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• Reflection is a symmetry with respect to a hyperplane.

• Reflection group is a group generated by reflections.

Example: dihedral group D2n

(symmetry group of n-gon)

• generated by reflections ra and rb

a b

• (rarb)n = e

• D2n = 〈ra, rb | r2
a = r2

b = (rarb)n = e〉
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X = Ed,Sd or Hd, group G : X.

G is discrete if for any x, y ∈ X there exists a neighbourhood Ox
containing only finitely many points of the orbit γy, γ ∈ G.

Example: G = 〈ra, rb〉. G is discrete ⇔ ∠ab = kπ
l , k, l ∈ Z.

• Any finite group is discrete.

• Any discrete group stabilizing some point is finite.

A set F ⊂ X is a fundamental domain of a discrete group G if

X =
⋃
γ∈G γF and F ∩ γF ⊂ ∂F for all γ ∈ G.

Example: G = 〈ra, rb〉.
∠ab is a fundamental domain of G ⇔ ∠ab = π

l , l ∈ Z.
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group of symmetries Sym(T )?

• Sym(T ) is generated by 3 reflections.

• All mirrors cut T into 24 tetrahedra

(fundamental domains of Sym(T )).6 4
6

• S2 is tiled by 24 triangles with angles (π3 ,
π
2 ,
π
3)

• Sym(T ) = 〈r1, r2, r3 | r2
1 = r2

2 = r2
3 = e,

(r1r3)2 = (r1r2)3 = (r2r3)3 = e〉
• Sym(T ) = S4, Sym(T ) permutes faces of T

• S4 is gen. by transpositions ↔ Sym(T ) is gen. by reflections

Example: regular tetrahedron T
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Example: regular 3-polytopes

(π3 ,
π
2 ,
π
3)

(π3 ,
π
2 ,
π
4)

(π4 ,
π
2 ,
π
3)

(π3 ,
π
2 ,
π
5)

(π5 ,
π
2 ,
π
3)

• Sym(P ) is generated by 3 symmetries
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Regular d-polytopes

• all facets (codim. 1 faces) are congruent regular polytopes.

• all dihedral angles are equal.

• Sym(P ) is generated by d reflections.
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In general: if G : X is a discrete reflection group

• X is decomposed by hyperplanes of reflections (mirrors)

into chambers.

• Chambers are congruent.

• Chambers are fundamental domains of G

(chambers ↔ elements of G)

• Each chamber is a convex polytope

(i.e. intersection of countable number of halfspaces).

• Chambers have good dihedral angles (otherwise G is not discrete).
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• A polytope P is called a Coxeter polytope

if all dihedral angles of P are integer submultiples of π.

• Discrete reflection Coxeter polytope

group G (chamber of G)
−→

• Group GP gen. by reflections

across facets of P
−→Coxeter polytope P

◦ GP is discrete and P is its fundamental domain.

◦ GP = 〈rfi, fi ∈ {facets of P} | r2
fi

= e, (rfirfj)
mij = e〉

where ∠fifj = π
mij

if fi ∩ fj 6= ∅ and mij =∞ otherwise.

i.e. GP is a Coxeter group.



Examples of infinite groups:

• we are mainly interested in finite volume groups,

where vol(X/G) <∞.
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How to describe a reflection?

v
x

Rv(x)

xv

Rv(x) = x− 2xv
= x− 2(x,v)

(v,v)v

Sd ⊂ Rd+1 Ed v

a

x

x− a

Rv(x− a)

Rv(x− a) + a
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Linear model of Hd

Rd,1: (u, v) = −u0v0 + u1v1 + u2v2 + · · ·+ udvd

• Points of Hd ↔ {u ∈ Rd,1 | u2 = −1, u0 > 0}.
• Points of ∂Hd ↔ {u ∈ Rd,1 | u2 = 0, u0 > 0}.
• Hyperplane Hu ↔ {u ∈ Rd,1 | u2 = 1}.

• Pair of hyperplanes: (u, v) = − cos(∠(Hu, Hv)) ↔ Hu ∩Hv 6= ∅
(u, v) = −1 ↔ Hu ∩Hv ⊂ ∂Hd

(u, v) = − cosh ρ(Hu, Hv) ↔ Hu ∩Hv = ∅

• Reflection across Hv: Rv(x) = x− 2(x,v)
(v,v)v.

x0
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− cos( π

mij
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−1, if fi is parallel to fj,

− cosh(ρ(fi, fj)), if fi and fj diverge.
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Gram matrix

P ⊂ Sd,Ed or Hd −→ Symmetric matrix G(P ) = {gij}

• gii = 1, gij =


− cos( π

mij
), if ∠(fifj) = π/mij,

−1, if fi is parallel to fj,

− cosh(ρ(fi, fj)), if fi and fj diverge.

sgn (G(P )) : (d+ 1, 0) (d, 0, 1) (d, 1)

Sd Ed Hd



Coxeter diagram Σ(P )

• Nodes ←→ facets fi of P

• Edges: Examples:
if ∠(fifj) = π/2

if ∠(fifj) = π/mij
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Coxeter diagram Σ(P )

• Nodes ←→ facets fi of P

• Edges: Examples:
if ∠(fifj) = π/2

if ∠(fifj) = π/mij

if ∠(fifj) = π/3

if ∠(fifj) = π/4

if ∠(fifj) = π/5

if fi ∩ fj = ∅

if fi ∩ fj ∈ ∂Hd

mij 6



Coxeter polytopes in Sd, Ed and Hd:

• P ⊂ Sd. Finitely many in each dimension,

Classified (Coxeter, 1934).

• P ⊂ Ed. Finitely many in each dimension,

Classified (Coxeter, 1934).

• P ⊂ Hd. Infinitely many, No classification.



Spherical Coxeter polytopes

• P ⊂ Sd⇒ P is a simplex.

• G(P ) > 0 ⇒ Any connected component of Σ(P ) has

◦ no k for k > 5,

◦ no cycles,

◦ at most one multiple edge,

◦ no nodes of valency ≥ 4,

◦ at most one node of valency 3.
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Regular polytopes: classification

• Regular polytopes correspond to linear elliptic diagrams:

• Coxeter diagram of P is called elliptic, it is a union of

G
(m)
2

m
dihedron

An simplex

Bn = Cn cube, cocube

Dn ×

E6 ×
E7 ×
E8 ×
F4 24-cell

H3
dodecahedron,
icosohedron

H4
120-cell,
600-cell
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• P ⊂ Ed⇒ P is a product of simplices.
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Euclidean Coxeter polytopes

• P ⊂ Ed⇒ P is a product of simplices.

• Coxeter diagram of P is called parabolic, it is a union of

Ã1 ��� ������ ��� Ẽ6

Ãn Ẽ7

B̃n Ẽ8

C̃n F̃4

D̃n G̃2



Acute-angled polytopes in Ed,Sd and Hd

A polytope is acute-angled if all its dihedral angles are acute

(α is called acute if α ≤ π/2).

Thm. A face of an acute-angled polytope is acute-angled.

• Prove the theorem for a facet and use induction.

• A polytope P = ∩H+
i , a facet f =

(
∩ki=0H

+
i

)⋂
H.

• Angles of H are ∠(H ∩Hi, H ∩Hj).

• Consider a section by a 3-plane
Π3 ⊥ (H ∩Hi ∩Hj):

• a ≤ α
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Thm. Any acute-angled polytope P ⊂ Sd containing no opposite

points of Sd is a simplex.

• If d = 2:
∑
αi ≥ (n− 2)π ⇒ n = 3.

• If d > 2: Induction on d.

◦ By ind. assumption facets are simplices, i.e. P is simplicial.

◦ By ind. assumption P is also simple

(i.e. each i-face belongs to exactly d− i facets).

◦ Simple and simplicial ⇒ simplex.

Cor. Any compact polytope in Ed and Hd is simple.



Thm. Any acute-angled polytope P ⊂ Sd containing no opposite

points of Sd is a simplex.

• If d = 2:
∑
αi > (n− 2)π ⇒ n = 3.

• If d > 2: Induction on d.

◦ By ind. assumption facets are simplices, i.e. P is simplicial.

◦ By ind. assumption P is also simple

(i.e. each i-face belongs to exactly d− i facets).

◦ Simple and simplicial ⇒ simplex.

Cor. Any compact polytope in Ed and Hd is simple.



Thm. Any acute-angled polytope P ⊂ Sd containing no opposite

points of Sd is a simplex.

• If d = 2:
∑
αi > (n− 2)π ⇒ n = 3.

• If d > 2: Induction on d.

◦ By ind. assumption facets are simplices, i.e. P is simplicial.

◦ By ind. assumption P is also simple

(i.e. each i-face belongs to exactly d− i facets).

◦ Simple and simplicial ⇒ simplex.

Cor. Any compact polytope in Ed and Hd is simple.



Thm. Any acute-angled polytope P ⊂ Sd containing no opposite

points of Sd is a simplex.

• If d = 2:
∑
αi > (n− 2)π ⇒ n = 3.

• If d > 2: Induction on d.

◦ By ind. assumption facets are simplices, i.e. P is simplicial.

◦ By ind. assumption P is also simple

(i.e. each i-face belongs to exactly d− i facets).

◦ Simple and simplicial ⇒ simplex.

Cor. Any compact polytope in Ed and Hd is simple.



Thm. Any acute-angled polytope P ⊂ Sd containing no opposite

points of Sd is a simplex.

• If d = 2:
∑
αi > (n− 2)π ⇒ n = 3.

• If d > 2: Induction on d.

◦ By ind. assumption facets are simplices, i.e. P is simplicial.

◦ By ind. assumption P is also simple

(i.e. each i-face belongs to exactly d− i facets).

◦ Simple and simplicial ⇒ simplex.

Cor. Any compact polytope in Ed and Hd is simple.



Thm. Any acute-angled polytope P ⊂ Sd containing no opposite

points of Sd is a simplex.

• If d = 2:
∑
αi > (n− 2)π ⇒ n = 3.

• If d > 2: Induction on d.

◦ By ind. assumption facets are simplices, i.e. P is simplicial.

◦ By ind. assumption P is also simple

(i.e. each i-face belongs to exactly d− i facets).

◦ Simple and simplicial ⇒ simplex.

Cor. Any compact polytope in Ed and Hd is simple.



Thm. Any acute-angled polytope P ⊂ Sd containing no opposite

points of Sd is a simplex.

• If d = 2:
∑
αi > (n− 2)π ⇒ n = 3.

• If d > 2: Induction on d.

◦ By ind. assumption facets are simplices, i.e. P is simplicial.

◦ By ind. assumption P is also simple

(i.e. each i-face belongs to exactly d− i facets).
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Thm. Any acute-angled polytope in Ed is a direct product of several

simplices and a simplicial cone.

Lemma. L = {e1, ..., es} indecomposable system of vectors in Ed,

(ei, ej) ≤ 0, i 6= j. Then L is either linearly independent or there

is a unique linear dependence with positive coefficients.



Hyperbolic
reflection

groups



Spherical Coxeter polytopes

• P ⊂ Sd⇒ P is a simplex.

• Coxeter diagram of P is called elliptic, it is a union of

Gm2
m

dihedron

An simplex

Bn = Cn cube, cocube

Dn

E6

E7

E8

F4 24-cell

H3
dodecahedron,
icosohedron

H4 120-cell



Euclidean Coxeter polytopes

• P ⊂ Ed⇒ P is a product of simplices.

• Coxeter diagram of P is called parabolic, it is a union of

Ã1 ��� ������ ��� Ẽ6

Ãn Ẽ7

B̃n Ẽ8

C̃n F̃4

D̃n G̃2
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Hyperbolic Coxeter polytopes

• Variety of compact and finite-volume polytopes.

− Any number of facets

− Any complexity of combinatorial types

− Arbitrary small dihedral angles

• Thm. (Allcock’ 05) There are infinitely many finite-volume
Coxeter polytopes in Hd, for every d ≤ 19.

There are infinitely many compact Coxeter polytopes in Hd,
for every d ≤ 6.
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• If P is compact then P is simple.

• If P is compact (finite volume) then P is indecomposable.

“decomposable” means

G(P ) =
sgn = (k, 1)

a subgroup H, vol(FH) =∞
[G : H] <∞, G = H ×K, |K| <∞

FH =
⋃
g∈H

gF
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aasdasdasdqweqw − all facets f1, . . . , fd−k containing f

aasdasdasdqweqw − corresponding reflections generate a finite group

aasdasdasdqweqw − corresponding nodes span elliptic subdiagram

− elliptic subdiagram spanned by nodes n1, . . . , nd−k

− vectors v1, . . . , vd−k orthogonal to corresponding facets f1, . . . , fd−k;
asdaa v1, . . . , vd−k span positive definite subspace

− 〈v1, . . . vd−k〉⊥ is a k-dimensional hyperbolic plane Πk

− Πk is preserved by all reflections with resp. to f1, . . . , fd−k

− ∩fi = Πk contains a k-face f
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Thm. (Vinberg ’67)

Indecomposable, symmetric matrix G, sgn(G) = (d, 1),
gii = 1,

gij ≤ 0.

Then there exists a convex polytope P ⊂ Hd, such that G = G(P )
(unique up to an isometry of Hd).

• P is compact (finite volume) ⇒ P combinatorially equivalent to

some Euclidean polytope.

1. P has at least one vertex (ideal vertex).

2. each edge has two ends.

• 1, 2 ⇒ P is compact (finite volume).
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Idea of proof:

1. vertices ↔ elliptic subdiagrams ↔ many right angles

2. triangular, quadrilateral faces ↔ many non-right angles

3. Thm. (Nikulin, 81):
For any simple, compact, convex polytope P ⊂ Ed
and any i < k ≤ [d/2] holds

αik <

(
d− i
d− k

)([d/2]
i

)
+
(

[(d+1)/2]
i

)(
[d/2]
k

)
+
(

[(d+1)/2]
k

)
where αik = average number of i-faces of a k-face of P
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Thm. (Vinberg ’84) If P ⊂ Hd is compact then d ≤ 29.

Idea of proof:

1. vertices ↔ elliptic subdiagrams ↔ many right angles

2. triangular, quadrilateral faces ↔ many non-right angles

3. a2 ≤ 4(d−ε)
(d−1−ε)

a2= average number of sides of 2-face

ε = 1, if d is even
0, otherwise.

werwer ⇒ a lots of triangular and quadrilateral 2-faces



More precisely:

Plane angles −→ weights

vertex A −→ σ(A) =
∑

of weights of plane angles at A

2-face F −→ σ(F ) =
∑

of weights of plane angles of F

L. If for all A, F σ(A) ≤ cd and σ(F ) ≥ 5−nF then d < 8c+ 6.

(nF = # of sides of F )

plane angle ↔ diagram ΣA of a vertex A with two “black” nodes a

and b (corresp. to facets not containing F ).

weight = 1, if distΣA(a, b) ≤ 7
weight = 0, otherwise.
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• If P ⊂ Hd is compact then d ≤ 29. (Vinberg ’84).

Examples known for d ≤ 8.

Unique Ex. for d = 8 (Bugaenko ’92):

• If P ⊂ Hd is of finite volume then d < 996.

(Prokhorov, Khovanskii ’86).

Examples known for d ≤ 19 (Vinberg, Kaplinskaya ’78)

d = 21 (Borcherds ’87).
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Example: 2-Polytopes (polygons).

• Poincare (1882):
∑
αi < π(n− 2).

• n-gon with fixed angles

depends on n− 3 continuous parameters.

Thm. (Andreev ’70):

Compact acute-angled polytope in Hd, d ≥ 3
is determined (up to isometry) by

its combinatorial type and dihedral angles.
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Additional conditions for finite volume polytopes:

•

⇒ ϕi = π
2 , i = 1, . . . , 4.

ϕ1

ϕ2

ϕ3
ϕ4

•

⇒ either α 6= π
2 or β 6= π

2 .
α

β



Example: no angles of this polytope

would satisfy the conditions of the theorem!



Thm. (Andreev ’70) Let P be an acute-angled polytope in Hd,

a, b be its faces, and ā, b̄ be planes spanned by a and b.

If a ∩ b = ∅ then ā ∩ b̄ = ∅.
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Compact hyperbolic Coxeter polytopes

1. By dimension.

• dim = 2. Poincare (1882):
∑
αi < π(n− 2).

• dim = 3. Andreev (’70): necessary and suff. condition

for dihedral angles.

• dim ≥ 4. ?????



2. By number of facets.



2. By number of facets.

• n = d+ 1, simplices (Lannér ’52)



2. By number of facets.

• n = d+ 1, simplices (Lannér ’52), Lannér diagrams

k l

m
1
k + 1

l + 1
m < 1
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• n = d+ 1, simplices (Lannér ’52): d ≤ 4, fin. many for d > 2.

• n = d+ 2, ∆k ×∆l

− prisms (Kaplinskaja ’74): d ≤ 5, fin. many for d > 3.

− others (Esselmann ’96): d = 4, ∆2 ×∆2, 7 items.

Examples of prisms: Esselmann’s polytopes:

10

10

8

8 8
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2. By number of facets.

• n = d+ 1, simplices (Lannér ’52): d ≤ 4, fin. many for d > 2.

• n = d+ 2, ∆k ×∆l

− prisms (Kaplinskaja ’74): d ≤ 5, fin. many for d > 3.

− others (Esselmann ’96): d = 4, ∆2 ×∆2, 7 items.

• n = d+ 3, several combinatorial types

(Tumarkin ’03): d ≤ 6 or d = 8, fin. many for d > 3.

• n = d+ 4, really many combinatorial types...

How to proceed for a given combinatorial type ?

How to list all appropriate combinatorial types ?
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Diagram of missing faces

• Nodes ←→ facets of P

• Missing face is a minimal set of facets f1, ..., fk,

such that
⋂k
i=1 fi = ∅.

• Missing faces are encircled.

• Ex:
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Tools

• Given a combinatorial type, may try to “reconstruct” the polytope

(i.e. to find its dihedral angles).

Combinatorics: Dihedral angles:

Diagram of missing faces Coxeter diagram

Missing faces ←→ Lannér subdiagrams

(minimal non-elliptic subd.)

Example:



Lannér subdiagrams ←→ Missing faces

• If L is a Lannér diagram then |L| ≤ 5.

• # of Lannér diagrams of order 4, 5 is finite.

• For any two Lannér subdiagrams s.t. L1 ∩ L2 = ∅,
there exists an edge joining these subdiagrams.

Given a combinatorial type may try to check

if there is a Coxeter polytope of this type.
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Tools

• Combinatorial type → “reconstruction” of Coxeter polytope

• Coxeter faces.

• det(G(P )) = 0.

• Local determinants: det(Σ, T ) = detΣ
det(Σ\T ).

det(Σ, v) = det(S1, v) + det(S2, v)− 1
v

S1 S2

det(Σ, 〈v1, v2〉) = det(S1, v1)det(S2, v2)− g2
12

v1 v2
S1 S2
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Tools
• Combinatorial type → “reconstruction” of Coxeter polytope

• Coxeter faces.

• det(G(P )) = 0.

• Local determinants.

To list combinatorial types:

• Gale diagram (works well for n ≤ d+ 3 only).

◦ ∀u ∈ Σ(P ) ∃ Lannér subdiagram L, u ∈ L.

◦ ∀ Lannér subdiagram L1 ∃ Lan. subd. L2, L1 ∩ L2 = ∅.



2. By number of facets.

• n = d+ 1, simplices (Lannér ’52): d ≤ 4, fin. many for d > 2.

• n = d+ 2, ∆k ×∆l

− prisms (Kaplinskaja ’74): d ≤ 5, fin. many for d > 3.

− others (Esselmann ’96): d = 4, ∆2 ×∆2, 7 items.

• n = d+ 3, many combinatorial types

(Tumarkin ’03): d ≤ 6 or d = 8, fin.many for d > 3.

• n = d+ 4, really many combinatorial types...

(T,F ’06): d ≤ 7, unique example in d = 7.

• n = d+ 5, (T,F ’06): d ≤ 8.
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dim

n

2987654321
d+1

d+2

d+3

d+4

d+5

1) proofs are similar

2) use previous cases

Inductive algorithm?
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3. By number of dotted edges.

• p = 0, (T,F ’06): Simplices and Esselmann’s polytopes only.

d ≤ 4, n ≤ d+ 2.

• p = 1, (T,F ’07): Only polytopes with n ≤ d+ 3.

d ≤ 6 and d = 8.

• p ≤ n− d− 2, (T,F ’07): finitely many polytopes. Algorithm.

• (T,F ’06): If all Lannér subdiagrams are of order 2,then d ≤ 13.

(for compact or simple finite volume polytopes).



Finite volume polytopes

• combinatorics: not “simple” but “simple in edges”

(a k-face is contained in d− k facets unless k = 0).

• missing face ↔ Lannér or quasi-Lannér subdiagram

(i.e. diagram of a simplex with some vertices at ∂Hd).



• n = d+ 1, simplices. d ≤ 9, fin. many for d ≥ 3.

• n = d+ 2, ◦ ∆i ×∆j ⇒ · prisms, d ≤ 5, fin. many for d > 3.

· ∆2 ×∆2 ⇒
◦ pyramid over ∆i×∆j, d = 3, . . . , 13 and 17(fin. many).

• n = d+ 3, d ≤ 16. A unique example in d = 16:
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Reflection subgroups of reflection groups

• A standard subgroup of a reflection group G = {ri | ...} is a

reflection group generated by some of ri.

Thm. (Deodhar ’82). Let G be an infinite indecomposable Coxeter

group and H ⊂ G be a proper standard subgroup of G. Then

[G : H] =∞.

Question. What about finite index reflection subgroups?

aaaaaaaa ”yes” ↔ tiling of a Coxeter polytope
by Coxeter polytopes.
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Reflection subgroups of reflection groups

:

Example: (π7 ,
π
7 ,
π
7) tiled by 24 copies of (π2 ,

π
3 ,
π
7)

Example: A reflection group generated by (π5 ,
π
5 ,
π
5) has no finite

index reflection subgroups.

Thm. (T,F ’03) G infinite indecomposable group, H ⊂ G a finite

index reflection subgroup. Then rk H ≥ rk G.

(rk G is a number of reflections generating G).




