Non-integer quivers:

geometry and mutation-finiteness

Introduction
* B = {b;jj} a skew-symmetric matrix
with bij c R.
* Mutate B by usual mutation rule:
b,”:{—bij, ifi—=korj=k
* bij + 2(|bir|br; + bik|br;|), otherwise
* B defines a non-integer quiver
(with arrows of real weights b;; = —b;;).

Quivers of rank 3

Theorem [FT1].

quiver is mutation-equivalent to one of
e Markov quiver:

Any mutation-finite rank 3

e Finite type quivers:
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Here, a label % stays for the weight |b;;| = 2 cos %

* All of these (but Markov) are mutation-acyclic.

* “Exchange graphs” for H; and HY are graphs
on a torus (with two acyclic belts each):

* Each of the mutation classes H; and HY has

two different acyclic representatives:
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* Mutation p; of a non-integer quiver:
1) reverse all arrows incident to k;
2) for every path i = k=5 j with p,qg > 0

apply:

* Example: Bj

Geometric realisation by reflections (GR)

* GR of a quiver of rank n:
vectors v1,...,v, In a quadratic vector space V
s.t. (vi,v;) =2 and (v;,v;) = —|bs;].

* Mutation = partial reflection:

pr(vi) =4 —w;. if i = k

v; — (4, Vi) Vg, if by <O
* Mutation class has a GR if GR of quivers
commute with mutations.

Theorem [FT1,FT2]. Mutation class of any real
acyclic quiver with |b;;| > 2 Vi,5 admits a GR.

* When GR exists, we define (geometric) Y -seeds
(n-tuples of vectors in V') and “exchange graphs”.
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Theorem [FL]. Let () be an affine type rank 3
mut.-fin. quiver. Then “exchange graph” of ()
grows polynomially and is quasi-isometric to a
lattice of some dimension.
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* Question: when a real quiver ()
is mutation-finite?
* Example: Hg(mutation class and “exchange graph”)
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where 6 = 2 cos%

(cf. generalised associahedron in [FR])

Finite mutation type: classification

Theorem [FT3]. Any mut.-fin. non-integer

quiver of rank n > 3 is mutation-equivalent

to either one of B,,, Fy, B,,, C,,, F}
or one of
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Here, a label £ stays for the weight |b;;| = 2 cos XZ.
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