Reflection subgroups of Coxeter groups

A. Felikson

joint work with P. Tumarkin

Geometry and Topology seminar, Durham

07.02.2013

Reflection subgroups of Coxeter groups

1. Introduction

- 2. Zoo: "Easy to find" reflection subgroups
- 3. Finite index reflection subgroups
 - a. Rank?
 - b. Existance?

$$G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle.$$

$$G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle.$$

|S| = n is the rank of (G, S).

$$G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle.$$

|S| = n is the rank of (G, S).

Involutions s_i and all their conjugates are called reflections.

$$G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle.$$

|S| = n is the rank of (G, S).

Involutions s_i and all their conjugates are called reflections.

A reflection subgroup of G is a subgroup generated by reflections.

$$G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle.$$

|S| = n is the rank of (G, S).

Involutions s_i and all their conjugates are called reflections.

A reflection subgroup of G is a subgroup generated by reflections.

Question: What can we say about the reflection subgroups of G?

$$G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle.$$

|S| = n is the rank of (G, S).

Involutions s_i and all their conjugates are called reflections.

A reflection subgroup of G is a subgroup generated by reflections.

Question: What can we say about the reflection subgroups of G?

Question: About finite index reflection subgroups of G?

Example 1. $G : \mathbb{H}^2$, $H \subset G$ a finite index subgroup. *F* is a chamber of *G*, *P* is a chamber of *H*. **Example 1.** $G : \mathbb{H}^2$, $H \subset G$ a finite index subgroup.

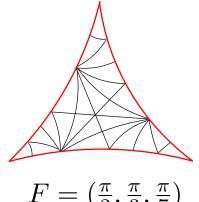
F is a chamber of G, P is a chamber of H.

P is tiled by [G:H] copies of F.

Example 1. $G : \mathbb{H}^2$, $H \subset G$ a finite index subgroup.

F is a chamber of G, P is a chamber of H.

P is tiled by [G:H] copies of F.



$$F = \left(\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{7}\right) \qquad G = \left\langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^2 = (s_2 s_3)^3 = (s_1 s_3)^7 = 1 \right\rangle$$
$$P = \left(\frac{\pi}{7}, \frac{\pi}{7}, \frac{\pi}{7}\right) \qquad H = \left\langle s_1, s_2, s_3 \mid s_i^2 = (s_i s_j)^7 = 1 \right\rangle$$

Geometric groups: $G: \mathbb{X}^n = \mathbb{S}^n, \mathbb{E}^n$ or \mathbb{H}^n .

Geometric groups: $G: \mathbb{X}^n = \mathbb{S}^n, \mathbb{E}^n$ or \mathbb{H}^n .

- \mathbb{X}^n is tiled by chambers of G;
- Any chamber F is a Coxeter polytope (poly. with angles π/k);
- G is gen. by refl with resp. to facets of F.

Geometric groups: $G: \mathbb{X}^n = \mathbb{S}^n, \mathbb{E}^n$ or \mathbb{H}^n .

- \mathbb{X}^n is tiled by chambers of G;
- Any chamber F is a Coxeter polytope (poly. with angles π/k);
- G is gen. by refl with resp. to facets of F.

- For any Coxeter polytope P ⊂ Xⁿ,
 a group gen. by refl. with resp. to facets of P is discrete;
- Any discrete refl. gp. in \mathbb{X}^n is a Coxeter group.

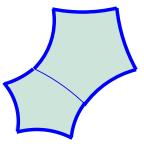
Theorem (Dyer' 90):

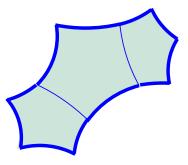
Any reflection subgroup of a Coxeter group is a Coxeter group.

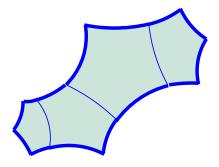
Theorem (Dyer' 90):

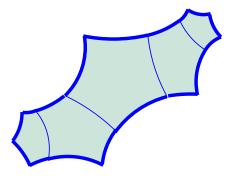
Any reflection subgroup of a Coxeter group is a Coxeter group.

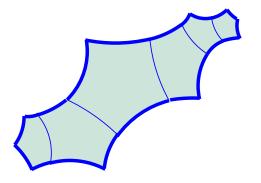
Dyer's theorem is almost evident for geometric groups: a reflection subgroup $H \subset G$ is generated by reflections with respect to the facets of P (where P is a chamber of H).

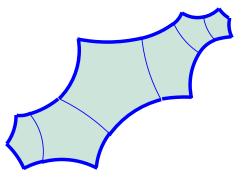










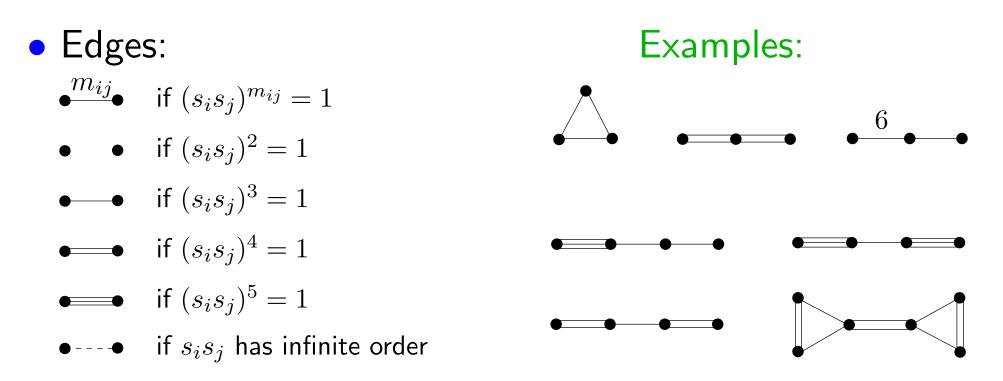


Example 3.
$$G = \langle s_1, s_2, s_3 | s_i^2 = (s_i s_j)^5 = 1 \rangle$$

has NO finite index subgroups.

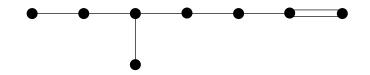
Coxeter diagram C(G)

• Nodes \longleftrightarrow generating reflections s_i of G

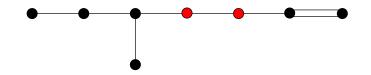


$$G = \langle s_1, \ldots, s_{n-1}, s_n \rangle. \quad H = \langle s_1, \ldots, s_{n-2}, s_n s_{n-1} s_n \rangle.$$

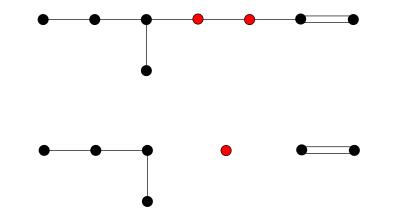
$$G = \langle s_1, \ldots, s_{n-1}, s_n \rangle. \quad H = \langle s_1, \ldots, s_{n-2}, s_n s_{n-1} s_n \rangle.$$



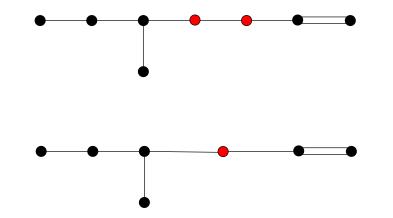
$$G = \langle s_1, \ldots, s_{n-1}, s_n \rangle. \quad H = \langle s_1, \ldots, s_{n-2}, s_n s_{n-1} s_n \rangle.$$



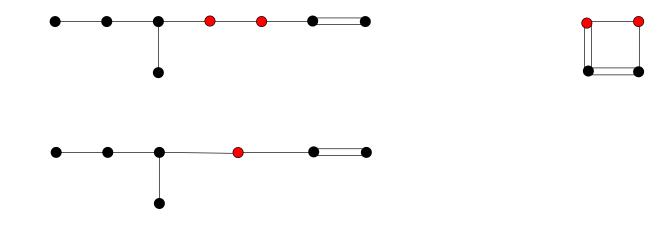
$$G = \langle s_1, \ldots, s_{n-1}, s_n \rangle. \quad H = \langle s_1, \ldots, s_{n-2}, s_n s_{n-1} s_n \rangle.$$



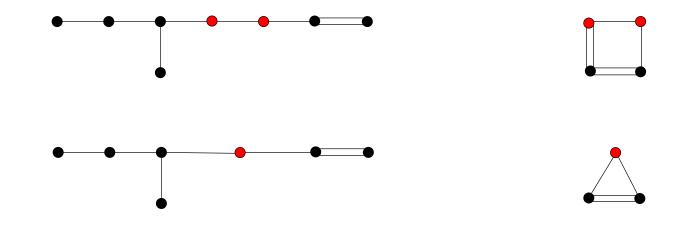
$$G = \langle s_1, \ldots, s_{n-1}, s_n \rangle. \quad H = \langle s_1, \ldots, s_{n-2}, s_n s_{n-1} s_n \rangle.$$



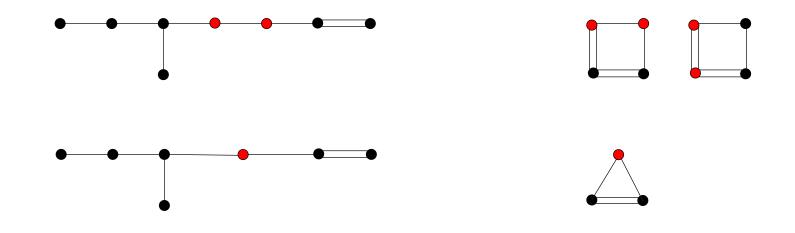
$$G = \langle s_1, \ldots, s_{n-1}, s_n \rangle. \quad H = \langle s_1, \ldots, s_{n-2}, s_n s_{n-1} s_n \rangle.$$



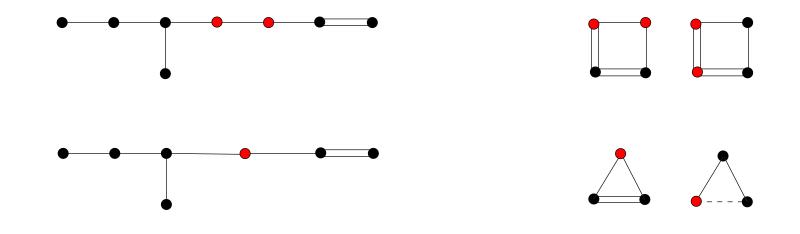
$$G = \langle s_1, \ldots, s_{n-1}, s_n \rangle. \quad H = \langle s_1, \ldots, s_{n-2}, s_n s_{n-1} s_n \rangle.$$



$$G = \langle s_1, \ldots, s_{n-1}, s_n \rangle. \quad H = \langle s_1, \ldots, s_{n-2}, s_n s_{n-1} s_n \rangle.$$



$$G = \langle s_1, \ldots, s_{n-1}, s_n \rangle. \quad H = \langle s_1, \ldots, s_{n-2}, s_n s_{n-1} s_n \rangle.$$



"Rotation" subgroups

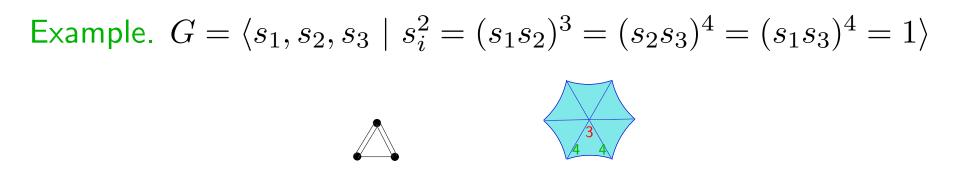
Example. $G = \langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^3 = (s_2 s_3)^4 = (s_1 s_3)^4 = 1 \rangle$

3

"Rotation" subgroups

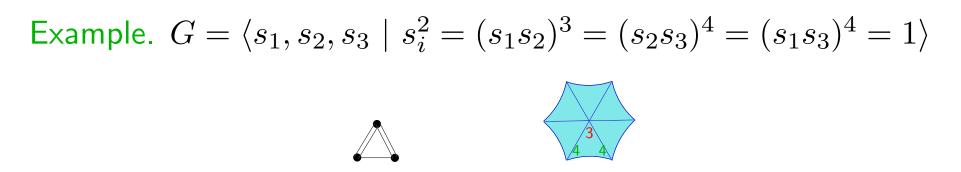
Example. $G = \langle s_1, s_2, s_3 \mid s_i^2 = (s_1 s_2)^3 = (s_2 s_3)^4 = (s_1 s_3)^4 = 1 \rangle$

"Rotation" subgroups



A subdiagram $C_1 \subset C(G)$ is "even" if each edge joining C_1 with $C(G) \setminus C_1$ is either dotted or "even".

"Rotation" subgroups



A subdiagram $C_1 \subset C(G)$ is "even" if each edge joining C_1 with $C(G) \setminus C_1$ is either dotted or "even".

In general: Let $G : \mathbb{H}^n$, \mathbb{E}^n or \mathbb{S}^n and let $C_1 \subset C(G)$ be an even subdiagram. If C_1 is a diagram of a finite group $K(C_1)$ then G has a finite index subgroup H, $[G : H] = |K(C_1)|$.

Standard subgroups

- Let (G, S) be a Coxeter system.
- $H \subset G$ is a standard subgroup if H is generated by some of $s_i \in S$.

Standard subgroups

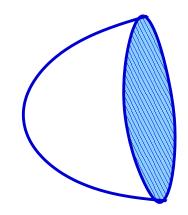
Let (G, S) be a Coxeter system.

 $H \subset G$ is a standard subgroup if H is generated by some of $s_i \in S$.

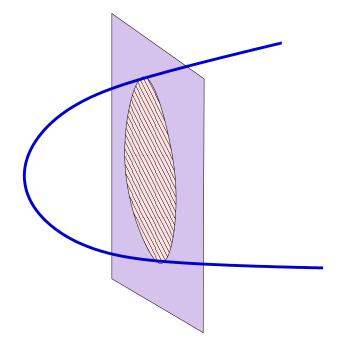
Theorem (Deodhar' 82). Let (G, S) be a Coxeter system and G be an infinite indecomposable group. Any proper standard subgroup $H \subset G$ has infinite index in G.

Indecomposable means "is not a decomposable",

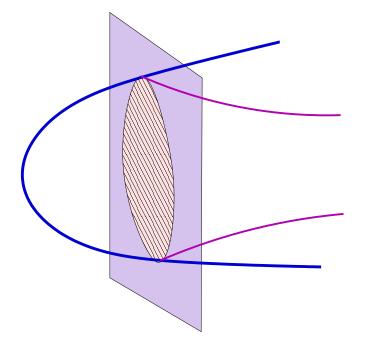
(G, S) is decomposable if $S = I \sqcup J$, and $(s_i s_j)^2 = 1$ for any $s_i \in I$, $s_j \in J$. Proof of Deodhar's thm, geometric case:



Proof of Deodhar's thm, geometric case:



Proof of Deodhar's thm, geometric case:



Theorem (F&T' 03)

If G is a cocompact reflection group acting on \mathbb{H}^n or \mathbb{E}^n and $H \subset G$ is a finite index reflection subgroup then $rank H \ge rank G$.

Thm'

Let G be a cocompact reflection group acting on \mathbb{H}^n or \mathbb{E}^n and P be a finite volume polytope bounded by walls of G. Then $|P| \ge |F|$, where F is a fundamental chamber of G, |P| is the number of facets of P. **Proof of Theorem.** Suppose that |P| = k, $|F| \ge k + 1$, and Th. holds for any polytope P' such that |P'| < k.

$$M := \{ P_1 \mid P_1 \subset P, \quad |P_1| = k \} \qquad \begin{array}{c} - \text{ finite} \\ - \neq \emptyset \quad (P \in M) \end{array}$$

Take $P_{min} \in M$ minimal by inclusion. P_{min} is a Coxeter polytope.

 $N := \{P_1 \mid P_1 \text{ is bounded by } k \text{ facets of } P_{min} \text{ and one extra mirror} \}$

$$\begin{array}{l} - & \text{finite} \\ - & \neq \emptyset \end{array}$$

Take $P'_{min} \in N$ minimal by inclusion. P'_{min} is a Coxeter polytope. Pair (P'_{min}, P_{min}) contradicts to Deodhar's thm.

Does it hold for arbitrary Coxeter group?

Theorem (F&T' 03)

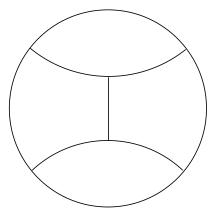
If G is a cocompact reflection group acting on \mathbb{H}^n or \mathbb{E}^n and $H \subset G$ is a finite index reflection subgroup then $rank H \ge rank G$.

Does it hold for arbitrary Coxeter group? No:

Any Coxeter group contains $H = \langle s \mid s^2 = 1 \rangle$.

Does it hold for arbitrary infinite Coxeter group?

Does it hold for arbitrary infinite Coxeter group? No:



Does it hold for arbitrary infinite indecomposable Coxeter group?

Does it hold for arbitrary infinite indecomposable Coxeter group?

Yes!

To prove, we need some geometric realization of (G, S).

Tits representation

$$S = \{s_1, \dots, s_n\} \to V^n = \langle v_1, \dots, v_n \rangle, \quad (*, *):$$

$$(v_i, v_i) = 1, \quad (v_i, v_j) = \begin{cases} -\cos(\pi/k) & \text{if } ord(s_i s_j) = k, \\ -1 & \text{if } ord(s_i s_j) = \infty. \end{cases}$$

$$R_{v_j}(v_i) = v_i - 2\frac{(v_i, v_j)}{(v_j, v_j)}v_j.$$

Tits representation

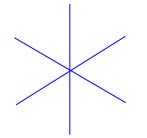
$$S = \{s_1, \dots, s_n\} \rightarrow V^n = \langle v_1, \dots, v_n \rangle, \qquad (*, *):$$
$$(v_i, v_i) = 1, \quad (v_i, v_j) = \begin{cases} -\cos(\pi/k) & \text{if } ord(s_i s_j) = k, \\ -1 & \text{if } ord(s_i s_j) = \infty. \end{cases}$$

$$R_{v_j}(v_i) = v_i - 2\frac{(v_i, v_j)}{(v_j, v_j)}v_j.$$

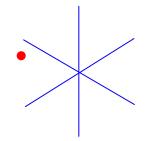
Prop. \forall (G, S), G can not be generated by less than |S| reflections.

- $\Sigma(G, S)$ is a contractible piecewise Euclidean cell complex;
- G acts on $\Sigma(G, S)$ discretely, properly and cocompactly;
- (Moussong' 88)
 - $\Sigma(G, S)$ yields a complete piecewise Euclidean CAT(0) metric.

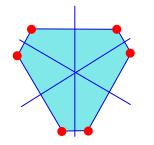
• For a finite group $\Sigma(G, S)$ is just one cell:



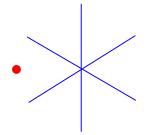
• For a finite group $\Sigma(G, S)$ is just one cell:



• For a finite group $\Sigma(G, S)$ is just one cell:



• For a finite group $\Sigma(G, S)$ is just one cell:

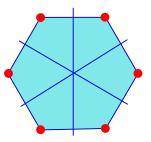


• For a finite group $\Sigma(G, S)$ is just one cell:



• For a finite group $\Sigma(G, S)$ is just one cell:

it is a convex hull C of a G-orbit of a suitable point p, s.t. the stabilizer of p is trivial, all edges of C are of length 1.



• Faces of C are Davis complexes for the subgroups of G.

- For an infinite group:
- take a cell for each max. finite subgroup;
- glue the cells

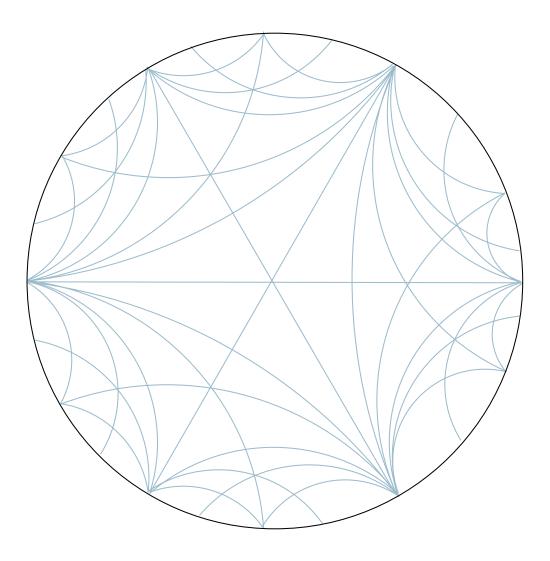
along their faces corresponding to common subgroups.

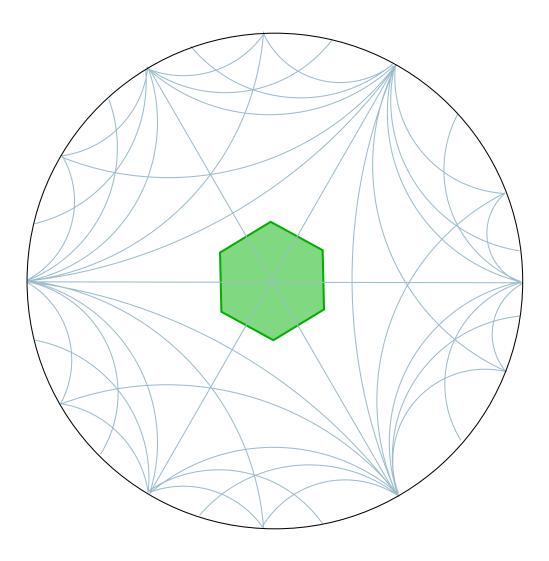
- For an infinite group:
- take a cell for each max. finite subgroup;
- glue the cells

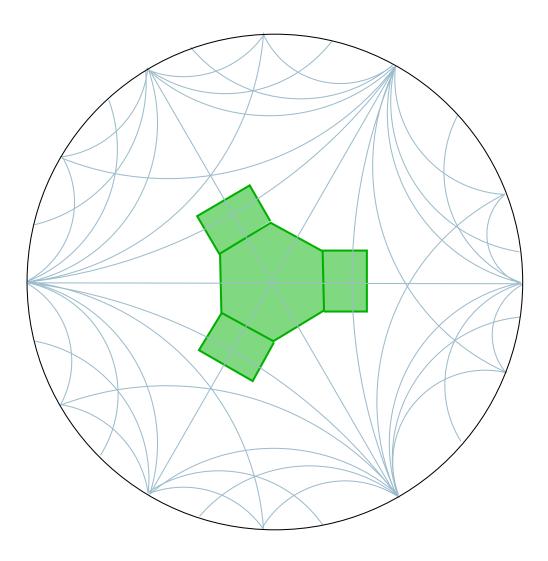
along their faces corresponding to common subgroups.

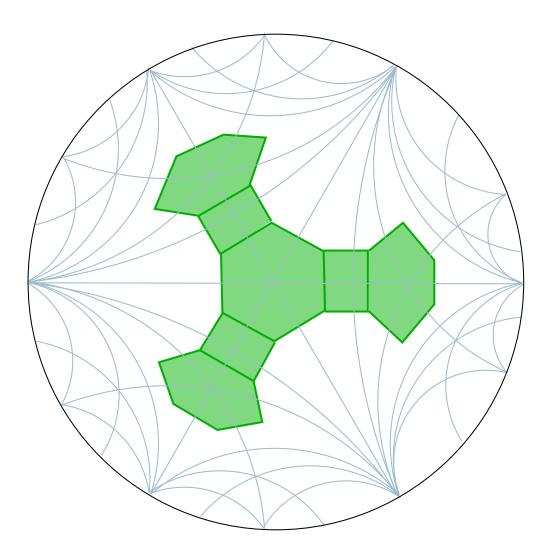
• In more detailes: fin. standard subgp G_J , $J \subset S \rightarrow \text{cell } X_J$; $U = \bigcup \{ (g, X_J) \mid g \in G, \ G_J \subseteq G \text{ finite standard } \}$

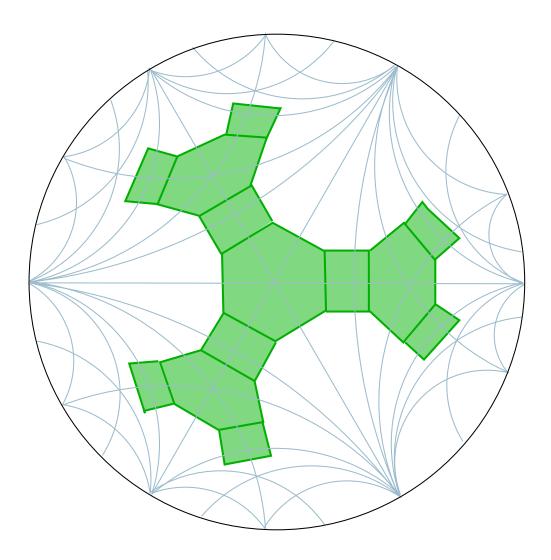
 $(gh, x) \sim (h, g^{-1}x)$, whenever $g \in G$, $h \in G_J$, $x \in X_J$. Cells (g, X_K) and (g, X_L) are glued along the face $J = K \cap L$. $\Sigma = U/\sim$.

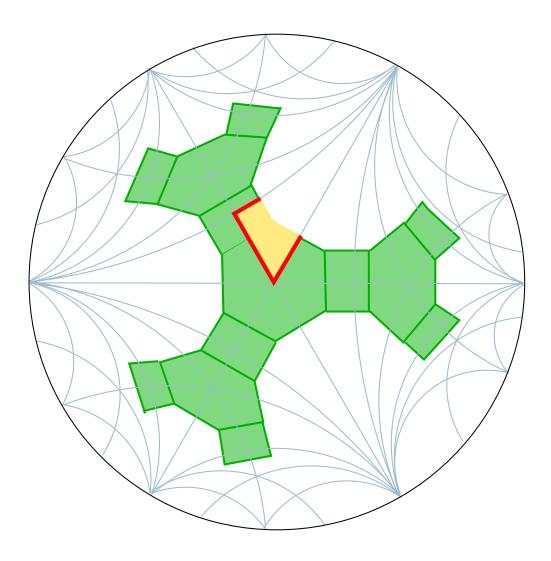












G acts by reflections on $\Sigma(G, S)$.

G acts by reflections on $\Sigma(G, S)$.

Any wall α decomposes $\Sigma(G,S)$ into two components α^+ and $\alpha^-.$

G acts by reflections on $\Sigma(G, S)$.

Any wall α decomposes $\Sigma(G, S)$ into two components α^+ and α^- .

A convex polytope is an intersection of finitely many halfspaces

$$P = \bigcap_{i=1}^{m} \alpha_i^+.$$

m

G acts by reflections on $\Sigma(G, S)$.

Any wall α decomposes $\Sigma(G, S)$ into two components α^+ and α^- .

A convex polytope is an intersection of finitely many halfspaces

$$P = \bigcap_{i=1}^{m} \alpha_i^+.$$

Dihedral angle formed by α and β : $\angle \alpha \beta = \pi/k$ if $ord(r_{\alpha}r_{\beta}) = k$ (coincides with a Euclidean angle in a cell).

G acts by reflections on $\Sigma(G, S)$.

Any wall α decomposes $\Sigma(G, S)$ into two components α^+ and α^- .

A convex polytope is an intersection of finitely many halfspaces

$$P = \bigcap_{i=1}^{m} \alpha_i^+.$$

Dihedral angle formed by α and β : $\angle \alpha \beta = \pi/k$ if $ord(r_{\alpha}r_{\beta}) = k$ (coincides with a Euclidean angle in a cell).

Acute-angled polytope: if all dihedral angles $\leq \pi/2$.

G acts by reflections on $\Sigma(G, S)$.

Any wall α decomposes $\Sigma(G, S)$ into two components α^+ and α^- .

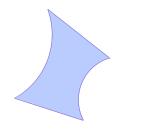
A convex polytope is an intersection of finitely many halfspaces

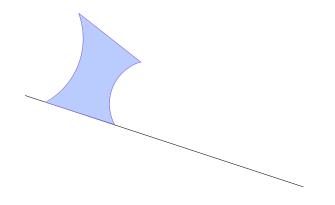
$$P = \bigcap_{i=1}^{m} \alpha_i^+.$$

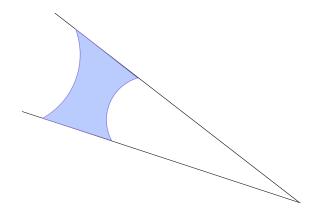
Dihedral angle formed by α and β : $\angle \alpha \beta = \pi/k$ if $ord(r_{\alpha}r_{\beta}) = k$ (coincides with a Euclidean angle in a cell).

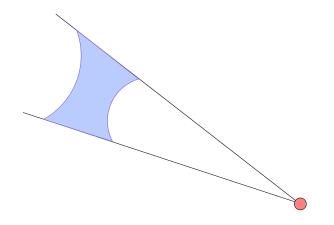
Acute-angled polytope: if all dihedral angles $\leq \pi/2$.

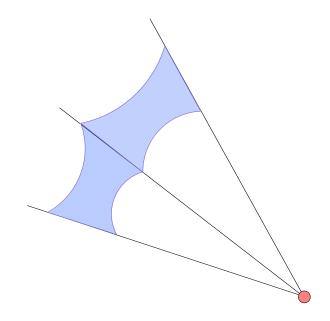
Coxeter polytope: if all dihedral angles are of form π/k .

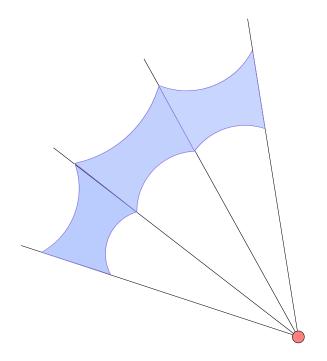


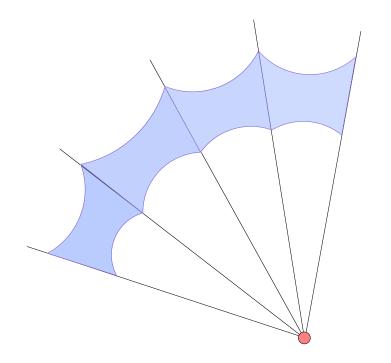


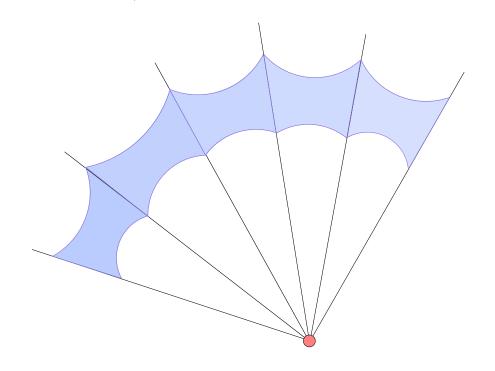


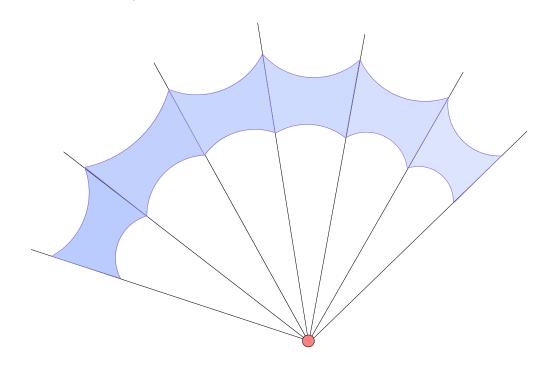


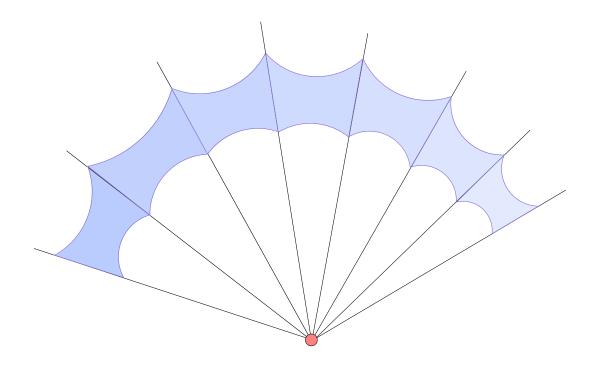


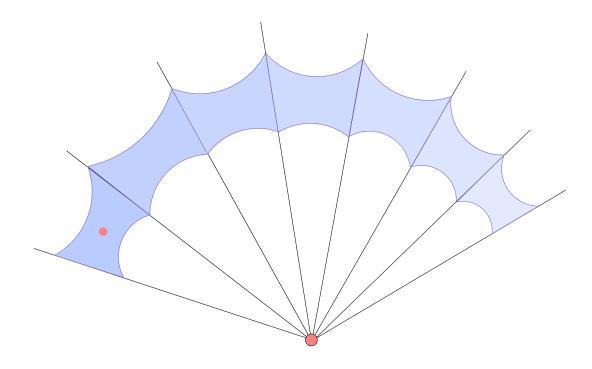


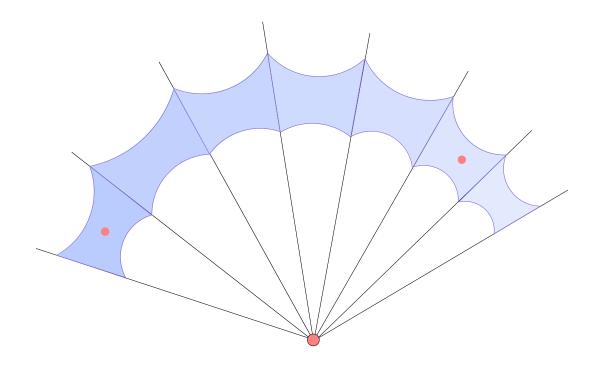


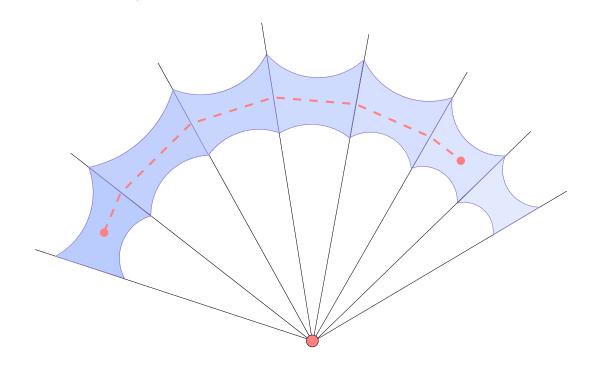


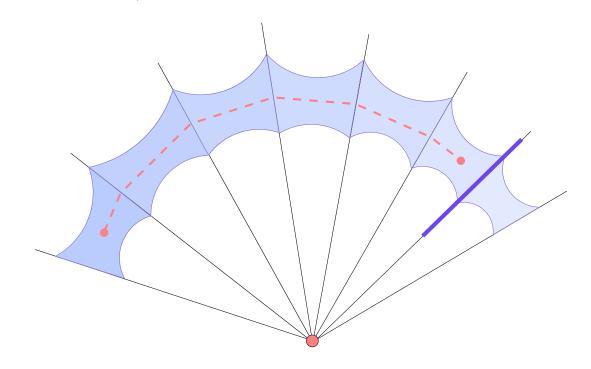


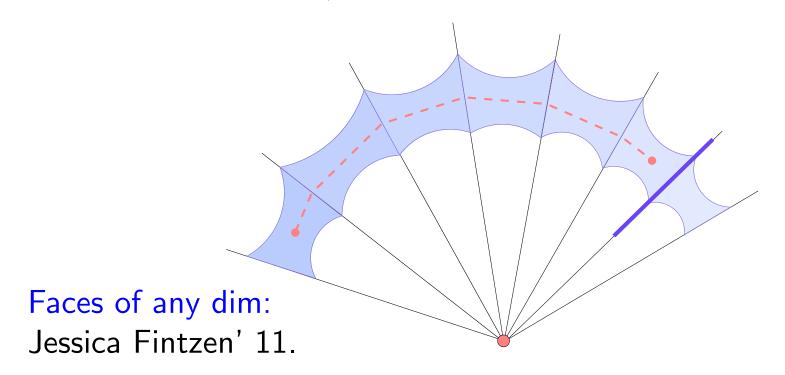












• *P* is a Coxeter polytope.

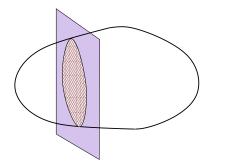
- *P* is a Coxeter polytope.
- P is tiled by [G:H] chambers of G.

- *P* is a Coxeter polytope.
- P is tiled by [G:H] chambers of G.
- reflections in walls of P generate H.

Proof is the same as in the geometric case:

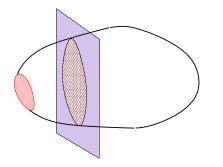
- an induction based on polytopes;
- Deodhar's theorem.

 $G = \langle s_0, s_1, \dots, s_n \rangle$, infinite, indecomposable; $H = \langle s_1, \dots, s_n \rangle$. Want: $[G : H] = \infty$.



Want to find infinitely many copies of F in P.

 $G = \langle s_0, s_1, \dots, s_n \rangle$, infinite, indecomposable; $H = \langle s_1, \dots, s_n \rangle$. Want: $[G : H] = \infty$.

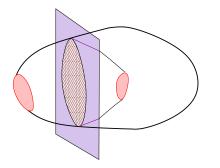


Want to find infinitely many copies of F in P.

Example:

If $\langle s_0, s_1 \rangle$ is infinite subgroup then $[G:H] = \infty$.

 $G = \langle s_0, s_1, \dots, s_n \rangle$, infinite, indecomposable; $H = \langle s_1, \dots, s_n \rangle$. Want: $[G : H] = \infty$.

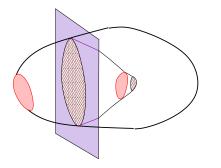


Want to find infinitely many copies of F in P.

Example:

If $\langle s_0, s_1 \rangle$ is infinite subgroup then $[G:H] = \infty$.

 $G = \langle s_0, s_1, \dots, s_n \rangle$, infinite, indecomposable; $H = \langle s_1, \dots, s_n \rangle$. Want: $[G : H] = \infty$.

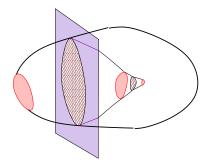


Want to find infinitely many copies of F in P.

Example:

If $\langle s_0, s_1 \rangle$ is infinite subgroup then $[G:H] = \infty$.

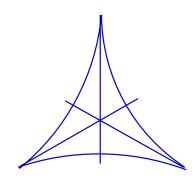
 $G = \langle s_0, s_1, \dots, s_n \rangle$, infinite, indecomposable; $H = \langle s_1, \dots, s_n \rangle$. Want: $[G : H] = \infty$.

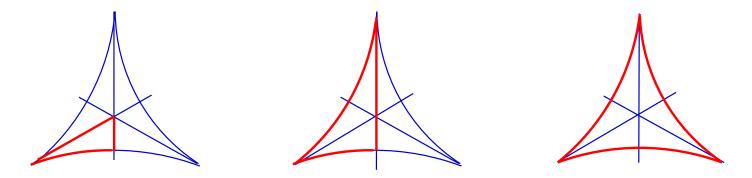


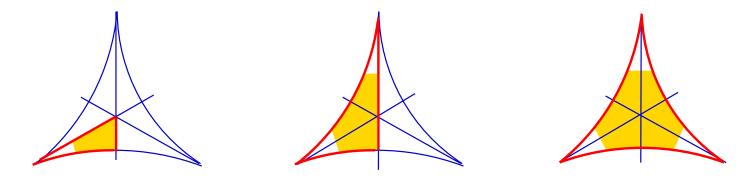
Want to find infinitely many copies of F in P.

Example:

If $\langle s_0, s_1 \rangle$ is infinite subgroup then $[G:H] = \infty$.







A nerve of (G, S) is a simplicial complex N(G, S)

- vertex set is S,
- vertices span a simplex ⇔
 the corresponding reflections generate a finite group.

A nerve of (G, S) is a simplicial complex N(G, S)

- vertex set is S,
- vertices span a simplex ⇔
 the corresponding reflections generate a finite group.

Thm. If rank H = rank G then N(H, S') may be obtained from N(G, S) by deletion of some simplices.

A nerve of (G, S) is a simplicial complex N(G, S)

- vertex set is S,
- vertices span a simplex ⇔
 the corresponding reflections generate a finite group.

Thm. If rank H = rank G then N(H, S') may be obtained from N(G, S) by deletion of some simplices.

Thm. If rank H = rank G then $\exists s_0 \in S$ s.t. either $s_0s_i = s_is_0$ for all but one $s_i \in S$; or the order of s_0s_i is finite for all $s_i \in S$. For compact polytopes in \mathbb{H}^n :

Thm. If $G : \mathbb{H}^n$ cocompactly, and rank H = rank G, then F is combinatorially equivalent to P.

$$(F = fundamental chamber of G,$$

$$P =$$
fundamental chamber of H)

Theorem (F&T, 08). Let (G, S) be a Coxeter system, where G is an infinite indecomposable Coxeter group. If $H \subset G$ is a finite index reflection subgroup then $rank H \ge rank G$.

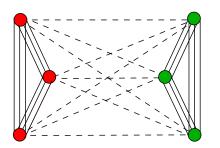
Corollary. If $H \subset G$ is a visual subgroup, then $[G:H] = \infty$.

Existance of finite index reflection subgroups ?

Prop. Let $G = G_1 * G_2$, where $G_i \subset G$ is a reflection subgroup. Then G has a finite index refl. subgr. iff at least one of G_1 and G_2 has.

Existance of finite index reflection subgroups ?

Prop. Let $G = G_1 * G_2$, where $G_i \subset G$ is a reflection subgroup. Then G has a finite index refl. subgr. iff at least one of G_1 and G_2 has.

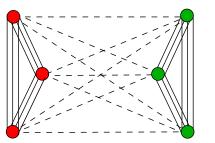


Example:

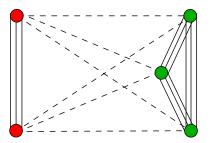
no finite index reflection subgroups

Existance of finite index reflection subgroups ?

Prop. Let $G = G_1 * G_2$, where $G_i \subset G$ is a reflection subgroup. Then G has a finite index refl. subgr. iff at least one of G_1 and G_2 has.



no finite index reflection subgroups



index 10 reflection subgroup

Odd-angled groups:

$$G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle$$
, where $m_{ij} \notin 2\mathbb{Z}$ for all i, j .

Why to study odd-angled gps?

Example: tilings of triangles by hyperbolic Coxeter triangles

tilings of triangles by hyperbolic Coxeter triangles Example: oddangled:

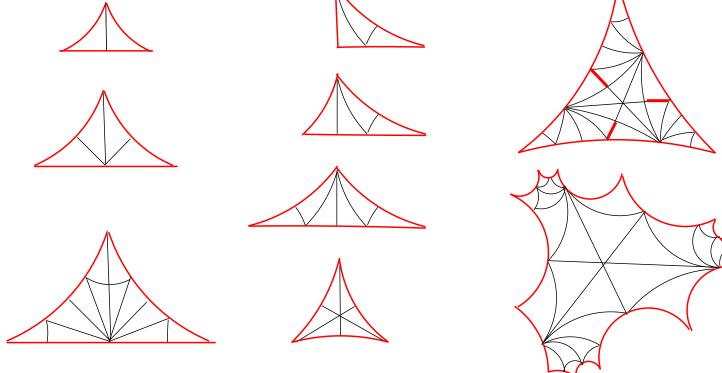
Example: tilings of triangles by hyperbolic Coxeter triangles oddall groups: angled:

Example: tilings of triangles by hyperbolic Coxeter triangles oddall groups: angled:

 Example:
 tilings of triangles by hyperbolic Coxeter triangles

 odd all groups:

 angled:
 A



Odd-angled groups:

 $G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle$, where $m_{ij} \notin 2\mathbb{Z}$ for all i, j.

Why to study odd-angled gps?

Example: tilings of triangles by hyperbolic Coxeter triangles.

Odd-angled groups:

 $G = \langle s_i \in S \mid (s_i s_j)^{m_{ij}} \rangle$, where $m_{ij} \notin 2\mathbb{Z}$ for all i, j.

Why to study odd-angled gps?

Example: tilings of triangles by hyperbolic Coxeter triangles.

How to study odd-angled gps?

Divisability Coxeter diagram $Cox_{div}(G)$:

• • k_{ij} , where k_{ij} is a minimal nontrivial divisor of m_{ij} .

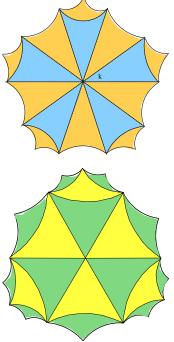
• no edge for
$$m_{ij} = \infty$$
.

- 1. the order of C is 1 or 2;
- 2. C contains at most one non-simple edge;
- 3. C contains a subdiagram D =

and all other edges of C are simple.

- 1. the order of C is 1 or 2; Rotation subgp
- 2. C contains at most one non-simple edge;
- 3. C contains a subdiagram D =

and all other edges of C are simple.



1. the order of C is 1 or 2; Rotation subgp

2. C contains at most one non-simple edge;

3. C contains a subdiagram D =

and all other edges of C are simple.

THANKS !

