# **Coxeter groups, quiver mutations** and hyperbolic manifolds



# Anna Felikson (joint with Pavel Tumarkin)

Workshop on Galois Covers, Grothendieck-Teichmüller Theory and Dessins d'Enfants University of Leicester, June 6, 2018 **1. Coxeter group:**  $G = \langle s_1, \ldots, s_n \mid s_i^2 = (s_i s_j)^{m_{ij}} = e \rangle.$ 

- **1. Coxeter group:**  $G = \langle s_1, \ldots, s_n \mid s_i^2 = (s_i s_j)^{m_{ij}} = e \rangle.$
- 2. Quiver mutation:

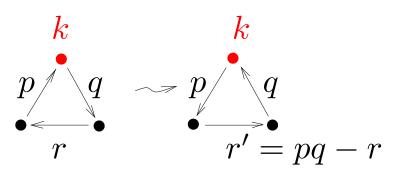
- **1. Coxeter group:**  $G = \langle s_1, \ldots, s_n \mid s_i^2 = (s_i s_j)^{m_{ij}} = e \rangle.$
- 2. Quiver mutation:
- Quiver is an oriented graph without loops and 2-cycles.

Agreement: 
$$\bullet \xrightarrow{p} = \bullet \stackrel{-p}{\longleftarrow} \bullet$$

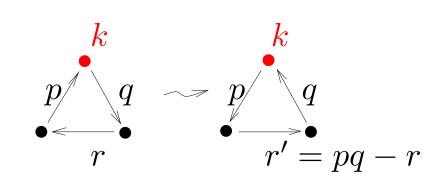
- **1. Coxeter group:**  $G = \langle s_1, \ldots, s_n \mid s_i^2 = (s_i s_j)^{m_{ij}} = e \rangle.$
- 2. Quiver mutation:
- Quiver is an oriented graph without loops and 2-cycles.

Agreement: 
$$\bullet \xrightarrow{p} = \bullet \stackrel{-p}{\longleftarrow} \bullet$$

- Mutation  $\mu_k$  of quivers:
  - reverse all arrows incident to k;
  - for every oriented path through  $k\ \mathrm{do}$



- **1. Coxeter group:**  $G = \langle s_1, \ldots, s_n \mid s_i^2 = (s_i s_j)^{m_{ij}} = e \rangle.$
- 2. Quiver mutation:



Plan:

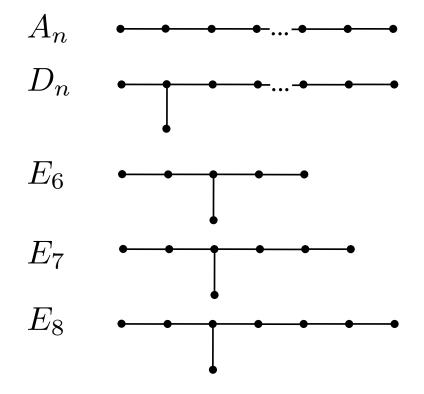
Quiver 
$$Q \longrightarrow \longrightarrow$$
 (Quotient of) Coxeter group  $G \longrightarrow$ 

 $\longrightarrow {\sf Action \ of} \ G \ {\sf on} \ X \longrightarrow$ 

Hyperbolic manifold X with symmetry group G

Let Q be a quiver of finite type,

i.e. mutation-equivalent to an orientation of  $A_n$ ,  $D_n$  or  $E_6, E_7, E_8$ :



Let Q be a quiver of finite type, i.e. mutation-equivalent to an orientation of  $A_n$ ,  $D_n$  or  $E_6, E_7, E_8$ .

• Generators of G – nodes of Q.

• Relations of  $G - (R1) s_i^2 = e$ (R2)  $(s_i s_j)^{m_{ij}} = e$ ,  $m_{ij} = \begin{cases} 2, & \bullet \\ 3, & \bullet \\ \infty, & otherwise. \end{cases}$ (R3) Cycle relation: for each chordless cycle  $1 \rightarrow 2 \rightarrow \cdots \rightarrow n \rightarrow 1$ 

 $(s_1 \quad s_2 s_3 \dots s_n \dots s_3 s_2)^2 = e.$ 

Let Q be a quiver of finite type, i.e. mutation-equivalent to an orientation of  $A_n$ ,  $D_n$  or  $E_6, E_7, E_8$ .

Theorem 1. [Barot-Marsh'2011]. Given a quiver Q of finite type, G(Q) is invariant under mutations of Q, i.e.  $G(Q) = G(\mu_k(Q))$ .

Let Q be a quiver of finite type, i.e. mutation-equivalent to an orientation of  $A_n$ ,  $D_n$  or  $E_6, E_7, E_8$ .

Theorem 1. [Barot-Marsh'2011]. Given a quiver Q of finite type, G(Q) is invariant under mutations of Q, i.e.  $G(Q) = G(\mu_k(Q))$ .

• In particular, G(Q) is a finite Coxeter group.

Let Q be a quiver of finite type, i.e. mutation-equivalent to an orientation of  $A_n$ ,  $D_n$  or  $E_6, E_7, E_8$ .

Theorem 1. [Barot-Marsh'2011]. Given a quiver Q of finite type, G(Q) is invariant under mutations of Q, i.e.  $G(Q) = G(\mu_k(Q))$ .

- In particular, G(Q) is a finite Coxeter group.
- If  $Q_2 = \mu_k(Q_1)$ ,  $s_i$  generators of  $G(Q_1)$ ,  $t_i$  generators of  $G(Q_2)$ , then

$$t_i = \begin{cases} s_k s_i s_k, & \stackrel{i}{\bullet} \longrightarrow \stackrel{k}{\bullet} & \text{in } Q_1 \\ s_i, & \text{otherwise} \end{cases}$$

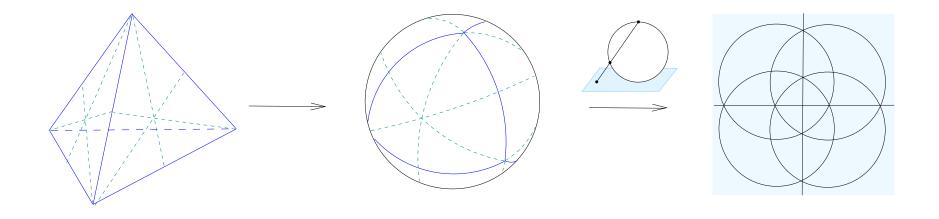
Example: 
$$Q_1 = A_3 = \stackrel{1}{\longrightarrow} \stackrel{2}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad \stackrel{\mu_2}{\longrightarrow} \qquad Q_2 = \stackrel{1}{\swarrow} \stackrel{2}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{1}{\checkmark} \stackrel{2}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{1}{\longrightarrow} \stackrel{2}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{1}{\longrightarrow} \stackrel{2}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{1}{\longrightarrow} \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{1}{\longrightarrow} \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{3}{\longrightarrow} \stackrel{3$$

Example: 
$$Q_1 = A_3 = \overset{1}{\bullet} \xrightarrow{2} \overset{3}{\bullet} \xrightarrow{2} \overset{\mu_2}{\to} Q_2 = \overset{2}{\bullet} \overset{2}{\bullet} \overset{3}{\bullet} G(Q_1) = \langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^3 = (s_2 s_3)^3 = (s_1 s_2)^2 = e \rangle$$

Example: 
$$Q_1 = A_3 = \stackrel{1}{\bullet} \xrightarrow{2} \stackrel{3}{\bullet} \xrightarrow{4} Q_2 = \stackrel{1}{\bullet} \stackrel{2}{\bullet} \xrightarrow{3}$$

$$G(Q_1) = \langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^3 = (s_2 s_3)^3 = (s_1 s_2)^2 = e \rangle$$

finite Coxeter group  $A_3$ , acts on  $S^2$  by reflections, 24 elements:



Example: 
$$Q_1 = A_3 = \stackrel{1}{\longrightarrow} \stackrel{2}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{2}{\swarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{2}{\checkmark} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{2}{\checkmark} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{2}{\checkmark} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{3}{\checkmark} \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{3}{\checkmark} \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow}$$

$$G(Q_1) = \langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^3 = (s_2 s_3)^3 = (s_1 s_2)^2 = e \rangle$$
  
finite Coxeter group  $A_3$ , acts on  $S^2$  by reflections, 24 elements.

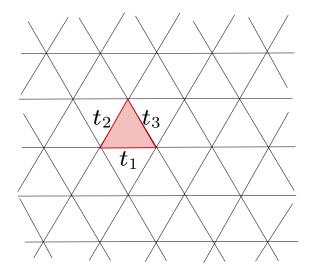
$$G(Q_2) = \langle t_1, t_2, t_3 | t_i^2 = (t_i t_j)^3 = (t_1 \ t_2 t_3 t_2)^2 = e \rangle$$

Example: 
$$Q_1 = A_3 = \stackrel{1}{\bullet} \xrightarrow{2} \stackrel{3}{\bullet} \xrightarrow{4} Q_2 = \stackrel{1}{\bullet} \stackrel{4}{\bullet} \xrightarrow{3} Q_2 = \stackrel{4}{\bullet} \xrightarrow{3} \stackrel{4}{\bullet} \xrightarrow{3} Q_2 = \stackrel{4}{\bullet} \xrightarrow{3} \stackrel{4}{\bullet} \xrightarrow{4} \stackrel{4}{\bullet} \xrightarrow{3} \stackrel{4}{\bullet} \xrightarrow{4} \stackrel{4}{\bullet}$$

 $G(Q_1) = \langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^3 = (s_2 s_3)^3 = (s_1 s_2)^2 = e \rangle$ finite Coxeter group  $A_3$ , acts on  $S^2$  by reflections, 24 elements.

 $G(Q_2) = \langle t_1, t_2, t_3 \mid t_i^2 = (t_i t_j)^3 = (t_1 \ t_2 t_3 t_2)^2 = e \rangle$ 

 $G_0$  – affine Coxeter group  $\widetilde{A}_2$ , acts on  $\mathbb{E}^2$  by reflections.



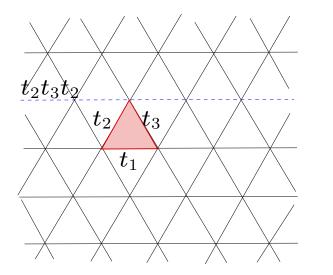
$$(t_1 \ t_2 t_3 t_2)^2 = ?$$

Example: 
$$Q_1 = A_3 = \stackrel{1}{\bullet} \xrightarrow{2} \stackrel{3}{\bullet} \xrightarrow{4} Q_2 = \stackrel{1}{\bullet} \stackrel{4}{\bullet} \xrightarrow{3} Q_2 = \stackrel{4}{\bullet} \stackrel{4$$

2

 $G(Q_1) = \langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^3 = (s_2 s_3)^3 = (s_1 s_2)^2 = e \rangle$ finite Coxeter group  $A_3$ , acts on  $S^2$  by reflections, 24 elements.

$$G(Q_2) = \langle \underbrace{t_1, t_2, t_3 \mid t_i^2 = (t_i t_j)^3}_{G_0 - \text{affine Coxeter group } \widetilde{A}_2, \text{ acts on } \mathbb{E}^2 \text{ by reflections.}}$$

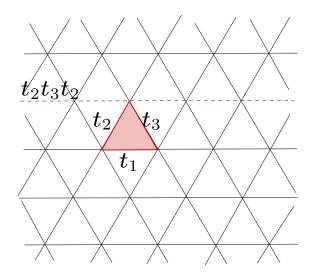


$$(t_1 \ t_2 t_3 t_2)^2 = ?$$

Example: 
$$Q_1 = A_3 = \stackrel{1}{\bullet} \xrightarrow{2} \stackrel{3}{\bullet} \xrightarrow{4} Q_2 = \stackrel{1}{\bullet} \stackrel{4}{\bullet} \xrightarrow{3} Q_2 = \stackrel{1}{\bullet} \stackrel{4}{\bullet} \stackrel{4$$

 $G(Q_1) = \langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^3 = (s_2 s_3)^3 = (s_1 s_2)^2 = e \rangle$ finite Coxeter group  $A_3$ , acts on  $S^2$  by reflections, 24 elements.

$$G(Q_2) = \langle \underbrace{t_1, t_2, t_3 \mid t_i^2 = (t_i t_j)^3}_{G_0 - \text{affine Coxeter group } \widetilde{A}_2, \text{ acts on } \mathbb{E}^2 \text{ by reflections.}}$$



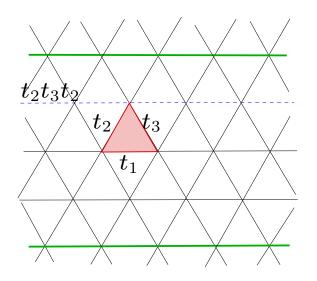
$$(t_1 \ t_2 t_3 t_2)^2 = ?$$

 $t_1 t_2 t_3 t_2$  - translation by 2 levels

Example: 
$$Q_1 = A_3 = \stackrel{1}{\longrightarrow} \stackrel{2}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad \stackrel{\mu_2}{\longrightarrow} \qquad Q_2 = \stackrel{1}{\longrightarrow} \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{1}{\longrightarrow} \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \stackrel{3}{\longrightarrow} \qquad Q_2 = \stackrel{3}{\longrightarrow} \stackrel{3$$

 $G(Q_1) = \langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^3 = (s_2 s_3)^3 = (s_1 s_2)^2 = e \rangle$ finite Coxeter group  $A_3$ , acts on  $S^2$  by reflections, 24 elements.

$$G(Q_2) = \langle \underbrace{t_1, t_2, t_3 \mid t_i^2 = (t_i t_j)^3}_{G_0 - \text{affine Coxeter group } \widetilde{A}_2, \text{ acts on } \mathbb{E}^2 \text{ by reflections.}}$$



$$(t_1 \ t_2 t_3 t_2)^2 = ?$$

 $t_1 t_2 t_3 t_2$  - translation by 2 levels

 $(t_1 \ t_2 t_3 t_2)^2$  - translation by 4 levels

Example: 
$$Q_1 = A_3 = \stackrel{1}{\bullet} \xrightarrow{2} \stackrel{3}{\bullet} \xrightarrow{4} Q_2 = \stackrel{1}{\bullet} \stackrel{4}{\bullet} \xrightarrow{3} Q_2 = \stackrel{1}{\bullet} \stackrel{4}{\bullet} \stackrel{4$$

 $G(Q_1) = \langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^3 = (s_2 s_3)^3 = (s_1 s_2)^2 = e \rangle$ finite Coxeter group  $A_3$ , acts on  $S^2$  by reflections, 24 elements.

$$G(Q_2) = \langle \underbrace{t_1, t_2, t_3 \mid t_i^2 = (t_i t_j)^3}_{G_0 - \text{affine Coxeter group } \widetilde{A}_2, \text{ acts on } \mathbb{E}^2 \text{ by reflections.}}$$

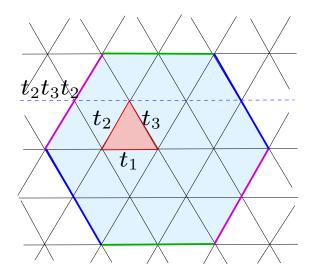
$$t_2 t_3 t_2$$
 $t_2 t_3$ 
 $t_1$ 

$$(t_1 \ t_2 t_3 t_2)^2 = e = \text{transl. by 4 levels} - \text{Identify}!$$

Example: 
$$Q_1 = A_3 = \stackrel{1}{\bullet} \xrightarrow{2} \stackrel{3}{\bullet} \xrightarrow{4} Q_2 = \stackrel{1}{\bullet} \stackrel{4}{\bullet} \xrightarrow{3} Q_2 = \stackrel{1}{\bullet} \stackrel{4}{\bullet} \stackrel{4$$

 $G(Q_1) = \langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^3 = (s_2 s_3)^3 = (s_1 s_2)^2 = e \rangle$ finite Coxeter group  $A_3$ , acts on  $S^2$  by reflections, 24 elements.

$$G(Q_2) = \langle \underbrace{t_1, t_2, t_3 \mid t_i^2 = (t_i t_j)^3}_{G_0 - \text{affine Coxeter group } \widetilde{A}_2, \text{ acts on } \mathbb{E}^2 \text{ by reflections.}}$$

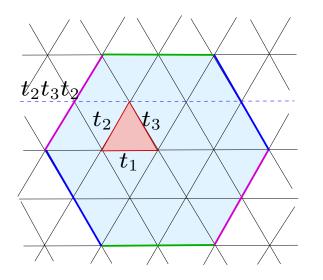


$$(t_1 \ t_2 t_3 t_2)^2 = e = \text{transl. by 4 levels - Identify!}$$
  
 $G = G_0/NCl((t_1 \ t_2 t_3 t_2)^2) - \text{Identify! Identify!}$ 

Example: 
$$Q_1 = A_3 = \stackrel{1}{\bullet} \xrightarrow{2} \stackrel{3}{\bullet} \xrightarrow{4} Q_2 = \stackrel{1}{\bullet} \stackrel{4}{\bullet} \xrightarrow{3} Q_2 = \stackrel{1}{\bullet} \stackrel{4}{\bullet} \stackrel{4$$

 $G(Q_1) = \langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^3 = (s_2 s_3)^3 = (s_1 s_2)^2 = e \rangle$ finite Coxeter group  $A_3$ , acts on  $S^2$  by reflections, 24 elements.

$$G(Q_2) = \langle \underbrace{t_1, t_2, t_3 \mid t_i^2 = (t_i t_j)^3}_{G_0 - \text{ affine Coxeter group } \widetilde{A}_2, \text{ acts on } \mathbb{E}^2 \text{ by reflections.}}$$



$$(t_1 \ t_2 t_3 t_2)^2 = e = \text{transl. by 4 levels} - \text{Identify!}$$
  
 $G = G_0/NCl((t_1 \ t_2 t_3 t_2)^2) - \text{Identify! Identify!}$ 

2

 $G = G(Q_2)$  acts on a torus  $T^2$ .

•  $G_0 = a$  Coxeter group defined by (R1) and (R2).

- $G_0 = a$  Coxeter group defined by (R1) and (R2).
- Each Coxeter group  $G_0$  acts on its Davis complex  $\Sigma(G_0)$ (contractible, piecewise Euclidean, with CAT(0) metric).

- $G_0 = a$  Coxeter group defined by (R1) and (R2).
- Each Coxeter group  $G_0$  acts on its Davis complex  $\Sigma(G_0)$ (contractible, piecewise Euclidean, with CAT(0) metric).
- Take its quotient by cycle relations: Denote  $G_{rel} := NCl(R3)$ , consider  $X = \Sigma(G_0)/G_{rel}$ , then G: X.

- $G_0 = a$  Coxeter group defined by (R1) and (R2).
- Each Coxeter group  $G_0$  acts on its Davis complex  $\Sigma(G_0)$ (contractible, piecewise Euclidean, with CAT(0) metric).
- Take its quotient by cycle relations: Denote  $G_{rel} := NCl(R3)$ , consider  $X = \Sigma(G_0)/G_{rel}$ , then G: X.

Theorem 2 [F-Tumarkin'14] (Manifold property) The group  $G_{rel}$  is torsion free, i.e. if  $\Sigma(G_0)$  is a manifold then X is a manifold.

Taking the quotient, we are not introducing any new singularities!

<u>Corollary</u> from Manifold Property: can cook hyperbolic manifolds with large symmetry groups.

<u>Corollary</u> from Manifold Property: can cook hyperbolic manifolds with large symmetry groups.

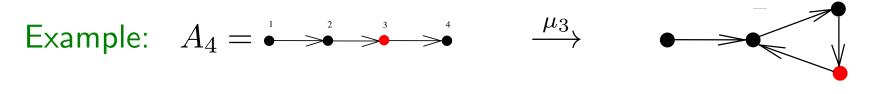
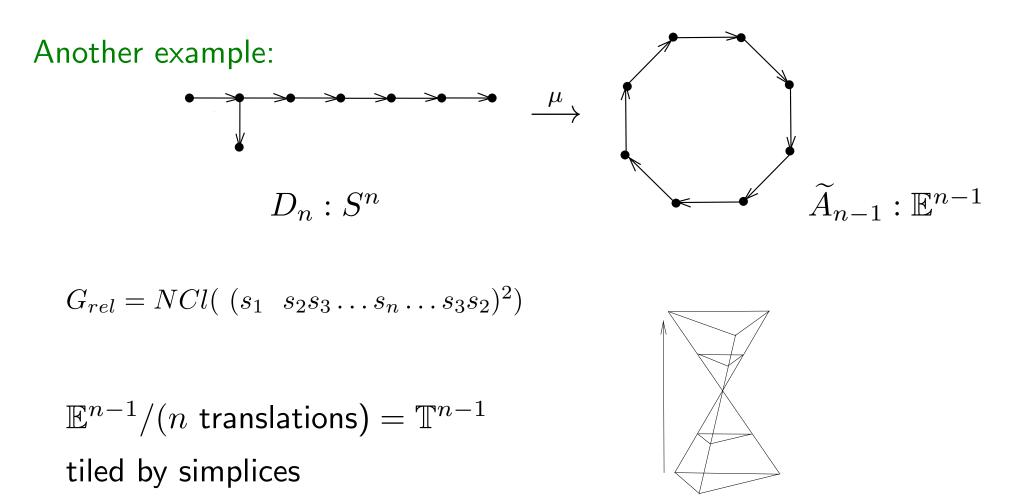


diagram of hyperbolic simplex

 $\Rightarrow$  Hyperbolic 3-manifold with action of the group  $A_4$ .

<u>Corollary</u> from Manifold Property: can cook hyperbolic manifolds with large symmetry groups.



Corollary from Manifold Property: can cook hyperbolic manifolds with large symmetry groups.

More hyperbolic examples:

|       |                                         | TABLE 5.1.                                      | Actions on hyp                                   | perbolic | manifolds.                          |                    |           | · · · · · · · · · · · · · · · · · · · |
|-------|-----------------------------------------|-------------------------------------------------|--------------------------------------------------|----------|-------------------------------------|--------------------|-----------|---------------------------------------|
| W     | Q                                       | $Q_1$                                           | W                                                | dim X    | vol X<br>approx.                    | number<br>of cusps | $\chi(X)$ |                                       |
| $A_4$ | ••-•                                    | $\vdash$                                        | 5!                                               | 3        | $ W  \cdot 0.084578$                | 5                  |           |                                       |
| $D_4$ | $\prec$                                 |                                                 | $2^{3} \cdot 4!$                                 | 3        | $ W  \cdot 0.422892$                | 16                 |           |                                       |
| $D_5$ | $\leftarrow$                            | $\leftrightarrow$                               | $2^{4} \cdot 5!$                                 | 4        | $ W  \cdot 0.013707$                | 10                 | 2         | 68                                    |
| $E_6$ | · · · · · ·                             | $\neg \neg$                                     | $2^7 \cdot 3^4 \cdot 5$                          | 5        | $ W  \cdot 0.002074$                | 27                 |           | 10                                    |
| $E_7$ | •••••                                   | $\leftarrow$                                    | $2^{10}\cdot 3^4\cdot \underbrace{5}_{-}\cdot 7$ | 6        | $ W  \cdot 2.962092 \times 10^{-4}$ | 126                | -52       | simpl                                 |
| $E_8$ | •••••••••                               | $\leftarrow$                                    | $2^{14}\cdot 3^5\cdot 5^2\cdot 7$                | 7        | $ W  \cdot 4.110677 \times 10^{-5}$ | 2160               |           |                                       |
| $A_7$ | •••••                                   | $\triangleright \rightarrow \neg \triangleleft$ | 8!                                               | 5        |                                     | 70                 |           | 7 pyramids                            |
| $D_8$ | ••••••••••••••••••••••••••••••••••••••• | $\rightarrow \rightarrow \rightarrow$           | $2^{7} \cdot 8!$                                 | 6        | $ W  \cdot 0.002665$                | 1120               | -832      | f a product of 2 simplices            |

| (D)        | A stimus and | 1          |            |                  |       |
|------------|--------------|------------|------------|------------------|-------|
| TABLE 7.1. | Actions on   | nyperbolic | manifolds, | non-simply-laced | case. |

| W     | G                      | $\mathcal{G}_1$ | W                | $\dim(X)$ | vol X<br>approx.     | number<br>of cusps | $\chi(X)$<br>(dim X even) |
|-------|------------------------|-----------------|------------------|-----------|----------------------|--------------------|---------------------------|
| $B_3$ | • 2 • • •              | 2/2             | $2^{3} \cdot 3!$ | 2         | 8π                   | compact            | -4                        |
| $B_4$ | • 2 • • • •            | -2              | $2^{4} \cdot 4!$ | 3         | W  · 0.211446        | 16                 |                           |
| $F_4$ | • • <sup>2</sup> • • • | 2 2             | $2^7 \cdot 3^2$  | 3         | $ W  \cdot 0.222228$ | compact            |                           |

- **6.** Beyond finite type:
- Q is of finite mutation type if

 $\sharp |Q' \sim_{\mu} Q| < \infty.$ 

## **6.** Beyond finite type:

• Q is of finite mutation type if  $|Q' \sim_{\mu} Q| < \infty$ .

Classification [F, P.Tumarkin, M.Shapiro'2008]: Connected quiver is of finite mutation type iff

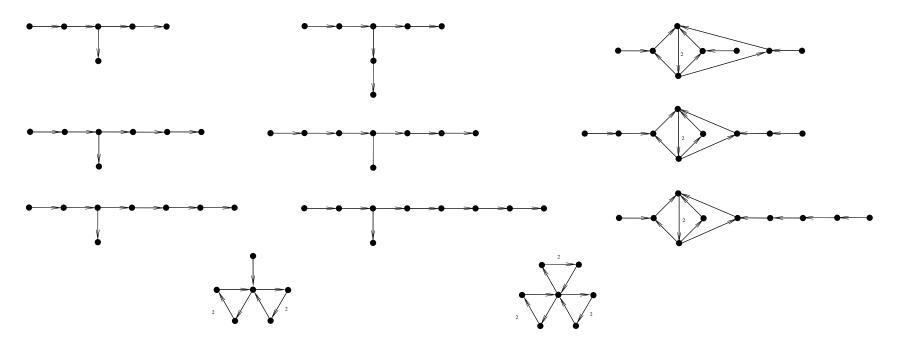
- (a) Q has 2 vertices, or
- (b) Q arises from a triangulated surface, or
- (c) Q is mutation-equivalent to one of 11 exceptional quivers:

### 6. Beyond finite type:

• Q is of finite mutation type if  $|Q' \sim_{\mu} Q| < \infty$ .

Classification [F, P.Tumarkin, M.Shapiro'2008]: Connected quiver is of finite mutation type iff

- (a) Q has 2 vertices, or
- (b) Q arises from a triangulated surface, or
- (c) Q is mutation-equivalent to one of 11 exceptional quivers:



## **6.** Beyond finite type:

• Q is of finite mutation type if  $|Q' \sim_{\mu} Q| < \infty$ .

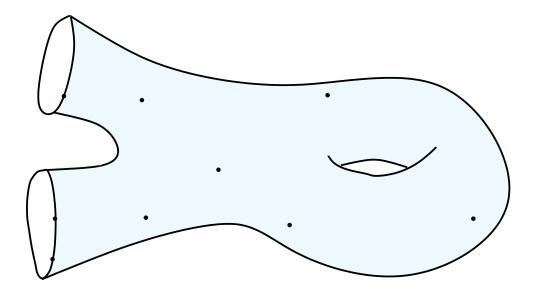
Classification [F, P.Tumarkin, M.Shapiro'2008]: Connected quiver is of finite mutation type iff

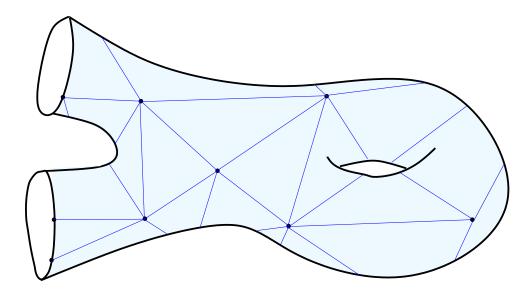
- (a) Q has 2 vertices, or
- (b) Q arises from a triangulated surface, or
- (c) Q is mutation-equivalent to one of 11 exceptional quivers.

# **Groups** G(Q) for them:

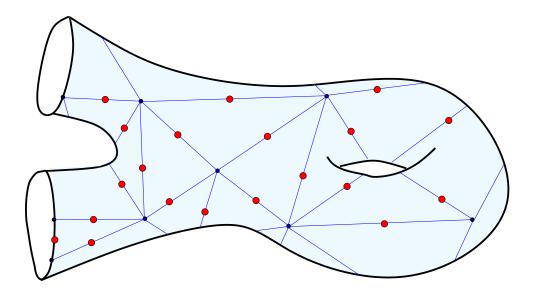
- (a) trivial
- (b) ?????
- (c) can construct (with some additional relations).

7. Quivers from triangulated surfaces:

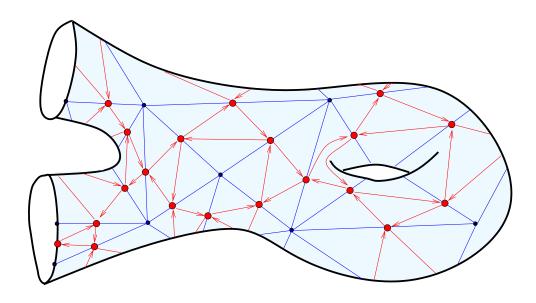




Triangulated surface  $\longrightarrow$  Quiver

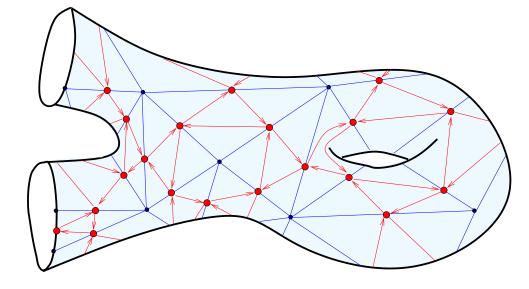


| Triangulated surface      | $\longrightarrow$ | Quiver           |
|---------------------------|-------------------|------------------|
| edge of triangulation     |                   | vertex of quiver |
| two edges of one triangle |                   | arrow of quiver  |



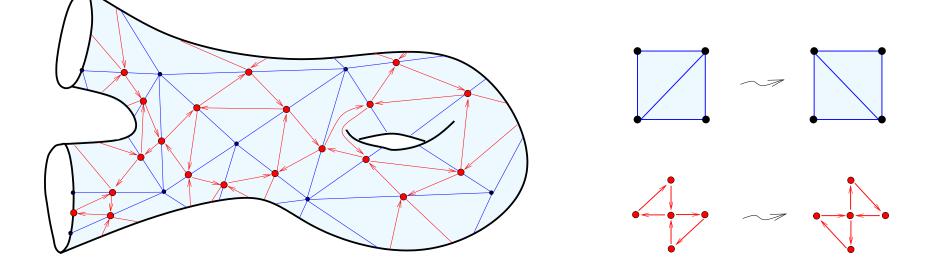
| Triangulated surface      | $\longrightarrow$ | Quiver           |
|---------------------------|-------------------|------------------|
| edge of triangulation     |                   | vertex of quiver |
| two edges of one triangle |                   | arrow of quiver  |

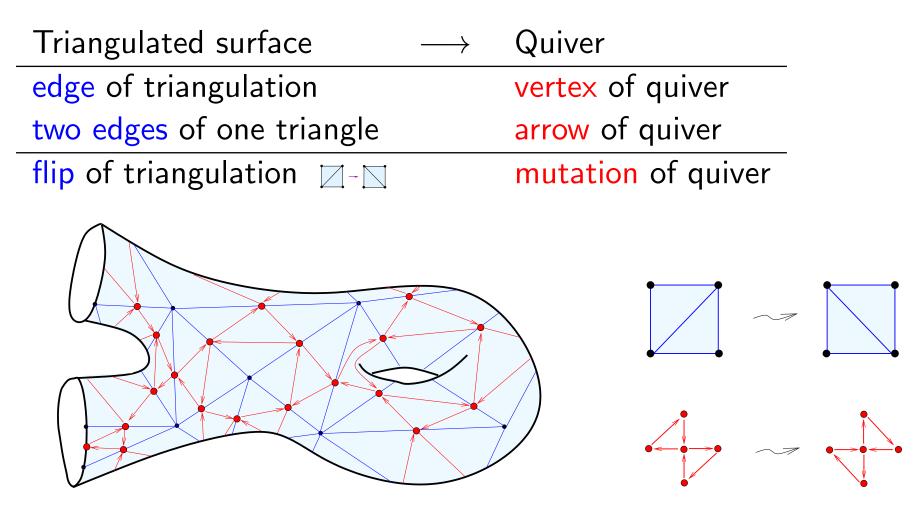
flip of triangulation  $\square$ - $\square$ 





| Triangulated surface $\longrightarrow$ | Quiver             |
|----------------------------------------|--------------------|
| edge of triangulation                  | vertex of quiver   |
| two edges of one triangle              | arrow of quiver    |
| flip of triangulation 🔟 - 📉            | mutation of quiver |





Fact. Quivers from triangulations of the same surface are mutation-equivalent (and form the whole mutation class).

Fact. Quivers from triangulations of the same surface are mutation-equivalent (and form the whole mutation class).

Want: Group G for every mut. class Q(T), i.e. G for every surface.

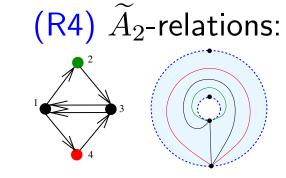
Fact. Quivers from triangulations of the same surface are mutation-equivalent (and form the whole mutation class).

Want: Group G for every mut. class Q(T), i.e. G for every surface.

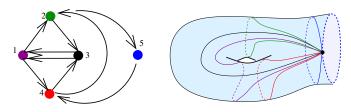
Construction of G(Q) for unpunctured surfaces:

- Generators of  $G \leftrightarrow$  arcs of the triangulation of Q.
- Relations of G:

(R1)  $s_i = e$ (R2)  $(s_i s_j)^{m_{ij}} = e$ (R3) Cycle relations



(R4)  $\widetilde{A}_2$ -relations: (R5) Handle relations:



 $(s_1 \ s_2 s_3 s_4 s_3 s_2)^2 = e \qquad (s_1 \ s_2 s_3 s_4 s_5 s_4 s_3 s_2)^2 = e$  $(s_1 \ s_4 s_3 s_2 s_5 s_2 s_3 s_4)^2 = e$ 

Theorem [FT'13]

If S is an unpunctured surface, T triangulation of S, Q = Q(T), G = G(Q), then G is mutation invariant, i.e. G does not depend on the choice of triangulation T.

In other words, G is an invariant of a surface.

Theorem [FT'13]

If S is an unpunctured surface, T triangulation of S, Q = Q(T), G = G(Q), then G is mutation invariant, i.e. G does not depend on the choice of triangulation T.

In other words, G is an invariant of a surface.

**Remark.** • Now, G may be not a Coxeter group, but a quotient.

Theorem [FT'13]

If S is an unpunctured surface, T triangulation of S, Q = Q(T), G = G(Q), then G is mutation invariant, i.e. G does not depend on the choice of triangulation T.

In other words, G is an invariant of a surface.

**Remark.** • Now, G may be not a Coxeter group, but a quotient.

• Now, we don't know manifold property.

Theorem [FT'13]

If S is an unpunctured surface, T triangulation of S, Q = Q(T), G = G(Q), then G is mutation invariant, i.e. G does not depend on the choice of triangulation T.

In other words, G is an invariant of a surface.

**Remark.** • Now, G may be not a Coxeter group, but a quotient.

- Now, we don't know manifold property.
- We know nothing about this group!

Theorem [FT'13]

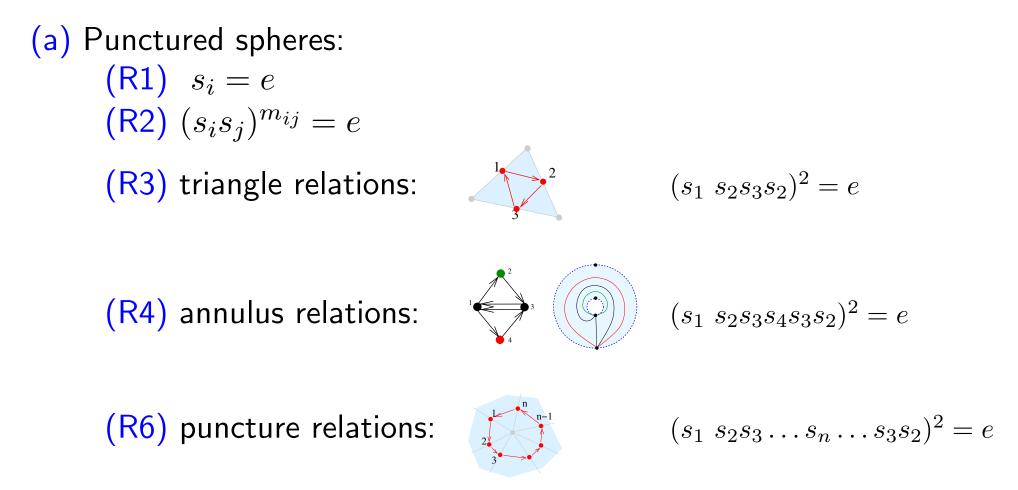
If S is an unpunctured surface, T triangulation of S, Q = Q(T), G = G(Q), then G is mutation invariant, i.e. G does not depend on the choice of triangulation T.

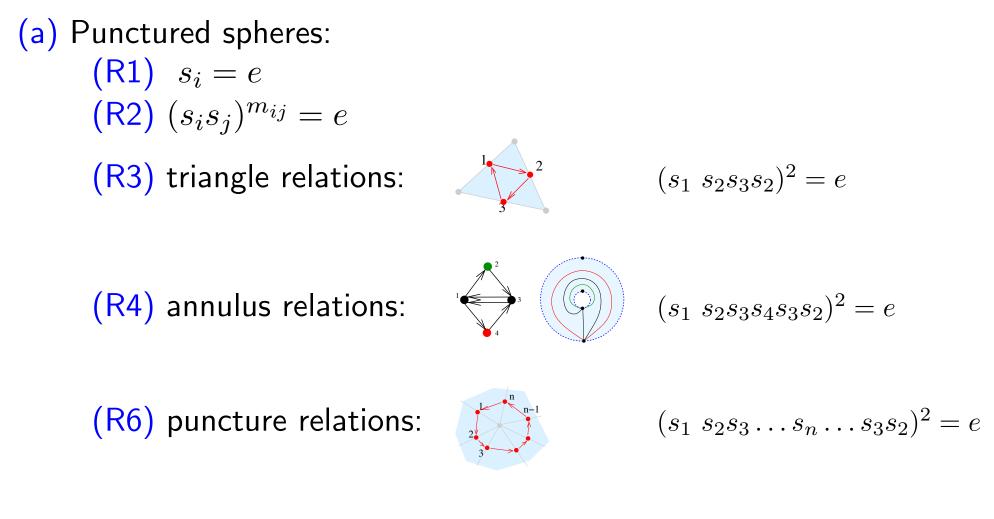
In other words, G is an invariant of a surface.

**Remark.** • Now, G may be not a Coxeter group, but a quotient.

- Now, we don't know manifold property.
- We know nothing about this group!

**Proposition**. G does not depend on the distribution of marked points along boundary components.





(b) Punctured, g > 0 ???

