Reflection subgroups of Coxeter groups

A. Felikson & P. Tumarkin

Independent University of Moscow, University of Fribourg

21.07.2007, Bielefeld

G is a reflection group in $X = \mathbb{S}^n$, \mathbb{E}^n or \mathbb{H}^n $H \subset G$ is a finite index reflection subgroup.

Question: what can we say about the pair (G, H)?

G is a reflection group in $X = \mathbb{S}^n$, \mathbb{E}^n or \mathbb{H}^n $H \subset G$ is a finite index reflection subgroup.

Question: what can we say about the pair (G, H)?

• If $X = \mathbb{S}^n$, groups are classified. For subgroups see: E. B. Dynkin, 1952 and F, 2002.

• If $X = \mathbb{E}^n$, groups are classified. For subgroups see: Dyer, 1990; Cameron, Seidel, Tsaranov, 1994; F&T, 2005.

• If $X = \mathbb{H}^n$, groups are not classified. What about subgroups ?

F is a chamber of G, P is a chamber of H.

P is tiled by [G:H] copies of F.

F is a chamber of G, P is a chamber of H.

P is tiled by [G:H] copies of F.

Example.

 $F = \left(\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{7}\right)$ $P = \left(\frac{\pi}{7}, \frac{\pi}{7}, \frac{\pi}{7}\right)$

F is a chamber of G, P is a chamber of H. P is tiled by [G:H] copies of F.

Example.

٨	P	F
A	simplex	simplex
	quadrilateral	simplex or quadrilateral
	simplicial prism	simplex or simplicial prism
$F = \left(\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{7}\right)$	$\Delta^2 \times \Delta^2$	$\Delta^2 \times \Delta^2$
$P = \left(\frac{\pi}{7}, \frac{\pi}{7}, \frac{\pi}{7}\right)$		

F is a chamber of G, **P** is a chamber of H. *P* is tiled by [G:H] copies of *F*.

Is the combinatorics of F always simpler than one of P?

|P| is the number of facets of P. Claim: $|P| \ge |F|$.

|P| is the number of facets of P. Claim: $|P| \ge |F|$.

If F is a Coxeter polytope, denote by G_F a group generated by reflections in facets of F.

|P| is the number of facets of P. Claim: $|P| \ge |F|$.

If F is a Coxeter polytope, denote by G_F a group generated by reflections in facets of F.

Theorem (F&T, '03). Let F be a finite volume Coxeter polytope in \mathbb{H}^n or \mathbb{E}^n and P be a finite volume polytope bounded by mirrors of G_F . Then $|P| \ge |F|$.

 $M := \{ P_1 \mid P_1 \subset P, |P_1| = k \}$

$$M := \{ P_1 \mid P_1 \subset P, \quad |P_1| = k \} \qquad \begin{array}{c} - \text{ finite} \\ - \neq \emptyset \quad (P \in M) \end{array}$$

$$M := \{ P_1 \mid P_1 \subset P, \quad |P_1| = k \} \qquad \begin{array}{c} - \text{ finite} \\ - \neq \emptyset \quad (P \in M) \end{array}$$

Take $P_{min} \in M$ minimal by inclusion. P_{min} is a Coxeter polytope.

$$M := \{ P_1 \mid P_1 \subset P, \quad |P_1| = k \} \qquad \begin{array}{c} - \text{ finite} \\ - \neq \emptyset \quad (P \in M) \end{array}$$

Take $P_{min} \in M$ minimal by inclusion. P_{min} is a Coxeter polytope.

 $N := \{ P_1 \mid P_1 \text{ is bounded by } k \text{ facets of } P_{min} \text{ and one extra mirror} \}$

$$M := \{ P_1 \mid P_1 \subset P, \quad |P_1| = k \} \qquad \begin{array}{c} - \text{ finite} \\ - \neq \emptyset \quad (P \in M) \end{array}$$

Take $P_{min} \in M$ minimal by inclusion. P_{min} is a Coxeter polytope.

 $N := \{ P_1 \mid P_1 \text{ is bounded by } k \text{ facets of } P_{min} \text{ and one extra mirror} \}$

- finite
-
$$\neq \emptyset$$

$$M := \{ P_1 \mid P_1 \subset P, \quad |P_1| = k \} \qquad \begin{array}{c} - \text{ finite} \\ - \neq \emptyset \quad (P \in M) \end{array}$$

Take $P_{min} \in M$ minimal by inclusion. P_{min} is a Coxeter polytope. $N := \{P_1 \mid P_1 \text{ is bounded by } k \text{ facets of } P_{min} \text{ and one extra mirror} \}$ - finite $- \neq \emptyset$

Take $P'_{min} \in N$ minimal by inclusion. P'_{min} is a Coxeter polytope.

$$M := \{ P_1 \mid P_1 \subset P, \quad |P_1| = k \} \qquad \begin{array}{c} - \text{ finite} \\ - \neq \emptyset \quad (P \in M) \end{array}$$

Take $P_{min} \in M$ minimal by inclusion. P_{min} is a Coxeter polytope.

 $N := \{P_1 \mid P_1 \text{ is bounded by } k \text{ facets of } P_{min} \text{ and one extra mirror} \}$

$$\begin{array}{l} - & \text{finite} \\ - & \neq \emptyset \end{array}$$

Take $P'_{min} \in N$ minimal by inclusion. P'_{min} is a Coxeter polytope. Pair (P'_{min}, P_{min}) satisfies assumptions of Lemma. Contradiction.

If G is a cocompact reflection group acting on \mathbb{H}^n and $H \subset G$ is a finite index reflection subgroup then $\#(refl. gen. H) \geq \#(refl. gen. G).$

If G is a cocompact reflection group acting on \mathbb{H}^n and $H \subset G$ is a finite index reflection subgroup then $\#(refl. gen. H) \geq \#(refl. gen. G).$

Does it hold for arbitrary Coxeter group?

If G is a cocompact reflection group acting on \mathbb{H}^n and $H \subset G$ is a finite index reflection subgroup then $\#(refl. gen. H) \geq \#(refl. gen. G).$

Does it hold for arbitrary Coxeter group? No:

Any Coxeter group contains $H = \langle s \mid s^2 = 1 \rangle$.

If G is a cocompact reflection group acting on \mathbb{H}^n and $H \subset G$ is a finite index reflection subgroup then $\#(refl. gen. H) \ge \#(refl. gen. G).$

Does it hold for arbitrary infinite Coxeter group?

If G is a cocompact reflection group acting on \mathbb{H}^n and $H \subset G$ is a finite index reflection subgroup then $\#(refl. gen. H) \ge \#(refl. gen. G).$

Does it hold for arbitrary infinite Coxeter group? No:

If G is a cocompact reflection group acting on \mathbb{H}^n and $H \subset G$ is a finite index reflection subgroup then $\#(refl. gen. H) \ge \#(refl. gen. G).$

Does it hold for arbitrary infinite indecomposable Coxeter group?

$$G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle.$$

$$G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle.$$

|S| = n is the rank of (G, S).

$$G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle.$$

|S| = n is the rank of (G, S). Involutions s_i and all their conjugates are called reflections.

$$G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle.$$

|S| = n is the rank of (G, S). Involutions s_i and all their conjugates are called reflections.

Prop. G cannot be gen. by fewer than n reflections.

For any Coxeter system (G, S) there exists a Davis complex $\Sigma(G, S)$:

For any Coxeter system (G, S) there exists a Davis complex $\Sigma(G, S)$:

- $\Sigma(G, S)$ is a contractible peicewise Euclidean cell complex;
- G acts on $\Sigma(G, S)$ discretely, properly and cocompactly;
- $\Sigma(G, S)$ yields a complete peicewise Euclidean CAT(0) metric.

For any Coxeter system (G, S) there exists a Davis complex $\Sigma(G, S)$:

- $\Sigma(G, S)$ is a contractible peicewise Euclidean cell complex;
- G acts on $\Sigma(G, S)$ discretely, properly and cocompactly;
- $\Sigma(G, S)$ yields a complete peicewise Euclidean CAT(0) metric.
- For a finite group $\Sigma(G, S)$ is just one cell: it is a convex hull C of a G-orbit of a suitable point p, s.t. the stabilizer of p is trivial, all edges of C are of lenth 1.
For any Coxeter system (G, S) there exists a Davis complex $\Sigma(G, S)$:

- $\Sigma(G, S)$ is a contractible peicewise Euclidean cell complex;
- G acts on $\Sigma(G, S)$ discretely, properly and cocompactly;
- $\Sigma(G, S)$ yields a complete peicewise Euclidean CAT(0) metric.
- For a finite group $\Sigma(G,S)$ is just one cell:

it is a convex hull C of a G-orbit of a suitable point p, s.t. the stabilizer of p is trivial, all edges of C are of lenth 1.

• Faces of C are Davis complexes for the subgroups of G.

For any Coxeter system (G, S) there exists a Davis complex $\Sigma(G, S)$:

- $\Sigma(G, S)$ is a contractible peicewise Euclidean cell complex;
- G acts on $\Sigma(G, S)$ discretely, properly and cocompactly;
- $\Sigma(G, S)$ yields a complete peicewise Euclidean CAT(0) metric.

For a finite group Σ(G, S) is just one cell: it is a convex hull C of a G-orbit of a suitable point p, s.t. the stabilizer of p is trivial, all edges of C are of lenth 1.
Faces of C are Davis complexes for the subgroups of G.

• For an infinite group $\Sigma(G, S)$ is built up of the Davis complexes of maximal finite subgroups (glued together along their faces corresponding to common subgroups).

Any wall α decomposes $\Sigma(G,S)$ into two components α^+ and $\alpha^-.$

A convex polytope is an intersection of finitely many halfspaces m

$$P = \bigcap_{i=1}^{n} \alpha_i^+.$$

G is decomposable if $S = S_1 \cup S_2$, where $s_i s_j = s_j s_i$ $\forall s_i \in S_1, s_j \in S_2$. Otherwise, G is indecomposable.

Th. Let (G, S) be a Coxeter system where G is an infinite indecomposable Coxeter group. If P is a compact polytope in $\Sigma(G, S)$, then $|P| \ge |S|$ (where $|P| = \#(facets \ of \ P))$.

Th. Let (G, S) be a Coxeter system where G is an infinite indecomposable Coxeter group. If P is a compact polytope in $\Sigma(G, S)$, then $|P| \ge |S|$ (where $|P| = \#(facets \ of \ P))$.

If $|P^+| > |P|$ then P^+ is not a Coxeter polytope.

Th. Let (G, S) be a Coxeter system, where G is an infinite indecomposable Coxeter group. If P is a compact polytope in $\Sigma(G, S)$, then $|P| \ge |S|$ (where $|P| = \#(facets \ of \ P))$.

Th. Let (G, S) be a Coxeter system where G is an infinite indecomposable Coxeter group and $S = \{s_0, s_1, \ldots, s_n\}$. Let $H = \langle s_1, \ldots, s_n \rangle$ be a standard subgroup. Then $[G : H] = \infty$.

Want to find infinitely many copies of F in P.

Want to find infinitely many copies of F in P.

Example:

If $\langle s_0, s_1 \rangle$ is infinite subgroup then $[G:H] = \infty$.

Want to find infinitely many copies of F in P.

Example:

If $\langle s_0, s_1 \rangle$ is infinite subgroup then $[G:H] = \infty$.

Want to find infinitely many copies of F in P.

Example:

If $\langle s_0, s_1 \rangle$ is infinite subgroup then $[G:H] = \infty$.

Want to find infinitely many copies of F in P.

Example:

If $\langle s_0, s_1 \rangle$ is infinite subgroup then $[G:H] = \infty$.

Claim: infinitely many mirrors of s_0Hs_0 intersect P, where P is a chamber of H.

Claim: infinitely many mirrors of s_0Hs_0 intersect P, where P is a chamber of H. Look for them in $[s_1, s_0s_2s_0, \ldots, s_0s_ns_0] \subset P$.

Claim: infinitely many mirrors of s_0Hs_0 intersect P, where P is a chamber of H. Look for them in $[s_1, s_0s_2s_0, \ldots, s_0s_ns_0] \subset P$.

Proof: G is indecomposable \Rightarrow we may assume $s_1s_0 \neq s_0s_1$. Hence the mirror of $s_0s_1s_0$ decomposes P and $s_1 \notin s_0Hs_0$.

Claim: infinitely many mirrors of s_0Hs_0 intersect P, where P is a chamber of H. Look for them in $[s_1, s_0s_2s_0, \ldots, s_0s_ns_0] \subset P$.

Proof: G is indecomposable \Rightarrow we may assume $s_1s_0 \neq s_0s_1$. Hence the mirror of $s_0s_1s_0$ decomposes P and $s_1 \notin s_0Hs_0$.

Hence

$$\# \begin{pmatrix} \text{chambers of } s_0 H s_0 \\ \text{in } \langle s_1, s_0 s_2 s_0, \dots, s_0 s_n s_0 \rangle \end{pmatrix} = \# \begin{pmatrix} \text{chambers of } s_0 H s_0 \\ \text{in } \langle s_0 s_2 s_0, \dots, s_0 s_n s_0 \rangle \end{pmatrix}$$

$$|H| = \infty$$

H is indecomposable

 $|H| = \infty$ H is indecomposable **OK** (otherwise $[G:H] = \infty$)

 $|H| = \infty$ H is indecomposable OK (otherwise $[G:H] = \infty$) ??? (choice of s_1)

 $|H| = \infty$

 ${\boldsymbol{H}}$ is indecomposable

OK (otherwise $[G:H] = \infty$) ??? (choice of s_1)

 $|H| = \infty$ H is indecomposable

OK (otherwise $[G:H] = \infty$) ??? (choice of s_1)

$$K = \langle s_1, \ldots, s_k \rangle, \quad K \subset H$$

K is infinite, indecomposable.

 $|H| = \infty$ H is indecomposable

K is infinite, indecomposable.

OK (otherwise $[G:H] = \infty$) ??? (choice of s_1)

$$K = \langle s_1, \dots, s_k \rangle, \quad K \subset H$$
$$s_1 \notin s_0 K s_0$$
$$s_i \notin s_0 K s_0 \text{ for } i > k.$$

 $|H| = \infty$ H is indecomposable

OK (otherwise $[G:H] = \infty$) ??? (choice of s_1)

$$K = \langle s_1, \dots, s_k \rangle, \quad K \subset H$$
$$s_1 \notin s_0 K s_0$$
$$s_i \notin s_0 K s_0 \text{ for } i > k.$$

K is infinite, indecomposable. Hence,

$$\# \begin{pmatrix} \text{chambers of } s_0 K s_0 \\ \text{in } \langle s_1, s_0 s_2 s_0, \dots, s_0 s_n s_0 \rangle \end{pmatrix} = \# \begin{pmatrix} \text{chambers of } s_0 K s_0 \\ \text{in } \langle s_0 s_2 s_0, \dots, s_0 s_k s_0 \rangle \end{pmatrix} = \infty$$

