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G is a reflection group in X =S", E" or H"
H C G is a finite index reflection subgroup.

Question: what can we say about the pair (G, H)?

o If X =8", groups are classified.  For subgroups see:
E. B. Dynkin, 1952 and F, 2002.

o If X =", groups are classified.  For subgroups see:
Dyer, 1990; Cameron, Seidel, Tsaranov, 1994; F&T, 2005.

o If X = H", groups are not classified. What about subgroups ?
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F'is a chamber of G, P is a chamber of H.
P is tiled by |G : H| copies of F.

Example.
P F
simplex simplex
quadrilateral simplex or quadrilateral

simplicial prism | simplex or simplicial prism

A2 x A? A2 x A?

Is the combinatorics of F' always simpler than one of P?
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Claim: |P| > |F|.

If F' is a Coxeter polytope, denote by G a group
generated by reflections in facets of F'.

Theorem (F&T, '03). Let F be a finite volume Coxeter
polytope in H" or E" and P be a finite volume polytope
bounded by mirrors of Grp. Then |P| > |F).
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Proof of Theorem. Suppose that |P| =k, |F| >k +1,
and Th. holds for any polytope P’ such that |P’| < k.

— finite
- #0) (PeM)

Take P,,,;, € M minimal by inclusion. P,,;, is a Coxeter polytope.

M:={P | PPCP, |P|=k}

N = {P1 ‘ P; is bounded by k facets of P,,;,, and one extra mirror}

— finite

S
€ N minimal by inclusion. P/ . is a Coxeter polytope.

P,in) satisfies assumptions of Lemma. Contradiction.

Take P’

man

Pair (P’

main’
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In terms of groups we obtain:

If G 1s a cocompact reflection group acting on H"
and H C G 1s a finite index reflection subgroup then

#(refl. gen. H) > #(refl. gen. G).

Does it hold for arbitrary infinite indecomposable
Coxeter group?
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(G, S) is a Coxeter system if G is a group with a finite
set of involutions S = {s, ..., s,} and a presentation

G = <87; cS | (SZ'Sj)mij>.

S| = n is the rank of (G, .5).
Involutions s; and all their conjugates are called
reflections.

Prop. G cannot be gen. by fewer than n reflections.
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For any Coxeter system(G, S) there exists a Davis complex ¥(G, S):
e (G, S) is a contractible peicewise Euclidean cell complex;
e (5 acts on (G, S) discretely, properly and cocompactly;
e (GG, S) yields a complete peicewise Euclidean C AT (0) metric.

e For a finite group X(G, 5) is just one cell:
it is a convex hull C of a G-orbit of a suitable point p,
s.t. the stabilizer of p is trivial, all edges of C' are of lenth 1.
e Faces of (' are Davis complexes for the subgroups of G.

e For an infinite group (G, .S) is built up of the Davis complexes
of maximal finite subgroups (glued together along their faces
corresponding to common subgroups).
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Any wall o decomposes ¥ (G, .S) into two components
a” and o

A convex polytope is an intersection of finitely many

halfspaces m
P = ﬂ ;.
i=1



Th. Let (G,S) be a Coxeter system, where G 1is an infinite
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G is decomposable if S = 51U S, where s;5; = 555,  Vs; € 51,55 € Sa.
Otherwise, (G is indecomposable.
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Th.  Let (G,S) be a Cozeter system where G is an infinite
indecomposable Cozeter group. If P is a compact polytope in
¥(G,S), then |P| > |S] (where |P| = #(facets of P)).

Pt P~
< If | Pt > |P)

then P71 is not a Coxeter polytope.




Th. Let (G,S) be a Coxeter system, where G 1is an infinite
indecomposable Coxeter group. Let H C G be a finite index

reflection subgroup. Then any set of reflections generating H
contains at least | S| reflections.

Th. Let (G,S) be a Coxeter system, where G is an infinite
indecomposable Cozeter group. If P is a compact polytope in

¥(G,S), then |P| > |S] (where |P| = #(facets of P)).

Th.  Let (G,S) be a Coxeter system where G is an infinite
indecomposable Coxeter group and S = {sg,S1,...,8n}. Let
H = (s1,...,8n) be a standard subgroup. Then |G : H] = c0.
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G = (sg, S1,- - -, Sn), infinite, indecomposable;
H={(s1,...,8,). Want: [G: H|=o0.

Claim: infinitely many mirrors of sgH sg intersect P, where P is a
chamber of H.  Look for them in |s1, 595250, ..., S08,50|C P.

Proof: GG is indecomposable = we may assume s1s¢ # Sps1.
Hence the mirror of sgs159 decomposes P and s1 ¢ soH so.

Hence

chambers of sgH s chambers of sgH s
# (s rs) = # (i )

<S1, S$05250; - - -y S05n S0 <808280, SO 808n80>
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For induction we need:
|H| = o0 OK  (otherwise |G : H| = o0)
H is indecomposable 777 (choice of s1)

K:<81,...,8k>, KCH

S1 §é SQKSO
S; §é sol sg for 1 > k.

K is infinite, indecomposable. Hence,

chambers of soK sg chambers of soK sg
s In = -

<81, $05250, - - - 808n80> In <308280, SO 503k30>
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