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Reflection subgroups of Coxeter groups

1. Introduction

2. Zoo: “Easy to find” reflection subgroups

3. Finite index reflection subgroups

fgfgqwqq a. Rank?

fgfgqwqq b. Existance?



(G,S) is a Coxeter system if G is a group with a finite set of

involutions S = {s1, ..., sn} and a presentation

G = 〈si ∈ S | (sisj)
mij〉.

|S| = n is the rank of (G,S).

Involutions si and all their conjugates are called reflections.

A reflection subgroup of G is a subgroup generated by reflections.

Question: What can we say about the reflection subgroups of G?

Question: About finite index reflection subgroups of G?
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Example 1. G : H2, H ⊂ G a finite index subgroup.

F is a chamber of G, P is a chamber of H.

P is tiled by [G : H] copies of F .

F = (π2 ,
π
3 ,
π
7)

P = (π7 ,
π
7 ,
π
7)

G = 〈s1, s2, s3 | s2i = (s1s2)
2 = (s2s3)

3 = (s1s3)
7 = 1〉

H = 〈s1, s2, s3 | s2i = (sisj)
7 = 1〉



Geometric groups: G : Xn = Sn,En or Hn.



Geometric groups: G : Xn = Sn,En or Hn.

• Xn is tiled by chambers of G;

• Any chamber F is a Coxeter polytope (poly. with angles π/k);

• G is gen. by refl with resp. to facets of F .

• For any Coxeter polytope P ⊂ Xn, a group gen. by refl. with

resp. to facets of P is discrete;

• Any discrete refl. gp. is a Coxeter group.
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Theorem (Dyer’ 90):

Any reflection subgroup of a Coxeter group is a Coxeter group.

Dyer’s theorem is almost evident for geometric groups:

a reflection subgroup H ⊂ G is generated by reflections with respect

to the facets of P (where P is a chamber of H).
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Coxeter diagram C(G)

• Nodes ←→ generating reflections si of G

• Edges: Examples:
if (sisj)

mij = 1

if (sisj)
2 = 1

if (sisj)
3 = 1

if (sisj)
4 = 1

if (sisj)
5 = 1

if sisj has infinite order

mij

6
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“Rotation” subgroups

Example. G = 〈s1, s2, s3 | s2i = (s1s2)
3 = (s2s3)

4 = (s1s3)
4 = 1〉

3
4 4

A subdiagram C1 ⊂ C(G) is “even” if

each edge joining C1 with C(G) \ C1 is either dotted or “even”.

In general: Let G : Hn, En or Sn and let C1 ⊂ C(G) be an even

subdiagram. If C1 is a diagram of a finite group K(C1) then G has

a finite index subgroup H, [G : H] = |K(C1)|.
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Standard subgroups

Let (G,S) be a Coxeter system.

H ⊂ G is a standard subgroup if H is generated by some of si ∈ S.

Theorem (Deodhar’ 82). Let (G,S) be a Coxeter system and G be

an infinite indecomposable group. Any proper standard subgroup

H ⊂ G has infinite index in G.

Indecomposable means “is not a decomposable”,

(G,S) is decomposable if S = I t J , and (sisj)
2 = 1

for any si ∈ I, sj ∈ J .
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Proof of Deodhar’s thm, geometric case:
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Theorem (F&T’ 03)

If G is a cocompact reflection group acting on Hn or En
and H ⊂ G is a finite index reflection subgroup

then rankH ≥ rank G.



Theorem (F&T’ 03)

If G is a cocompact reflection group acting on Hn or En
and H ⊂ G is a finite index reflection subgroup

then rankH ≥ rank G.

Thm’

Let G be a cocompact reflection group acting on Hn or En
and P be a finite volume polytope bounded by walls of G.

Then |P | ≥ |F |, where F is a fundamental chamber of G,

|P | is the number of facets of P .



Proof of Theorem. Suppose that |P | = k, |F | ≥ k + 1,

and Th. holds for any polytope P ′ such that |P ′| < k.

M :=
{
P1

∣∣ P1 ⊂ P, |P1| = k
} – finite

– 6= ∅ (P ∈M )

Take Pmin ∈M minimal by inclusion. Pmin is a Coxeter polytope.

N :=
{
P1

∣∣ P1 is bounded by k facets of Pmin and one extra mirror
}

– finite

– 6= ∅

Take P ′min ∈ N minimal by inclusion. P ′min is a Coxeter polytope.

Pair (P ′min, Pmin) contradicts to Deodhar’s thm.



Theorem (F&T’ 03)
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If G is a cocompact reflection group acting on Hn or En
and H ⊂ G is a finite index reflection subgroup

then rankH ≥ rank G.

Does it hold for arbitrary Coxeter group? No:

Any Coxeter group contains H = 〈s | s2 = 1〉.
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Theorem (F&T’ 03)

If G is a cocompact reflection group acting on Hn or En
and H ⊂ G is a finite index reflection subgroup

then rankH ≥ rank G.

Does it hold for arbitrary infinite indecomposable

Coxeter group?

Yes!

To prove, we need some geometric realization of (G,S).



Tits representation

S = {s1, . . . , sn} → V n = 〈v1, . . . , vn〉, (∗, ∗):

(vi, vi) = 1, (vi, vj) =

{
− cos(π/k) if ord(sisj) = k,

−1 if ord(sisj) =∞.

Rvj(vi) = vi − 2
(vi,vj)

(vj,vj)
vj.

Prop. ∀ (G,S), G can not be generated by less than |S| reflections.
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Davis complex Σ(G,S)

• Σ(G,S) is a contractible piecewise Euclidean cell complex;

• G acts on Σ(G,S) discretely, properly and cocompactly;

• (Moussong’ 88)

Σ(G,S) yields a complete piecewise Euclidean CAT (0) metric.



Davis complex Σ(G,S)

• For a finite group Σ(G,S) is just one cell:

it is a convex hull C of a G-orbit of a suitable point p,

s.t. the stabilizer of p is trivial, all edges of C are of length 1.

• Faces of C are Davis complexes for the subgroups of G.
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Davis complex Σ(G,S)

• For an infinite group:

− take a cell for each max. finite subgroup;

− glue the cells

along their faces corresponding to common subgroups.

• In more detailes: fin. standard subgp GJ , J ⊂ S → cell XJ ;

− U =
⋃
{ (g,XJ) | g ∈ G, GJ ⊆ G finite standard }

− (gh, x) ∼ (h, g−1x), whenever g ∈ G, h ∈ GJ , x ∈ XJ .

− Cells (g,XK) and (g,XL) are glued along the face J = K∩L.

− Σ = U/ ∼.
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G acts by reflections on Σ(G,S).

Any wall α decomposes Σ(G,S) into two components α+ and α−.

A convex polytope is an intersection of finitely many halfspaces

P =

m⋂
i=1

α+
i .

Dihedral angle formed by α and β: ∠αβ = π/k if ord(rαrβ) = k

(coincides with a Euclidean angle in a cell).

Acute-angled polytope: if all dihedral angles ≤ π/2.

Coxeter polytope: if all dihedral angles are of form π/k.
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Counterpart of Andreev’s Theorem (F&T’ 08):

Let P ⊂ Σ be an acute-angled polytope, let a and b be facets of P
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Faces of any dim:
Jessica Fintzen’ 11.
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and P ⊂ Σ(G,S) is a chamber of H then

• P is a Coxeter polytope.

• P is tiled by [G : H] chambers of G.

• reflections in walls of P generate H.



If H ⊂ G is a reflection subgroup,

and P ⊂ Σ(G,S) is a chamber of H then

• P is a Coxeter polytope.

• P is tiled by [G : H] chambers of G.

• reflections in walls of P generate H.



If H ⊂ G is a reflection subgroup,

and P ⊂ Σ(G,S) is a chamber of H then

• P is a Coxeter polytope.

• P is tiled by [G : H] chambers of G.

• reflections in walls of P generate H.



If H ⊂ G is a reflection subgroup,

and P ⊂ Σ(G,S) is a chamber of H then

• P is a Coxeter polytope.

• P is tiled by [G : H] chambers of G.

• reflections in walls of P generate H.



Theorem (F&T, 08). Let (G,S) be a Coxeter system,
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Proof of Deodhar’s theorem:

G = 〈s0, s1, . . . , sn〉, infinite, indecomposable;

H = 〈s1, . . . , sn〉. Want: [G : H] =∞.
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Example:

If 〈s0, s1〉 is infinite subgroup

then [G : H] =∞.
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Theorem (F&T, 08). Let (G,S) be a Coxeter system,

where G is an infinite indecomposable Coxeter group.

If H ⊂ G is a finite index reflection subgroup

then rankH ≥ rank G.

Corollary. If H ⊂ G is a visual subgroup, then [G : H] =∞.
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A nerve of (G,S) is a simplicial complex N(G,S)

• vertex set is S,

• vertices span a simplex ⇔
the corresponding reflections generate a finite group.

Thm. If rankH = rank G then N(H,S′) may be obtained from

N(G,S) by deletion of some simplices.

Thm. If rankH = rank G then ∃ s0 ∈ S s.t.

either s0si = sis0 for all but one si ∈ S;

or the order of s0si is finite for all si ∈ S.
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For compact polytopes in Hn:

Thm. If G : Hn cocompactly, and rankH = rank G,

then F is combinatorially equivalent to P .

(F = fundamental chamber of G,

P = fundamental chamber of H)
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Prop. Let G = G1 ∗G2, where Gi ⊂ G is a reflection subgroup.

Then G has a finite index refl. subgr. iff

at least one of G1 and G2 has.
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Odd-angled groups:

G = 〈si ∈ S | (sisj)
mij〉, where mij /∈ 2Z for all i, j.

Why to study odd-angled gps?
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