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1. Mutations of non-integer quivers:

• B = {bij} a skew-symmetric n× n matrix with bij ∈ R.

• Mutate B by usual mutation rule: (introduced by Fomin, Zelevinsky)

b′ij =

{
−bij, if i = k or j = k

bij + 1
2(|bik|bkj + bik|bkj|), otherwise



1. Mutations of non-integer quivers:

• B = {bij} a skew-symmetric n× n matrix with bij ∈ R.

• Mutate B by usual mutation rule: (introduced by Fomin, Zelevinsky)

b′ij =

{
−bij, if i = k or j = k

bij + 1
2(|bik|bkj + bik|bkj|), otherwise

Why: • Philipp Lampe, On the approximate periodicity of sequences attached to

Why: • noncrystallographic root systems, Experimental Mathematics (2016).

Why: • Integer finite type contains types A, B, C, D, E, F .... - but not H3, H4!

Why: • Geometric realization of acyclic mutation classes by partial reflections

Why: • allow non-integer values.
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• Quiver: oriented graph, no loops, no 2-cycles.

• Mutation µk of a non-integer quiver:

as 1) reverse all arrows incident to k;

as 2) for every path i
p→k

q→j with p, q > 0 apply

p pq q

r′ = pq − rr

µk
k k

• Example: B3
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1. Mutations of non-integer quivers:

Questions:

• Finite mutation type?

For which quivers their mutation class is finite?

Mutation-finite integer quivers [FST’12]:
(S=Misha Shapiro)

– rank 2 quivers;
– “quivers coming from triangulated surfaces” (incl. An, Dn, Ãn, D̃n ).

– 11 exceptional mutation classes (incl. E6, E7, E8, and Ẽ6, Ẽ7, Ẽ8).

Using skew-symmetrizable integer matrices also get:

– triangulated orbifolds (incl. Bn, B̃n, C̃n)

– more exceptions (incl. F4, G2,F̃4, G̃2).

But no H2, H3, H4 and no In!!!
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1. Mutations of non-integer quivers:

Questions:

• Finite mutation type?

For which quivers their mutation class is finite?

• Geometry and combinatorics.
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mutation class} −→ {Geometric realisation

by partial reflections }

Acyclic quiver = quiver containing no oriented cycles.

Acyclic mutation class = mutation class containing an acyclic quiver.
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• Q = (bij)  M =

(
2 −|bij|

2
−|bij| 2

)
= 〈vi, vj〉

(v1,. . ., vn) - basis of quadratic space V of same signature as M .

• Given v ∈ V with 〈v, v〉 = 2, consider reflection

rv(u) = u− 〈u, v〉v.

• Let G = 〈s1, . . . , sn〉 where si = rvi.

G acts discretely in a cone C ⊂ V with fundamental domain

F =
n⋂
i=1

Π−i , where Π−i = {u ∈ V | 〈u, vi〉 < 0}.



2. In Rank 3: { acyclic

mutation class} −→ {Geometric realisation

by partial reflections }
Acyclic quiver Q  reflection group G = 〈s1, . . . , sn〉

with chosen generating reflections

Mutation  Partial reflection

µk(vi) =





vi − 〈vi, vk〉vk, if k → i in Q

−vk, if i = k

vi, otherwise

Theorem. (Barot, Geiss, Zelevinsky’06; Seven’15)

For integer quivers (but also for real ones in rank 3):

The values 〈vi, vj〉 change under mutations

in the same way as the weights of the arrows in Q.
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2. In Rank 3: { acyclic

mutation class} −→ {Geometric realisation

by partial reflections }
2. In Rank 3: { cyclic

mutation class} −→ {Geometric realisation

by partial π-rotations}

Q = (p, q, r),

mutation-cyclic
 

(
−2 p q
p −2 r
q r −2

)
= (vi, vj)

i Mutation:  µk(vi) =

{
−vi − (vi, vj)vj, if i→ k in Q

vi, otherwise

i Proposition. (FT)

The values (vi, vj) change under mutations

in the same way as the weights of the arrows in Q.



2. In Rank 3: { acyclic

mutation class} −→ {Geometric realisation

by partial reflections }
2. In Rank 3: { cyclic

mutation class} −→ {Geometric realisation

by partial π-rotations}

Theorem [FT’16]. Any mutation-finite rank 3 quiver

is mutation-equivalent to one of
• Markov quiver: • Finite type quivers:

A3

B3
1
4

H3
1
5

H ′3
2
5

H ′′3
1
5

2
5

• Affine quivers:

1
n

1
n

(Here, a label kd stays for the weight |bij| = 2 cos kπd .)
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• Expectation:

aa ◦ Finite type should come from finite root systems

• How to proceed:

aa ◦ d ≤ 4: Q is a symmetrisation of an integer diagram

aaaaaaaaaaaaaaaaaaaaa ⇒ orbifolds and F -type quivers

aa ◦ d ≤ 5: computer search gives fin. many examples

aaaaaaaaaaaaaaaaaaaaa in ranks 3,4,5,6 – and nothing else.

aa ◦ d > 5: easy to check that nothing in rank ≥ 5;

aaaaaaaaaaaaaaaaaaaaa in rank 4: there are 3 series of answers.

• All of them arise from reflection groups!
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3. In Rank n:
Answer:

Thm. [FT’18]

Non-int.

mut.-fin. ⇔
- G2,n or

- orbifold or

- as in Table:

rank 3 rank 4 rank 5 rank 6
1
4 F4

1
5 H3

1
5 H4

Finite

type

2
5 H ′3

2
5 H ′4

1
5

2
5 H ′′3

2
5

1
5 H ′′4

2
5

1
5 H ′′′4

2
5

1
5

2
5 H ′′′′4

Affine

type 1
n

1
n

G̃2,n

1
5

2
5

H̃3
1
4 F̃4

1
5

2
5

2
5

H̃ ′3
2
5

1
5

2
5 H̃4

n−1
2n 1

2n

1
2n

G̃
(∗,+)
2,2n

1
4

1
4

F
(∗,+)
4

Extended

affine

type

n−1
2n

n−1
2n

1
2n

1
2n

G̃
(∗,∗)
2,2n

1
5

1
5

2
5

2
5 H

(1,1)
3

1
4

1
4

F
(∗,∗)
4

n
2n+1

n
2n+1

1
2n+1

1
2n+1

_n
2n+1

G̃
(∗,∗)
2,2n+1

1
5

1
5 2

5
2
5

H
(1,1)
4



4. Exchange graph:

Vertices ↔ seeds (i.e. states), edges ↔ mutations



4. Exchange graph:

Vertices ↔ seeds (i.e. states), edges ↔ mutations

Example: A3



4. Exchange graph:

Vertices ↔ seeds (i.e. states), edges ↔ mutations

Example: A3



4. Exchange graph:

Vertices ↔ seeds (i.e. states), edges ↔ mutations

Example: A3



4. Exchange graph:

Vertices ↔ seeds (i.e. states), edges ↔ mutations

Example: A3



4. Exchange graph:

Vertices ↔ seeds (i.e. states), edges ↔ mutations

Example: A3



4. Exchange graph:

Vertices ↔ seeds (i.e. states), edges ↔ mutations

Example: A3



4. Exchange graph:

Vertices ↔ seeds (i.e. states), edges ↔ mutations

Example: A3



4. Exchange graph:

Vertices ↔ seeds (i.e. states), edges ↔ mutations

Example: A3

Associahedron



4. Exchange graph:

Vertices ↔ seeds (i.e. states), edges ↔ mutations

In integer case:

• Exchange graph is a one-skeleton of a polytope.

• All acyclic quivers in the mutation class are the same

(up to orientations of arrows).

• Acyclic quivers form an “acyclic belt”.
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4. Exchange graph:

Vertices ↔ seeds (i.e. states), edges ↔ mutations

In integer case:

• Exchange graph is a one-skeleton of a polytope.

• All acyclic quivers in the mutation class are the same

(up to orientations of arrows).

• Acyclic quivers form an “acyclic belt”.

• Acyclic quiver correspond to “acute-angled” triangles.
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4. Exchange graph: Rank 3 - finite type

• Example: H3

(cf. generalised associahedron in Fomin - Reading)

1
5

1
5

1
5

1
5

1
5

1
5



4. Exchange graph: Rank 3 - finite type

• Exchange graphs for H ′3 and H ′′3 are graphs on a torus

aaaaa (with two acyclic belts each):
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• Two different acyclic representatives in each of H ′3 and H ′′3 :
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4. Exchange graph: Rank 3 - finite type

• Exchange graphs for H ′3 and H ′′3 are graphs on a torus

aaaaa (with two acyclic belts each):

N

HG

M

M

N

G
H

D

C
B

A

F
E

C

D

B

A

F
E

H ′3 H ′′3

• Two different acyclic representatives in each of H ′3 and H ′′3 :

2
5

2
5

2
5

2
5

2
5

1
5

2
5
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4. Exchange graph: Rank 3 - affine type

In integer case:

Ã2

- One infinite acyclic belt;

- Finitely many seeds modulo shift along the belt.
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from here: joint with Philipp Lampe

arXiv:1904.03928

1
d

1
d

• It is of finite mutation type:

by reflections one can obtain finitely many slopes.

• All triples of suitable angles (pπd ,
qπ
d ,

rπ
d ), with p+ q + r = d

are in the mutation class.
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from here: joint with Philipp Lampe

1
d

1
d

• Away from acyclic belt:

• two feet of altitudes are

• on the belt line.

⇒ If there are shifts,
they are parallel to the belt line

• Belt (or billiard) line

• passes through two

• feet of altitudes

• cf. Fagnano’s problem:

• billiard tranjectory in triangle.
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4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

1
d

1
d

• Invariant under mutation:

• T (∆) = ai sin(Aj) sin(Ak)

Need: to find all shifts!

• T (∆) = 1
2(|H1H2|+ |H2H3|+ |H3H1|)

H1 H2

H3

If there are shifts,
they are parallel to the belt line

Triangles with same angles
are congruent

• 4T (∆) = shift along the belt line

• (in every acyclic belt)
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• each infinite region induces a shift:

• If a is the finite side, α the angle

• then T (∆) = a sin2α

• So, a = T (∆)

sin2 α
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4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

1
d

1
d

• There are more shifts:

• each infinite region induces a shift:

• If a is the finite side, α the angle

• then T (∆) = a sin2α

• So, a = T (∆)

sin2 α
a

α

• If α = π
d , then we have shifts:

• 4T, T
sin2(π/d)

, T
sin2(2π/d)

, T
sin2(3π/d)

, . . .



4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

1
d

1
d

Theorem. [FL’2018]

Let Q be an affine type rank 3 mutation-finite quiver.

Then the exchange graph of Q grows polynomially

and is quasi-isometric to some lattice L.

rkZ(L) =

{
ϕ(d), for some d ∈ 2Z;

1
2ϕ(d), otherwise.

Here, ϕ(d) = #{k ∈ {1, 2, . . . , d} | gcd(k, d) = 1}

aaaaaaaa is the Euler’s totient function.



4. Exchange graph: Rank 3 - affine type

from here: joint with Philipp Lampe

1
d

1
d

Example: exchange graph for d = 5



4. Exchange graph: Rank 3 - affine type

Remark: Similar belt line in finite type:
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µk(vi) =





vi − 〈vi, vk〉vk, if k → i in Q

−vk, if i = k

vi, otherwise

Not

an involution!



5. Remarks on definition of mutation

We defined: Mutation  Partial reflection

µk(vi) =





vi − 〈vi, vk〉vk, if k → i in Q

−vk, if i = k

vi, otherwise

Not

an involution!

Define: if vk is positive:

µk(vi) =





vi − 〈vi, vk〉vk, if k→i in Q

−vk, if i = k

vi, otherwise

if vk is negative:

µk(vi) =





vi − 〈vi, vk〉vk, if k←i in Q

−vk, if i = k

vi, otherwise

What to mean by positive / negative?



5. Remarks on definition of mutation

What to mean by positive / negative?

In rank 2:

aaa Period 5 Period 7
• admissible positions
• forbidden positions
of the reference point
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What to mean by positive / negative?
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In rank 3: if it is in admissible position

In rank 3: for every rank 2 subquiver in every cluster.

Theorem [FL’19] For every rank 3 finite type quiver,
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asd (4) every choice of reference point in an acute-angled

asd (4) (i.e. acyclic) domain gives such a realisation.



5. Remarks on definition of mutation

What to mean by positive / negative?

In rank 3: Reference point is in admissible position,

In rank 3: if it is in admissible position

In rank 3: for every rank 2 subquiver in every cluster.

Theorem [FL’20] For every finite type quiver,

asd (1) there are geometric realisations

asd (1) with the reference point in an admissible position;

asd (2) all such realisations result in the same exchange graph;

asd (3) in all such realisations, the reference point belongs

asd (3) to some acute-angled (i.e. acyclic) domain;

asd (4) every choice of reference point in an acute-angled

asd (4) (i.e. acyclic) domain gives such a realisation.



5. Remarks on definition of mutation

What to mean by positive / negative?

Theorem [FL’19] For every rank 3 affine quiver,

asd there exists a unique admissible position of the reference point:

asd it is the limit point at the end of the belt line.

aasdasdasdasdsa
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Introduction
• B = {bij} a skew-symmetric matrix

with bij ∈ R.
• Mutate B by usual mutation rule:

b�ij =

�
−bij, if i = k or j = k

bij + 1
2(|bik|bkj + bik|bkj|), otherwise

• B defines a non-integer quiver
(with arrows of real weights bij = −bji).

• Mutation µk of a non-integer quiver:

1) reverse all arrows incident to k;

2) for every path i
p→ k

q→ j with p, q > 0

apply:
p pq q

r� = pq − rr

µk
k k

• Example: B3
√

2
√

2

√
2

µk
k k

• Question: when a real quiver Q

is mutation-finite?
• Example: H3(mutation class and “exchange graph”)

θ

θ θ θ θ

θ

where θ = 2 cos π
5

(cf. generalised associahedron in [FR])

Quivers of rank 3

Theorem [FT1]. Any mutation-finite rank 3

quiver is mutation-equivalent to one of
• Markov quiver: • Finite type quivers:

A3

B3
1
4

H3
1
5

H �
3

2
5

H ��
3

1
5

2
5

• Affine quivers:

1
n

1
n

Here, a label k
m stays for the weight |bij| = 2 cos kπ

m .

• All of these (but Markov) are mutation-acyclic.

• “Exchange graphs” for H �
3 and H ��

3 are graphs

on a torus (with two acyclic belts each):

N

HG

M

M

N

G
H

D

C
B

A

F
E

C

D

B

A

F
E

H �
3 H ��

3

• Each of the mutation classes H �
3 and H ��

3 has

two different acyclic representatives:

H �
3 :

2
5

2
5

2
5

2
5

H ��
3 :

2
5

1
5

2
5

Geometric realisation by reflections (GR)
• GR of a quiver of rank n:

vectors v1,...,vn in a quadratic vector space V

s.t. (vi, vi) = 2 and (vi, vj) = −|bij|.
• Mutation = partial reflection:

µk(vi) =





vi, if bki ≥ 0, i �= k
−vi, if i = k
vi − (vi, vk)vk, if bki < 0

• Mutation class has a GR if GR of quivers

commute with mutations.

Theorem [FT1,FT2]. Mutation class of any real

acyclic quiver with |bij| ≥ 2 ∀i,j admits a GR.

• When GR exists, we define (geometric) Y -seeds

(n-tuples of vectors in V ) and “exchange graphs”.

Example: exchange graph

of �H2 =
1
5

1
5

Theorem [FL]. Let Q be an affine type rank 3

mut.-fin. quiver. Then “exchange graph” of Q

grows polynomially and is quasi-isometric to a

lattice of some dimension.

Finite mutation type: classification

Theorem [FT3]. Any mut.-fin. non-integer

quiver of rank n > 3 is mutation-equivalent

to either one of Bn, F4, �Bn, �Cn, �F4

or one of

n−1
2n

n−1
2n

1
2n

1
2n

1
2n

1
2n

n−1
2n

n
2n+1

n
2n+1
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2n+1

1
2n+1

n
2n+1

�
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5

1
5

2
5

2
5

1
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2
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1
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2
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1
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2
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5

2
5

1
5

2
5

1
5

2
5

2
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1
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1
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2
5

2
5

1
5

1
5

Here, a label k
m stays for the weight |bij| = 2 cos kπ

m .
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