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* B ={b;;} a skew-symmetric n X n matrix with b;; € R.

* Mutate B by usual mutation rule: (introduced by Fomin, Zelevinsky)

) by, Ti=korj=*k
ij — b + %(\b@'k\bkj + bik|br;]), otherwise

Why e Philipp Lampe, On the approzimate periodicity of sequences attached to

noncrystallographic root systems, Experimental Mathematics (2016).
o Integer finite type contains types A, B, C, D, E, F' .... - but not Hj3, H,!

o Geometric realization of acyclic mutation classes by partial reflections

allow non-integer values.
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2) for every path i B k5§ with p,g >0 apply

A A
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® Example: Bs
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1. Mutations of non-integer quivers:

Questions:

e Finite mutation type?
For which quivers their mutation class is finite?

(S=Misha Shapiro)
Mutation-finite integer quivers [FST'12]:

— rank 2 quivers; -
— “quivers coming from triangulated surfaces” (incl. A,, D,,, A,, D, ).

— 11 exceptional mutation classes (incl. Eg, E7, Eg, and EG, E7, Eg).

Using skew-symmetrizable integer matrices also get:

— triangulated orbifolds (incl. B, EnNén)N
— more exceptions (incl. Fy, Go,Fy, G2).

But no Hy, H3, H4 and no [,,!!!



1. Mutations of non-integer quivers:

Questions:

e Finite mutation type?
For which quivers their mutation class is finite?

e Geometry and combinatorics.
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2. In Rank 3: {

Acyclic quiver = quiver containing no oriented cycles.

Acyclic mutation class = mutation class containing an acyclic quiver.
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2. In Rank 3: {
2 — byl
o () = (by;) ~ M = ( 2 ) = (v;, Vj)
— byl 2

(v1,. .., v, ) - basis of quadratic space V' of same signature as M.

e Given v € V with (v,v) = 2, consider reflection
ro(u) = u — (u,v)v.
o Let G = (51,...,5y) Where s, =1,..

(G acts discretely in a cone C' C V' with fundamental domain

F= 1, wherell;, ={ueV | (u,v;) <O0}.
i=1
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2. In Rank 3: {

Acyclic quiver () ~» reflection group G = (s1,...,8p)
with chosen generating reflections

Mutation ~  Partial reflection

)
v; — (v, vp)vg, fk —4in Q

,uk(’U,') = < — Vg, if 2 = k

Vi, otherwise
\

Theorem. (Barot, Geiss, Zelevinsky'06; Seven'15)
For integer quivers (but also for real ones in rank 3):
The values (v;,v;) change under mutations
in the same way as the weights of the arrows in ().
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acyclic } { Geometric realisation }
2. In Rank 3: {mutatlon class by partial reflections
{cyclic } { Geometric realisation }
mutation class by partial m-rotations
—2
Q= (p,gq,r), Poody
' ' ~ p =2 1 | =(vi,vy)
mutation-cyclic g -2

_ —v; — (v, v;)v;, if1— kin
Mutation: o e (v;) = i = (i, 05)05, _ ©
Vs, otherwise
Proposition. (FT)
The values (v;, v;) change under mutations
in the same way as the weights of the arrows in Q).
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2. In Rank 3: {

{cyclic } { Geometric realisation }
mutation class by partial m-rotations

Theorem [FT'16]. Any mutation-finite rank 3 quiver
Is mutation-equivalent to one of

e Markov quiver: e Finite type quivers:
@ AS o —=@— =@
By o—sel-4
e Affine quivers: Hs o }% -
5 H! C 5
] H! o3 -ef.,

Here, a label £ stays for the weight |b;;| = 2 cos EX.
d j
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3. In Rank n:

e \Want: To use rank 3 classification to get general classification.

e Expectation:
o Finite type should come from finite root systems

e How to proceed:
od <4: () is a symmetrisation of an integer diagram
= orbifolds and F'-type quivers

o d < 5: computer search gives fin. many examples
in ranks 3,4,5,6 — and nothing else.

o d > 5: easy to check that nothing in rank > 5;
in rank 4: there are 3 series of answers.

e All of them arise from reflection groups!



3. In Rank n:

Answer: rank 3 rank 4 rank 5 rank 6
.%.é.%. Fy
Thm. [FT'18] See Hy | S Hy
Non-int. Ft;];ze S Hy | See H,
_ LRI = 54 5. L H!
mut.-fin. & L
- G27n or 2 132 "
: o 1
- orbifold or 1
5 ~ L A
- as in Table: Affine |7 Hs R
type .71/\@ GQ” 2 2 ~ 2 1 =~
i HS/S 50,050 Hy
5
S 1
2n 2~ (x,+ *,+
G T
Extended 4 5, N 5 e 8 !
fin e | YerEey | P Ee
type
2n+1 L 2 2
TR %*\1 5 2 (1,1)
A ET, ° Hy”
G o1 '
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Example: As
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In integer case:

e Exchange graph is a one-skeleton of a polytope.
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4. Exchange graph:
Vertices <+ seeds (i.e. states), edges <> mutations
In integer case:
e Exchange graph is a one-skeleton of a polytope.

e All acyclic quivers in the mutation class are the same
(up to orientations of arrows).

e Acyclic quivers form an “acyclic belt".

S8

e Acyclic quiver correspond to “acute-angled” triangles.
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4. Exchange graph: Rank 3 - finite type

® Example: Hjs

(cf. generalised associahedron in Fomin - Reading)

[




ST <
Ny ]

Rank 3 - finite type

N
Ao

h Ao
a \V Vw/
/SEREER
Mbb QA«W‘ / 2@
c
(qv]
c
C —
X
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Au



4. Exchange graph: Rank 3 - finite type

* Exchange graphs for H; and HY are graphs on a torus
(with two acyclic belts each):

* Two different acyclic representatives in each of H; and HY"

1 2
2
5

L‘l [\)
[ 1\}

[\
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4. Exchange graph: Rank 3 - affine type

In integer case:

J N

- One infinite acyclic belt;
- Finitely many seeds modulo shift along the belt.
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4. Exchange graph: Rank 3 - affine type ﬁf

from here: joint with Philipp Lampe
arXiv:1904.03928

N\

e It is of finite mutation type:
by reflections one can obtain finitely many slopes.

o All triples of suitable angles (%, <%, °%), with p+q +r = d

are in the mutation class.
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from here: joint with Philipp Lampe

e Away from acyclic belt: —>  If there are shifts,
| they are parallel to the belt line |

two feet of altitudes are

on the belt line.

e Belt (or billiard) line

passes through two
feet of altitudes

cf. Fagnano's problem:

billiard tranjectory in triangle.
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d d

from here: joint with Philipp Lampe

e Invariant under mutation: If there are shifts,
T(A) = a;sin(A;) sin(Ap) | they are parallel to the belt line |
= a; ;

Triangles with same angles
| are congruent ]

Need: to find all shifts!

o T(A)=3(|H1Hs| + |HoHs| + |HsH;|)

AT (A) = shift along the belt line

(in every acyclic belt)
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e [here are more shifts:

each infinite region induces a shift:

e If a is the finite side, o the angle
then T(A) = asin® a
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4. Exchange graph: Rank 3 - affine type ﬁf

from here: joint with Philipp Lampe

e [here are more shifts:

each infinite region induces a shift:

e If a is the finite side, o the angle
then T(A) = asin® a

@
So, @ = &) /\ 0
sin“ « /
~then we have shifts:

P

sin(r/d)’ sin®(2n/d)’ sin?(37/d)’ "

s
d
T

AT,
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4. Exchange graph: Rank 3 - affine type ﬁf

from here: joint with Philipp Lampe

Theorem. [FL'2018]

Let () be an affine type rank 3 mutation-finite quiver.
Then the exchange graph of () grows polynomially
and Is quasi-isometric to some lattice L.

rkz(L) = { p(d), for some d € 27;

~o(d), otherwise.

Here, o(d) = #{k € {1,2,...,d} | ged(k,d) =1}

Is the Euler’s totient function.
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from here: joint with Philipp Lampe

Rank 3 - affine type

4. Exchange graph:

Example: exchange graph for d =5




4. Exchange graph: Rank 3 - affine type

Remark: Similar belt line in finite type:
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| Vi, otherwise
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5. Remarks on definition of mutation

We defined: | Mutation ~~ Partial reflection
(v; — (v, v v, Fhk—iinQ
pi(vi) = § —vg, ifi =k Not
Vi otherwise an involution!

Define: if vy is positive:
(v; — (vi, V) Vg, If k=i in @
i (vi) = § —Vk, ifi=k
| Vi, otherwise

if v is negative:

(v; — (v, Vi) Vg, If ki in @
,uk(vi) = —Vk, if1=1=5
| Vi otherwise

What to mean by positive / negative?
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WVANNATNY

VN N

e admissible positions
Period 5 Period 7 o forbidden positions
of the reference point
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In rank 3: Reference point is in admissible position,
iIf it is in admissible position
for every rank 2 subquiver in every cluster.

Theorem [FL'19] For every rank 3 finite type quiver,
(1) there are geometric realisations
with the reference point in an admissible position;
(2) all such realisations result in the same exchange graph;
(3) in all such realisations, the reference point belongs
to some acute-angled (i.e. acyclic) domain;
(4) every choice of reference point in an acute-angled
(i.e. acyclic) domain gives such a realisation.



5. Remarks on definition of mutation

What to mean by positive / negative?

In rank 3: Reference point is in admissible position,
iIf it is in admissible position
for every rank 2 subquiver in every cluster.

Theorem [FL'20] For every finite type quiver,
(1) there are geometric realisations
with the reference point in an admissible position;
(2) all such realisations result in the same exchange graph;
(3) in all such realisations, the reference point belongs
to some acute-angled (i.e. acyclic) domain;
(4) every choice of reference point in an acute-angled
(i.e. acyclic) domain gives such a realisation.



5. Remarks on definition of mutation

What to mean by positive / negative?

Theorem [FL'19] For every rank 3 affine quiver,
there exists a unique admissible position of the reference point:
it is the limit point at the end of the belt line.




Non-integer quivers:

geometry and mutation-finiteness

Introduction
* B = {b;;} a skew-symmetric matrix
with b;; € R.
* Mutate B by usual mutation rule:
b,_:{—bij, ifi=korj=k
9 big + 5(|biklbrs + birlbe;l), otherwise
* B defines a non-integer quiver
(with arrows of real weights b;; = —b;;).

Quivers of rank 3

Theorem [FT1]. Any mutation-finite rank 3
quiver is mutation-equivalent to one of

e Markov quiver: e Finite type quivers:

@ Az e—>e =
1
By e—=e 1=
o Affine quivers: 3
? Hj; ==
n Hl ° —o 0 —o
1 ?/ 1 2
A H3 o -9 -9
Here, a label £ stays for the weight |b;;| = 2 cos £Z.

* All of these (but Markov) are mutation-acyclic.

* "Exchange graphs” for Hj and HY are graphs
on a torus (with two acyclic belts each):

* Each of the mutation classes H4 and HY has
two different acyclic representatives:

m, Lz
2

2
9,

i

i

* Mutation py of a non-integer quiver:
1) reverse all arrows incident to k;
2) for every path i B k% 5 with p,g > 0

apply: ke k
A A
r r'=pg—r
* Example: B3 . .
\/%\ K ﬂf
V2

Geometric realisation by reflections (GR)
* GR of a quiver of rank n:
vectors vq,...,U,, in a quadratic vector space V'

s.t. (1)7;71)7;) =2 and (vi,vj) = —|b”’

* Mutation = partial reflection:
Vi, |fb;u20,z;£k

(Vi) ={ —wv;, ifi=k

v; — (vi, V) Vk, if b <O
* Mutation class has a GR if GR of quivers
commute with mutations.

Theorem [FT1,FT2]. Mutation class of any real
acyclic quiver with |b;;| > 2 Vi,j admits a GR.

* When GR exists, we define (geometric) ¥ -seeds

(n-tuples of vectors in V') and “exchange graphs”.

Example: exchange griph \11 \11 \11 Lil q

«n= 1 YNNNN,

AUATATATATRUNTRVSVRTA

Anna Felikson es
Pavel Tumarkin ™ tiesis

* Question: when a real quiver @
is mutation-finite?
® Example: Hs(mutation class and “exchange graph”)

where 6 = 2 cos T
(cf. generalised associahedron in [FR])

Finite mutation type: classification

Theorem [FT3].
quiver of rank n > 3 is mutation-equivalent
to either one of B,,, Fu, §n, én ﬁl

or one of

Any mut.-fin. non-integer

7

)

m\»—h
i
SO

o
i—

3+
Wi
¥ i

o

T

km
m’

Here, a label fTL stays for the weight |b;;| = 2 cos

I I I I I

Theorem [FL]. Let ) be an affine type rank 3
mut.-fin. quiver. Then “exchange graph” of @
grows polynomially and is quasi-isometric to a
lattice of some dimension.
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