Geometric realisations of quiver mutations

Anna Felikson (joint with Pavel Tumarkin)

Herstmonceux Castle, July 11-15 2016

• Quiver is a directed graph without loops and 2-cycles.

- Quiver is a directed graph without loops and 2-cycles.
- Mutation μ_k of quivers:
 - reverse all arrows incident to k;
 - for every oriented path through \boldsymbol{k} do

- Quiver is a directed graph without loops and 2-cycles.
- Mutation μ_k of quivers:
 - reverse all arrows incident to k;
 - for every oriented path through $k\ \mathrm{do}$

Quiver mutation is used in cluster algebras and connected to: representation theory, geometry of triangulated surfaces, Grassmannians, root systems, integrable systems, tropical geometry, Poisson geometry, combinatorics of polytopes... Aim: construct and study

geometric model for <u>all</u> mutation classes of Q, |Q| = 3.

Tools:

- <u>reflection</u> groups [acyclic mutation types]
- π -rotation groups [cyclic mutation types]

Aim: construct and study geometric model for <u>all</u> mutation classes of Q, |Q| = 3.

Tools:

- <u>reflection</u> groups [acyclic mutation types]
- π -rotation groups [cyclic mutation types]

- \boldsymbol{Q} is of acyclic mut. type
 - iff its mutation class contains a quiver without oriented cycles.
- \boldsymbol{Q} is if cyclic mut. type

otherwise.

$$Q = (p, q, r),$$

mutation-cyclic \rightsquigarrow
$$\begin{pmatrix} -2 & p & q \\ p & -2 & r \\ q & r & -2 \end{pmatrix} = (v_i, v_j)$$

$$Q = (p, q, r),$$

mutation-cyclic \rightsquigarrow
$$\begin{pmatrix} -2 & p & q \\ p & -2 & r \\ q & r & -2 \end{pmatrix} = (v_i, v_j)$$

 $\langle v_1, v_2, v_3 \rangle = \mathbb{R}^{2,1}$: $x = (x_1, x_2, x_3)$ $y = (y_1, y_2, y_3)$ \Rightarrow $(x, y) = x_1 y_1 + x_2 y_2 - x_3 y_3$

$$Q = (p, q, r),$$

mutation-cyclic \rightsquigarrow
$$\begin{pmatrix} -2 & p & q \\ p & -2 & r \\ q & r & -2 \end{pmatrix} = (v_i, v_j)$$

$$\langle v_1, v_2, v_3 \rangle = \mathbb{R}^{2,1}$$
:
 $\begin{aligned} x &= (x_1, x_2, x_3) \\ y &= (y_1, y_2, y_3) \end{aligned} \Rightarrow (x, y) = x_1 y_1 + x_2 y_2 - x_3 y_3 \end{aligned}$

linear of $\mathbb{H}^2=\{x\in\mathbb{R}^{2,1}\mid (x,x)=-2\}$ model

For $x, y \in \mathbb{H}^2$ have: $(x, y) = 2 \cosh d_{x,y}$

$$Q = (p, q, r),$$

mutation-cyclic \rightsquigarrow
$$\begin{pmatrix} -2 & p & q \\ p & -2 & r \\ q & r & -2 \end{pmatrix} = (v_i, v_j)$$

For $x, y \in \mathbb{H}^2$ have: $(x, y) = 2 \cosh d_{x,y}$

$$Q = (p, q, r),$$

mutation-cyclic \rightsquigarrow
$$\begin{pmatrix} -2 & p & q \\ p & -2 & r \\ q & r & -2 \end{pmatrix} = (v_i, v_j)$$

For $x, y \in \mathbb{H}^2$ have: $(x, y) = 2 \cosh d_{x,y}$

 $Q \rightsquigarrow$ three points x, y, z on distances $\operatorname{arcosh} \frac{p}{2}$, $\operatorname{arcosh} \frac{q}{2}$, $\operatorname{arcosh} \frac{r}{2}$. Why exist?

$$Q = (p, q, r),$$

mutation-cyclic \rightsquigarrow
$$\begin{pmatrix} -2 & p & q \\ p & -2 & r \\ q & r & -2 \end{pmatrix} = (v_i, v_j)$$

For $x, y \in \mathbb{H}^2$ have: $(x, y) = 2 \cosh d_{x,y}$

 $Q \rightsquigarrow$ three points x, y, z on distances $\operatorname{arcosh} \frac{p}{2}$, $\operatorname{arcosh} \frac{q}{2}$, $\operatorname{arcosh} \frac{r}{2}$. Why exist?

Lemma. (Beineke, Brüstle, Hille) Q mutation-cyclic \Rightarrow $p, q, r \ge 2$.

 $Q \longrightarrow \text{points} x, y, z \in \mathbb{H}^2$ on distances $\operatorname{arcosh} \frac{p}{2}$, $\operatorname{arcosh} \frac{q}{2}$, $\operatorname{arcosh} \frac{r}{2}$.

1. Cyclic mutation classes via π -rotations $Q \quad \rightsquigarrow \quad \text{points} \quad x, y, z \in \mathbb{H}^2 \quad \text{on distances} \quad \operatorname{arcosh} \frac{p}{2}, \operatorname{arcosh} \frac{q}{2}, \operatorname{arcosh} \frac{r}{2}.$ Mutation: "partial π -rotation". π -rotation $R_y(x) =$ "rotation of x around y by π " = -x - (x, y)y $\mu_k(v_i) = \begin{cases} -v_i - (v_i, v_k)v_k, & \text{if } i \to k \text{ in } Q \\ v_i, & \text{otherwise} \end{cases}$ 1. Cyclic mutation classes via π -rotations $Q \quad \rightsquigarrow \quad \text{points} \quad x, y, z \in \mathbb{H}^2 \quad \text{on distances} \quad \operatorname{arcosh} \frac{p}{2}, \operatorname{arcosh} \frac{q}{2}, \operatorname{arcosh} \frac{r}{2}.$ Mutation: "partial π -rotation". π -rotation $R_y(x) =$ "rotation of x around y by π " = -x - (x, y)y $\mu_k(v_i) = \begin{cases} -v_i - (v_i, v_k)v_k, & \text{if } i \to k \text{ in } Q \\ v_i, & \text{otherwise} \end{cases}$

Thm 1. If $v_1, v_2, v_3 \in \mathbb{H}^2$, then the values $2 \cosh d_{v_i, v_j}$ change under mutations in the same way as the weights of the arrows in Q, i.e.

$$r' + r = pq$$
, $2\cosh d_{r'} + 2\cosh d_r = 2\cosh d_p \cdot 2\cosh d_q$

2. Acyclic mutation classes via reflections

 $\langle v_1, v_2, v_3 \rangle = \mathbb{H}^2, \mathbb{E}^2, \mathbb{S}^2 \text{ (proj model)} \qquad |(v_i, v_j)| = \begin{cases} 2 \cosh d_{ij}, & \text{if } v_i^{\perp} \cap v_j^{\perp} = \emptyset, \\ 2 \cos \alpha_{ij}, & \text{if } v_i^{\perp} \cap v_j^{\perp} \neq \emptyset, \end{cases}$

Mutation: "partial reflection":
$$\mu_k(v_i) = \begin{cases} v_i - (v_i, v_k)v_k, & \text{if } i \to k \text{ in } Q \\ -v_k, & \text{if } i = k \\ v_i, & \text{otherwise} \end{cases}$$

Thm 2. (Barot, Geiss, Zelevinsky' 2006) The values (v_i, v_j) change under mutations in the same way as the weights of the arrows in Q.

Thm 1,2: "If Q has a geometric realization then it works for the whole mutation class"

Thm 3. Every Q of rank 3 has a realization.

Thm 1,2: "If Q has a geometric realization then it works for the whole mutation class"

Thm 3. Every Q of rank 3 has a realization.

Idea of Pf:

- if Q is mut.-acyclic \rightarrow by <u>reflections</u> [Seven; Speyer-Thomas]

Thm 1,2: "If Q has a geometric realization then it works for the whole mutation class"

Thm 3. Every Q of rank 3 has a realization.

Idea of Pf:

Thm 1,2: "If Q has a geometric realization then it works for the whole mutation class"

Thm 3. Every Q of rank 3 has a realization.

Idea of Pf:

 $\begin{array}{l} - \text{ if } Q \text{ is mut.-acyclic} \rightarrow \text{ by } \underline{\text{reflections}} & [\text{Seven; Speyer-Thomas}] \\ - \text{ if } Q \text{ is mut.-cyclic} \Rightarrow p, q, r \geq 2 \Rightarrow \\ \text{ there are 3 pts in } \mathbb{H}^2 \text{ iff } d_p + d_q \geq d_r \\ \dots & \text{ what if.} \dots & d_p + d_q < d_r? \end{array}$

Three lines in \mathbb{H}^2 : realization by <u>reflections!</u>

- Thm 1,2: "If Q has a geometric realization then it works for the whole mutation class"
- Thm 3. Every Q of rank 3 has a realization.

Thm 3'.

- 1. Q mut.-acyclic $\Rightarrow Q$ has realization by <u>reflections</u>.
- 2. Q mut.-cyclic $\Rightarrow Q$ has realization by π -rotations.
- 3. Q has both realizations \Leftrightarrow

 $Q = (p,q,r) \text{ with } p,q,r \geq 2 \text{ and } d_p + d_q = d_r.$

 $p, q, r \in \mathbb{R}.$ $(p, q, r) \to (p, q, pq - r).$

$$p, q, r \in \mathbb{R}.$$
 $(p, q, r) \to (p, q, pq - r).$

Def. A quiver is of finite mutation type if it is mutation equivalent to fin. many other quivers.

$$p, q, r \in \mathbb{R}.$$
 $(p, q, r) \to (p, q, pq - r).$

Thm 4. A real quiver Q, |Q| = 3 is of finite mutation type if Q is mut.-equivalent to $Q' = (2 \cos \pi t_1, 2 \cos \pi t_2, 2 \cos \pi t_3)$, where (t_1, t_2, t_3) is one of the following:

$$p, q, r \in \mathbb{R}.$$
 $(p, q, r) \to (p, q, pq - r).$

Thm 4. A real quiver Q, |Q| = 3 is of finite mutation type if Q is mut.-equivalent to $Q' = (2\cos \pi t_1, 2\cos \pi t_2, 2\cos \pi t_3)$, where (t_1, t_2, t_3) is one of the following:

- (0, 0, 0);
- $(\frac{1}{n}, \frac{1}{n}, 0)$, where $n \in \mathbb{Z}_+$;
- $(\frac{1}{3}, \frac{1}{3}, \frac{1}{2})$, $(\frac{1}{3}, \frac{1}{4}, \frac{1}{2})$, $(\frac{1}{3}, \frac{1}{5}, \frac{1}{2})$, $(\frac{1}{5}, \frac{2}{5}, \frac{1}{2})$, $(\frac{1}{3}, \frac{2}{5}, \frac{1}{2})$.

$$p, q, r \in \mathbb{R}.$$
 $(p, q, r) \to (p, q, pq - r).$

Thm 4. A real quiver Q, |Q| = 3 is of finite mutation type if Q is mut.-equivalent to $Q' = (2 \cos \pi t_1, 2 \cos \pi t_2, 2 \cos \pi t_3)$, where (t_1, t_2, t_3) is one of the following:

- (0, 0, 0);
- $(\frac{1}{n}, \frac{1}{n}, 0)$, where $n \in \mathbb{Z}_+$;
- $(\frac{1}{3}, \frac{1}{3}, \frac{1}{2})$, $(\frac{1}{3}, \frac{1}{4}, \frac{1}{2})$, $(\frac{1}{3}, \frac{1}{5}, \frac{1}{2})$, $(\frac{1}{5}, \frac{2}{5}, \frac{1}{2})$, $(\frac{1}{3}, \frac{2}{5}, \frac{1}{2})$. $A_3 \qquad B_3 \qquad H_3$

Markov quiver

$$p, q, r \in \mathbb{R}.$$
 $(p, q, r) \to (p, q, pq - r).$

Thm 4. A real quiver Q, |Q| = 3 is of finite mutation type if Q is mut.-equivalent to $Q' = (2 \cos \pi t_1, 2 \cos \pi t_2, 2 \cos \pi t_3)$, where (t_1, t_2, t_3) is one of the following:

• (0, 0, 0);

• $(\frac{1}{n}, \frac{1}{n}, 0)$, where $n \in \mathbb{Z}_+$;

• $(\frac{1}{3}, \frac{1}{3}, \frac{1}{2})$, $(\frac{1}{3}, \frac{1}{4}, \frac{1}{2})$, $(\frac{1}{3}, \frac{1}{5}, \frac{1}{2})$, $(\frac{1}{5}, \frac{2}{5}, \frac{1}{2})$, $(\frac{1}{3}, \frac{2}{5}, \frac{1}{2})$. $A_3 \qquad B_3 \qquad H_3 \qquad H_3^{(1)} \qquad H_3^{(2)}$

Markov quiver

Two finite type mutation classes:

	Acyclic	Cyclic
$H_{3}^{(1)}$	$(2\cos\frac{\pi}{5}, 2\cos\frac{2\pi}{5}, 0)$ $(1, 1, -2\cos\frac{2\pi}{5})$	$(2\cos\frac{2\pi}{5}, 2\cos\frac{2\pi}{5}, 1)$
$H_{3}^{(2)}$	$(2\cos\frac{\pi}{3}, 2\cos\frac{2\pi}{5}, 0)$ $(2\cos\frac{2\pi}{5}, 2\cos\frac{2\pi}{5}, -2\cos\frac{2\pi}{5})$	$(2\cos\frac{1\pi}{5}, 2\cos\frac{2\pi}{5}, 1)$ $(1, 1, 2\cos\frac{\pi}{5})$

4. Markov constant

Def. [Beineke, Brüstle, Hille] For Q = (p, q, r), a Markov constant is $C(Q) = p^2 + q^2 + r^2 - pqr$.

4. Markov constant

Def. [Beineke, Brüstle, Hille] For Q = (p, q, r), a *Markov constant* is $C(Q) = p^2 + q^2 + r^2 - pqr$.

- C(Q) is mutation-invariant;
- C(Q) controls geometry of the realization:
 - if $p, q, r \ge 2$, triangle ineq. $\Leftrightarrow C(Q) \le 4$;
 - if Q mut.-acyclic, $C(Q) < 4/=4/>4 \Leftrightarrow$ refl. in $\mathbb{S}^2/\mathbb{E}^2/\mathbb{H}^2$.
 - if Q is mut.-cyclic, C(Q) controls geometry of $g = R_1 \circ R_2 \circ R_3$: $C(Q) < 0/=0/>0 \Leftrightarrow g$ is hyperbolic/parabolic/elliptic.

4. Markov constant: $C(Q) = p^2 + q^2 + r^2 - pqr$.

4. Markov constant: $C(Q) = p^2 + q^2 + r^2 - pqr$.

THANKS!