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0. Prologue: Totally positive matrices
e A minor of a matrix is a determinant of a square submatrix.

e An n X n matrix A is called totally positive
if every minor of A is a positive real number.

Question: How many minors and which ones do one needs to compute
for checking that the matrix is totally positive?

Answer: All is enough, but we can do better:

Example: 2 X 2 matrix (CCL z) — enough to check a, b, c,ad — bc
or d,b,c,ad — bc

In general [Fomin, Zelevinsky' 1999]: need n?.
Can go from one test to another by local moves:
each time substituting one of the functions by a new one.
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Quiver is an oriented graph without loops and 2-cycles.

Mutation ug of a quiver:
e for every path ¢+ — k — 45 add an arrow 1 — j;
e cancel 2-cycles;
e reverse all arrows incident to k.

Example:

SN SN SN N,
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1. Cluster algebras: Seed mutation

A seed s is a pair (Q, {u1,...,u,}) where u; = u;(z1,...,T,),
x1,...,T, — Independent variables.

Initial seed sqg = (Qo, {x1,...,Zn}).

Mutation: ,uk(s) — (,uk(Q), {u1, . e ,U;C, C e ,Un})

u;:uik Hui—l—Huj

1—k k— 7
Functions u; are called cluster variables.

Definition. Let F be the set of all rational functions in z1, ..., x,.

The cluster algebra A(Q) is the subring of F
generated by all cluster variables.




1. Cluster algebras: Seed mutation

How to think about this?

Example:
[ B ols3
l A

T2 1 Xy H1 o 4

= o—©0 A~ = o—O0<——0
T/ \ T = (2274 + T375)
¥

.$5 .ZIL'5

[ . /
Cluster variables: z1,x2, x3, x4, x5, 27, . ..
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1. Cluster algebras: Two remarkable properties

P(a1on)
R(x1,....,xn)"

By definition u; = where P and R are polynomials.

In fact:

e Laurent phenomenon [Fomin, Zelevinsky' 2001]:

. . L dl d
R(x1,...,z,) is @ monomial, R = x7'... 25"

It is a miracle as computing u}, = -=( ] u; + [ ;) we divide by !
& 1—k k— 3

e Positivity [Conj.: Fomin, Zelevinsky' 2001; proved: Lee, Schiffler’ 2013]:
P(xy,...,x,) has positive coefficients.

. . - 3,3
It is a miracle as we divide: aafg — a? — ab + b2
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2. Triangulated polygons

Triangulated polygon —  Quiver @) — Cluster algebra
diagonal in triangulation vertex of quiver A(Q)
two edges of one triangle arrow of quiver
flip of triangulation [~ mutation of quiver
/7
: / \ o
/] /] N

L9772 )

Label vertices of @ by x;, transform as in x| = m”‘iwi”xf’ under mutations.
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2. Triangulated polygons

Triangulated polygon —  Quiver @) — Cluster algebra

A(Q)

By sequence of flips can take any triangulation to any other.

Triangualtions <+ Seeds of A(Q)

diagonals <+ cluster variables
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2. Triangulated polygons

XoTA+IT3T5
CB

for lengths of diagonals in E2:

makes sense

Remark: Transformation xl —

Ptolemy Theorem:
Given an inscribed quadrilateral ABC'DC E2,

AC-BD =AB-CD+ BC-AD

.

The lengths of diagonals in an inscribed polygon are not independent variables.
This can be fixed by using hyperbolic geometry instead of Euclidean.
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3. Grassmannians Grs

Grassmannian Gry ,(R) ={V |V e R" dim V =k}
Is a space of k-planes in R™.

k=1: Gri,={linesin R"} = RP" 1

Elements of Gy, can be represented by full rank £ X n matrices.

k=2 Grg,n:{A:(all al") | rk A =2},

as1 ... Qo2n

This representation is not unique: can take another basis of the 2-plane.

So, Gra., = Mats,/ ~, where ~ stays for changes of basis in R.
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a1y Q1j

Determinants A;; = o
2i A2

are called Plucker coordinates.
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3. Grassmannians Gry,, = {2-planes in R" }

a1y Q1j

Determinants A;; = o
2i A2

are called Plucker coordinates.

—1

- 1 0 c

If A 0 then a1; a2 (CLM a1n) _ ( 3

12 # (CLQl as9 as1 ... Aon 0 1 d3
This represents a point with A5 % 0 uniquely.

Moreover: ¢; = —Aoa

Cn
dn,

d; = ANY;

A1g’

e So, {A;;} (up to simultaneous scaling) determine a point of G'ra ,,.

This works for all points of Gry,,:  A;; # 0 for some ¢,5 as rkA = 2.

' AN o AgiAgy | AgiAy
e {A;;} are not independent: T = cid; — ¢;jd; = — Azt Azt N
& Ag A1 = A2y + Agi Ay 1 i

J

Similarly, Az’kAjl = AijAkl + Az’lAjk for 1 < < k<l

i

k

1
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3. Grassmannians Gry,, = {2-planes in R" }

. Ai: QA . .
Determinants ~ A;; = | ** V| are called Pliicker coordinates.
2 A2
They are subject to Plucker relations: j k

DSy = Bl G Bgp sy i 1

How many of them are enough to know? Dimension requires 2n — 3.

Take any triangulation 1" of an n-gon.
Then {A;; | ij = side or diagonal in T'} is sufficient to find all A:
apply Plicker (=Ptolemy) relations to resolve crossings!

Get a cluster algebra structure on Gry ,, with
cluster variables <+ diagonals of n-gon
seeds <+ triangulations of n-gon




3. Grassmannians Gry,, = {2-planes in R" }

. Ai: QA . .
Determinants  A;; = a“ a” are called Plucker coordinates.
2 A2
They are subject to Plucker relations: j k

DSy = Bl G Bgp sy i 1

How many of them are enough to know? Dimension requires 2n — 3.

Take any triangulation 1" of an n-gon.
Then {A;; | ij = side or diagonal in T'} is sufficient to find all A:
apply Plicker (=Ptolemy) relations to resolve crossings!

A totally positive Grassmannian Gfr;{?n Is a subset of Gy,
where A;; > 0 for all 4, j.

By positivity of cluster variables,
only need to check initial variables.
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A cluster algebra is of finite type if it contains finitely many cluster variables.

Theorem [Fomin, Zelevinsky' 2002] A(Q) is of finite type iff
() i1s mutation-equivalent to an orientation of a Dynkin diagram

Eg ‘ E; ‘ Eg ‘

Note: Dynkin diagrams describe:
finite reflection groups, semisimple Lie algebras, surface singularities...

Cluster algebra related to

AN
an n-gon and Grassmannian G J
is of type A,,:
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4. Finite type and finite mutation type

A cluster algebra is of finite type if it contains finitely many cluster variables.

Theorem [Fomin, Zelevinsky' 2002] A(Q) is of finite type iff
() i1s mutation-equivalent to an orientation of a Dynkin diagram.

A cluster algebra A(Q) is of finite mutation type if there are finitely many
quivers in the mutation class of ().

Theorem [A.F, M.Shapiro, P.Tumarkin" 2008]
A connected quiver () s.t. |Q| > 2 is of finite mutation type iff
- either () is obtained from a triangulated surface;
- or () is mut.-equivalent to one of the following 11 quivers:

S el S %ﬂ AV
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ef=ac+bd
ac bd
C o+0 B ,Y+6 & B+Y

B ‘v a-(A BCD) b-(A BDA)

5 2
D
f.(A ABC)
v 5
B o
A ef
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