# **Double pants decompositions of 2-surfaces**

Anna Felikson

joint work with Sergey Natanzon

27.05.2010, Moscow

### 1. Pants decompositions

 $S = S_{g,n}$  2-surface, genus g, n holes; P pants decomposition of S == dec. into pairs of pants





$$P = \langle c_1, \dots, c_{3g-3+n} \rangle$$

•  $c_i \cap c_j = \emptyset$ 

• maximal system of curves



#### 1. Pants decompositions

 $S = S_{g,n}$  2-surface, genus g, n holes; P pants decomposition of S == dec. into pairs of pants





$$P = \langle c_1, \dots, c_{3g-3+n} \rangle$$

•  $c_i \cap c_j = \emptyset$ 

• maximal system of curves



### 1. Pants decompositions

 $S = S_{g,n}$  2-surface, genus g, n holes; P pants decomposition of S == dec. into pairs of pants





$$P = \langle c_1, \dots, c_{3g-3+n} \rangle$$

•  $c_i \cap c_j = \emptyset$ 

• maximal system of curves







• Flips are sufficient to get to any "combinatorial type" of dec.



- Flips are sufficient to get to any "combinatorial type" of dec.
- Flip results in one of three possible classes in homology.



- Flips are sufficient to get to any "combinatorial type" of dec.
- Flip results in one of three possible classes in homology.
- Flips do not act transitively on all pants decompositions:



- Flips are sufficient to get to any "combinatorial type" of dec.
- Flip results in one of three possible classes in homology.
- Flips do not act transitively on all pants decompositions:

$$P \to \mathcal{L}(P) \subset H_1(S, \mathbb{Z})$$
  
$$\mathcal{L}(P) = \langle h(c_1), \dots, h(c_{3g-3+n}) \rangle$$
  
Lagrangian plane.

• Flips preserve  $\mathcal{L}(P)$ .

## How to get out of $\mathcal{L}(P)$ ?

• Classical approach: add *S*-moves:



### How to get out of $\mathcal{L}(P)$ ?

• Classical approach: add *S*-moves:



Theorem.(Hatcher, Thurston' 80) Flips and S-moves act transitively on pants dec.

#### 2. Double pants decompositions

 $DP = (P_a, P_b) \quad \langle \mathcal{L}(P_a), \mathcal{L}(P_b) \rangle = H_1(S, \mathbb{Z}).$ 





### 2. Double pants decompositions

 $DP = (P_a, P_b) \quad \langle \mathcal{L}(P_a), \mathcal{L}(P_b) \rangle = H_1(S, \mathbb{Z}).$ 



**Operations**:

- **1.** Flips in  $P_a$ ,  $P_b$
- **2.** Handle-twists:





### 2. Double pants decompositions

 $DP = (P_a, P_b) \quad \langle \mathcal{L}(P_a), \mathcal{L}(P_b) \rangle = H_1(S, \mathbb{Z}).$ 



**Prop. 1.** Flips and handle-twists act transitively on the pairs of Lagrangian planes.

### **Problem:** Do flips and handle-twists act transitively on DP's?





 $S \hookrightarrow \mathbb{R}^3$  defines an inner handlebody  $S_+$ . • If all  $c \in P$  are contractible in  $S_+$  then flip(c) is... • c is not contr. in  $S_+$  (linked with d).



 $S \hookrightarrow \mathbb{R}^3$  defines an inner handlebody  $S_+$ . • If all  $c \in P$  are contractible in  $S_+$  then flip(c) is... • c is not contr. in  $S_+$  (linked with d). **Problem:** Do flips and handle-twists act transitively on DP's?

*New strategy:* use Hatcher-Thurston's theorem:

HT treats  $P_a$ We take care of  $P_b$ .

Need:  $(P_a, P_b) \rightarrow (P'_a, P'_b)$  (by flips and handle-twists). (by flip and S-moves).

**Price:** restrictions on DP.

#### 3. Admissible double pants decompositions

• Standard *DP*: *g* common handles.



#### 3. Admissible double pants decompositions

• Standard *DP*: *g* common handles.



• Admissible *DP*:

may be transformed to a standard one by flips.

#### 3. Admissible double pants decompositions

- Standard *DP*: *g* common handles.
- Admissible *DP*:

may be transformed to a standard one by flips.

S

 $\bigcirc$ 

 $\sim$ 

 $\bigcirc$ 

#### Theorem 1.

Flips and handle-twists act transitively on admissible DP's.

Flip-equivalence class of pants decomp.  $\rightarrow$  a handlebody. (Luo Feng' 97: Flips act transitively on pants dec. contractible in the same handlebody).

Flip-equivalence class of pants decomp.  $\rightarrow$  a handlebody. (Luo Feng' 97: Flips act transitively on pants dec. contractible in the same handlebody).

 $DP \rightarrow$  two handlebodies  $\rightarrow$  Heegard splitting of a 3-manifold

Flip-equivalence class of pants decomp.  $\rightarrow$  a handlebody. (Luo Feng' 97: Flips act transitively on pants dec. contractible in the same handlebody).

 $DP \rightarrow$  two handlebodies  $\rightarrow$  Heegard splitting of a 3-manifold

Property: If  $DP = (P_a, P_b)$  is standard then S may be embedded to  $\mathbb{S}^3$  so that  $P_a$  is contractible in  $S_+$  and  $P_b$  is contractible in  $S_-$ .

Flip-equivalence class of pants decomp.  $\rightarrow$  a handlebody. (Luo Feng' 97: Flips act transitively on pants dec. contractible in the same handlebody).

 $DP \rightarrow$  two handlebodies  $\rightarrow$  Heegard splitting of a 3-manifold

Property: If  $DP = (P_a, P_b)$  is standard then S may be embedded to  $\mathbb{S}^3$  so that  $P_a$  is contractible in  $S_+$  and  $P_b$  is contractible in  $S_-$ .

*DP* is admissible iff

handlebodies defined by  $P_a$  and  $P_b$ induce a Heegard splitting of  $\mathbb{S}^3$ .

Flips and handle-twists act transitively on admissible DP's (i.e. on DP's inducing Heegard splittings of  $\mathbb{S}^3$ ).

Flips and handle-twists act transitively on admissible DP's (i.e. on DP's inducing Heegard splittings of  $\mathbb{S}^3$ ).

Idea of proof.

1. Sufficient to prove transitivity on standard DP's.

Flips and handle-twists act transitively on admissible DP's (i.e. on DP's inducing Heegard splittings of  $\mathbb{S}^3$ ).

Idea of proof.

- 1. Sufficient to prove transitivity on standard DP's.
- 2. For two standard DP's with the same set of handles: is easy.

Flips and handle-twists act transitively on admissible DP's (i.e. on DP's inducing Heegard splittings of  $\mathbb{S}^3$ ).

Idea of proof.

- 1. Sufficient to prove transitivity on standard DP's.
- 2. For two standard DP's with the same set of handles: is easy.
- 3. Change the set of handles in small steps.





















For any two ●'s
∃ an alternating connecting path:

 $\bullet \longrightarrow \blacksquare \longrightarrow \bullet \longrightarrow \blacksquare \longrightarrow \bullet$ 







For any two ●'s
∃ an alternating connecting path:



• "Small step" = two flips

• MCG(S) acts on DP's

• MCG(S) acts on DP's

Theorem 2. Let DP be an admissible double pants dec. of S without double curves and let  $g \in MCG(S)$ . If g(DP) = DP then g = id.

• MCG(S) acts on DP's

Theorem 2. Let DP be an admissible double pants dec. of S without double curves and let  $g \in MCG(S)$ . If g(DP) = DP then g = id.

Theorem 2'. A groupoid generated by flips and twists contains the mapping class group.

