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• Quiver is a directed graph without loops and 2-cycles.

• Mutation µk of quivers:

- reverse all arrows incident to k;

- for every oriented path through k do

kk

p pq q

r r′ = pq − r

Quiver mutation is used in cluster algebras and connected to: representation

theory, geometry of triangulated surfaces, Grassmannians, root systems, integrable

systems, tropical geometry, Poisson geometry, combinatorics of polytopes...
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Aim: construct and study

geometric model for all mutation classes of Q, |Q| = 3.

Tools:

- reflection groups [acyclic mutation types]

- . . . . . . . . . . .π-rotation groups [cyclic mutation types]

Q is of acyclic mut. type

iff its mutation class contains a quiver without oriented cycles.

Q is if cyclic mut. type

otherwise.
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1. Cyclic mutation classes via . . . . . . . . . . . .π-rotations

Q = (p, q, r),

mutation-cyclic
 

(
−2 p q
p −2 r
q r −2

)
= (vi, vj)

〈v1, v2, v3〉 = R2,1 : x = (x1, x2, x3)
y = (y1, y2, y3)

⇒ (x, y) = x1y1 + x2y2 − x3y3

linear
model

of H2 = {x ∈ R2,1 | (x, x) = −2}

For x, y ∈ H2 have: (x, y) = 2 cosh dx,y
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For x, y ∈ H2 have: (x, y) = 2 cosh dx,y

Q  three points x, y, z on distances arcosh p2, arcosh
q
2, arcosh

r
2.

Why exist?

Lemma. (Beineke, Brüstle, Hille)

Q mutation-cyclic ⇒ p, q, r ≥ 2.
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1. Cyclic mutation classes via . . . . . . . . . . . .π-rotations

Q  points x, y, z ∈ H2 on distances arcosh p2, arcosh
q
2, arcosh

r
2.

Mutation: “partial π-rotation”.

π-rotation Ry(x) = “rotation of x around y by π”= −x− (x, y)y

µk(vi) =

{
−vi − (vi, vk)vk, if i→ k in Q

vi, otherwise

Thm 1. If v1, v2, v3 ∈ H2, then the values 2 cosh dvi,vj change under

mutations in the same way as the weights of the arrows in Q, i.e.

r′ + r = pq, 2 cosh dr′ + 2 cosh dr = 2 cosh dp · 2 cosh dq



1. Cyclic mutation classes via . . . . . . . . . . . .π-rotations

Q  points x, y, z ∈ H2 on distances arcosh p2, arcosh
q
2, arcosh

r
2.

Mutation: “partial . . . . . . . . . . . .π-rotation”.

π-rotation Ry(x) = “rotation of x around y by π”= −x− (x, y)y

µk(vi) =

{
−vi − (vi, vk)vk, if i→ k in Q

vi, otherwise

Thm 1. If v1, v2, v3 ∈ H2, then the values 2 cosh dvi,vj change under

mutations in the same way as the weights of the arrows in Q, i.e.

r′ + r = pq, 2 cosh dr′ + 2 cosh dr = 2 cosh dp · 2 cosh dq



1. Cyclic mutation classes via . . . . . . . . . . . .π-rotations

Q  points x, y, z ∈ H2 on distances arcosh p2, arcosh
q
2, arcosh

r
2.

Mutation: “partial . . . . . . . . . . . .π-rotation”.

π-rotation Ry(x) = “rotation of x around y by π”= −x− (x, y)y

µk(vi) =

{
−vi − (vi, vk)vk, if i→ k in Q

vi, otherwise

Thm 1. If v1, v2, v3 ∈ H2, then the values 2 cosh dvi,vj change under

mutations in the same way as the weights of the arrows in Q, i.e.

r′ + r = pq, 2 cosh dr′ + 2 cosh dr = 2 cosh dp · 2 cosh dq



2. Acyclic mutation classes via reflections

Q = (p, q,−r),
acyclic

 

(
2 −p −q
−p 2 −r
−q −r 2

)
= (vi, vj)

〈v1, v2, v3〉 = H2,E2,S2 (proj model) |(vi, vj)| =
{
2 cosh dij, if v⊥i ∩ v

⊥
j = ∅,

2 cosαij, if v⊥i ∩ v
⊥
j 6= ∅,

Mutation: “partial reflection”: µk(vi) =


vi − (vi, vk)vk, if i→ k in Q

−vk, if i = k

vi, otherwise

Thm 2. (Barot, Geiss, Zelevinsky’ 2006)
The values (vi, vj) change under mutations
in the same way as the weights of the arrows in Q.
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Thm. If |Q| = 3, then the domains do not intersect.



Thm 1,2: “If Q has a geometric realization

then it works for the whole mutation class”

Thm 3. Every Q of rank 3 has a realization.

Idea of Pf:

if Q is mut.-acyclic → by reflections-

if Q is mut.-cyclic ⇒ p, q, r ≥ 2 ⇒-

there are 3 pts in H2 iff dp + dq ≥ dr
................ what if....... dp + dq < dr?

Three lines in H2:

realization by reflections!
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Thm 1,2: “If Q has a geometric realization

then it works for the whole mutation class”

Thm 3. Every Q of rank 3 has a realization.

Thm 3’.

1. Q mut.-acyclic ⇒ Q has realization by reflections.

2. Q mut.-cyclic ⇒ Q has realization by . . . . . . . . . . . .π-rotations.

3. Q has both realizations ⇔
Q = (p, q, r) with p, q, r ≥ 2 and dp + dq = dr.
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Def. A quiver is of finite mutation type

if it is mutation equivalent to fin. many other quivers.

In integer case:
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A3 Ã2 Markov
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Two finite type mutation classes:

Acyclic Cyclic

H
(1)
3 (2 cos π5 , 2 cos

2π
5 , 0) (2 cos 2π

5 , 2 cos
2π
5 , 1)

(1, 1,−2 cos 2π
5 )

H
(2)
3 (2 cos π3 , 2 cos

2π
5 , 0) (2 cos 1π

5 , 2 cos
2π
5 , 1)

(2 cos 2π
5 , 2 cos

2π
5 ,−2 cos

2π
5 ) (1, 1, 2 cos π5)



A

B

C

F

E

D

E F

A

BC

D

Exchange graph

for H
(1)
3 :



4. Markov constant

Def. [Beineke, Brüstle, Hille]

For Q = (p, q, r), a Markov constant is C(Q) = p2+ q2+ r2− pqr.
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• C(Q) is mutation-invariant;

• C(Q) controls geometry of the realization:

– if p, q, r ≥ 2, triangle ineq. ⇔ C(Q) ≤ 4;

– if Q mut.-acyclic, C(Q) < 4/ = 4/ > 4 ⇔ refl. in S2/E2/H2.

– if Q is mut.-cyclic, C(Q) controls geometry of g = R1◦R2◦R3:

C(Q) < 0/ = 0/ > 0 ⇔ g is hyperbolic/parabolic/elliptic.
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C(Q)40

Q is mutation-acyclic
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