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G is a reflection group in X = Sn, En or Hn

H ⊂ G is a finite index reflection subgroup.

Question: what can we say about the pair (G, H)?

• If X = Sn, groups are classified. For subgroups see:

E. B. Dynkin, 1952 and F, 2002.

• If X = En, groups are classified. For subgroups see:
Dyer, 1990; Cameron, Seidel, Tsaranov, 1994; F&T, 2005.

• If X = Hn, groups are not classified. What about subgroups ?
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Example.
P F
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Is the combinatorics of F always simpler than one of P?
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|P | is the number of facets of P .

Claim: |P | ≥ |F |.

If F is a Coxeter polytope, denote by GF a group

generated by reflections in facets of F .

Theorem (F&T, ’03). Let F be a finite volume Coxeter
polytope in Hn or En and P be a finite volume polytope
bounded by mirrors of GF . Then |P | ≥ |F |.
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Proof of Theorem. Suppose that |P | = k, |F | ≥ k + 1,

and Th. holds for any polytope P ′ such that |P ′| < k.

M :=
{
P1

∣∣ P1 ⊂ P, |P1| = k
} – finite

– 6= ∅ (P ∈ M )

Take Pmin ∈ M minimal by inclusion. Pmin is a Coxeter polytope.

N :=
{
P1

∣∣ P1 is bounded by k facets of Pmin and one extra mirror
}

– finite

– 6= ∅

Take P ′
min ∈ N minimal by inclusion. P ′

min is a Coxeter polytope.

Pair (P ′
min, Pmin) satisfies assumptions of Lemma. Contradiction.
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In terms of groups we obtain:

If G is a cocompact reflection group acting on Hn

and H ⊂ G is a finite index reflection subgroup then
#(refl. gen. H) ≥ #(refl. gen. G).

Does it hold for arbitrary infinite indecomposable

Coxeter group?
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(G, S) is a Coxeter system if G is a group with a finite

set of involutions S = {s1, ..., sn} and a presentation

G = 〈si ∈ S | (sisj)mij〉.

|S| = n is the rank of (G, S).
Involutions si and all their conjugates are called

reflections.

Prop. G cannot be gen. by fewer than n reflections.
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For any Coxeter system(G, S) there exists a Davis complex Σ(G, S):
• Σ(G, S) is a contractible peicewise Euclidean cell complex;

• G acts on Σ(G, S) discretely, properly and cocompactly;

• Σ(G, S) yields a complete peicewise Euclidean CAT (0) metric.

• For a finite group Σ(G, S) is just one cell:

it is a convex hull C of a G-orbit of a suitable point p,

s.t. the stabilizer of p is trivial, all edges of C are of lenth 1.

• Faces of C are Davis complexes for the subgroups of G.

• For an infinite group Σ(G, S) is built up of the Davis complexes

of maximal finite subgroups (glued together along their faces

corresponding to common subgroups).















Any wall α decomposes Σ(G, S) into two components

α+ and α−.

A convex polytope is an intersection of finitely many

halfspaces
P =

m⋂
i=1

α+
i .
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Otherwise, G is indecomposable.
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If |P+| > |P |
then P+ is not a Coxeter polytope.



Th. Let (G, S) be a Coxeter system, where G is an infinite
indecomposable Coxeter group. Let H ⊂ G be a finite index
reflection subgroup. Then any set of reflections generating H

contains at least |S| reflections.

Th. Let (G, S) be a Coxeter system, where G is an infinite
indecomposable Coxeter group. If P is a compact polytope in
Σ(G, S), then |P | ≥ |S| (where |P | = #(facets of P )).

Th. Let (G, S) be a Coxeter system where G is an infinite
indecomposable Coxeter group and S = {s0, s1, . . . , sn}. Let
H = 〈s1, . . . , sn〉 be a standard subgroup. Then [G : H] = ∞.



G = 〈s0, s1, . . . , sn〉, infinite, indecomposable;

H = 〈s1, . . . , sn〉. Want: [G : H] = ∞.
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Want to find infinitely

many copies of F in P .
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Claim: infinitely many mirrors of s0Hs0 intersect P , where P is a

chamber of H.
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G = 〈s0, s1, . . . , sn〉, infinite, indecomposable;

H = 〈s1, . . . , sn〉. Want: [G : H] = ∞.

Claim: infinitely many mirrors of s0Hs0 intersect P , where P is a

chamber of H. Look for them in [s1, s0s2s0, . . . , s0sns0]⊂ P .

Proof: G is indecomposable ⇒ we may assume s1s0 6= s0s1.

Hence the mirror of s0s1s0 decomposes P and s1 /∈ s0Hs0.



G = 〈s0, s1, . . . , sn〉, infinite, indecomposable;

H = 〈s1, . . . , sn〉. Want: [G : H] = ∞.

Claim: infinitely many mirrors of s0Hs0 intersect P , where P is a

chamber of H. Look for them in [s1, s0s2s0, . . . , s0sns0]⊂ P .

Proof: G is indecomposable ⇒ we may assume s1s0 6= s0s1.

Hence the mirror of s0s1s0 decomposes P and s1 /∈ s0Hs0.

Hence

#
(

chambers of s0Hs0

in 〈s1, s0s2s0, . . . , s0sns0〉

)
= #

(
chambers of s0Hs0

in 〈s0s2s0, . . . , s0sns0〉

)
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|H| = ∞ OK (otherwise [G : H] = ∞)

H is indecomposable ??? (choice of s1)
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K = 〈s1, . . . , sk〉, K ⊂ H

K is infinite, indecomposable.
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si /∈ s0Ks0 for i > k.

K is infinite, indecomposable.



For induction we need:

|H| = ∞ OK (otherwise [G : H] = ∞)

H is indecomposable ??? (choice of s1)
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infinites1

s2, . . . , sk

K = 〈s1, . . . , sk〉, K ⊂ H

s1 /∈ s0Ks0

si /∈ s0Ks0 for i > k.

K is infinite, indecomposable. Hence,

#
(

chambers of s0Ks0

in 〈s1, s0s2s0, . . . , s0sns0〉

)
= #

(
chambers of s0Ks0

in 〈s0s2s0, . . . , s0sks0〉

)
= ∞



Counterpart of Andreev’s Theorem:

Let P ⊂ Σ be an acute-angled polytope, let a and b be facets of P

and α and β be the walls containing a and b respectively.
If a ∩ b = ∅ then α ∩ β = ∅ either.
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