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3. Finite index reflection subgroups
a. Rank?
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Question: About finite index reflection subgroups of G7
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P = (%7%7%) H = (51, 82,53 | 812 = (Sisj)7 =1)
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Geometric groups: G : X" = 8", K" or H".
e X" is tiled by chambers of G;
e Any chamber F'is a Coxeter polytope (poly. with angles 7 /k);

e (& is gen. by refl with resp. to facets of F..

e For any Coxeter polytope P C X",
a group gen. by refl. with resp. to facets of P is discrete;

e Any discrete refl. gp. in X" is a Coxeter group.
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Theorem (Dyer’ 90):
Any reflection subgroup of a Coxeter group is a Coxeter group.

Dyer’s theorem is almost evident for geometric groups:
a reflection subgroup H C G is generated by reflections with respect
to the facets of P (where P is a chamber of H).
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Example 2. G = (s1, 89, 83,54,55 | 87 = (8;8i11)° = 1)
has infinitely many finite index subgroups:

Example 3. G = (s1, 82,83 | 87 = (8;8;)° = 1)
has NO finite index subgroups.



Coxeter diagram C(G)
e Nodes «— generating reflections s; of G

e Edges: Examples:

i = 1 f
6
2 L ) ® ® ® o

——e ¢—

——e if (5;5,)° =1 Hj :ﬂ
e — 9 @& »

eo---o if s;5; has infinite order
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“Rotation” subgroups

Example. G = (s1, 52,83 | 57 = (5152)° = (5253)" = (s183)" = 1)

AVAN
VAN ave

A subdiagram C; C C(G) is “even” if
each edge joining Cy with C(G) \ (1 is either dotted or “even”.

In general: Let G : H", E™ or S” and let C; C C(G) be an even
subdiagram. If C is a diagram of a finite group K(C4) then G has
a finite index subgroup H, |G : H] = |K(C})|.
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Standard subgroups

Let (G, S) be a Coxeter system.

H C G is a standard subgroup if H is generated by some of s; € S.

Theorem (Deodhar’ 82). Let (G, S) be a Coxeter system and G be
an infinite indecomposable group. Any proper standard subgroup
H C G has infinite index in G.

Indecomposable means “is not a decomposable”,

(G, S) is decomposable if S =T U .J, and (s;5,)* = 1
forany s; € I, s; € J.



Proof of Deodhar’s thm, geometric case:

4



Proof of Deodhar’s thm, geometric case:




Proof of Deodhar’s thm, geometric case:

U




Theorem (F&T' 03)

If G is a cocompact reflection group acting on H" or E"
and H C G is a finite index reflection subgroup

then rank H > rank G.



Theorem (F&T' 03)

If G is a cocompact reflection group acting on H" or E"
and H C G is a finite index reflection subgroup

then rank H > rank G.

Thm'
Let G be a cocompact reflection group acting on H" or E"
and P be a finite volume polytope bounded by walls of G.
Then |P| > |F|, where F'is a fundamental chamber of G,

| P| is the number of facets of P.



Proof of Theorem. Suppose that |P| =k, |F| >k +1,
and Th. holds for any polytope P’ such that |P’| < k.

— finite
- #0) (PeM)

Take P,,;,, € M minimal by inclusion. P,,;, is a Coxeter polytope.

M:={P | PLCP, |P|=k}

N = {P1 ‘ P; is bounded by k facets of P,,;,, and one extra mirror}

— finite

— £
€ N minimal by inclusion. P/ . is a Coxeter polytope.

P,nin) contradicts to Deodhar’s thm.

Take P’

man

Pair (P!

main’
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Theorem (F&T' 03)

If G is a cocompact reflection group acting on H" or E"
and H C G is a finite index reflection subgroup
then rank H > rank G.

Does it hold for arbitrary infinite indecomposable
Coxeter group?

Yes!

To prove, we need some geometric realization of (G, 5).



Tits representation

S={s1,...,8n} — VP ={(v1,...,0,), (%, %):

k,

0.

—cos(m/k) if ord(s;s;)

(vi,vi) =1, (vi,v5) = {1 if ord(s;s;)

RU.(Ui) = V; — 2(1)@',1)]')0..

J (vj,v5) ~J




Tits representation

S={s1,...,8n) = V*=(v1,...,0p), (%, %):

)

—cos(m/k) if ord(s;s;)
—1 if ord(s;s;)

k,

0.

(’Ui,’Ui) =1, (Uiavj) — {

Rv-(vi) = V; — 2(1)@',1)]')1].

J (”Uj,?)j) J:

Prop. V (G, S), G can not be generated by less than |S| reflections.



Davis complex (G, S)

e (G, S) is a contractible piecewise Euclidean cell complex;

e (7 acts on X(G, S) discretely, properly and cocompactly;

e (Moussong' 88)
Y(G, S) yields a complete piecewise Euclidean C' AT'(0) metric.



Davis complex (G, S)
e For a finite group X(G, 5) is just one cell:

it is a convex hull C' of a G-orbit of a suitable point p,
s.t. the stabilizer of p is trivial, all edges of C are of length 1.
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Davis complex (G, S)
e For a finite group X(G, 5) is just one cell:

it is a convex hull C' of a G-orbit of a suitable point p,
s.t. the stabilizer of p is trivial, all edges of C are of length 1.

e Faces of (' are Davis complexes for the subgroups of G.



Davis complex (G, S)

e For an infinite group:
— take a cell for each max. finite subgroup;
— glue the cells
along their faces corresponding to common subgroups.



Davis complex (G, S)

e For an infinite group:
— take a cell for each max. finite subgroup;
— glue the cells
along their faces corresponding to common subgroups.

e In more detailes:  fin. standard subgp G5, J C S — cell X ;
U=\ (9,Xs) | g €G, Gy C G finite standard }

(gh,x) ~ (h,g 'x), whenever g e G, h e G5, x € X .
Cells (g, Xk) and (g, X ) are glued along the face J/ = KN L.

N =U/ ~.
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G acts by reflections on X(G, S).
Any wall o decomposes ¥(G, S) into two components o™ and a~.

A convex polytope is an intersection of finitely many halfspaces
™m
P = ﬂ ozj.
i=1

Dihedral angle formed by o and 8: Zaf = n/k if ord(rorg) =k
(coincides with a Euclidean angle in a cell).

Acute-angled polytope: if all dihedral angles < /2.

Coxeter polytope: if all dihedral angles are of form = /k.
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Faces of any dim:
Jessica Fintzen’ 11.
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If H C GG is a reflection subgroup,
and P C X(G,S) is a chamber of H then

e P is a Coxeter polytope.
e P is tiled by |G : H| chambers of G.

e reflections in walls of P generate H.
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Theorem (F&T, 08). Let (G, S) be a Coxeter system,
where GG is an infinite indecomposable Coxeter group.
If H C GG is a finite index reflection subgroup

then rank H > rank G.

Proof is the same as in the geometric case:
e an induction based on polytopes;

e Deodhar’s theorem.
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A nerve of (G,.S) is a simplicial complex N(G, S)
e vertex set is 9,

e vertices span a simplex <
the corresponding reflections generate a finite group.

Thm. If rank H = rank G then N(H,S’) may be obtained from
N(G, S) by deletion of some simplices.

Thm. If rank H = rank G then dsge€ S s.t.
either sgs; = s;so for all but one s; € S;
or the order of sgs; is finite for all s; € S.



For compact polytopes in H™:

Thm. If G : H" cocompactly, and rank H = rank G,
then F' i1s combinatorially equivalent to P.

(F' = fundamental chamber of G,
P = fundamental chamber of H)



Theorem (F&T, 08). Let (G, S) be a Coxeter system,
where GG is an infinite indecomposable Coxeter group.

If H C GG is a finite index reflection subgroup
then rank H > rank G.

Corollary. If H C G is a visual subgroup, then |G : H| = .
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Prop. Let G = G1 x Go, where GG; C GG is a reflection subgroup.
Then G has a finite index refl. subgr. iff
at least one of Gy and (G5 has.

Example:

no finite index index 10
reflection subgroups reflection subgroup



Odd-angled groups:
G= (s, €85 (s:85)"), where m;; ¢ 27 for all  4,j.

Why to study odd-angled gps?
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Odd-angled groups:
G=(s; €S| (sis;)™4), where m;; ¢ 2Z  for all  i,j.
Why to study odd-angled gps?

Example: tilings of triangles by hyperbolic Coxeter triangles.

How to study odd-angled gps?
Divisability Coxeter diagram  Cozgi(G) :
o oﬁo where k;; is a minimal nontrivial divisor of m;;.

e no edge for m;; = oo.
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