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ection Is a symmetry with respect to a hyperplane.

ection group is a group generated by reflections.

Example: dihedral group Dy,

(symmetry group of n-gon)
e generated by reflections r, and 7,
o (ryrp)t =ce

® D2n — <Taarb ’ 7“2 — T{? — (Tarb)n —
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X =E? S? or HY, group G : X.

G is discrete if for any x,y € X there exists a neighbourhood O,
containing only finitely many points of the orbit vy, v € G.

Example: G = (rq,1p). G is discrete & Zab = kTW k,l €Z.

e Any finite group is discrete.
e Any discrete group stabilizing some point is finite.

A set F' C X is a fundamental domain of a discrete group G if
X=U,eg7¥F and FN~F COF forallyeG.
Example: G = (rq,m).

Zab is a fundamental domain of G & Zab = T, L€ L
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e Sym(T) is generated by 3 reflections.

e All mirrors cut T into 24 tetrahedra
(fundamental domains of Sym(T)).

o S? is tiled by 24 triangles with angles (3,5, %)
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Example: regular tetrahedron T

group of symmetries Sym(T')?

e Sym(T) is generated by 3 reflections.
e All mirrors cut 7' into 24 tetrahedra
(fundamental domains of Sym(T)).
o S? is tiled by 24 triangles with angles (3,5, %)
o Sym(T) = (rq,ra,73 | 14 =15 =135 =€,
(r173)? = (r1712)% = (r913)° =€)
o Sym(T) =S54, Sym(T) permutes faces of T

e S, is gen. by transpositions « Sym(T) is gen. by reflections



Example: regular 3-polytopes

D
\d




Example: regular 3-polytopes

&_&

e Sym(P) is generated by 3 symmetries




Example: regular 3-polytopes

E (5:2:%)
7T7T7T
(5:2:5%)
(3:2:%)

e Sym(P) is generated by 3 symmetries
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Regular d-polytopes

e all facets (codim. 1 faces) are congruent regular polytopes.
e all dihedral angles are equal.

/ e Sym(P) is generated by d reflections.
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In general: if G: X is a discrete reflection group

e X is decomposed by hyperplanes of reflections (mirrors)
into chambers.

e Chambers are congruent.

e Chambers are fundamental domains of (A
(chambers < elements of G)

e Each chamber is a convex polytope
(i.e. intersection of countable number of halfspaces).

e Chambers have good dihedral angles (otherwise G is not discrete).



e A polytope P is called a Coxeter polytope
iIf all dihedral angles of P are submultiples of .



e A polytope P is called a Coxeter polytope
if all dihedral angles of P are integer submultiples of .

Discrete reflection __, Coxeter polytope
group G (chamber of G)



e A polytope P is called a Coxeter polytope
if all dihedral angles of P are integer submultiples of .

Discrete reflection __, Coxeter polytope
group G (chamber of G)

Group G p gen. by reflections

Coxet lyt P
® LOXCLer polytope across facets of P



e A polytope P is called a Coxeter polytope
if all dihedral angles of P are integer submultiples of .

Discrete reflection __, Coxeter polytope
group G (chamber of G)

Group G p gen. by reflections

Coxet lyt P
® LOXCLer polytope across facets of P

o GG p is discrete and P is its fundamental domain.



e A polytope P is called a Coxeter polytope
if all dihedral angles of P are integer submultiples of .

Discrete reflection __, Coxeter polytope
group G (chamber of G)

Group G p gen. by reflections

Coxet lyt P
® LOXCLer polytope across facets of P

o GG p is discrete and P is its fundamental domain.

o Gp = (ry, fi € {facets of P} | ri =e, (rprs)™ =¢)

where Zf;f; = 2= if fin f; #0 and m;; = oo otherwise.

mij



e A polytope P is called a Coxeter polytope
if all dihedral angles of P are integer submultiples of .

Discrete reflection __ Coxeter polytope
group G (chamber of G)

Group G'p gen. by reflections

Coxet lyt P
® LOXCLer polytope across facets of P

o Gp is discrete and P is its fundamental domain.
o Gp = (ry, fi € {facets of P} | 17 =e, (ryry)™i = e)
where Zf; f; = me if finf;#0 and m;; = co otherwise.

l.e. Gp is a Coxeter group.



Examples of infinite groups:

Ay VAYAS

B [ .

e we are mainly interested in finite volume groups,
where vol(X/G) < 0.
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How to describe a reflection?

T, = || cos - \/(7;7)
T (x,v) . v
(:ij) (z,z)(v,v) A/ (v,v)
_ (z,v)
~ (00)?
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How to describe a reflection?
S  Ra+1

R,(x)
R,(x) =z — 2x,
_ o ox)
= Z(M)v

Ry(x —a)+a
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Linear model of H¢ T

R&L: (u,v) = —ugvg + w101 + UV + - - -+ UGV
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Linear model of H¢ T

R&L: (u,v) = —ugvg + w101 + UV + - - -+ UGV

e Points of HY « {u€ R4 | u? = —1,u9> 0}.

e Points of OH? « {u € R%! | u? =0,uy > 0}.

e Hyperplane H, + {u € R%!|u?=1}.

e Pair of hyperplanes: (u,v) = —cos(£(H,,H,)) < H,NH,#(

(u,v) = —1 «— H,NnH, C OH"
(u,v) = —coshp(H,,H,) < H,NH,=1

e Reflection across H,: R,(x) =z — 288@
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Gram matrix

PcSYEYor H® —  Symmetric matrix G(P) = {g;}

( .
_ COS(’ITZ‘j)7 If L(fzf]) — 7T/mzj7
® g, =1, 9i; = § —1, if f; is parallel to f;,
\—COSh(p(fi, fi)), if fi and f; diverge.




Gram matrix

PcSYEYor H® —  Symmetric matrix G(P) = {g;}

— cos(;), it Z(fif;) = m/mij,

® gi; = 1, gij = § —1, if f; is parallel to f;,
—cosh(p(fi, f;)), if fi and f; diverge.

gdé m E< \< H
\




Gram matrix

PcSYEYor H® —  Symmetric matrix G(P) = {g;}

— cos(-%-), it Z(fif;) = m/maj.

¥

® gi; = 1, gij = § —1, if f; is parallel to f;,
—cosh(p(fi, f;)), if fi and f; diverge.

sgn (G(P)) : (d+1,0) (d,0,1) (d, 1)
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e Nodes «—— facets f; of P

e Edges: Examples:




Coxeter polytopes in s¢, E? and H’:

o P C s? Finitely many in each dimension,
Classified (Coxeter, 1934).

e P C E?. Finitely many in each dimension,
Classified (Coxeter, 1934).

e P C HY. Infinitely many, No classification.



Spherical Coxeter polytopes

o PCS*= Pisasimplex.

e G(P) >0 = Any connected component of >(P) has
ono e'e fork>5,
o no cycles,
o at most one multiple edge,
o no nodes of valency > 4,

o at most one node of valency 3.



Spherical Coxeter polytopes

e PCSY¥= P is asimplex.

e Coxeter diagram of P is called elliptic, it is a union of
E6 o—0 I o—0

Gim) oo
E, *° I o o o
A, o o ----—0 o

B,=C, ee --- e o
F, o —e—9o—o

D, :>F e o H; o—o—o

Hy oo oo



Regular polytopes: classification

(?gn) oo dihedron

A, o o ... o o simplex
B,=C,, e—e --- e e cube, cocube
D e e x

O I o0 ><
o—© I o0 0 ><
o—© I o0 0 ° ><
o o o o 24-cell
dodecahedron,
oo icosohedron
120-cell,

600-cell



Regular polytopes: classification

e Regular polytopes correspond to linear elliptic diagrams:

Gy
Ap

Bn: n

Dy,

o o dihedron
o o ... o o simplex

oo --- — e cube, cocube

e ee X

oo 6 0 o o

¢ X
o0 ><
...X
24-cell

dodecahedron,
icosohedron
120-cell,

600-cell



Euclidean Coxeter polytopes

e PCEY= P isa product of simplices.

e Coxeter diagram of P is called parabolic, it is a union of



Euclidean Coxeter polytopes
e P C E¥= P is a product of simplices.

e Coxeter diagram of P is called parabolic, it is a union of
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Acute-angled polytopes in E¢,S¢ and H

A polytope is acute-angled if all its dihedral angles are acute
(v is called acute if a < 7/2).

Thm. A face of an acute-angled polytope is acute-angled.
e Prove the theorem for a facet and use induction.
e A polytope P =NH;", afacet f = (NF_H,") (N H.
o Angles of fare Z(HNH;,HNHj).

e Consider a section by a 3-plane
H3 1 (HQHZ ﬂHj)Z

o a < «




Thm. Any acute-angled polytope P C S? containing no opposite
points of S? is a simplex.
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Thm. Any acute-angled polytope P C S? containing no opposite
points of S? is a simplex.

olfd=2. Y a,>(n—2)r = n=3.
e If d > 2: Induction on d.
o By ind. assumption facets are simplices, i.e. P is simplicial.

o By ind. assumption P is also simple
(i.e. each i-face belongs to exactly d — i facets).

o Simple and simplicial = simplex.

Cor. Any compact Coxeter polytope in E¢ and H? is simple.



Thm. Any acute-angled polytope in E? is a direct product of several
simplices and a simplicial cone.

Lemma. L = {eq,...,es} indecomposable system of vectors in E¢,

(€5,€5) < 0,77 5. Then L is either linearly independent or there
Is a unique linear dependence with positive coefficients.






Spherical Coxeter polytopes

e PCSY¥= P is asimplex.

e Coxeter diagram of P is called elliptic, it is a union of
E6 o—0 I o—0

G5! o o

E7.'I'.'
A, R e =

Eq ooIoooo
B,=C, e --- o

F, o —e—9o—o

D, :>F e e Hs eo—o—o

Hy oo oo



Euclidean Coxeter polytopes
e P C E¥= P is a product of simplices.

e Coxeter diagram of P is called parabolic, it is a union of

BRI



Hyperbolic Coxeter polytopes

e Variety of compact and finite-volume polytopes.



Hyperbolic Coxeter polytopes
e Variety of compact and finite-volume polytopes.

Example: Right-angled pentagon



Hyperbolic Coxeter polytopes
e Variety of compact and finite-volume polytopes.

Example: Right-angled pentagon



Hyperbolic Coxeter polytopes
e Variety of compact and finite-volume polytopes.

Example: Right-angled pentagon



Hyperbolic Coxeter polytopes
e Variety of compact and finite-volume polytopes.

Example: Right-angled pentagon



Hyperbolic Coxeter polytopes
e Variety of compact and finite-volume polytopes.

Example: Right-angled pentagon



Hyperbolic Coxeter polytopes
e Variety of compact and finite-volume polytopes.

Example: Right-angled pentagon



Hyperbolic Coxeter polytopes
e Variety of compact and finite-volume polytopes.

Example: Right-angled pentagon



Hyperbolic Coxeter polytopes

e Variety of compact and finite-volume polytopes.

— Any number of facets
— Any complexity of combinatorial types
— Arbitrary small dihedral angles



Hyperbolic Coxeter polytopes

e Variety of compact and finite-volume polytopes.

— Any number of facets
— Any complexity of combinatorial types
— Arbitrary small dihedral angles

e Thm. (Allcock’ 05) There are infinitely many finite-volume
Cozeter polytopes in H?, for every d < 19.

There are infinitely many compact Coxeter polytopes in HC,
for every d < 6.
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e If P is compact then P is simple.
e If P is compact (finite volume) then P is indecomposable.

“decomposable” means

0 sgn = (k,1)

G(P) =

a subgroup H, wvol(Fy) = o
G : H|] < o0

\



e If P is compact then P is simple.
e If P is compact (finite volume) then P is indecomposable.

“decomposable” means

0 sgn = (k,1)

G(P) =

a subgroup H, wvol(Fy) = o
G:H|]<oo, G=HXK,|K|<oo

Fg= U gF
\ geH
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P, X(P) — k-face f

— all facets f1,..., fq_r containing f

— corresponding reflections generate a finite group

— corresponding nodes span elliptic subdiagram

— elliptic subdiagram spanned by nodes nq,...,ng_%
— vectors vy, ...,vq_x orthogonal to corresponding facets f1,..
V1, -...,VU4—k Span positive definite subspace

L is a k-dimensional hyperbolic plane IIj

— <Ul, ce Ud—k>
— 11, is preserved by all reflections with resp. to fi,..., fa—k

— Nf; = Il contains a k-face f

) fd—k;
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If P is compact then P is simple.
If P is compact (finite volume) then P is indecomposable.
Coxeter diagram — combinatorics of P.

— k-faces <« elliptic subdiagrams of order d — k,

— vertices at OH® « parabolic subdiagrams of order d
( parabolic = Coxeter diagrams of Euclidean simplices).
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Thm. (Vinberg '67)

Indecomposable, symmetric matrix G, sgn(G) = (d, 1),
gii = 1,
gij < 0.

Then there exists a convex polytope P C H¢, such that G = G(P)
(unique up to an isometry of HY).

e P is compact (finite volume) = P combinatorially equivalent to
some Euclidean polytope.

1. P has at least one vertex (ideal vertex).

2. each edge has two ends.

e 1,2 = P is compact (finite volume).
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ldea of proof:
1. vertices <« elliptic subdiagrams <« many right angles

2. triangular, quadrilateral faces < many non-right angles

3. Thm. (Nikulin, 81):
For any simple, compact, convex polytope P C E?
and any ¢ < k < [d/2] holds

 fd—i\ (1973 4 (lerD/a
W = (d— k) [d/2] [(d+1)/2]
() + (7

where % = average number of i-faces of a k-face of P
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Thm. (Vinberg '84) If P C H% is compact then d < 29.
ldea of proof:
1. vertices <« elliptic subdiagrams <« many right angles

2. triangular, quadrilateral faces < many non-right angles

4(d—e)
3. a9 S (d(—l—s)

o= average number of sides of 2-face

1, if dis even
0, otherwise.

= a lots of triangular and quadrilateral 2-faces



More precisely:

Plane angles — weights
vertex A — o(A) = ) of weights of plane angles at A
2-face ' — o(F') = ) of weights of plane angles of F

L. Ifforall A, FF' o(A) <cdand o(F) >5—np then d < 8¢+ 6.
(np = # of sides of F)

plane angle < diagram > 4 of a vertex A with two “black” nodes a
and b (corresp. to facets not containing F’).

weight = 1, if dists; ,(a,b) <7
wetght = 0, otherwise.
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o If P C HYis compact then d <29. (Vinberg '84).

Examples known for d < 8.
Unique Ex. for d = 8 (Bugaenko '92):

R

o If P C HYis of finite volume then d < 996.
(Prokhorov, Khovanskii '86).



o If P C HYis compact then d <29. (Vinberg '84).

Examples known for d < 8.
Unique Ex. for d = 8 (Bugaenko '92):

R

o If P C HYis of finite volume then d < 996.
(Prokhorov, Khovanskii '86).

Examples known for d < 19 (Vinberg, Kaplinskaya '78)
d = 21 (Borcherds '87).
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Example: Compact right-angled polytopes

(Vinberg, Potyagailo '05)

e Each face is a right-angled polytope.

e Each 2-face has at least 5 sides.

4(d—e)
(d—1—¢)

® az <

= d < 4 (for compact polytopes).

d=2 d=3

d=14

S
w | &

———» —» eoe—»

regular 4-polytope
with 120 dodecahedral
facets
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Example: Compact right-angled polytopes
(Vinberg, Potyagailo '05)

e Each face is a right-angled polytope.

e Each 2-face has at least 5 sides.

4(d—e)
(d—1—¢)

® az <
= d < 4 (for compact polytopes).

SO regular 4-polytope
0, with 120 dodecahedral
‘\‘/A facets

— —e e = e
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Example: 2-Polytopes (polygons).
e Poincare (1882): > «a; < m(n —2).

e n-gon with fixed angles
depends on n — 3 continuous parameters.

Thm. (Andreev '70):

Compact acute-angled polytope in HY, d > 3
is determined (up to isometry) by

its combinatorial type and dihedral angles.
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o ; a),y a)év
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Example: 3-Polytopes.

Thm. (Andreev '70). Given a combinatorial type of a simple
3-polytope and prescribed acute dihedral angles, the polytope is

realized by a compact polytope in H? if and only if

N

"
at+pB+yvy>7 at+B8+y<m a+B8+v+d <27
] Y6
e For a simplex: det(G(P)) < 0. S R
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Example: 3-Polytopes.

Thm. (Andreev '70). Given a combinatorial type of a simple
3-polytope and prescribed acute dihedral angles, the polytope is

realized by a compact polytope in H? if and only if

° &X 3 o 17 ¢ 00
A ) 5 a 100
. 00 1¢

- 00 ¢ 1
at+pB+yvy>7 at+B8+y<m a+B8+v+d <27

e For a simplex: det(G(P)) < 0. | !

e For a triangular prism: 3i € {1,2,...,6}: @; # 7/2 %1



Additional conditions for finite volume polytopes:

= either a# 5 or 3 # 3.




Example: no angles of this polytope
would satisfy the conditions of the theorem!



Thm. (Andreev '70) Let P be an acute-angled polytope in H¢,
a, b be its faces, and @, b be planes spanned by a and b.

If anb=10 then anNnb=0.
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Compact hyperbolic Coxeter polytopes
1. By dimension.
o dim = 2. Poincare (1882): ) «a; < m(n —2).

e dim = 3. Andreev ('70): necessary and suff. condition
for dihedral angles.

o dim >4. 17777
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2. By number of facets.
e n=d+1, simplices (Lannér '52): d < 4, fin. many for d > 2.

o n=d+2, AFx Al
— prisms (Kaplinskaja '74): d < 5, fin. many for d > 3.
— others (Esselmann '96): d =4, A? x A? 7 items.

Examples of prisms: Esselmann’s polytopes:

e
8 | 8

«e—=0 @ L 4 o«—e -0
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2. By number of facets.
e n=d+1, simplices (Lannér '52): d < 4, fin. many for d > 2.

e n=d+2, AFx Al
— prisms (Kaplinskaja '74): d <
— others (Esselmann '96): d =

5, fin. many for d > 3.
4. A% x A?, 7 items.

e n = d+ 3, several combinatorial types
(Tumarkin '03): d < 6 or d =8, fin. many for d > 3.

e n =d+ 4, really many combinatorial types...
How to proceed for a given combinatorial type ?
How to list all appropriate combinatorial types 7
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e Given a combinatorial type, may try to “reconstruct” the polytope
(i.e. to find its dihedral angles).
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Diagram of missing faces
e Nodes «+—— facets of P

e Missing face is a minimal set of facets fi, ..., f,
such that (), f; = 0.

e Missing faces are encircled.

o Ex:
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Tools

e Given a combinatorial type, may try to “reconstruct” the polytope
(i.e. to find its dihedral angles).

Combinatorics: Dihedral angles:
Diagram of missing faces Coxeter diagram
Missing faces — Lannér subdiagrams

(minimal non-elliptic subd.)

Example:



Lannér subdiagrams «—— Missing faces
e If L is a Lannér diagram then |L| < 5.
e # of Lannér diagrams of order 4,5 is finite.

e For any two Lannér subdiagrams s.t. L1 N Ly = 0,
there exists an edge joining these subdiagrams.

Given a combinatorial type may try to check

If there is a Coxeter polytope of this type.
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e Combinatorial type — “reconstruction” of Coxeter polytope

e Coxeter faces.

o det(G(P)) = 0.

e Local determinants:  det(3,T) = def(%%T).

det(>,v) = det(S1,v) + det(Sz,v) — 1 o
det(S, (v1,02)) = det(S1,v1)det(Sz,02) — gy (51 *



Tools

e Combinatorial type — “reconstruction” of Coxeter polytope
e Coxeter faces.
e det(G(P)) = 0.
e Local determinants.
To list combinatorial types:

e Gale diagram (works well for n < d + 3 only).



Tools

e Combinatorial type — “reconstruction” of Coxeter polytope
e Coxeter faces.
e det(G(P)) = 0.
e Local determinants.
To list combinatorial types:
e Gale diagram (works well for n < d + 3 only).

o Vu € ¥(P) d Lannér subdiagram L, u € L.
o V Lannér subdiagram L; 3 Lan. subd. Ly, L; N Ly = 0.



2. By number of facets.
e n=d+1, simplices (Lannér '52): d < 4, fin. many for d > 2.

o n=d+2, AFx Al
— prisms (Kaplinskaja '74): d < 5, fin. many for d > 3.
— others (Esselmann '96): d =4, A% x A%, 7 items.

e n =d+ 3, many combinatorial types
(Tumarkin '03): d < 6 or d = 8, fin.many for d > 3.

e n =d+ 4, really many combinatorial types...
(T,F '06): d <7, unique example in d = 7.

e n=d+5, (T,F'06): d<8.
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d+1

d+2

d+3

d+4

d+5

1) proofs are similar
2) use previous cases

Inductive algorithm?

dim



3. By number of dotted edges.



3. By number of dotted edges.

e p=20, (T,F'06): Simplices and Esselmann’s polytopes only.
d<4, n<d-+2.



3. By number of dotted edges.

e p=20, (T,F'06): Simplices and Esselmann’s polytopes only.
d<4, n<d-+2.

e p=1, (T,F'07): Only polytopes with n < d + 3.
d <6 and d =8.



3. By number of dotted edges.

e p=20, (T,F'06): Simplices and Esselmann’s polytopes only.
d<4, n<d-+2.

e p=1, (T,F'07): Only polytopes with n < d + 3.
d <6 and d =8.

e p<n—d—2,(T,F’'07): finitely many polytopes. Algorithm.



3. By number of dotted edges.

e p=20, (T,F'06): Simplices and Esselmann’s polytopes only.
d<4, n<d-+2.

e p=1, (T,F'07): Only polytopes with n < d + 3.
d <6 and d =8.

e p<n—d—2,(T,F’'07): finitely many polytopes. Algorithm.

o (T,F'06): If all Lannér subdiagrams are of order 2,then d < 13.
(for compact or simple finite volume polytopes).



Finite volume polytopes

e combinatorics: not “simple” but “simple in edges”
(a k-face is contained in d — k facets unless k = 0).

e missing face «<» Lannér or quasi-Lannér subdiagram
(i.e. diagram of a simplex with some vertices at OHY).



en=d+1, simplices. d <9, fin. many for d > 3.

en=d+2 0oA*x Al = . prisms, d <5, fin. many for d > 3.

AT A= @

o pyramid over A'x A7, d = 3,...,13 and 17(fin. many).

R

en=d+ 3, d<16. A unique example in d = 16:
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Reflection subgroups of reflection groups

e A standard subgroup of a reflection group G = {r; | ...} is a
reflection group generated by some of r;.

Thm. (Deodhar '82). Let G be an infinite indecomposable Coxeter

group and H C G be a proper standard subgroup of G. Then
G : H| = .

Question. What about finite index reflection subgroups?

tiling of a Coxeter polytope

yes by Coxeter polytopes.
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Reflection subgroups of reflection groups

Example: (Z,Z,%) tiled by 24 copies of (3, %, Z)

Example: A reflection group generated by (%, %,%) has no finite
index reflection subgroups.



Reflection subgroups of reflection groups

Example: (Z,Z,7) tiled by 24 copies of (,T,T)

Example: A reflection group generated by (%,%,%) has no finite
index reflection subgroups.

Thm. (T,F '03) G infinite indecomposable group, H C G a finite
index reflection subgroup. Then rk H > rk G.

(rk G is a number of reflections generating GG).






