

Mutation: µk(s) = (µk(Q), {u1, . . . , u
′
k, . . . , un}

u′k =
1

uk

∏
i→k

ui +
∏
k→j

uj


Functions ui are called cluster variables.

Definition. Cluster algebra A(Q) is a Q-subalgebra of Q(x1, . . . , xn)

Definition. generated by all cluster variables.
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A seed s is a pair (Q, {u1, . . . , un}) where ui = ui(x1, . . . , xn),

A seed s is a pair where asdasdsadasdasd x1, . . . , xn – independent variables.

Initial seed s0 = (Q0, {x1, . . . , xn}).

Mutation: µk(s) = (µk(Q), {u1, . . . , u
′
k, . . . , un})

u′k =
1

uk

∏
i→k

ui +
∏
k→j

uj


Functions ui are called cluster variables.

Definition. Let F be the set of all rational functions in x1, . . . , xn.

The cluster algebra A(Q) is the subring of F
Definition. The cluster algebra aaaa generated by all cluster variables.



1. Cluster algebras: Seed mutation

How to think about this?

Example:

x1

x3

x4x2

x5

µ1

x′1 = 1
x1

(x2x4 + x3x5)

x3

x4x2

x5

Cluster variables: x1, x2, x3, x4, x5, x
′
1, . . .



1. Cluster algebras: Two remarkable properties

By definition ui = P (x1,...,xn)
R(x1,...,xn), where P and R are polynomials.

In fact:

• Laurent phenomenon: R(x1, . . . , xn) is a monomial, R = xd1
1 . . . xdnn .

aaaaaaaasds It is a miracle as computing u′k = 1
uk

(
∏
i→k

ui +
∏
k→j

uj) we divide by uk!

• Positivity: P (x1, . . . , xn) has positive coefficients.

aaaaaaaasds It is a miracle as we divide: a3+b3

a+b = a2 − ab+ b2.
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2. Triangulated polygons

Triangulated polygon −→ Quiver Q

diagonal in triangulation vertex of quiver

two edges of one triangle arrow of quiver

flip of triangulation mutation of quiver
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2. Triangulated polygons

Triangulated polygon −→ Quiver Q

diagonal in triangulation vertex of quiver

two edges of one triangle arrow of quiver

flip of triangulation mutation of quiver

−→ Cluster algebra
A(Q)

Label vertices of Q by xi, transform as in x′1 = x2x4+x3x5
x1

under mutations.
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2. Triangulated polygons

Triangulated polygon −→ Quiver Q

diagonal in triangulation of quiver

two edges of one triangle of quiver

flip of triangulation mutation of quiver

−→ Cluster algebra
A(Q)

By sequence of flips can take any triangulation to any other.

Triangualtions ↔ Seeds of A(Q)

diagonals ↔ cluster variables



2. Triangulated polygons

Remark: Transformation x′1 = x2x4+x3x5
x1

makes sense

for lengths of diagonals in E2:

The lengths of diagonals in an inscribed polygon are not independent variables.
This can be fixed by using hyperbolic geometry instead of Euclidean.
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3. Grassmannians Gr2,n

Grassmannian Grk,n(R) = {V | V ∈ Rn, dim V = k}
is a space of k-planes in Rn.

k = 1: Gr1,n = { lines in Rn} = RPn−1.

Elements of Gr2,n can be represented by full rank k × n matrices.

k = 2: Gr2,n = { A =

(
a11 . . . a1n

a21 . . . a2n

)
| rk A = 2}.

This representation is not unique: can take another basis of the 2-plane.

So, Gr2,n = Mat2,n/ ∼, where ∼ stays for changes of basis in R2.
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3. Grassmannians Gr2,n = {2-planes in Rn }

Determinants ∆ij =
∣∣∣∣a1i a1j

a2i a2j

∣∣∣∣ are called Plücker coordinates.

If ∆12 6= 0 then
(
a11 a12

a21 a22

)−1(
a11 . . . a1n

a21 . . . a2n

)
=

(
1 0 c3 . . . cn
0 1 d3 . . . dn

)
This represents a point with ∆12 6= 0 uniquely.

Moreover: ci = −∆2i
∆12

, di = ∆1i
∆12

.

• So, {∆ij} (up to simultaneous scaling) determine a point of Gr2,n.

This works for all points of Gr2,n: ∆ij 6= 0 for some i,j as rkA = 2.

• {∆ij} are not independent: ∆ij

∆12
= cidj − cjdi = −∆2,i∆1j

∆2
12

+
∆2j∆ij

∆2
12

⇔ ∆2j∆1i = ∆12∆ij + ∆2i∆1j
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3. Grassmannians Gr2,n = {2-planes in Rn }

Determinants ∆ij =
∣∣∣∣a1i a1j

a2i a2j

∣∣∣∣ are called Plücker coordinates.

They are subject to Plücker relations:

∆ik∆jl = ∆ij∆kl + ∆il∆jk l

j k

i

How many of them are enough to know? Dimension requires 2n− 3.

Take any triangulation T of an n-gon.

Then {∆ij | ij = side or diagonal in T} is sufficient to find all ∆lk:

asda apply Plücker (=Ptolemy) relations to resolve crossings!

Get a cluster algebra structure on Gr2,n with
asdasdaaa cluster variables ↔ diagonals of n-gon
asdasdaaa aaasdsdsiiiiiseeds ↔ triangulations of n-gon
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∆ik∆jl = ∆ij∆kl + ∆il∆jk l

j k

i

How many of them are enough to know? Dimension requires 2n− 3.

Take any triangulation T of an n-gon.

Then {∆ij | ij = side or diagonal in T} is sufficient to find all ∆lk:
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∣∣∣∣ are called Plücker coordinates.

They are subject to Plücker relations:
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asda apply Plücker (=Ptolemy) relations to resolve crossings!



3. Grassmannians Gr2,n = {2-planes in Rn }

Determinants ∆ij =
∣∣∣∣a1i a1j

a2i a2j

∣∣∣∣ are called Plücker coordinates.
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3. Grassmannians Gr2,n = {2-planes in Rn }

Determinants ∆ij =
∣∣∣∣a1i a1j

a2i a2j

∣∣∣∣ are called Plücker coordinates.

They are subject to Plücker relations:

∆ik∆jl = ∆ij∆kl + ∆il∆jk l

j k

i

How many of them are enough to know? Dimension requires 2n− 3.

Take any triangulation T of an n-gon.

Then {∆ij | ij = side or diagonal in T} is sufficient to find all ∆lk:

asda apply Plücker (=Ptolemy) relations to resolve crossings!

A totally positive Grassmannian Grtp2,n is a subset of Gr2,n

where ∆ij > 0 for all i, j.
By positivity of cluster variables,

only need to check initial variables.



4. Finite type

A cluster algebra is of finite type if it contains finitely many cluster variables.
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4. Finite type and finite mutation type

A cluster algebra is of finite type if it contains finitely many cluster variables.

Theorem [Fomin, Zelevinsky’ 2002] A(Q) is of finite type iff

Q is mutation-equivalent to an orientation of a Dynkin diagram.

A cluster algebra A(Q) is of finite mutation type if there are finitely many

quivers in the mutation class of Q.

Theorem [A.F, M.Shapiro, P.Tumarkin’ 2008]

Let Q be a connected quiver of finite mutation type with |Q| > 2. Then

- either Q is obtained from a triangulated surface;

- or Q is mut.-equivalent to one of the following 11 quivers:



4. Finite type and finite mutation type

A cluster algebra is of finite type if it contains finitely many cluster variables.

Theorem [Fomin, Zelevinsky’ 2002] A(Q) is of finite type iff

Q is mutation-equivalent to an orientation of a Dynkin diagram.

A cluster algebra A(Q) is of finite mutation type if there are finitely many

quivers in the mutation class of Q.

Theorem [A.F, M.Shapiro, P.Tumarkin’ 2008]

A connected quiver Q s.t. |Q| > 2 is of finite mutation type iff

- either Q is obtained from a triangulated surface;

- or Q is mut.-equivalent to one of the following 11 quivers:
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(Proof borrowed from cut-the-knot portal)
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Thanks!

(Proof borrowed from cut-the-knot portal)


