Introduction to cluster algebras

Anna Felikson

Durham University

LMS Graduate Student Meeting, London June 29, 2018 Cluster algebras (Fomin, Zelevinsky, 2001)

Andrei Zelevinsky

Cluster algebras (Fomin, Zelevinsky, 2001)

- A minor of a matrix is a determinant of a square submatrix.
- An $n \times n$ matrix A is called totally positive if every minor of A is a positive real number.

- A minor of a matrix is a determinant of a square submatrix.
- An $n \times n$ matrix A is called totally positive if every minor of A is a positive real number.

Question: How many minors and which ones do one needs to compute for checking that the matrix is totally positive?

- A minor of a matrix is a determinant of a square submatrix.
- An $n \times n$ matrix A is called totally positive if every minor of A is a positive real number.

Question: How many minors and which ones do one needs to compute for checking that the matrix is totally positive?

Answer: All is enough, but we can do better:

Example:
$$2 \times 2$$
 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ – enough to check $a, b, c, ad - bc$

- A minor of a matrix is a determinant of a square submatrix.
- An $n \times n$ matrix A is called totally positive if every minor of A is a positive real number.

Question: How many minors and which ones do one needs to compute for checking that the matrix is totally positive?

Answer: All is enough, but we can do better:

Example:
$$2 \times 2$$
 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ – enough to check $a, b, c, ad - bc$
$$d = \frac{(ad-bc)+bc}{a}$$

- A minor of a matrix is a determinant of a square submatrix.
- An $n \times n$ matrix A is called totally positive if every minor of A is a positive real number.

Question: How many minors and which ones do one needs to compute for checking that the matrix is totally positive?

Answer: All is enough, but we can do better:

Example:
$$2 \times 2$$
 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ – enough to check $a, b, c, ad - bc$
or $d, b, c, ad - bc$

- A minor of a matrix is a determinant of a square submatrix.
- An $n \times n$ matrix A is called totally positive if every minor of A is a positive real number.

Question: How many minors and which ones do one needs to compute for checking that the matrix is totally positive?

Answer: All is enough, but we can do better:

Example:
$$2 \times 2$$
 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ – enough to check $a, b, c, ad - bc$
or $d, b, c, ad - bc$

 3×3 matrix: out of 19 only need 9.

- A minor of a matrix is a determinant of a square submatrix.
- An $n \times n$ matrix A is called totally positive if every minor of A is a positive real number.

Question: How many minors and which ones do one needs to compute for checking that the matrix is totally positive?

Answer: All is enough, but we can do better:

Example:
$$2 \times 2$$
 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ – enough to check $a, b, c, ad - bc$
or $d, b, c, ad - bc$

In general [Fomin, Zelevinsky' 1999]: need n^2 . Can go from one test to another by local moves: each time substituting one of the functions by a new one.

Quiver is an oriented graph without loops and 2-cycles.

Quiver is an oriented graph without loops and 2-cycles.

Mutation μ_k of a quiver:

- for every path $i \to k \to j$ add an arrow $i \to j$;
- cancel 2-cycles;
- reverse all arrows incident to k.

Quiver is an oriented graph without loops and 2-cycles.

Mutation μ_k of a quiver:

- for every path $i \to k \to j$ add an arrow $i \to j$;
- cancel 2-cycles;
- reverse all arrows incident to k.

Quiver is an oriented graph without loops and 2-cycles.

Mutation μ_k of a quiver:

- for every path $i \to k \to j$ add an arrow $i \to j$;
- cancel 2-cycles;
- reverse all arrows incident to k.

Quiver is an oriented graph without loops and 2-cycles.

Mutation μ_k of a quiver:

- for every path $i \to k \to j$ add an arrow $i \to j$;
- cancel 2-cycles;
- reverse all arrows incident to k.

Quiver is an oriented graph without loops and 2-cycles.

Mutation μ_k of a quiver:

- for every path $i \to k \to j$ add an arrow $i \to j$;
- cancel 2-cycles;
- reverse all arrows incident to k.

A seed s is a pair $(Q, \{u_1, \ldots, u_n\})$ where $u_i = u_i(x_1, \ldots, x_n)$, x_1, \ldots, x_n - independent variables.

A seed s is a pair $(Q, \{u_1, \ldots, u_n\})$ where $u_i = u_i(x_1, \ldots, x_n)$, x_1, \ldots, x_n - independent variables.

Initial seed $s_0 = (Q_0, \{x_1, \dots, x_n\}).$

A seed s is a pair $(Q, \{u_1, \ldots, u_n\})$ where $u_i = u_i(x_1, \ldots, x_n)$, x_1, \ldots, x_n – independent variables.

Initial seed $s_0 = (Q_0, \{x_1, \dots, x_n\}).$

Mutation: $\mu_k(s) = (\mu_k(Q), \{u_1, \dots, u'_k, \dots, u_n\})$

$$u_k' = \frac{1}{u_k} \left(\prod_{i \to k} u_i + \prod_{k \to j} u_j \right)$$

A seed s is a pair $(Q, \{u_1, \ldots, u_n\})$ where $u_i = u_i(x_1, \ldots, x_n)$, x_1, \ldots, x_n – independent variables.

Initial seed $s_0 = (Q_0, \{x_1, \dots, x_n\}).$

Mutation: $\mu_k(s) = (\mu_k(Q), \{u_1, ..., u'_k, ..., u_n\})$

$$u_k' = \frac{1}{u_k} \left(\prod_{i \to k} u_i + \prod_{k \to j} u_j \right)$$

Functions u_i are called cluster variables.

Definition. Let \mathcal{F} be the set of all rational functions in x_1, \ldots, x_n . The cluster algebra $\mathcal{A}(Q)$ is the subring of \mathcal{F}

generated by all cluster variables.

How to think about this?

Example:

Cluster variables: $x_1, x_2, x_3, x_4, x_5, x'_1, ...$

1. Cluster algebras: Two remarkable properties

By definition $u_i = \frac{P(x_1,...,x_n)}{R(x_1,...,x_n)}$, where P and R are polynomials.

1. Cluster algebras: Two remarkable properties

By definition $u_i = \frac{P(x_1,...,x_n)}{R(x_1,...,x_n)}$, where P and R are polynomials. In fact:

• Laurent phenomenon [Fomin, Zelevinsky' 2001]: $R(x_1, \ldots, x_n)$ is a monomial, $R = x_1^{d_1} \ldots x_n^{d_n}$.

It is a miracle as computing $u'_k = \frac{1}{u_k} (\prod_{i \to k} u_i + \prod_{k \to j} u_j)$ we divide by $u_k!$

1. Cluster algebras: Two remarkable properties

By definition $u_i = \frac{P(x_1,...,x_n)}{R(x_1,...,x_n)}$, where P and R are polynomials. In fact:

• Laurent phenomenon [Fomin, Zelevinsky' 2001]: $R(x_1, \ldots, x_n)$ is a monomial, $R = x_1^{d_1} \ldots x_n^{d_n}$.

It is a miracle as computing $u'_k = \frac{1}{u_k} (\prod_{i \to k} u_i + \prod_{k \to j} u_j)$ we divide by $u_k!$

• Positivity [Conj.: Fomin, Zelevinsky' 2001; proved: Lee, Schiffler' 2013]: $P(x_1, \ldots, x_n)$ has positive coefficients.

It is a miracle as we divide: $\frac{a^3+b^3}{a+b} = a^2 - ab + b^2$.

Triangulated polygon \longrightarrow Quiver Q

Triangulated polygon	\longrightarrow	Quiver Q
diagonal in triangulation		vertex of quiver
two edges of one triangle		arrow of quiver

Triangulated polygon \longrightarrow	Quiver Q
diagonal in triangulation	vertex of quiver
two edges of one triangle	arrow of quiver
flip of triangulation Z-N	mutation of quiver

Label vertices of Q by x_i , transform as in $x'_1 = \frac{x_2x_4 + x_3x_5}{x_1}$ under mutations.

Triangulated polygon \longrightarrow Quiver $Q \longrightarrow Cluster algebra$ $<math>\mathcal{A}(Q)$

Triangulated polygon \longrightarrow Quiver $Q \longrightarrow Cluster algebra$ $<math>\mathcal{A}(Q)$

Triangulated polygon \longrightarrow Quiver $Q \longrightarrow$

 \rightarrow Cluster algebra $\mathcal{A}(Q)$

Triangulated polygon \longrightarrow Quiver $Q \longrightarrow Cluster algebra$ $<math>\mathcal{A}(Q)$

Triangulated polygon \longrightarrow Quiver Q -

By sequence of flips can take any triangulation to any other.

 $\begin{array}{l} \mbox{Triangualtions} \leftrightarrow \mbox{Seeds of } \mathcal{A}(Q) \\ \mbox{diagonals} \leftrightarrow \mbox{cluster variables} \end{array}$

 \rightarrow Cluster algebra

Remark: Transformation $x'_1 = \frac{x_2x_4 + x_3x_5}{x_1}$ makes sense for lengths of diagonals in \mathbb{E}^2 :

Remark: Transformation $x'_1 = \frac{x_2x_4 + x_3x_5}{x_1}$ makes sense for lengths of diagonals in \mathbb{E}^2 :

Remark: Transformation $x'_1 = \frac{x_2x_4 + x_3x_5}{x_1}$ makes sense for lengths of diagonals in \mathbb{E}^2 :

The lengths of diagonals in an inscribed polygon are not independent variables. This can be fixed by using hyperbolic geometry instead of Euclidean.

Grassmannian $Gr_{k,n}(\mathbb{R}) = \{V \mid V \in \mathbb{R}^n, dim \ V = k\}$ is a space of k-planes in \mathbb{R}^n .

Grassmannian $Gr_{k,n}(\mathbb{R}) = \{V \mid V \in \mathbb{R}^n, dim \ V = k\}$ is a space of k-planes in \mathbb{R}^n .

$$k = 1$$
: $Gr_{1,n} = \{ \text{ lines in } \mathbb{R}^n \} = \mathbb{R}P^{n-1}.$

Grassmannian $Gr_{k,n}(\mathbb{R}) = \{V \mid V \in \mathbb{R}^n, dim \ V = k\}$ is a space of k-planes in \mathbb{R}^n .

$$k = 1$$
: $Gr_{1,n} = \{ \text{ lines in } \mathbb{R}^n \} = \mathbb{R}P^{n-1}.$

Elements of $Gr_{k,n}$ can be represented by full rank $k \times n$ matrices.

Grassmannian $Gr_{k,n}(\mathbb{R}) = \{V \mid V \in \mathbb{R}^n, dim \ V = k\}$ is a space of k-planes in \mathbb{R}^n .

$$k = 1$$
: $Gr_{1,n} = \{ \text{ lines in } \mathbb{R}^n \} = \mathbb{R}P^{n-1}.$

Elements of $Gr_{k,n}$ can be represented by full rank $k \times n$ matrices.

$$k = 2: \quad Gr_{2,n} = \{ A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \end{pmatrix} \mid rk \ A = 2 \}$$

Grassmannian $Gr_{k,n}(\mathbb{R}) = \{V \mid V \in \mathbb{R}^n, dim \ V = k\}$ is a space of k-planes in \mathbb{R}^n .

$$k = 1$$
: $Gr_{1,n} = \{ \text{ lines in } \mathbb{R}^n \} = \mathbb{R}P^{n-1}.$

Elements of $Gr_{k,n}$ can be represented by full rank $k \times n$ matrices.

$$k = 2$$
: $Gr_{2,n} = \{ A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \end{pmatrix} \mid rk \ A = 2 \}.$

This representation is not unique: can take another basis of the 2-plane.

So, $Gr_{2,n} = Mat_{2,n} / \sim$, where \sim stays for changes of basis in \mathbb{R}^2 .

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.
If $\Delta_{12} \neq 0$ then $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^{-1} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & c_3 & \cdots & c_n \\ 0 & 1 & d_3 & \cdots & d_n \end{pmatrix}$

This represents a point with $\Delta_{12} \neq 0$ uniquely.

Moreover:
$$c_i = -\frac{\Delta_{2i}}{\Delta_{12}}$$
, $d_i = \frac{\Delta_{1i}}{\Delta_{12}}$.

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.
If $\Delta_{12} \neq 0$ then $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^{-1} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & c_3 & \dots & c_n \\ 0 & 1 & d_3 & \dots & d_n \end{pmatrix}$
This represents a point with $\Delta_{12} \neq 0$ uniquely.

Moreover:
$$c_i = -\frac{\Delta_{2i}}{\Delta_{12}}$$
, $d_i = \frac{\Delta_{1i}}{\Delta_{12}}$.

• So, $\{\Delta_{ij}\}$ (up to simultaneous scaling) determine a point of $Gr_{2,n}$. This works for all points of $Gr_{2,n}$: $\Delta_{ij} \neq 0$ for some i,j as rkA = 2.

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.
If $\Delta_{12} \neq 0$ then $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^{-1} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & c_3 & \dots & c_n \\ 0 & 1 & d_3 & \dots & d_n \end{pmatrix}$

This represents a point with $\Delta_{12} \neq 0$ uniquely. Moreover: $c_i = -\frac{\Delta_{2i}}{\Delta_{12}}$, $d_i = \frac{\Delta_{1i}}{\Delta_{12}}$.

• So, $\{\Delta_{ij}\}$ (up to simultaneous scaling) determine a point of $Gr_{2,n}$. This works for all points of $Gr_{2,n}$: $\Delta_{ij} \neq 0$ for some i,j as rkA = 2.

•
$$\{\Delta_{ij}\}$$
 are not independent: $\frac{\Delta_{ij}}{\Delta_{12}} = c_i d_j - c_j d_i = -\frac{\Delta_{2,i}\Delta_{1j}}{\Delta_{12}^2} + \frac{\Delta_{2j}\Delta_{ij}}{\Delta_{12}^2}$
 $\Leftrightarrow \Delta_{2j}\Delta_{1i} = \Delta_{12}\Delta_{ij} + \Delta_{2i}\Delta_{1j}$
 $^2 \square_{j}$

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.
If $\Delta_{12} \neq 0$ then $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^{-1} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & c_3 & \dots & c_n \\ 0 & 1 & d_3 & \dots & d_n \end{pmatrix}$

This represents a point with $\Delta_{12} \neq 0$ uniquely. Moreover: $c_i = -\frac{\Delta_{2i}}{\Delta_{12}}$, $d_i = \frac{\Delta_{1i}}{\Delta_{12}}$.

• So, $\{\Delta_{ij}\}$ (up to simultaneous scaling) determine a point of $Gr_{2,n}$. This works for all points of $Gr_{2,n}$: $\Delta_{ij} \neq 0$ for some i,j as rkA = 2.

•
$$\{\Delta_{ij}\}$$
 are not independent: $\frac{\Delta_{ij}}{\Delta_{12}} = c_i d_j - c_j d_i = -\frac{\Delta_{2,i} \Delta_{1j}}{\Delta_{12}^2} + \frac{\Delta_{2j} \Delta_{ij}}{\Delta_{12}^2}$
 $\Leftrightarrow \Delta_{2j} \Delta_{1i} = \Delta_{12} \Delta_{ij} + \Delta_{2i} \Delta_{1j}$

Similarly, $\Delta_{ik} \Delta_{jl} = \Delta_{ij} \Delta_{kl} + \Delta_{il} \Delta_{jk}$ for i < j < k < l.

$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.
They are subject to Plücker relations: $j \qquad k \\ \Delta_{ik}\Delta_{jl} = \Delta_{ij}\Delta_{kl} + \Delta_{il}\Delta_{jk} \qquad i \qquad 1$

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.
They are subject to Plücker relations:
 $\Delta_{ik}\Delta_{jl} = \Delta_{ij}\Delta_{kl} + \Delta_{il}\Delta_{jk}$ $i \qquad i \qquad l$

How many of them are enough to know? Dimension requires 2n - 3.

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.
They are subject to Plücker relations: $j \longrightarrow k$
 $\Delta_{ik}\Delta_{jl} = \Delta_{ij}\Delta_{kl} + \Delta_{il}\Delta_{jk}$ $i \longrightarrow 1$

How many of them are enough to know? Dimension requires 2n - 3.

Take any triangulation T of an n-gon. Then $\{\Delta_{ij} \mid ij = \text{side or diagonal in } T\}$ is sufficient to find all Δ_{lk} : apply Plücker (=Ptolemy) relations to resolve crossings!

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.
They are subject to Plücker relations: $j \longrightarrow k$
 $\Delta_{ik}\Delta_{jl} = \Delta_{ij}\Delta_{kl} + \Delta_{il}\Delta_{jk}$ $i \longrightarrow 1$

How many of them are enough to know? Dimension requires 2n - 3.

Take any triangulation T of an n-gon. Then $\{\Delta_{ij} \mid ij = \text{ side or diagonal in } T\}$ is sufficient to find all Δ_{lk} : apply Plücker (=Ptolemy) relations to resolve crossings!

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.
They are subject to Plücker relations: $j \longrightarrow k$
 $\Delta_{ik}\Delta_{jl} = \Delta_{ij}\Delta_{kl} + \Delta_{il}\Delta_{jk}$ $i \longrightarrow 1$

How many of them are enough to know? Dimension requires 2n - 3.

Take any triangulation T of an n-gon. Then $\{\Delta_{ij} \mid ij = \text{ side or diagonal in } T\}$ is sufficient to find all Δ_{lk} : apply Plücker (=Ptolemy) relations to resolve crossings!

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.
They are subject to Plücker relations: $j \longrightarrow k$
 $\Delta_{ik}\Delta_{jl} = \Delta_{ij}\Delta_{kl} + \Delta_{il}\Delta_{jk}$ $i \longrightarrow 1$

How many of them are enough to know? Dimension requires 2n - 3.

Take any triangulation T of an n-gon. Then $\{\Delta_{ij} \mid ij = \text{side or diagonal in } T\}$ is sufficient to find all Δ_{lk} : apply Plücker (=Ptolemy) relations to resolve crossings!

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.
They are subject to Plücker relations: $j \longrightarrow k$
 $\Delta_{ik}\Delta_{jl} = \Delta_{ij}\Delta_{kl} + \Delta_{il}\Delta_{jk}$ $i \longrightarrow l$

How many of them are enough to know? Dimension requires 2n - 3.

Take any triangulation T of an n-gon. Then $\{\Delta_{ij} \mid ij = \text{side or diagonal in } T\}$ is sufficient to find all Δ_{lk} : apply Plücker (=Ptolemy) relations to resolve crossings!

Get a cluster algebra structure on $Gr_{2,n}$ with cluster variables \leftrightarrow diagonals of *n*-gon seeds \leftrightarrow triangulations of *n*-gon

Determinants
$$\Delta_{ij} = \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$$
 are called Plücker coordinates.
They are subject to Plücker relations: $j \longrightarrow k$
 $\Delta_{ik}\Delta_{jl} = \Delta_{ij}\Delta_{kl} + \Delta_{il}\Delta_{jk}$ $i \longrightarrow l$

How many of them are enough to know? Dimension requires 2n - 3.

Take any triangulation T of an n-gon. Then $\{\Delta_{ij} \mid ij = \text{ side or diagonal in } T\}$ is sufficient to find all Δ_{lk} : apply Plücker (=Ptolemy) relations to resolve crossings!

A totally positive Grassmannian $Gr_{2,n}^{tp}$ is a subset of $Gr_{2,n}$ where $\Delta_{ij} > 0$ for all i, j.

By positivity of cluster variables,

only need to check initial variables.

A cluster algebra is of finite type if it contains finitely many cluster variables.

A cluster algebra is of finite type if it contains finitely many cluster variables.

Theorem [Fomin, Zelevinsky' 2002] $\mathcal{A}(Q)$ is of finite type iff Q is mutation-equivalent to an orientation of a Dynkin diagram

A cluster algebra is of finite type if it contains finitely many cluster variables.

Theorem [Fomin, Zelevinsky' 2002] $\mathcal{A}(Q)$ is of finite type iff Q is mutation-equivalent to an orientation of a Dynkin diagram

Note: Dynkin diagrams describe:

finite reflection groups, semisimple Lie algebras, surface singularities...

A cluster algebra is of finite type if it contains finitely many cluster variables.

Theorem [Fomin, Zelevinsky' 2002] $\mathcal{A}(Q)$ is of finite type iff Q is mutation-equivalent to an orientation of a Dynkin diagram

Note: Dynkin diagrams describe:

finite reflection groups, semisimple Lie algebras, surface singularities...

Cluster algebra related to an *n*-gon and Grassmannian $G_{2,n}$ is of type A_n :

4. Finite type and finite mutation type

A cluster algebra is of finite type if it contains finitely many cluster variables.

Theorem [Fomin, Zelevinsky' 2002] $\mathcal{A}(Q)$ is of finite type iff Q is mutation-equivalent to an orientation of a Dynkin diagram.

A cluster algebra $\mathcal{A}(Q)$ is of finite mutation type if there are finitely many quivers in the mutation class of Q.

4. Finite type and finite mutation type

A cluster algebra is of finite type if it contains finitely many cluster variables.

Theorem [Fomin, Zelevinsky' 2002] $\mathcal{A}(Q)$ is of finite type iff Q is mutation-equivalent to an orientation of a Dynkin diagram.

A cluster algebra $\mathcal{A}(Q)$ is of finite mutation type if there are finitely many quivers in the mutation class of Q.

Theorem [A.F, M.Shapiro, P.Tumarkin' 2008] A connected quiver Q s.t. |Q| > 2 is of finite mutation type iff

- either Q is obtained from a triangulated surface;

- or ${\boldsymbol{Q}}$ is mut.-equivalent to one of the following 11 quivers:

5. Bonus: proof of Ptolemy theorem

ef=ac+bd

5. Bonus: proof of Ptolemy theorem

ef=ac+bd

Thanks!