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Introduction
• B = {bij} a skew-symmetric matrix

with bij ∈ R.
• Mutate B by usual mutation rule:

b�ij =

�
−bij, if i = k or j = k

bij +
1
2(|bik|bkj + bik|bkj|), otherwise

• B defines a non-integer quiver
(with arrows of real weights bij = −bji).

• Mutation µk of a non-integer quiver:

1) reverse all arrows incident to k;

2) for every path i
p→ k

q→ j with p, q > 0

apply:
p pq q

r� = pq − rr

µk
k k

• Example: B3
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• Question: when a real quiver Q

is mutation-finite?
• Example: H3(mutation class and “exchange graph”)
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where θ = 2 cos π
5

(cf. generalised associahedron in [FR])

Quivers of rank 3

Theorem [FT1]. Any mutation-finite rank 3

quiver is mutation-equivalent to one of
• Markov quiver: • Finite type quivers:
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• Affine quivers:
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Here, a label k
m stays for the weight |bij| = 2 cos kπ

m .

• All of these (but Markov) are mutation-acyclic.

• “Exchange graphs” for H �
3 and H ��

3 are graphs

on a torus (with two acyclic belts each):
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• Each of the mutation classes H �
3 and H ��

3 has

two different acyclic representatives:
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Geometric realisation by reflections (GR)
• GR of a quiver of rank n:

vectors v1,...,vn in a quadratic vector space V

s.t. (vi, vi) = 2 and (vi, vj) = −|bij|.
• Mutation = partial reflection:

µk(vi) =





vi, if bki ≥ 0, i �= k
−vi, if i = k
vi − (vi, vk)vk, if bki < 0

• Mutation class has a GR if GR of quivers

commute with mutations.

Theorem [FT1,FT2]. Mutation class of any real

acyclic quiver with |bij| ≥ 2 ∀i,j admits a GR.

• When GR exists, we define (geometric) Y -seeds

(n-tuples of vectors in V ) and “exchange graphs”.

Example: exchange graph

of �H2 =
1
5

1
5

Theorem [FL]. Let Q be an affine type rank 3

mut.-fin. quiver. Then “exchange graph” of Q

grows polynomially and is quasi-isometric to a

lattice of some dimension.

Finite mutation type: classification

Theorem [FT3]. Any mut.-fin. non-integer

quiver of rank n > 3 is mutation-equivalent

to either one of Bn, F4, �Bn, �Cn, �F4

or one of
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Here, a label k
m stays for the weight |bij| = 2 cos kπ

m .
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