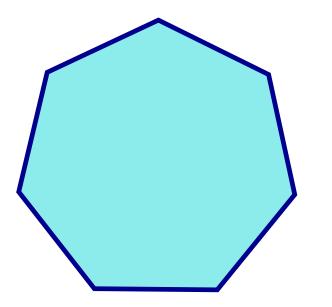


• Reflection is a symmetry with respect to a hyperplane.

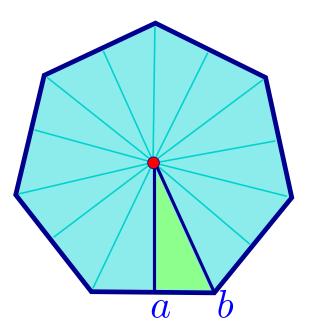
- Reflection is a symmetry with respect to a hyperplane.
- Reflection group is a group generated by reflections.

- Reflection is a symmetry with respect to a hyperplane.
- Reflection group is a group generated by reflections.



(symmetry group of *n*-gon)

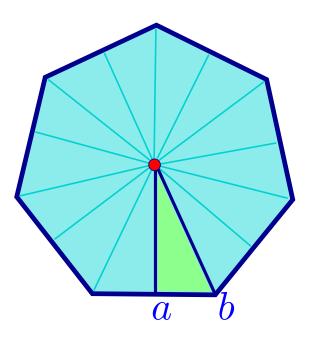
- Reflection is a symmetry with respect to a hyperplane.
- Reflection group is a group generated by reflections.



(symmetry group of *n*-gon)

• generated by reflections r_a and r_b

- Reflection is a symmetry with respect to a hyperplane.
- Reflection group is a group generated by reflections.

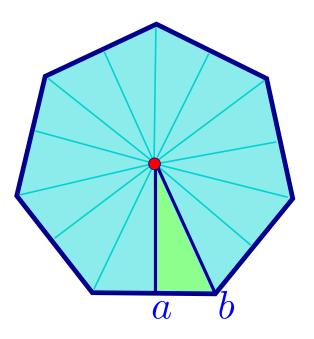


(symmetry group of *n*-gon)

• generated by reflections r_a and r_b

•
$$(r_a r_b)^n = e$$

- **Reflection** is a symmetry with respect to a hyperplane.
- Reflection group is a group generated by reflections.



(symmetry group of *n*-gon)

• generated by reflections r_a and r_b

•
$$(r_a r_b)^n = e$$

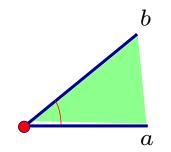
• $D_{2n} = \langle r_a, r_b \mid r_a^2 = r_b^2 = (r_a r_b)^n = e \rangle$

$$\mathbb{X} = \mathbb{E}^d, \mathbb{S}^d$$
 or \mathbb{H}^d , group $G : \mathbb{X}$.

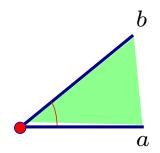
G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.

G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.

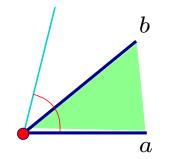
Example: $G = \langle r_a, r_b \rangle$.



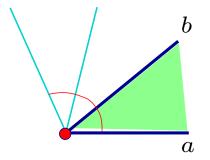
G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.



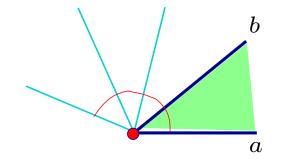
G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.



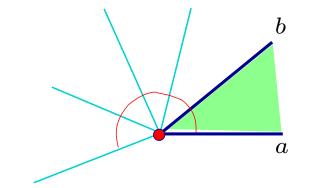
G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.



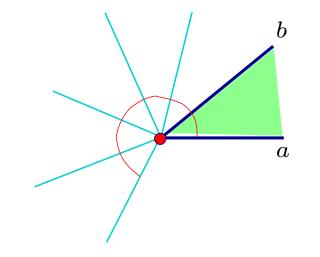
G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.



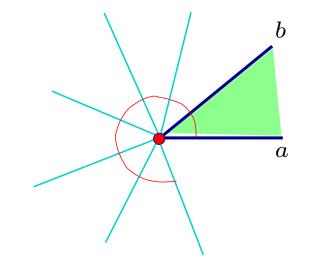
G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.



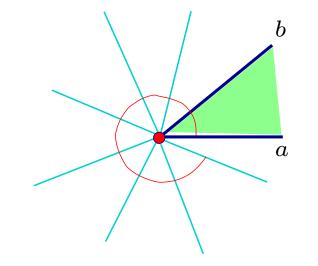
G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.



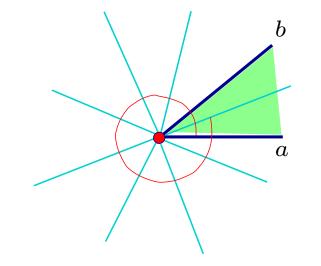
G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.



G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.



G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.



G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.

Example: $G = \langle r_a, r_b \rangle$. G is discrete $\Leftrightarrow \angle ab = \frac{k\pi}{l}$, $k, l \in \mathbb{Z}$.

• Any finite group is discrete.

G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.

- Any finite group is discrete.
- Any discrete group stabilizing some point is finite.

G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.

Example: $G = \langle r_a, r_b \rangle$. G is discrete $\Leftrightarrow \angle ab = \frac{k\pi}{l}$, $k, l \in \mathbb{Z}$.

- Any finite group is discrete.
- Any discrete group stabilizing some point is finite.

A set $F \subset X$ is a fundamental domain of a discrete group G if $X = \bigcup_{\gamma \in G} \gamma F$ and $F \cap \gamma F \subset \partial F$ for all $\gamma \in G$.

G is discrete if for any $x, y \in \mathbb{X}$ there exists a neighbourhood O_x containing only finitely many points of the orbit γy , $\gamma \in G$.

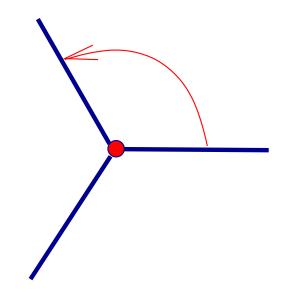
Example: $G = \langle r_a, r_b \rangle$. G is discrete $\Leftrightarrow \angle ab = \frac{k\pi}{l}$, $k, l \in \mathbb{Z}$.

- Any finite group is discrete.
- Any discrete group stabilizing some point is finite.

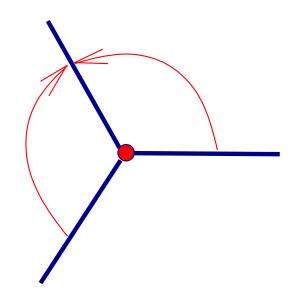
A set $F \subset \mathbb{X}$ is a fundamental domain of a discrete group G if $\mathbb{X} = \bigcup_{\gamma \in G} \gamma F$ and $F \cap \gamma F \subset \partial F$ for all $\gamma \in G$. Example: $G = \langle r_a, r_b \rangle$. $\angle ab$ is a fundamental domain of $G \Leftrightarrow \angle ab = \frac{\pi}{l}, \ l \in \mathbb{Z}$.

Example: Let
$$\angle ab = \frac{2\pi}{3}$$
.

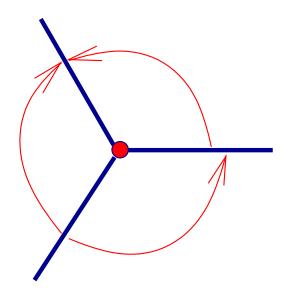
Example: Let
$$\angle ab = \frac{2\pi}{3}$$
.



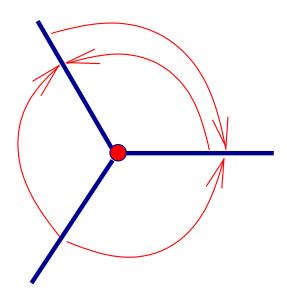
Example: Let
$$\angle ab = \frac{2\pi}{3}$$
.



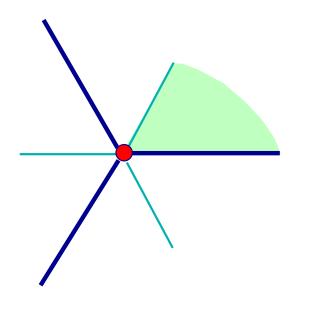
Example: Let
$$\angle ab = \frac{2\pi}{3}$$
.



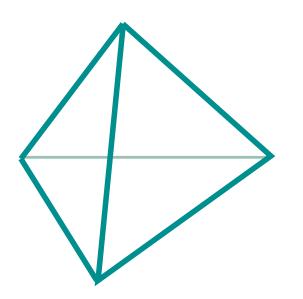
Example: Let
$$\angle ab = \frac{2\pi}{3}$$
.

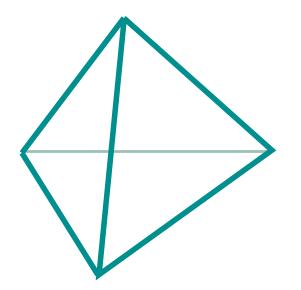


Example: Let
$$\angle ab = \frac{2\pi}{3}$$
.

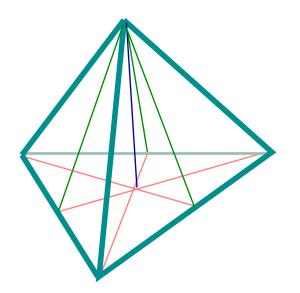


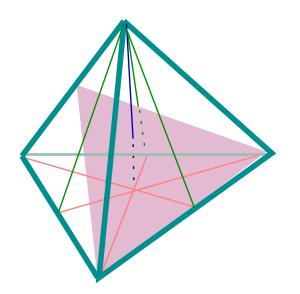
Example: regular tetrahedron ${\cal T}$

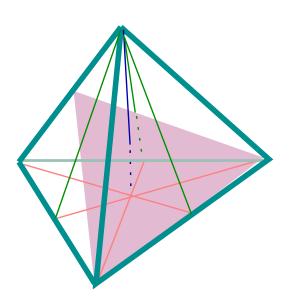




Example: regular tetrahedron ${\cal T}$







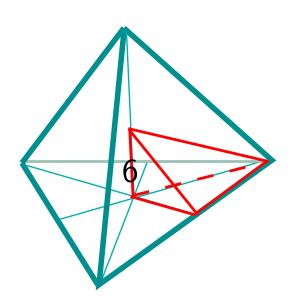
group of symmetries Sym(T)?

• Sym(T) is generated by 3 reflections.

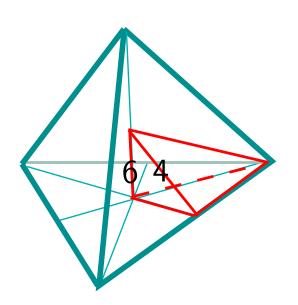
- Sym(T) is generated by 3 reflections.
- All mirrors cut T into 24 tetrahedra

- Sym(T) is generated by 3 reflections.
- All mirrors cut T into 24 tetrahedra (fundamental domains of Sym(T)).

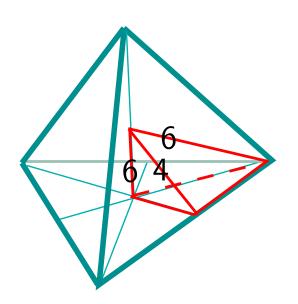
- Sym(T) is generated by 3 reflections.
- All mirrors cut T into 24 tetrahedra (fundamental domains of Sym(T)).



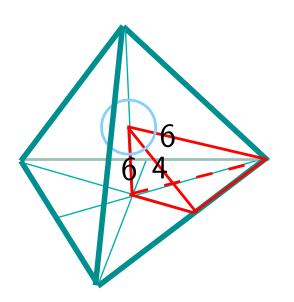
- Sym(T) is generated by 3 reflections.
- All mirrors cut T into 24 tetrahedra (fundamental domains of Sym(T)).



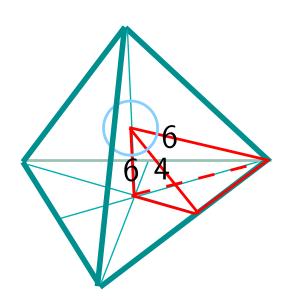
- Sym(T) is generated by 3 reflections.
- All mirrors cut T into 24 tetrahedra (fundamental domains of Sym(T)).



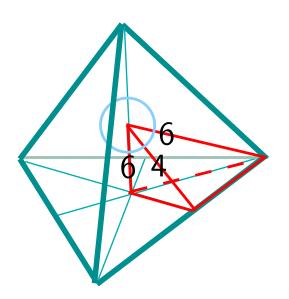
- Sym(T) is generated by 3 reflections.
- All mirrors cut T into 24 tetrahedra (fundamental domains of Sym(T)).



- Sym(T) is generated by 3 reflections.
- All mirrors cut T into 24 tetrahedra (fundamental domains of Sym(T)).



- Sym(T) is generated by 3 reflections.
- All mirrors cut T into 24 tetrahedra (fundamental domains of Sym(T)).
- \mathbb{S}^2 is tiled by 24 triangles with angles $(\frac{\pi}{3}, \frac{\pi}{2}, \frac{\pi}{3})$



- Sym(T) is generated by 3 reflections.
- All mirrors cut T into 24 tetrahedra (fundamental domains of Sym(T)).
- \mathbb{S}^2 is tiled by 24 triangles with angles $(\frac{\pi}{3}, \frac{\pi}{2}, \frac{\pi}{3})$

•
$$Sym(T) = \langle r_1, r_2, r_3 \mid r_1^2 = r_2^2 = r_3^2 = e,$$

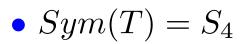
 $(r_1r_3)^2 = (r_1r_2)^3 = (r_2r_3)^3 = e \rangle$

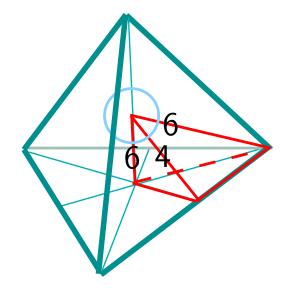
group of symmetries Sym(T)?

- Sym(T) is generated by 3 reflections.
- All mirrors cut T into 24 tetrahedra (fundamental domains of Sym(T)).
- \mathbb{S}^2 is tiled by 24 triangles with angles $(\frac{\pi}{3}, \frac{\pi}{2}, \frac{\pi}{3})$

•
$$Sym(T) = \langle r_1, r_2, r_3 \mid r_1^2 = r_2^2 = r_3^2 = e,$$

 $(r_1r_3)^2 = (r_1r_2)^3 = (r_2r_3)^3 = e$



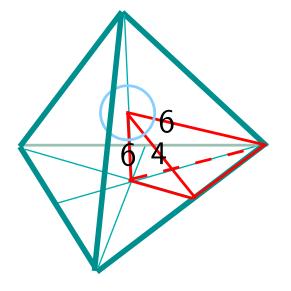


group of symmetries Sym(T)?

- Sym(T) is generated by 3 reflections.
- All mirrors cut T into 24 tetrahedra (fundamental domains of Sym(T)).
- \mathbb{S}^2 is tiled by 24 triangles with angles $(\frac{\pi}{3}, \frac{\pi}{2}, \frac{\pi}{3})$
- $Sym(T) = \langle r_1, r_2, r_3 \mid r_1^2 = r_2^2 = r_3^2 = e,$

 $(r_1r_3)^2 = (r_1r_2)^3 = (r_2r_3)^3 = e\rangle$

• $Sym(T) = S_4$, Sym(T) permutes faces of T

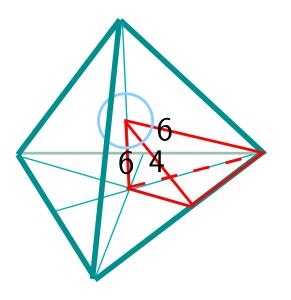


group of symmetries Sym(T)?

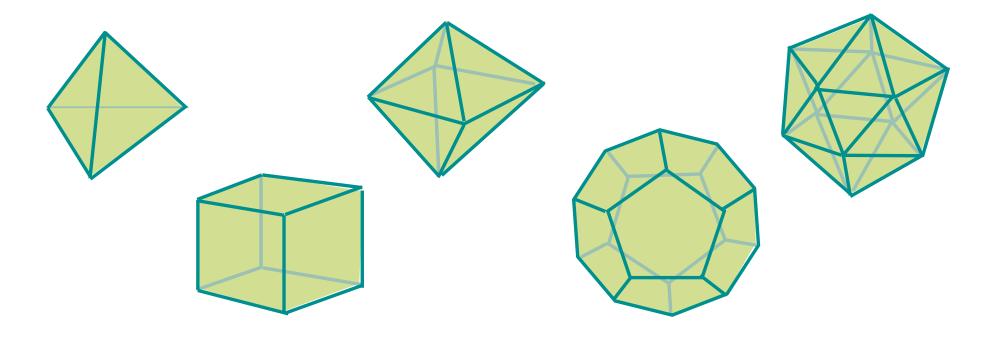
- Sym(T) is generated by 3 reflections.
- All mirrors cut T into 24 tetrahedra (fundamental domains of Sym(T)).
- \mathbb{S}^2 is tiled by 24 triangles with angles $(\frac{\pi}{3}, \frac{\pi}{2}, \frac{\pi}{3})$
- $Sym(T) = \langle r_1, r_2, r_3 \mid r_1^2 = r_2^2 = r_3^2 = e,$

 $(r_1r_3)^2 = (r_1r_2)^3 = (r_2r_3)^3 = e$

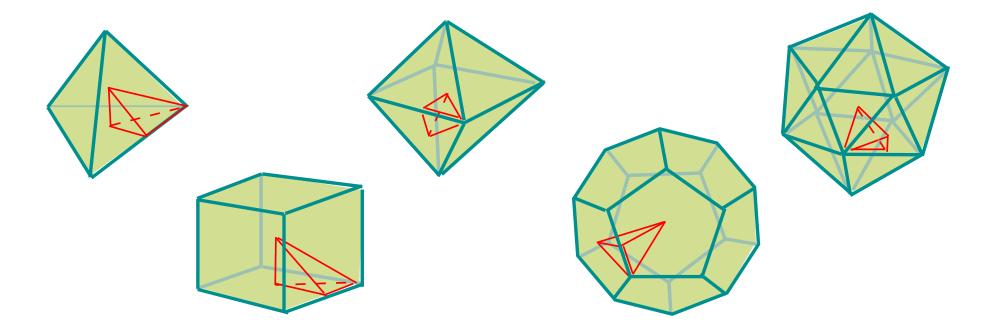
- $Sym(T) = S_4$, Sym(T) permutes faces of T
- S_4 is gen. by transpositions $\leftrightarrow Sym(T)$ is gen. by reflections



Example: regular 3-polytopes

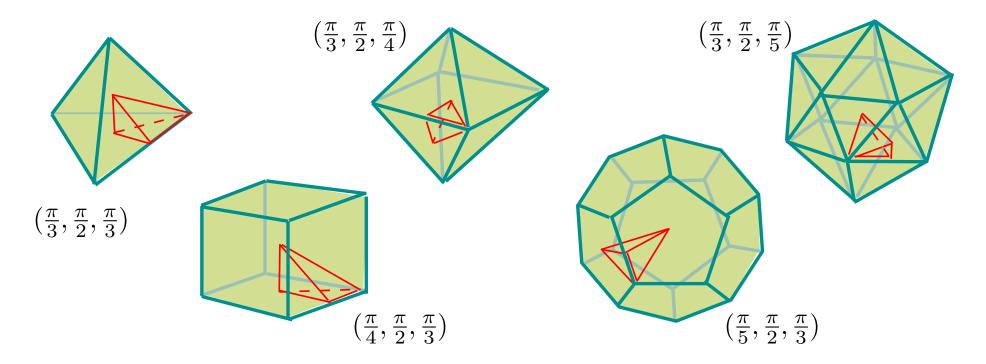


Example: regular 3-polytopes



• Sym(P) is generated by 3 symmetries

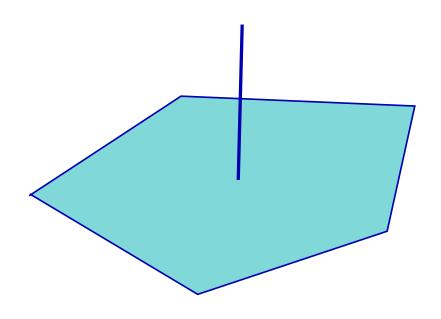
Example: regular 3-polytopes



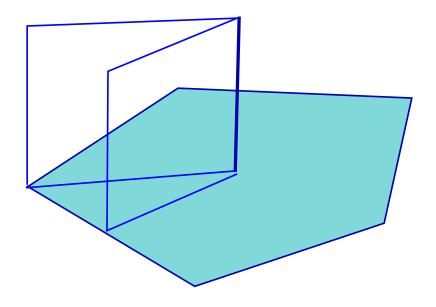
• Sym(P) is generated by 3 symmetries

- all facets (codim. 1 faces) are congruent regular polytopes.
- all dihedral angles are equal.

- all facets (codim. 1 faces) are congruent regular polytopes.
- all dihedral angles are equal.



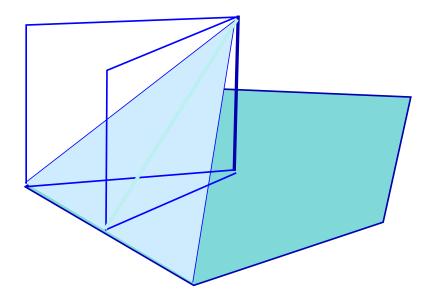
- all facets (codim. 1 faces) are congruent regular polytopes.
- all dihedral angles are equal.



- all facets (codim. 1 faces) are congruent regular polytopes.
- all dihedral angles are equal.



- all facets (codim. 1 faces) are congruent regular polytopes.
- all dihedral angles are equal.



• Sym(P) is generated by d reflections.

• X is decomposed by hyperplanes of reflections (mirrors) into chambers.

- X is decomposed by hyperplanes of reflections (mirrors) into chambers.
- Chambers are congruent.

- X is decomposed by hyperplanes of reflections (mirrors) into chambers.
- Chambers are congruent.
- Chambers are fundamental domains of G (chambers ↔ elements of G)

- X is decomposed by hyperplanes of reflections (mirrors) into chambers.
- Chambers are congruent.
- Chambers are fundamental domains of G (chambers ↔ elements of G)
- Each chamber is a convex polytope (i.e. intersection of countable number of halfspaces).

- X is decomposed by hyperplanes of reflections (mirrors) into chambers.
- Chambers are congruent.
- Chambers are fundamental domains of G (chambers ↔ elements of G)
- Each chamber is a convex polytope (i.e. intersection of countable number of halfspaces).
- Chambers have good dihedral angles (otherwise G is not discrete).

 A polytope P is called a Coxeter polytope if all dihedral angles of P are submultiples of π. A polytope P is called a Coxeter polytope if all dihedral angles of P are integer submultiples of π.

 $\begin{array}{ccc} \text{Discrete reflection} & & & \\ &$

 A polytope P is called a Coxeter polytope if all dihedral angles of P are integer submultiples of π.

Discrete reflection group G

Coxeter polytope (chamber of G)

• Coxeter polytope P -----

Group G_P gen. by reflections across facets of P

- A polytope P is called a Coxeter polytope if all dihedral angles of P are integer submultiples of π.
- $\begin{array}{ccc} \text{Discrete reflection} & & & \text{Coxeter polytope} \\ \text{group } G & & & \text{(chamber of } G) \end{array}$
- Coxeter polytope P —
- Group G_P gen. by reflections across facets of P
- G_P is discrete and P is its fundamental domain.

- A polytope P is called a Coxeter polytope if all dihedral angles of P are integer submultiples of π.
- $\begin{array}{ccc} \text{Discrete reflection} & & & \text{Coxeter polytope} \\ & & & \text{group } G & & & \text{(chamber of } G) \end{array}$
- Coxeter polytope $P \longrightarrow Group G_P$ gen. by reflections across facets of P

• G_P is discrete and P is its fundamental domain.

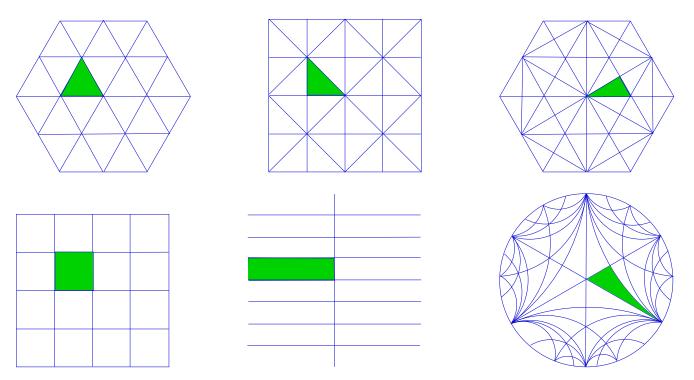
• $G_P = \langle r_{f_i}, f_i \in \{ \text{facets of } P \} \mid r_{f_i}^2 = e, \ (r_{f_i}r_{f_j})^{m_{ij}} = e \rangle$ where $\angle f_i f_j = \frac{\pi}{m_{ij}} \text{ if } f_i \cap f_j \neq \emptyset \text{ and } m_{ij} = \infty \text{ otherwise.}$

- A polytope P is called a Coxeter polytope if all dihedral angles of P are integer submultiples of π.
- Discrete reflection \longrightarrow Coxeter polytope group G (chamber of G)
- Coxeter polytope $P \longrightarrow Group G_P$ gen. by reflections across facets of P

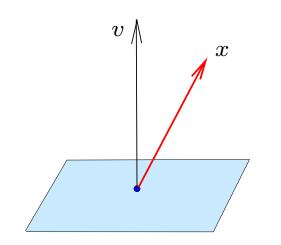
• G_P is discrete and P is its fundamental domain.

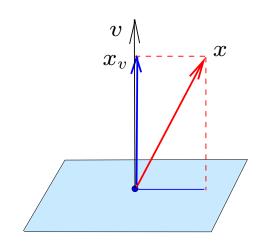
• $G_P = \langle r_{f_i}, f_i \in \{ \text{facets of } P \} \mid r_{f_i}^2 = e, (r_{f_i}r_{f_j})^{m_{ij}} = e \rangle$ where $\angle f_i f_j = \frac{\pi}{m_{ij}}$ if $f_i \cap f_j \neq \emptyset$ and $m_{ij} = \infty$ otherwise. i.e. G_P is a Coxeter group.

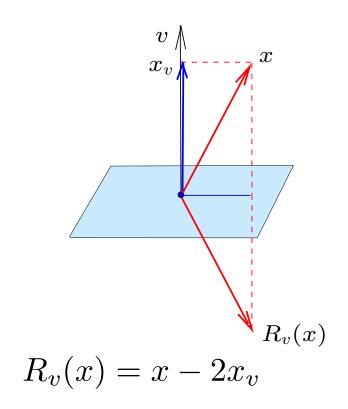
Examples of infinite groups:

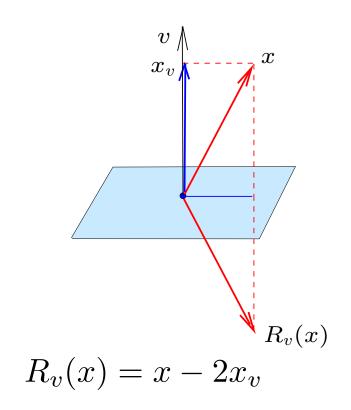


• we are mainly interested in finite volume groups, where $vol(\mathbb{X}/G) < \infty$.

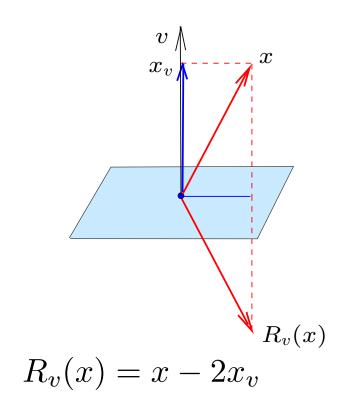




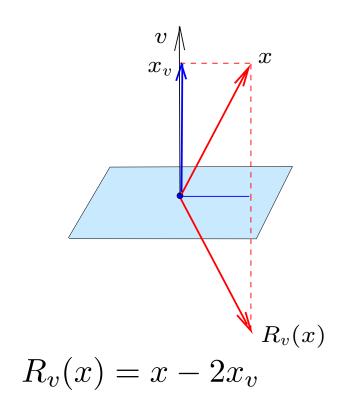




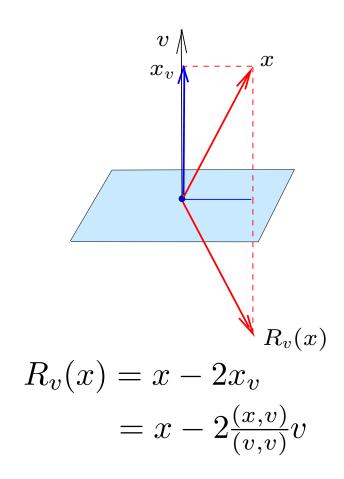
$$x_v = |x| \cos \alpha \cdot \frac{v}{\sqrt{(v,v)}}$$



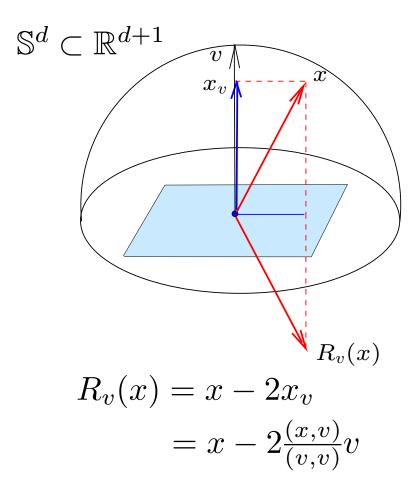
$$x_v = |x| \cos \alpha \cdot \frac{v}{\sqrt{(v,v)}}$$
$$= \sqrt{(x,x)} \frac{(x,v)}{\sqrt{(x,x)(v,v)}} \cdot \frac{v}{\sqrt{(v,v)}}$$



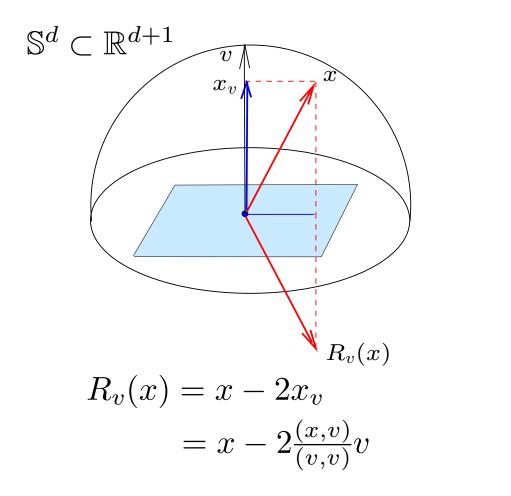
$$\begin{aligned} x_v &= |x| \cos \alpha \cdot \frac{v}{\sqrt{(v,v)}} \\ &= \sqrt{(x,x)} \frac{(x,v)}{\sqrt{(x,x)(v,v)}} \cdot \frac{v}{\sqrt{(v,v)}} \\ &= \frac{(x,v)}{(v,v)} v \end{aligned}$$

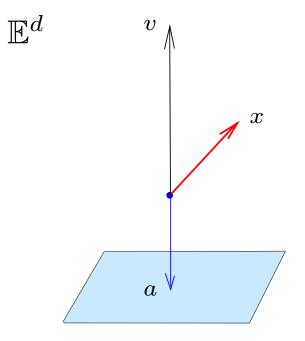


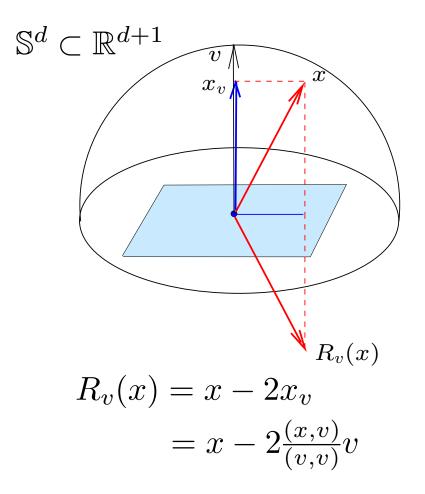
$$\begin{aligned} x_v &= |x| \cos \alpha \cdot \frac{v}{\sqrt{(v,v)}} \\ &= \sqrt{(x,x)} \frac{(x,v)}{\sqrt{(x,x)(v,v)}} \cdot \frac{v}{\sqrt{(v,v)}} \\ &= \frac{(x,v)}{(v,v)} v \end{aligned}$$

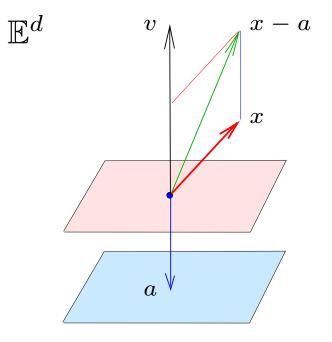


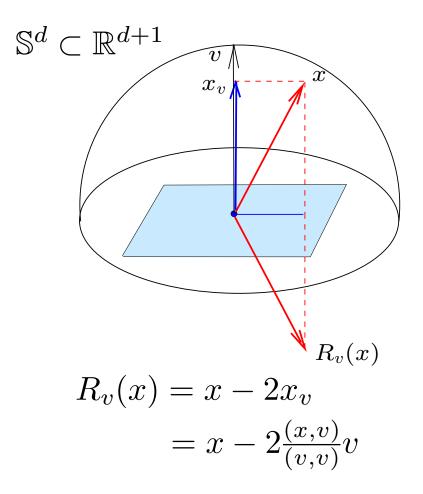
$$\begin{aligned} x_v &= |x| \cos \alpha \cdot \frac{v}{\sqrt{(v,v)}} \\ &= \sqrt{(x,x)} \frac{(x,v)}{\sqrt{(x,x)(v,v)}} \cdot \frac{v}{\sqrt{(v,v)}} \\ &= \frac{(x,v)}{(v,v)} v \end{aligned}$$

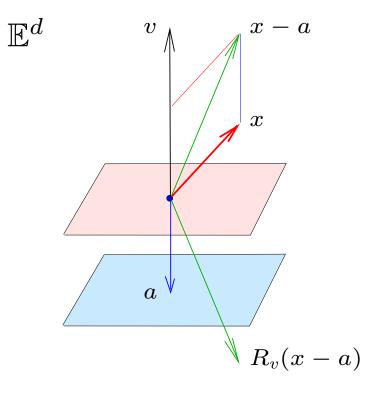


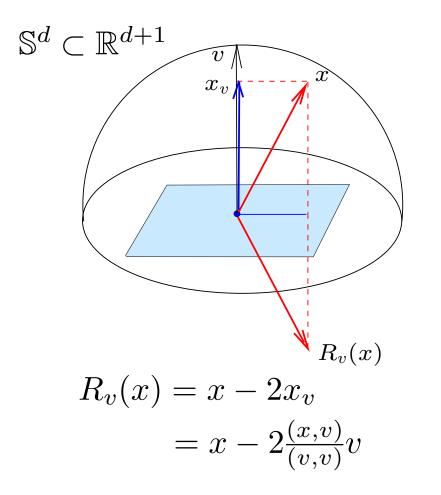


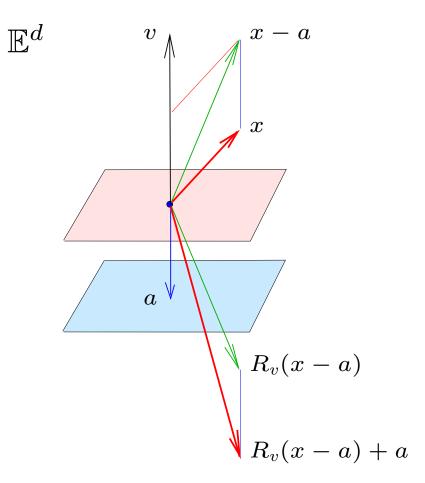








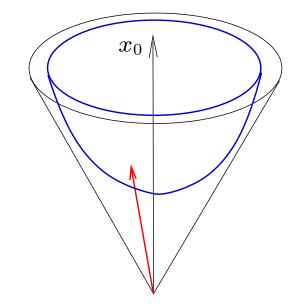




$$\mathbb{R}^{d,1}: \quad (u,v) = -u_0v_0 + u_1v_1 + u_2v_2 + \dots + u_dv_d$$

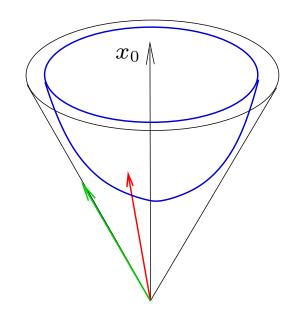
$$\mathbb{R}^{d,1}: \quad (u,v) = -u_0v_0 + u_1v_1 + u_2v_2 + \dots + u_dv_d$$

• Points of $\mathbb{H}^d \quad \leftrightarrow \quad \{u \in \mathbb{R}^{d,1} \mid u^2 = -1, u_0 > 0\}.$



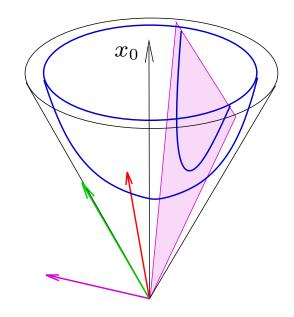
$$\mathbb{R}^{d,1}$$
: $(u,v) = -u_0v_0 + u_1v_1 + u_2v_2 + \dots + u_dv_d$

- Points of $\mathbb{H}^d \quad \leftrightarrow \{ u \in \mathbb{R}^{d,1} \mid u^2 = -1, u_0 > 0 \}.$
- Points of $\partial \mathbb{H}^d \quad \leftrightarrow \quad \{u \in \mathbb{R}^{d,1} \mid u^2 = 0, u_0 > 0\}.$



$$\mathbb{R}^{d,1}$$
: $(u,v) = -u_0v_0 + u_1v_1 + u_2v_2 + \dots + u_dv_d$

- Points of $\mathbb{H}^d \quad \leftrightarrow \{ u \in \mathbb{R}^{d,1} \mid u^2 = -1, u_0 > 0 \}.$
- Points of $\partial \mathbb{H}^d \quad \leftrightarrow \quad \{ u \in \mathbb{R}^{d,1} \mid u^2 = 0, u_0 > 0 \}.$
- Hyperplane $H_u \leftrightarrow \{u \in \mathbb{R}^{d,1} \mid u^2 = 1\}.$

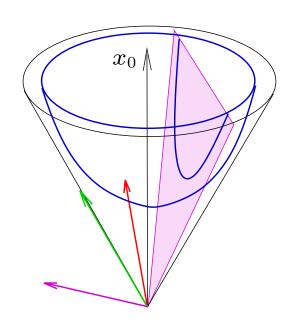


$$\mathbb{R}^{d,1}$$
: $(u,v) = -u_0v_0 + u_1v_1 + u_2v_2 + \dots + u_dv_d$

- Points of $\mathbb{H}^d \quad \leftrightarrow \{ u \in \mathbb{R}^{d,1} \mid u^2 = -1, u_0 > 0 \}.$
- Points of $\partial \mathbb{H}^d \quad \leftrightarrow \quad \{u \in \mathbb{R}^{d,1} \mid u^2 = 0, u_0 > 0\}.$
- Hyperplane $H_u \leftrightarrow \{u \in \mathbb{R}^{d,1} \mid u^2 = 1\}.$

• Pair of hyperplanes:
$$(u, v) = -\cos(\angle(H_u, H_v)) \leftrightarrow H_u \cap H_v \neq \emptyset$$

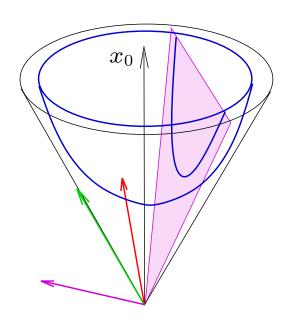
 $(u, v) = -1 \qquad \leftrightarrow H_u \cap H_v \subset \partial \mathbb{H}^d$
 $(u, v) = -\cosh\rho(H_u, H_v) \quad \leftrightarrow \quad H_u \cap H_v = \emptyset$



$$\mathbb{R}^{d,1}$$
: $(u,v) = -u_0v_0 + u_1v_1 + u_2v_2 + \dots + u_dv_d$

- Points of $\mathbb{H}^d \quad \leftrightarrow \{ u \in \mathbb{R}^{d,1} \mid u^2 = -1, u_0 > 0 \}.$
- Points of $\partial \mathbb{H}^d \iff \{u \in \mathbb{R}^{d,1} \mid u^2 = 0, u_0 > 0\}.$
- Hyperplane $H_u \leftrightarrow \{u \in \mathbb{R}^{d,1} \mid u^2 = 1\}.$
- Pair of hyperplanes: $(u, v) = -\cos(\angle(H_u, H_v)) \leftrightarrow H_u \cap H_v \neq \emptyset$ $(u, v) = -1 \qquad \leftrightarrow H_u \cap H_v \subset \partial \mathbb{H}^d$ $(u, v) = -\cosh\rho(H_u, H_v) \quad \leftrightarrow \quad H_u \cap H_v = \emptyset$

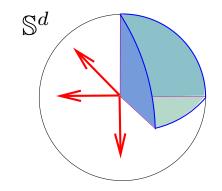
• Reflection across H_v : $R_v(x) = x - 2\frac{(x,v)}{(v,v)}v$.



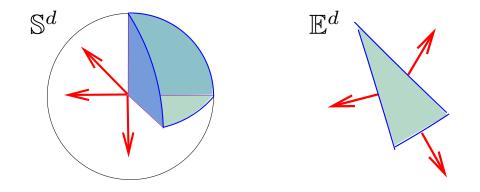
$P \subset \mathbb{S}^d, \mathbb{E}^d \text{ or } \mathbb{H}^d \longrightarrow \text{Symmetric matrix } G(P) = \{g_{ij}\}$

 $P \subset \mathbb{S}^{d}, \mathbb{E}^{d} \text{ or } \mathbb{H}^{d} \longrightarrow \text{Symmetric matrix } G(P) = \{g_{ij}\}$ • $g_{ii} = 1, \quad g_{ij} = \begin{cases} -\cos(\frac{\pi}{m_{ij}}), & \text{if } \angle(f_i f_j) = \pi/m_{ij}, \\ -1, & \text{if } f_i \text{ is parallel to } f_j, \\ -\cosh(\rho(f_i, f_j)), & \text{if } f_i \text{ and } f_j \text{ diverge.} \end{cases}$

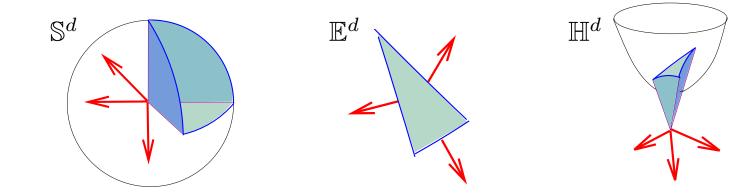
$$\begin{split} P \subset \mathbb{S}^d, \mathbb{E}^d \text{ or } \mathbb{H}^d & \longrightarrow & \text{Symmetric matrix } G(P) = \{g_{ij}\} \\ \bullet \ g_{ii} = 1, \qquad g_{ij} = \begin{cases} -\cos(\frac{\pi}{m_{ij}}), & \text{ if } \angle(f_if_j) = \pi/m_{ij}, \\ -1, & \text{ if } f_i \text{ is parallel to } f_j, \\ -\cosh(\rho(f_i, f_j)), & \text{ if } f_i \text{ and } f_j \text{ diverge.} \end{cases} \end{split}$$



$$\begin{split} P \subset \mathbb{S}^d, \mathbb{E}^d \text{ or } \mathbb{H}^d & \longrightarrow & \text{Symmetric matrix } G(P) = \{g_{ij}\} \\ \bullet & g_{ii} = 1, \qquad g_{ij} = \begin{cases} -\cos(\frac{\pi}{m_{ij}}), & \text{if } \angle(f_i f_j) = \pi/m_{ij}, \\ -1, & \text{if } f_i \text{ is parallel to } f_j, \\ -\cosh(\rho(f_i, f_j)), & \text{if } f_i \text{ and } f_j \text{ diverge.} \end{cases} \end{split}$$



$$\begin{split} P \subset \mathbb{S}^d, \mathbb{E}^d \text{ or } \mathbb{H}^d & \longrightarrow & \text{Symmetric matrix } G(P) = \{g_{ij}\} \\ \bullet & g_{ii} = 1, \qquad g_{ij} = \begin{cases} -\cos(\frac{\pi}{m_{ij}}), & \text{ if } \angle(f_i f_j) = \pi/m_{ij}, \\ -1, & \text{ if } f_i \text{ is parallel to } f_j, \\ -\cosh(\rho(f_i, f_j)), & \text{ if } f_i \text{ and } f_j \text{ diverge.} \end{cases} \end{split}$$



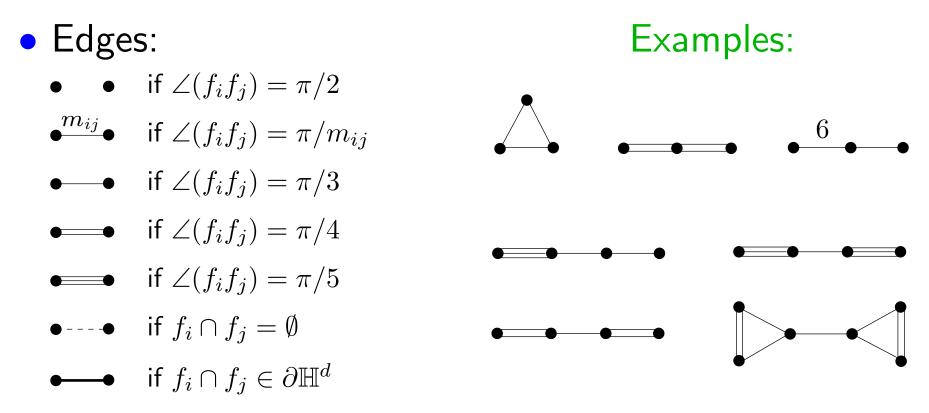
 $P \subset \mathbb{S}^d, \mathbb{E}^d \text{ or } \mathbb{H}^d \longrightarrow \text{Symmetric matrix } G(P) = \{g_{ij}\}$ • $g_{ii} = 1$, $g_{ij} = \begin{cases} -\cos(\frac{\pi}{m_{ij}}), & \text{if } \angle (f_i f_j) = \pi/m_{ij}, \\ -1, & \text{if } f_i \text{ is parallel to } f_j, \\ -\cosh(\rho(f_i, f_j)), & \text{if } f_i \text{ and } f_j \text{ diverge.} \end{cases}$ \mathbb{S}^d \mathbb{H}^d \mathbb{E}^{d} (d+1, 0)(d, 0, 1)(d, 1)sgn (G(P)):

Coxeter diagram $\Sigma(P)$

- Nodes \longleftrightarrow facets f_i of P
- Edges:
 - • if $\angle(f_if_j) = \pi/2$
 - if $\angle (f_i f_j) = \pi / m_{ij}$
 - if $\angle(f_if_j) = \pi/3$
 - if $\angle(f_i f_j) = \pi/4$
 - if $\angle(f_i f_j) = \pi/5$
 - •---• if $f_i \cap f_j = \emptyset$
 - if $f_i \cap f_j \in \partial \mathbb{H}^d$

Coxeter diagram $\Sigma(P)$

• Nodes \longleftrightarrow facets f_i of P



Coxeter polytopes in \mathbb{S}^d , \mathbb{E}^d and \mathbb{H}^d :

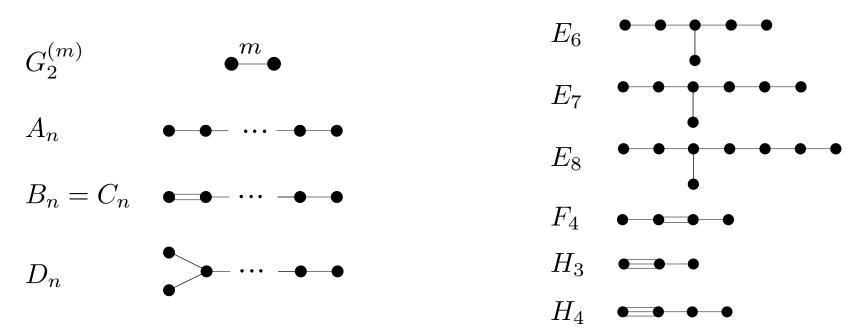
- P ⊂ S^d. Finitely many in each dimension, Classified (Coxeter, 1934).
- P ⊂ E^d. Finitely many in each dimension, Classified (Coxeter, 1934).
- $P \subset \mathbb{H}^d$. Infinitely many, No classification.

Spherical Coxeter polytopes

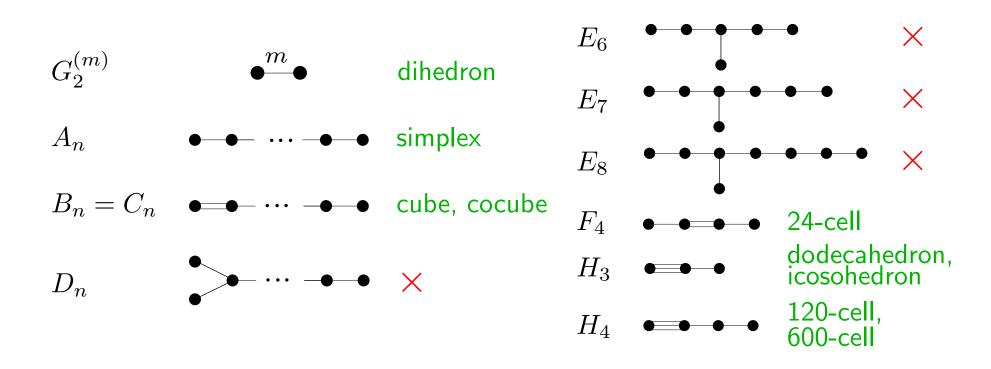
- $P \subset \mathbb{S}^d \Rightarrow P$ is a simplex.
- $G(P) > 0 \implies$ Any connected component of $\Sigma(P)$ has
 - \circ no \bullet for k > 5,
 - o no cycles,
 - o at most one multiple edge,
 - \circ no nodes of valency ≥ 4 ,
 - at most one node of valency 3.

Spherical Coxeter polytopes

- $P \subset \mathbb{S}^d \Rightarrow P$ is a simplex.
- Coxeter diagram of P is called elliptic, it is a union of

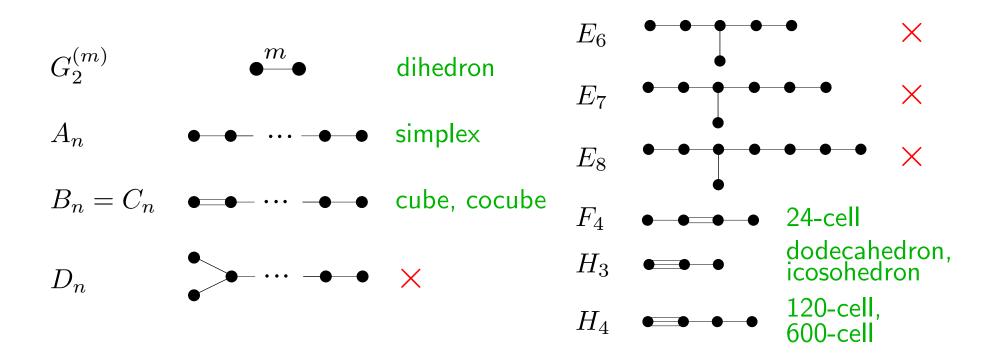


Regular polytopes: classification



Regular polytopes: classification

• Regular polytopes correspond to linear elliptic diagrams:



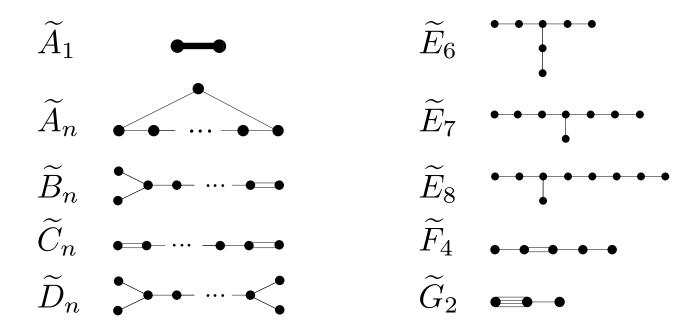
Euclidean Coxeter polytopes

- $P \subset \mathbb{E}^d \Rightarrow P$ is a product of simplices.
- \bullet Coxeter diagram of P is called parabolic, it is a union of

Euclidean Coxeter polytopes

• $P \subset \mathbb{E}^d \Rightarrow P$ is a product of simplices.

• Coxeter diagram of P is called parabolic, it is a union of



A polytope is acute-angled if all its dihedral angles are acute (α is called acute if $\alpha \leq \pi/2$).

A polytope is acute-angled if all its dihedral angles are acute (α is called acute if $\alpha \leq \pi/2$).

A polytope is acute-angled if all its dihedral angles are acute (α is called acute if $\alpha \leq \pi/2$).

Thm. A face of an acute-angled polytope is acute-angled.

• Prove the theorem for a facet and use induction.

A polytope is acute-angled if all its dihedral angles are acute (α is called acute if $\alpha \leq \pi/2$).

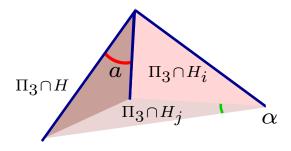
- Prove the theorem for a facet and use induction.
- A polytope $P = \cap H_i^+$, a facet $f = \left(\cap_{i=0}^k H_i^+ \right) \bigcap H$.

A polytope is acute-angled if all its dihedral angles are acute (α is called acute if $\alpha \leq \pi/2$).

- Prove the theorem for a facet and use induction.
- A polytope $P = \cap H_i^+$, a facet $f = \left(\cap_{i=0}^k H_i^+ \right) \bigcap H$.
- Angles of f are $\angle (H \cap H_i, H \cap H_j)$.

A polytope is acute-angled if all its dihedral angles are acute (α is called acute if $\alpha \leq \pi/2$).

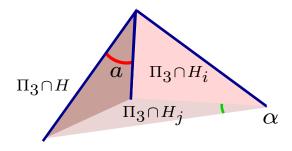
- Prove the theorem for a facet and use induction.
- A polytope $P = \cap H_i^+$, a facet $f = \left(\cap_{i=0}^k H_i^+ \right) \bigcap H$.
- Angles of f are $\angle (H \cap H_i, H \cap H_j)$.
- Consider a section by a 3-plane $\Pi_3 \perp (H \cap H_i \cap H_j)$:



A polytope is acute-angled if all its dihedral angles are acute (α is called acute if $\alpha \leq \pi/2$).

Thm. A face of an acute-angled polytope is acute-angled.

- Prove the theorem for a facet and use induction.
- A polytope $P = \cap H_i^+$, a facet $f = \left(\cap_{i=0}^k H_i^+ \right) \bigcap H$.
- Angles of f are $\angle (H \cap H_i, H \cap H_j)$.
- Consider a section by a 3-plane $\Pi_3 \perp (H \cap H_i \cap H_j)$:



• $a \leq \alpha$

Thm. Any acute-angled polytope $P \subset \mathbb{S}^d$ containing no opposite points of \mathbb{S}^d is a simplex.

• If
$$d = 2$$
: $\sum \alpha_i > (n-2)\pi \Rightarrow n = 3$.

• If
$$d = 2$$
: $\sum \alpha_i > (n-2)\pi \Rightarrow n = 3$.

• If d > 2: Induction on d.

• If
$$d = 2$$
: $\sum \alpha_i > (n-2)\pi \Rightarrow n = 3$.

• If d > 2: Induction on d.

• By ind. assumption facets are simplices, i.e. P is simplicial.

• If
$$d = 2$$
: $\sum \alpha_i > (n-2)\pi \Rightarrow n = 3$.

- If d > 2: Induction on d.
- By ind. assumption facets are simplices, i.e. P is simplicial.
- By ind. assumption P is also simple (i.e. each *i*-face belongs to exactly d - i facets).

• If
$$d = 2$$
: $\sum \alpha_i > (n-2)\pi \Rightarrow n = 3$.

- If d > 2: Induction on d.
- By ind. assumption facets are simplices, i.e. P is simplicial.
- By ind. assumption P is also simple (i.e. each *i*-face belongs to exactly d - i facets).
- Simple and simplicial \Rightarrow simplex.

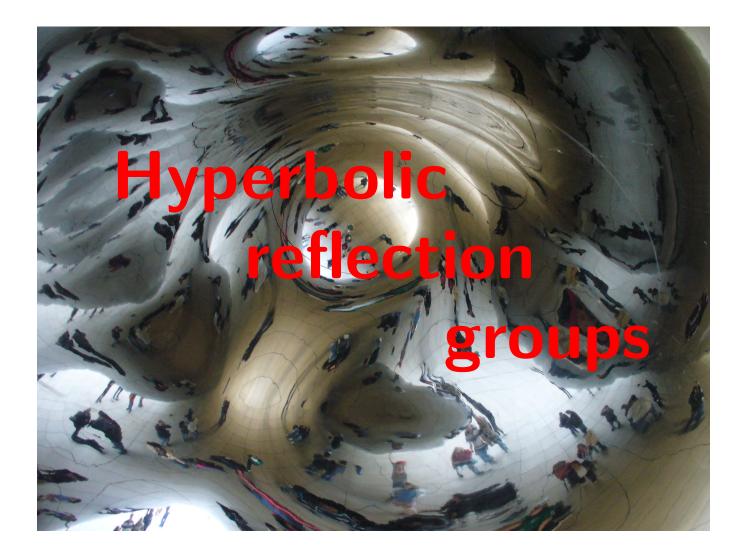
• If
$$d = 2$$
: $\sum \alpha_i > (n-2)\pi \Rightarrow n = 3$.

- If d > 2: Induction on d.
- By ind. assumption facets are simplices, i.e. P is simplicial.
- By ind. assumption P is also simple (i.e. each *i*-face belongs to exactly d i facets).
- Simple and simplicial \Rightarrow simplex.

Cor. Any compact Coxeter polytope in \mathbb{E}^d and \mathbb{H}^d is simple.

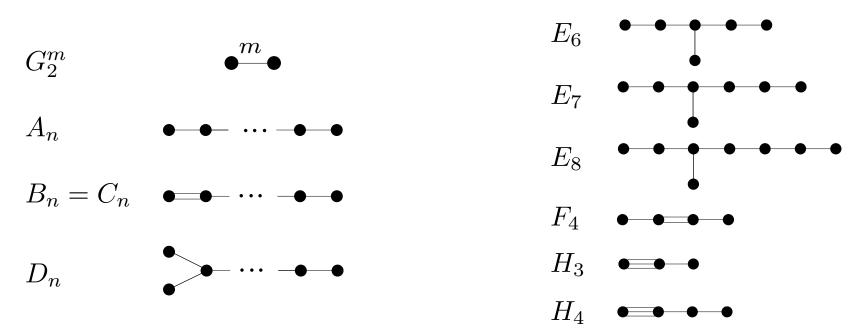
Thm. Any acute-angled polytope in \mathbb{E}^d is a direct product of several simplices and a simplicial cone.

Lemma. $L = \{e_1, ..., e_s\}$ indecomposable system of vectors in \mathbb{E}^d , $(e_i, e_j) \leq 0, i \neq j$. Then L is either linearly independent or there is a unique linear dependence with positive coefficients.



Spherical Coxeter polytopes

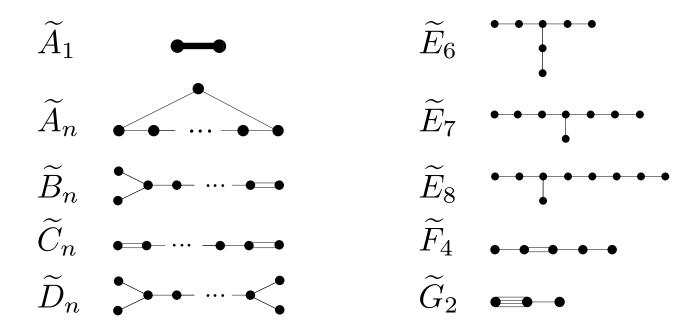
- $P \subset \mathbb{S}^d \Rightarrow P$ is a simplex.
- Coxeter diagram of P is called elliptic, it is a union of



Euclidean Coxeter polytopes

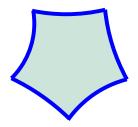
• $P \subset \mathbb{E}^d \Rightarrow P$ is a product of simplices.

• Coxeter diagram of P is called parabolic, it is a union of

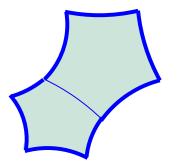


• Variety of compact and finite-volume polytopes.

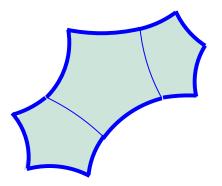
• Variety of compact and finite-volume polytopes.



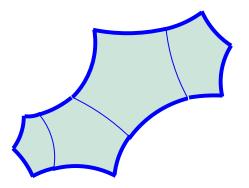
• Variety of compact and finite-volume polytopes.



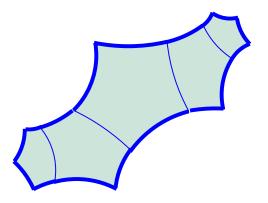
• Variety of compact and finite-volume polytopes.



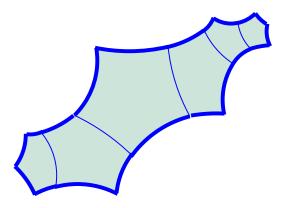
• Variety of compact and finite-volume polytopes.



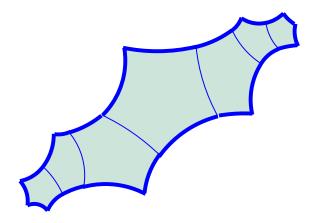
• Variety of compact and finite-volume polytopes.



• Variety of compact and finite-volume polytopes.



• Variety of compact and finite-volume polytopes.



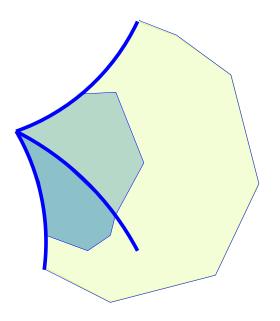
- Variety of compact and finite-volume polytopes.
 - Any number of facets
 - Any complexity of combinatorial types
 - Arbitrary small dihedral angles

- Variety of compact and finite-volume polytopes.
 - Any number of facets
 - Any complexity of combinatorial types
 - Arbitrary small dihedral angles

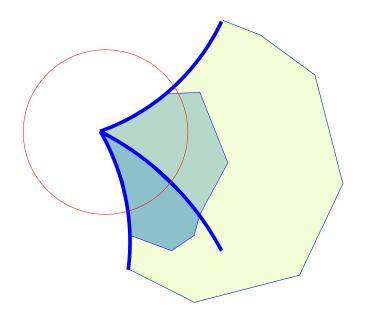
• Thm. (Allcock' 05) There are infinitely many finite-volume Coxeter polytopes in \mathbb{H}^d , for every $d \leq 19$.

There are infinitely many compact Coxeter polytopes in \mathbb{H}^d , for every $d \leq 6$.

- If P is compact then P is simple.
 - (i.e. d facets through each vertex)



- If P is compact then P is simple.
 - (i.e. d facets through each vertex)



- If P is compact then P is simple.
- If P is compact (finite volume) then P is indecomposable.

$$G(P) = \begin{pmatrix} \boxed{\mathbf{0}} \\ \mathbf{0} \\ \end{bmatrix}$$

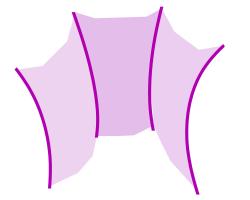
- If P is compact then P is simple.
- If P is compact (finite volume) then P is indecomposable.

$$G(P) = \begin{pmatrix} \boxed{0} \\ 0 \\ \hline{0} \end{pmatrix} \quad sgn = (k, 1)$$

- If P is compact then P is simple.
- If P is compact (finite volume) then P is indecomposable.

$$G(P) = \begin{array}{(\begin{array}{|c|c|} \mathbf{0} \\ \mathbf{0} \end{array} \end{array} } sgn = (k,1)$$

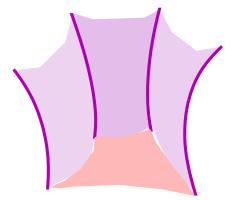
a subgroup H



- If P is compact then P is simple.
- If P is compact (finite volume) then P is indecomposable.

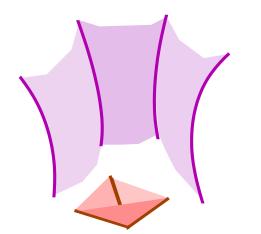
$$G(P) = \begin{pmatrix} \boxed{\mathbf{0}} \\ \mathbf{0} \\ \boxed{\mathbf{0}} \end{pmatrix} \quad sgn = (k, 1)$$

a subgroup H, $vol(F_H) = \infty$



- If P is compact then P is simple.
- If P is compact (finite volume) then P is indecomposable.

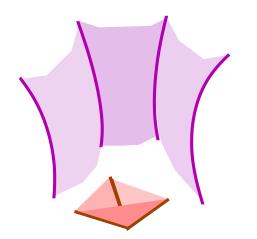
$$G(P) = \begin{pmatrix} \boxed{\mathbf{0}} \\ \mathbf{0} \end{bmatrix} \quad sgn = (k, 1)$$



a subgroup H, $vol(F_H) = \infty$ $[G:H] < \infty$

- If P is compact then P is simple.
- If P is compact (finite volume) then P is indecomposable.

$$G(P) = \begin{pmatrix} \boxed{\mathbf{0}} \\ \mathbf{0} \end{bmatrix} \quad sgn = (k, 1)$$



a subgroup H, $vol(F_H) = \infty$ $[G:H] < \infty$, $G = H \times K$, $|K| < \infty$ $F_H = \bigcup_{q \in H} gF$

P, $\Sigma(P)$

$$P$$
, $\Sigma(P)$ — k -face f

$P, \Sigma(P) - k$ -face f

- all facets f_1, \ldots, f_{d-k} containing f

$P, \Sigma(P) - k$ -face f

- all facets f_1, \ldots, f_{d-k} containing f
- corresponding reflections generate a finite group

$P, \Sigma(P) - k$ -face f

- all facets f_1, \ldots, f_{d-k} containing f
- corresponding reflections generate a finite group
- corresponding nodes span $% \left({{\left[{{{\left[{{{\left[{{\left[{{\left[{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{}}}} \right]}}}} \right.$

P, $\Sigma(P)$ — k-face f

- all facets f_1, \ldots, f_{d-k} containing f
- corresponding reflections generate a finite group
- corresponding nodes span $% \left({{\left[{{{\left[{{{\left[{{\left[{{\left[{{\left[{{{cl}}} \right]}} \right.} \right]_{{\left[{{cl}} \right]}}}} \right]}} \right]}} \right]}} \right]} \right)$
- elliptic subdiagram spanned by nodes n_1, \ldots, n_{d-k}

P, $\Sigma(P)$ — k-face f

- all facets f_1, \ldots, f_{d-k} containing f
- corresponding reflections generate a finite group
- corresponding nodes span $\,$ elliptic subdiagram $\,$
- elliptic subdiagram spanned by nodes n_1, \ldots, n_{d-k}
- vectors v_1, \ldots, v_{d-k} orthogonal to corresponding facets f_1, \ldots, f_{d-k} ; v_1, \ldots, v_{d-k} span positive definite subspace

P, $\Sigma(P)$ — k-face f

- all facets f_1, \ldots, f_{d-k} containing f
- corresponding reflections generate a finite group
- corresponding nodes span elliptic subdiagram
- elliptic subdiagram spanned by nodes n_1, \ldots, n_{d-k}
- vectors v_1, \ldots, v_{d-k} orthogonal to corresponding facets f_1, \ldots, f_{d-k} ; v_1, \ldots, v_{d-k} span positive definite subspace
- $\langle v_1, \ldots v_{d-k} \rangle^{\perp}$ is a k-dimensional hyperbolic plane Π_k

P, $\Sigma(P)$ — k-face f

- all facets f_1, \ldots, f_{d-k} containing f
- corresponding reflections generate a finite group
- corresponding nodes span elliptic subdiagram
- elliptic subdiagram spanned by nodes n_1, \ldots, n_{d-k}
- vectors v_1, \ldots, v_{d-k} orthogonal to corresponding facets f_1, \ldots, f_{d-k} ; v_1, \ldots, v_{d-k} span positive definite subspace
- $-\langle v_1, \ldots v_{d-k} \rangle^{\perp}$ is a k-dimensional hyperbolic plane Π_k
- Π_k is preserved by all reflections with resp. to to f_i .

P, $\Sigma(P)$ — k-face f

- all facets f_1, \ldots, f_{d-k} containing f
- corresponding reflections generate a finite group
- corresponding nodes span elliptic subdiagram
- elliptic subdiagram spanned by nodes n_1, \ldots, n_{d-k}
- vectors v_1, \ldots, v_{d-k} orthogonal to corresponding facets f_1, \ldots, f_{d-k} ; v_1, \ldots, v_{d-k} span positive definite subspace
- $-\langle v_1, \ldots v_{d-k} \rangle^{\perp}$ is a k-dimensional hyperbolic plane Π_k
- Π_k is preserved by all reflections with resp. to f_1, \ldots, f_{d-k}
- $\cap f_i = \Pi_k$ contains a <u>k-face</u> f

- If P is compact then P is simple.
- If P is compact (finite volume) then P is indecomposable.
- Coxeter diagram \rightarrow combinatorics of P.

- If P is compact then P is simple.
- If P is compact (finite volume) then P is indecomposable.
- Coxeter diagram \rightarrow combinatorics of P.

-k-faces \leftrightarrow elliptic subdiagrams of order d-k,

- If P is compact then P is simple.
- If P is compact (finite volume) then P is indecomposable.
- Coxeter diagram \rightarrow combinatorics of P.
 - -k-faces \leftrightarrow elliptic subdiagrams of order d-k,
 - vertices at $\partial \mathbb{H}^d \iff$ parabolic subdiagrams of order d(parabolic = Coxeter diagrams of Euclidean simplices).

Thm. (Vinberg '67) Indecomposable, symmetric matrix G, sgn(G) = (d, 1),

$$g_{ii} = 1,$$

$$g_{ij} \le 0.$$

Then there exists a convex polytope $P \subset \mathbb{H}^d$, such that G = G(P) (unique up to an isometry of \mathbb{H}^d).

Thm. (Vinberg '67) Indecomposable, symmetric matrix G, sgn(G) = (d, 1),

$$g_{ii} = 1,$$

$$g_{ij} \le 0.$$

Then there exists a convex polytope $P \subset \mathbb{H}^d$, such that G = G(P) (unique up to an isometry of \mathbb{H}^d).

• P is compact (finite volume) \Rightarrow P combinatorially equivalent to some Euclidean polytope.

Thm. (Vinberg '67) Indecomposable, symmetric matrix G, sgn(G) = (d, 1),

$$g_{ii} = 1,$$

$$g_{ij} \le 0.$$

Then there exists a convex polytope $P \subset \mathbb{H}^d$, such that G = G(P) (unique up to an isometry of \mathbb{H}^d).

• P is compact (finite volume) \Rightarrow P combinatorially equivalent to some Euclidean polytope.

- 1. P has at least one vertex (ideal vertex).
- 2. each edge has two ends.

Thm. (Vinberg '67) Indecomposable, symmetric matrix G, sgn(G) = (d, 1),

$$g_{ii} = 1,$$

$$g_{ij} \le 0.$$

Then there exists a convex polytope $P \subset \mathbb{H}^d$, such that G = G(P) (unique up to an isometry of \mathbb{H}^d).

• P is compact (finite volume) \Rightarrow P combinatorially equivalent to some Euclidean polytope.

- 1. P has at least one vertex (ideal vertex).
- 2. each edge has two ends.
- 1, 2 \Rightarrow P is compact (finite volume).

Thm. (Vinberg '84) If $P \subset \mathbb{H}^d$ is compact then $d \leq 29$.

- Thm. (Vinberg '84) If $P \subset \mathbb{H}^d$ is compact then $d \leq 29$. Idea of proof:
 - **1**. vertices \leftrightarrow elliptic subdiagrams \leftrightarrow many right angles
 - 2. triangular, quadrilateral faces \leftrightarrow many non-right angles

- Thm. (Vinberg '84) If $P \subset \mathbb{H}^d$ is compact then $d \leq 29$. Idea of proof:
 - **1**. vertices \leftrightarrow elliptic subdiagrams \leftrightarrow many right angles
 - 2. triangular, quadrilateral faces \leftrightarrow many non-right angles
 - 3. Thm. (Nikulin, 81): For any simple, compact, convex polytope $P \subset \mathbb{E}^d$ and any $i < k \leq [d/2]$ holds

$$\alpha_k^i < \binom{d-i}{d-k} \frac{\binom{[d/2]}{i} + \binom{[(d+1)/2]}{i}}{\binom{[d/2]}{k} + \binom{[(d+1)/2]}{k}}$$

where α_k^i = average number of *i*-faces of a *k*-face of *P*

- Thm. (Vinberg '84) If $P \subset \mathbb{H}^d$ is compact then $d \leq 29$. Idea of proof:
 - **1**. vertices \leftrightarrow elliptic subdiagrams \leftrightarrow many right angles
 - 2. triangular, quadrilateral faces \leftrightarrow many non-right angles

3.
$$a_2 \leq \frac{4(d-\varepsilon)}{(d-1-\varepsilon)}$$

 $a_2 = average number of sides of 2-face$

$$\varepsilon =$$
 1, if *d* is even 0, otherwise.

- Thm. (Vinberg '84) If $P \subset \mathbb{H}^d$ is compact then $d \leq 29$. Idea of proof:
 - **1**. vertices \leftrightarrow elliptic subdiagrams \leftrightarrow many right angles
 - 2. triangular, quadrilateral faces \leftrightarrow many non-right angles

3.
$$a_2 \leq \frac{4(d-\varepsilon)}{(d-1-\varepsilon)}$$

 $a_2 = average number of sides of 2-face$
 $\varepsilon = 1, if d is even$

$$0$$
, otherwise.

 \Rightarrow a lots of triangular and quadrilateral 2-faces

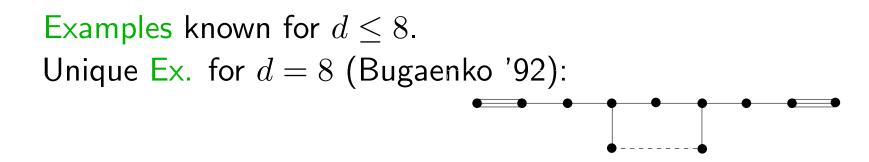
More precisely:

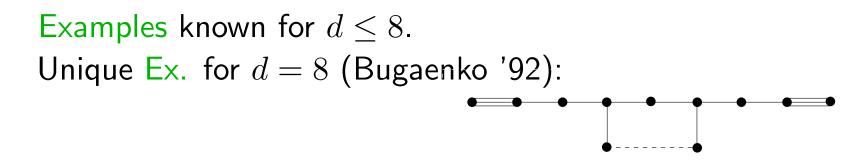
Plane angles \longrightarrow weights vertex $A \longrightarrow \sigma(A) = \sum$ of weights of plane angles at A2-face $F \longrightarrow \sigma(F) = \sum$ of weights of plane angles of F

L. If for all A, $F \quad \sigma(A) \leq cd$ and $\sigma(F) \geq 5 - n_F$ then d < 8c + 6. ($n_F = \#$ of sides of F)

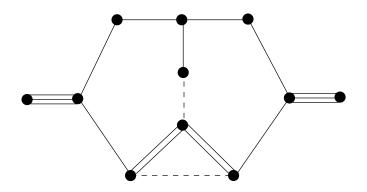
plane angle \leftrightarrow diagram Σ_A of a vertex A with two "black" nodes a and b (corresp. to facets not containing F).

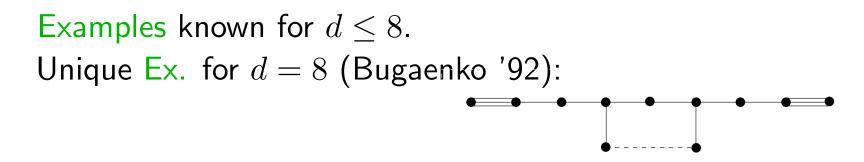
weight = 1, if $dist_{\Sigma_A}(a, b) \leq 7$ weight = 0, otherwise.



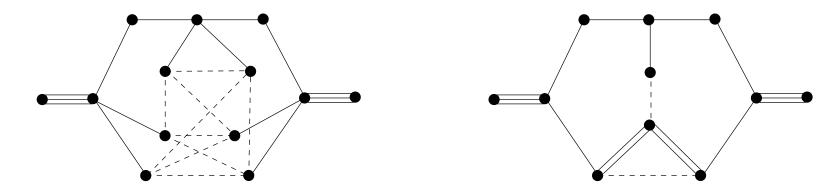


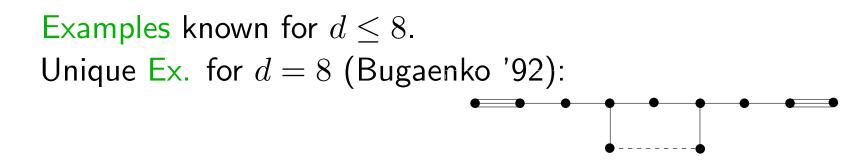
All known Ex. for d = 7 (Bugaenko '84):



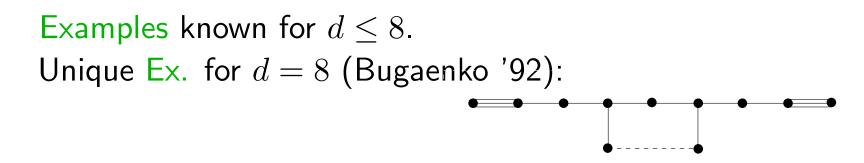


All known Ex. for d = 7 (Bugaenko '84):





If P ⊂ ℍ^d is of finite volume then d < 996.
 (Prokhorov, Khovanskii '86).



If P ⊂ ℍ^d is of finite volume then d < 996.
 (Prokhorov, Khovanskii '86).

Examples known for $d \le 19$ (Vinberg, Kaplinskaya '78) d = 21 (Borcherds '87).

• Each face is a right-angled polytope.

- Each face is a right-angled polytope.
- Each 2-face has at least 5 sides.

- Each face is a right-angled polytope.
- Each 2-face has at least 5 sides.

•
$$a_2 \leq \frac{4(d-\varepsilon)}{(d-1-\varepsilon)}$$

 $\Rightarrow d \leq 4$ (for compact polytopes).

- Each face is a right-angled polytope.
- Each 2-face has at least 5 sides.

•
$$a_2 \leq \frac{4(d-\varepsilon)}{(d-1-\varepsilon)}$$

 $\Rightarrow d \leq 4$ (for compact polytopes).

$$d = 2 \qquad d = 3 \qquad d = 4$$

$$integration d = 4$$

- Each face is a right-angled polytope.
- Each 2-face has at least 5 sides.

•
$$a_2 \leq \frac{4(d-\varepsilon)}{(d-1-\varepsilon)}$$

 $\Rightarrow d \leq 4$ (for compact polytopes).

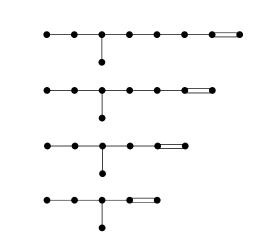
$$d = 2 \qquad d = 3 \qquad d = 4$$

$$integration d = 4$$

Example: Finite volume right-angled polytopes (Vinberg, Potyagailo '05)

- $d \le 14$
- Examples are known up to d = 8 only

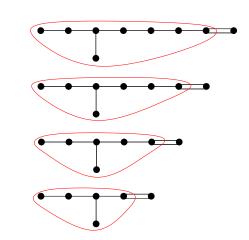
(from rotations around vertices of simplices):



Example: Finite volume right-angled polytopes (Vinberg, Potyagailo '05)

- $d \le 14$
- Examples are known up to d = 8 only

(from rotations around vertices of simplices):



• Poincare (1882): $\sum \alpha_i < \pi(n-2)$.

- Poincare (1882): $\sum \alpha_i < \pi(n-2)$.
- n-gon with fixed angles depends on n-3 continuous parameters.

• Poincare (1882): $\sum \alpha_i < \pi(n-2)$.

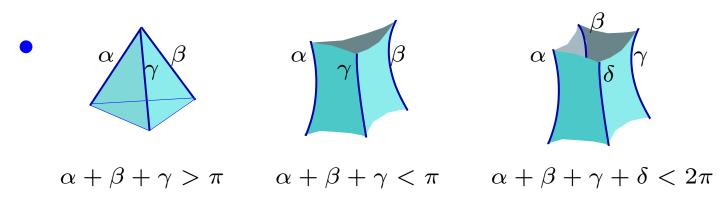
• n-gon with fixed angles depends on n-3 continuous parameters.

Thm. (Andreev '70):

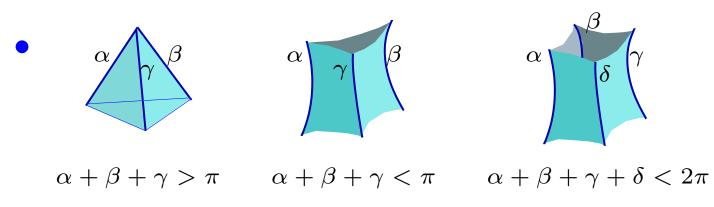
Compact acute-angled polytope in \mathbb{H}^d , $d \geq 3$ is determined (up to isometry) by its combinatorial type and dihedral angles.

Thm. (Andreev '70). Given a combinatorial type of a simple 3-polytope and prescribed acute dihedral angles, the polytope is realized by a compact polytope in \mathbb{H}^3 if and only if

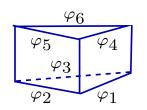
Thm. (Andreev '70). Given a combinatorial type of a simple 3-polytope and prescribed acute dihedral angles, the polytope is realized by a compact polytope in \mathbb{H}^3 if and only if



Thm. (Andreev '70). Given a combinatorial type of a simple 3-polytope and prescribed acute dihedral angles, the polytope is realized by a compact polytope in \mathbb{H}^3 if and only if

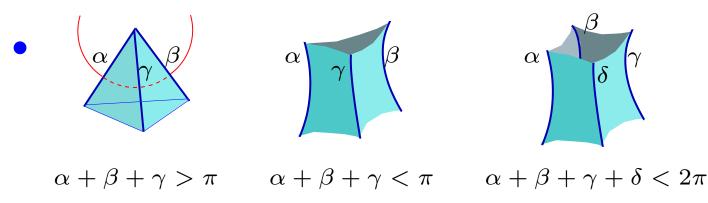


- For a simplex: det(G(P)) < 0.
- For a triangular prism: $\exists i \in \{1, 2, \dots, 6\}$: $\varphi_i \neq \pi/2$

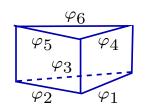


Example: 3-Polytopes.

Thm. (Andreev '70). Given a combinatorial type of a simple 3-polytope and prescribed acute dihedral angles, the polytope is realized by a compact polytope in \mathbb{H}^3 if and only if

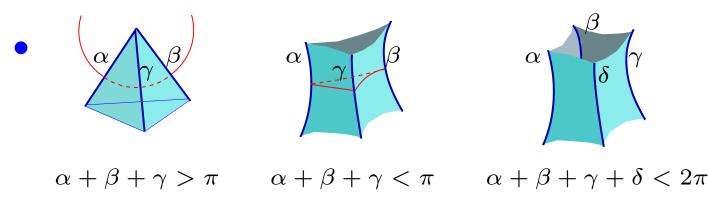


- For a simplex: det(G(P)) < 0.
- For a triangular prism: $\exists i \in \{1, 2, \dots, 6\}$: $\varphi_i \neq \pi/2$

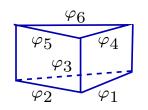


Example: 3-Polytopes.

Thm. (Andreev '70). Given a combinatorial type of a simple 3-polytope and prescribed acute dihedral angles, the polytope is realized by a compact polytope in \mathbb{H}^3 if and only if

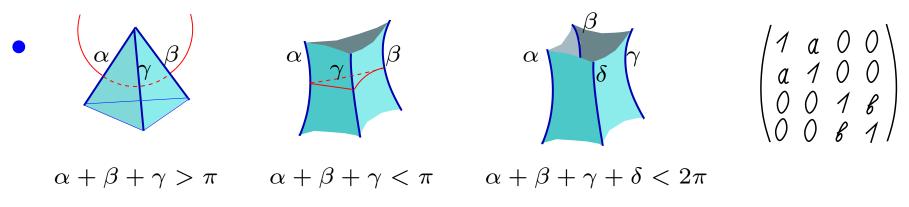


- For a simplex: det(G(P)) < 0.
- For a triangular prism: $\exists i \in \{1, 2, \dots, 6\}$: $\varphi_i \neq \pi/2$

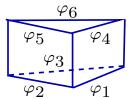


Example: 3-Polytopes.

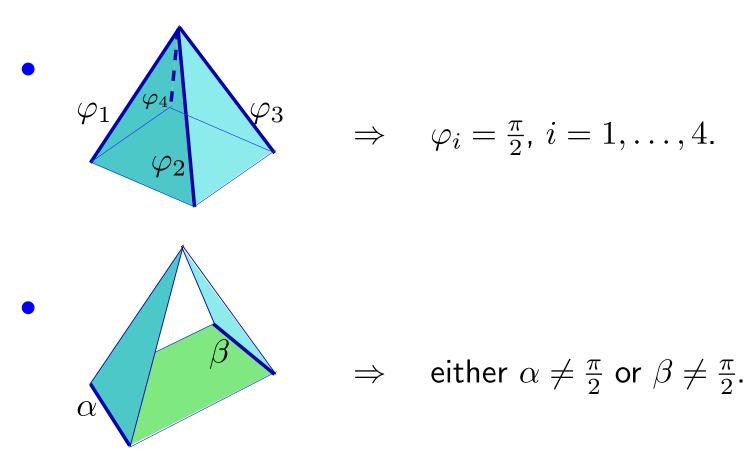
Thm. (Andreev '70). Given a combinatorial type of a simple 3-polytope and prescribed acute dihedral angles, the polytope is realized by a compact polytope in \mathbb{H}^3 if and only if



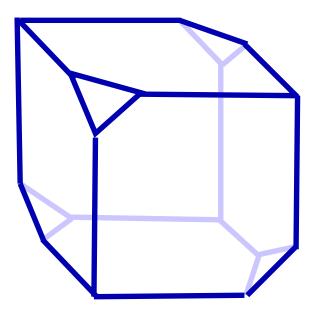
- For a simplex: det(G(P)) < 0.
- For a triangular prism: $\exists i \in \{1, 2, \dots, 6\}$: $\varphi_i \neq \pi/2$



Additional conditions for finite volume polytopes:

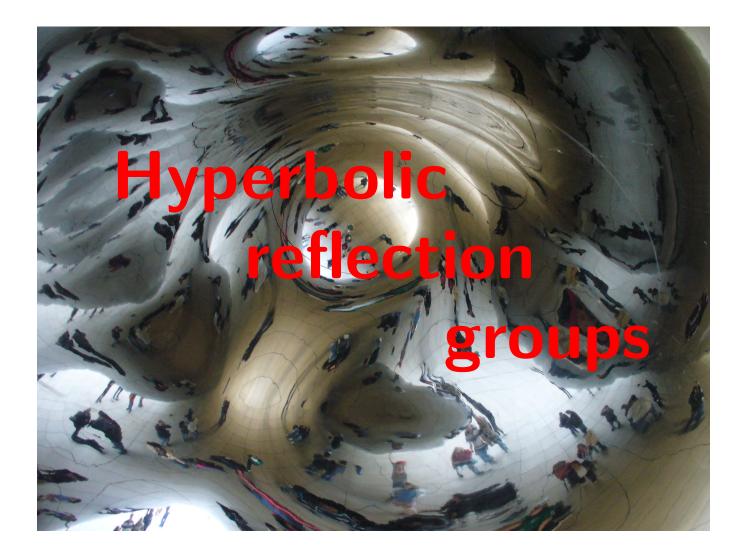


Example: no angles of this polytope would satisfy the conditions of the theorem!



Thm. (Andreev '70) Let P be an acute-angled polytope in \mathbb{H}^d , a, b be its faces, and $\overline{a}, \overline{b}$ be planes spanned by a and b.

If
$$a \cap b = \emptyset$$
 then $\overline{a} \cap \overline{b} = \emptyset$.



1. By dimension.

- **1**. By dimension.
 - dim = 2. Poincare (1882): $\sum \alpha_i < \pi(n-2)$.

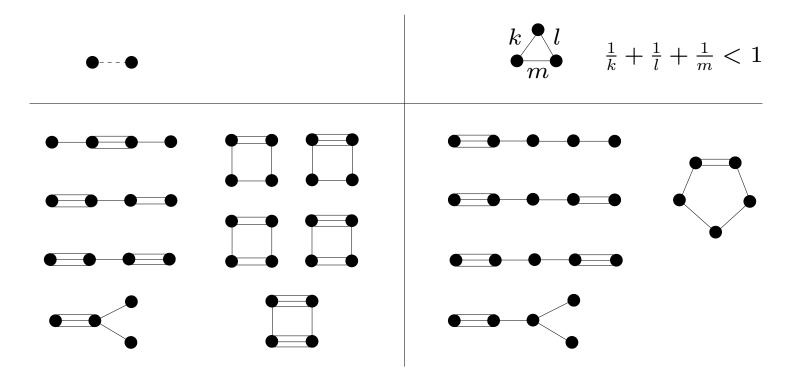
- 1. By dimension.
 - dim = 2. Poincare (1882): $\sum \alpha_i < \pi(n-2)$.
 - dim = 3. And reev ('70): necessary and suff. condition for dihedral angles.

- 1. By dimension.
 - dim = 2. Poincare (1882): $\sum \alpha_i < \pi(n-2)$.
 - dim = 3. And reev ('70): necessary and suff. condition for dihedral angles.
 - $dim \ge 4$. ?????

2. By number of facets.

- 2. By number of facets.
 - n = d + 1, simplices (Lannér '52)

- 2. By number of facets.
 - n = d + 1, simplices (Lannér '52), Lannér diagrams



- 2. By number of facets.
 - n = d + 1, simplices (Lannér '52): $d \le 4$, fin. many for d > 2.

- 2. By number of facets.
 - n = d + 1, simplices (Lannér '52): $d \le 4$, fin. many for d > 2.

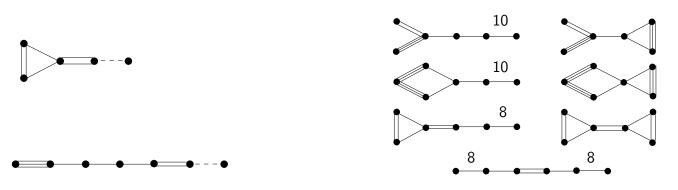
•
$$n = d + 2$$
, $\Delta^k \times \Delta^l$
- prisms (Kaplinskaja '74): $d \leq 5$, fin. many for $d > 3$.
- others (Esselmann '96): $d = 4$, $\Delta^2 \times \Delta^2$, 7 items.

- 2. By number of facets.
 - n = d + 1, simplices (Lannér '52): $d \le 4$, fin. many for d > 2.

•
$$n = d + 2$$
, $\Delta^k \times \Delta^l$
- prisms (Kaplinskaja '74): $d \le 5$, fin. many for $d > 3$.
- others (Esselmann '96): $d = 4$, $\Delta^2 \times \Delta^2$, 7 items.
Examples of prisms:



- 2. By number of facets.
 - n = d + 1, simplices (Lannér '52): $d \le 4$, fin. many for d > 2.
 - n = d + 2, $\Delta^k \times \Delta^l$ - prisms (Kaplinskaja '74): $d \le 5$, fin. many for d > 3. - others (Esselmann '96): d = 4, $\Delta^2 \times \Delta^2$, 7 items. Examples of prisms: Esselmann's polytopes:



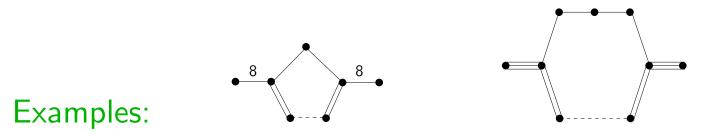
- 2. By number of facets.
 - n = d + 1, simplices (Lannér '52): $d \le 4$, fin. many for d > 2.

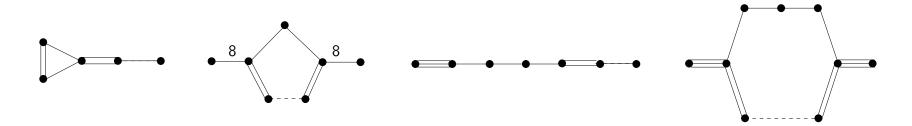
• n = a + 3, several combinatorial types (Tumarkin '03): $d \le 6$ or d = 8, fin. many for d > 3.

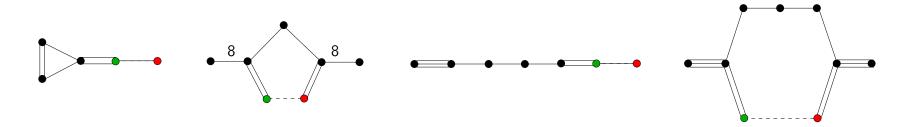
- 2. By number of facets.
 - n = d + 1, simplices (Lannér '52): $d \le 4$, fin. many for d > 2.

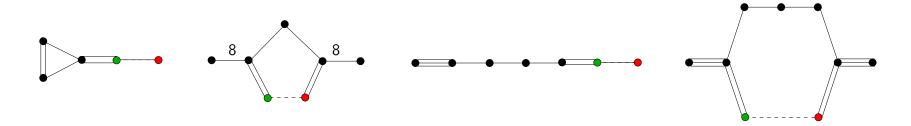
•
$$n = d + 2$$
, $\Delta^k \times \Delta^l$
- prisms (Kaplinskaja '74): $d \le 5$, fin. many for $d > 3$.
- others (Esselmann '96): $d = 4$, $\Delta^2 \times \Delta^2$, 7 items.

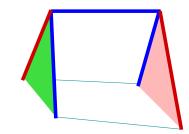
• n = d + 3, several combinatorial types (Tumarkin '03): $d \le 6$ or d = 8, fin. many for d > 3.

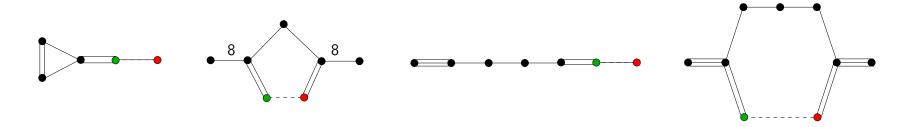


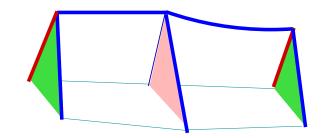


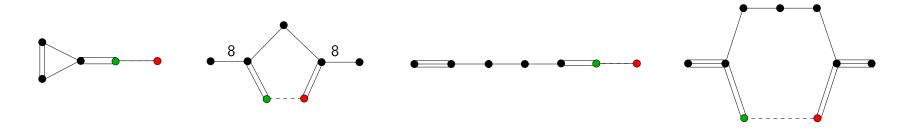


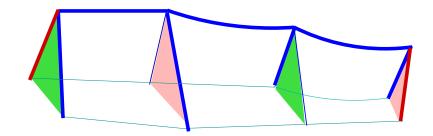












- 2. By number of facets.
 - n = d + 1, simplices (Lannér '52): $d \le 4$, fin. many for d > 2.

•
$$n = d + 2$$
, $\Delta^k \times \Delta^l$
- prisms (Kaplinskaja '74): $d \leq 5$, fin. many for $d > 3$.
- others (Esselmann '96): $d = 4$, $\Delta^2 \times \Delta^2$, 7 items.

- n = d + 3, several combinatorial types (Tumarkin '03): $d \le 6$ or d = 8, fin. many for d > 3.
- n = d + 4, really many combinatorial types... ?????

- 2. By number of facets.
 - n = d + 1, simplices (Lannér '52): $d \le 4$, fin. many for d > 2.

•
$$n = d + 2$$
, $\Delta^k \times \Delta^l$
- prisms (Kaplinskaja '74): $d \le 5$, fin. many for $d > 3$.
- others (Esselmann '96): $d = 4$, $\Delta^2 \times \Delta^2$, 7 items.

• n = d + 3, several combinatorial types (Tumarkin '03): $d \le 6$ or d = 8, fin. many for d > 3.

• n = d + 4, really many combinatorial types... How to proceed for a given combinatorial type ? How to list all appropriate combinatorial types ?

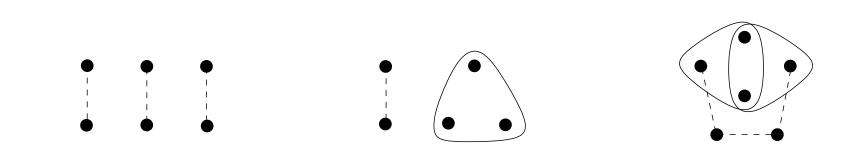
• Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics: Diagram of missing faces Dihedral angles: Coxeter diagram

Diagram of missing faces

- Nodes \longleftrightarrow facets of P
- Missing face is a minimal set of facets $f_1, ..., f_k$, such that $\bigcap_{i=1}^k f_i = \emptyset$.
- Missing faces are encircled.

• Ex:

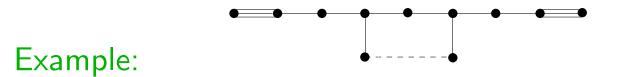


• Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics: Diagram of missing faces Dihedral angles: Coxeter diagram

• Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics: Diagram of missing faces Dihedral angles: Coxeter diagram

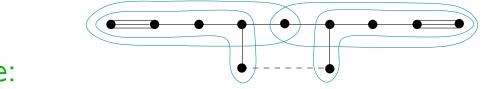


 Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics: Diagram of missing faces Dihedral angles: Coxeter diagram

Missing faces

→ Lannér subdiagrams (minimal non-elliptic subd.)



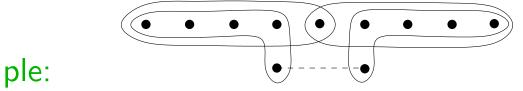
Example:

 Given a combinatorial type, may try to "reconstruct" the polytope (i.e. to find its dihedral angles).

Combinatorics: Diagram of missing faces Dihedral angles: Coxeter diagram

Missing faces

←→ Lannér subdiagrams (minimal non-elliptic subd.)



Example:

Lannér subdiagrams \longleftrightarrow Missing faces

- If L is a Lannér diagram then $|L| \leq 5$.
- # of Lannér diagrams of order 4, 5 is finite.
- For any two Lannér subdiagrams s.t. $L_1 \cap L_2 = \emptyset$, there exists an edge joining these subdiagrams.

Given a combinatorial type may try to check if there is a Coxeter polytope of this type.

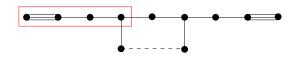
- \bullet Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds '87:

Elliptic subdiagram without A_n and D_5

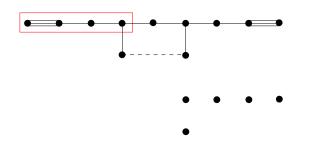
```
\rightarrow Coxeter face
```

- Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - $\text{ Borcherds '87:} \quad \begin{array}{l} \text{Elliptic subdiagram} \\ \text{without } A_n \text{ and } D_5 \end{array} \rightarrow \quad \text{Coxeter face} \end{array}$
 - Allcock '05: Angles of this face are easy to find.

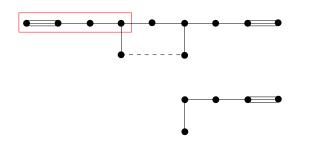
- \bullet Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds '87:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- Allcock '05: Angles of this face are easy to find.



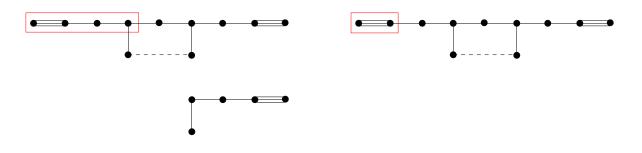
- \bullet Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds '87:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- Allcock '05: Angles of this face are easy to find.



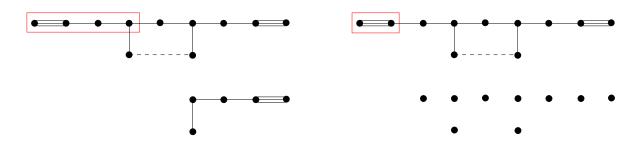
- Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds '87:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- Allcock '05: Angles of this face are easy to find.



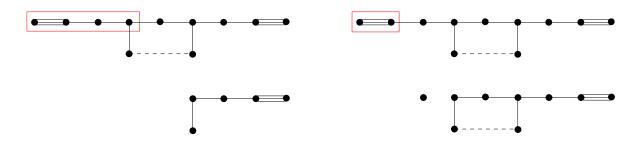
- \bullet Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds '87:
 - Allcock '05:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- Angles of this face are easy to find.



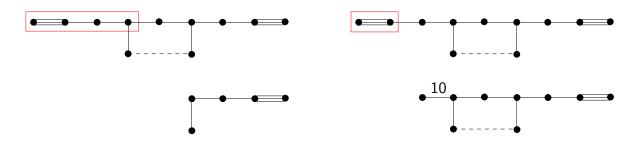
- \bullet Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds '87:
 - Allcock '05:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- Angles of this face are easy to find.



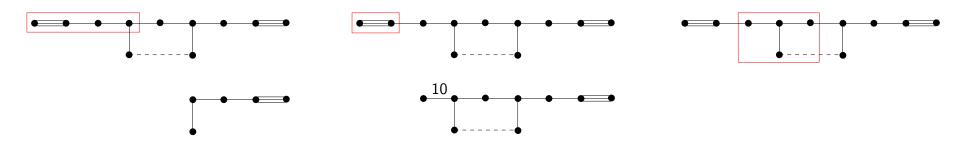
- \bullet Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds '87:
 - Allcock '05:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- Angles of this face are easy to find.



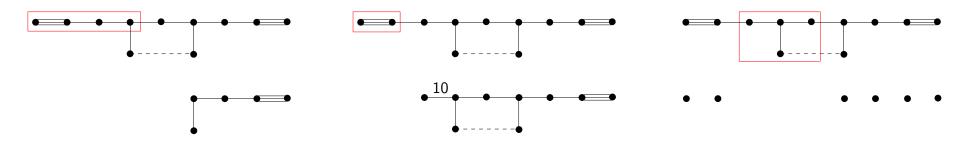
- Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds '87:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- Allcock '05: Angles of this face are easy to find.



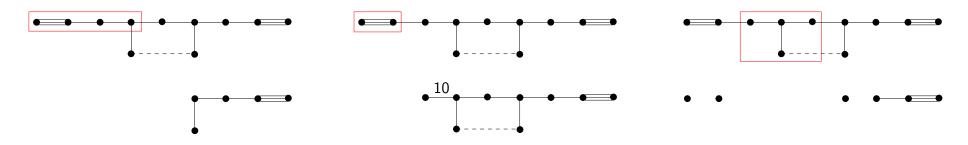
- \bullet Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds '87:
 - Allcock '05:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- Angles of this face are easy to find.



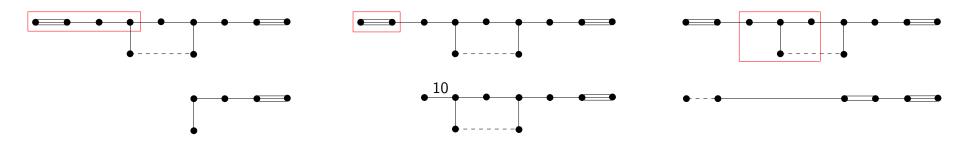
- \bullet Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds '87:
 - Allcock '05:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- Angles of this face are easy to find.



- \bullet Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds '87:
 - Allcock '05:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- Angles of this face are easy to find.



- \bullet Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
 - Borcherds '87:
 - Allcock '05:
- Elliptic subdiagram \rightarrow Coxeter face without A_n and D_5
- Angles of this face are easy to find.

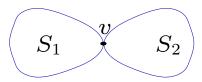


- \bullet Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
- $\det(G(P)) = 0.$

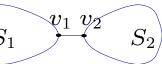
- Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
- $\det(G(P)) = 0.$
- Local determinants: $det(\Sigma, T) = \frac{det\Sigma}{det(\Sigma \setminus T)}$.

- \bullet Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
- $\det(G(P)) = 0.$
- Local determinants: $det(\Sigma, T) = \frac{det\Sigma}{det(\Sigma \setminus T)}$.

$$det(\Sigma, v) = det(S_1, v) + det(S_2, v) - 1$$



$$det(\Sigma, \langle v_1, v_2 \rangle) = det(S_1, v_1)det(S_2, v_2) - g_{12}^2 \quad (S_1)$$



- Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
- $\det(G(P)) = 0.$
- Local determinants.

To list combinatorial types:

• Gale diagram (works well for $n \leq d+3$ only).

- Combinatorial type \rightarrow "reconstruction" of Coxeter polytope
- Coxeter faces.
- $\det(G(P)) = 0.$
- Local determinants.

To list combinatorial types:

• Gale diagram (works well for $n \le d+3$ only).

• $\forall u \in \Sigma(P) \exists$ Lannér subdiagram L, $u \in L$.

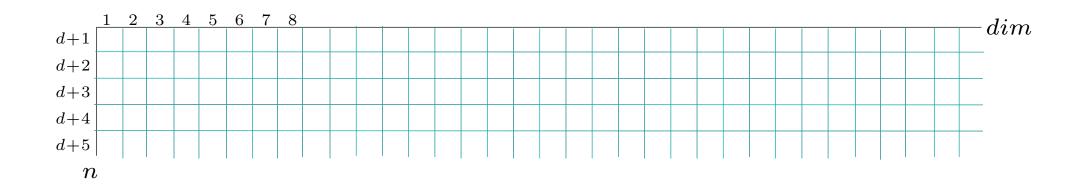
• \forall Lannér subdiagram $L_1 \exists$ Lan. subd. L_2 , $L_1 \cap L_2 = \emptyset$.

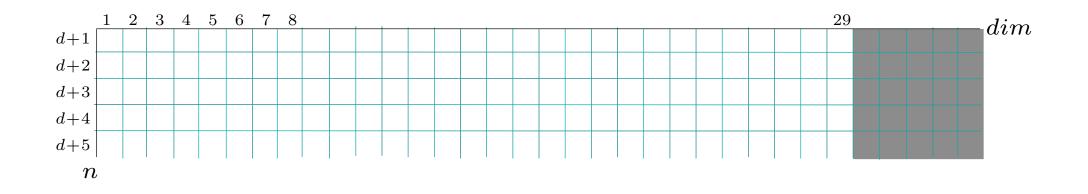
- 2. By number of facets.
 - n = d + 1, simplices (Lannér '52): $d \le 4$, fin. many for d > 2.

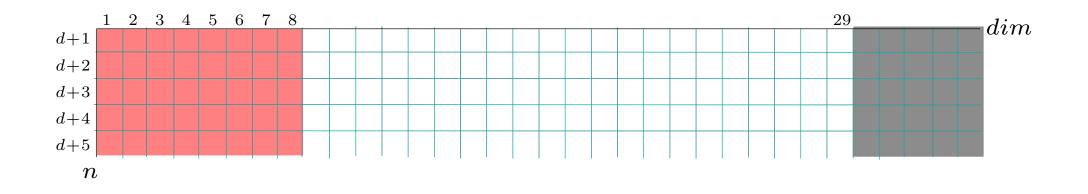
•
$$n = d + 2$$
, $\Delta^k \times \Delta^l$
- prisms (Kaplinskaja '74): $d \le 5$, fin. many for $d > 3$.
- others (Esselmann '96): $d = 4$, $\Delta^2 \times \Delta^2$, 7 items.

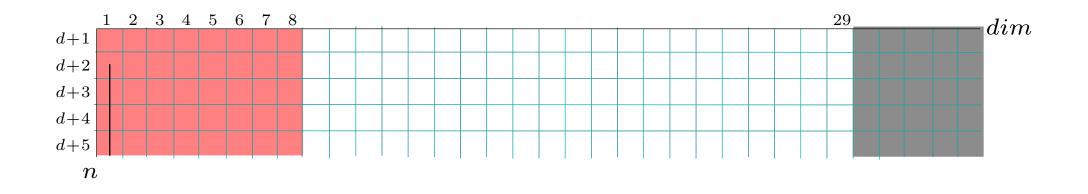
- n = d + 3, many combinatorial types (Tumarkin '03): $d \le 6$ or d = 8, fin.many for d > 3.
- n = d + 4, really many combinatorial types... (T,F '06): $d \le 7$, unique example in d = 7.

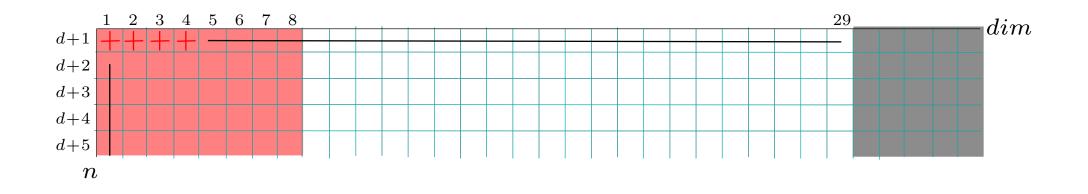
•
$$n = d + 5$$
, (T,F '06): $d \le 8$.

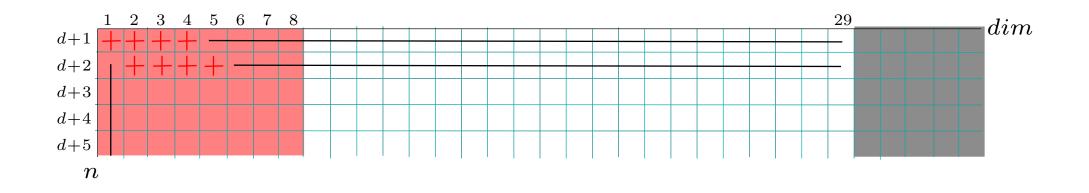


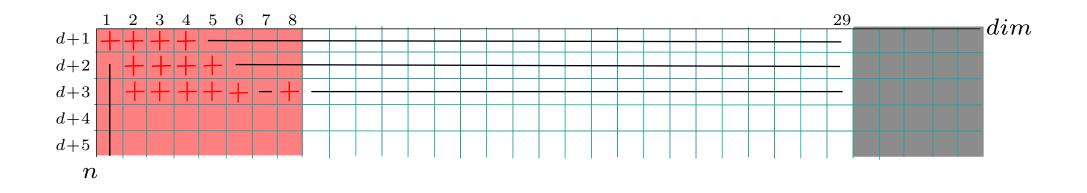


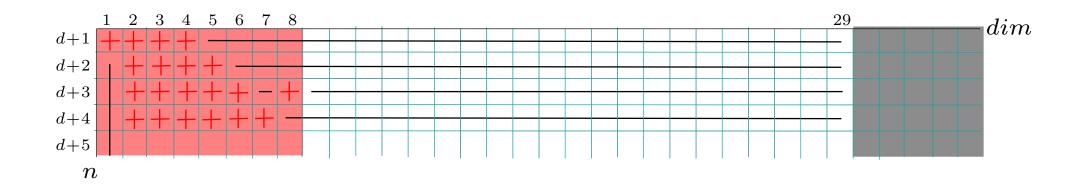


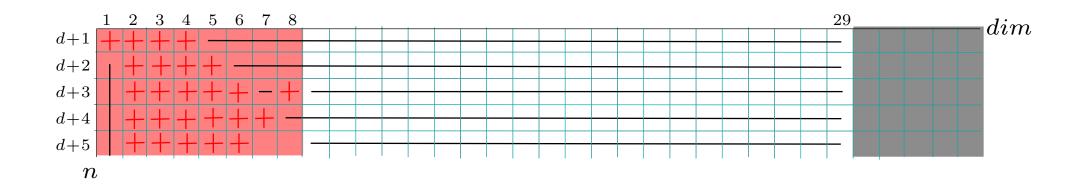


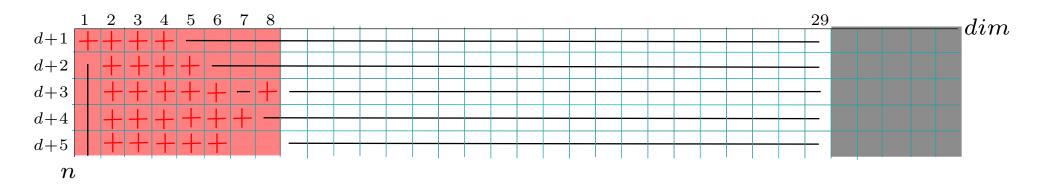


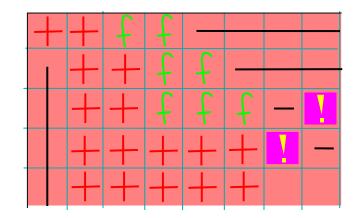


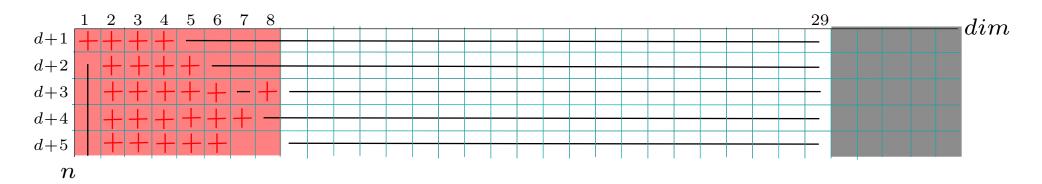


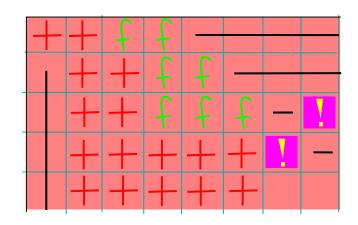




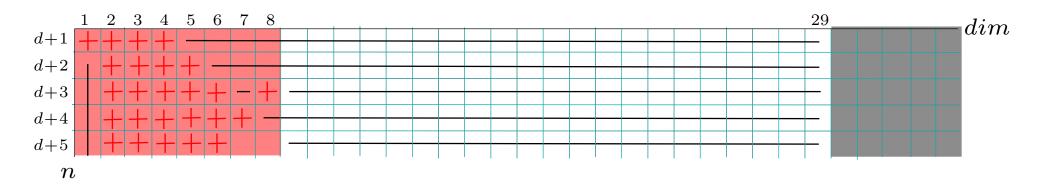


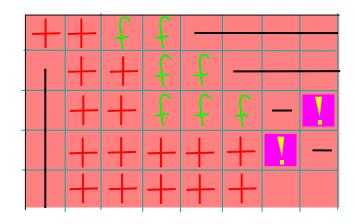






proofs are similar
 use previous cases





proofs are similar
 use previous cases

Inductive algorithm?

. By number of dotted edges.

- **3**. By number of dotted edges.
 - p = 0, (T,F '06): Simplices and Esselmann's polytopes only. $d \le 4$, $n \le d+2$.

- **3**. By number of dotted edges.
 - p = 0, (T,F '06): Simplices and Esselmann's polytopes only. $d \le 4$, $n \le d+2$.
 - p = 1, (T,F '07): Only polytopes with $n \le d+3$. $d \le 6$ and d = 8.

- 3. By number of dotted edges.
 - p = 0, (T,F '06): Simplices and Esselmann's polytopes only. $d \le 4$, $n \le d+2$.
 - p = 1, (T,F '07): Only polytopes with $n \le d+3$. $d \le 6$ and d = 8.
 - $p \le n d 2$, (T,F '07): finitely many polytopes. Algorithm.

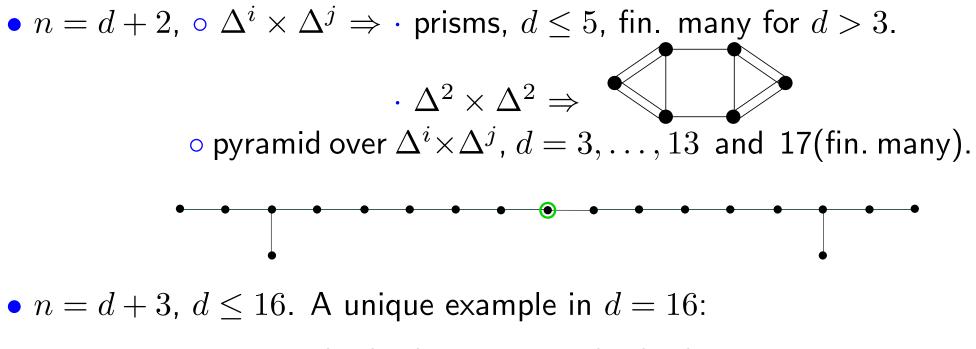
- 3. By number of dotted edges.
 - p = 0, (T,F '06): Simplices and Esselmann's polytopes only. $d \le 4$, $n \le d+2$.
 - p = 1, (T,F '07): Only polytopes with $n \le d+3$. $d \le 6$ and d = 8.
 - $p \le n d 2$, (T,F '07): finitely many polytopes. Algorithm.

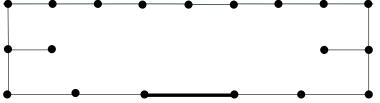
 (T,F '06): If all Lannér subdiagrams are of order 2, then d ≤ 13. (for compact or simple finite volume polytopes).

Finite volume polytopes

- combinatorics: not "simple" but "simple in edges" (a k-face is contained in d - k facets unless k = 0).
- missing face \leftrightarrow Lannér or quasi-Lannér subdiagram (i.e. diagram of a simplex with some vertices at $\partial \mathbb{H}^d$).

• n = d + 1, simplices. $d \le 9$, fin. many for $d \ge 3$.





• A standard subgroup of a reflection group $G = \{r_i \mid ...\}$ is a reflection group generated by some of r_i .

• A standard subgroup of a reflection group $G = \{r_i \mid ...\}$ is a reflection group generated by some of r_i .

Thm. (Deodhar '82). Let G be an infinite indecomposable Coxeter group and $H \subset G$ be a proper standard subgroup of G. Then $[G:H] = \infty$.

• A standard subgroup of a reflection group $G = \{r_i \mid ...\}$ is a reflection group generated by some of r_i .

Thm. (Deodhar '82). Let G be an infinite indecomposable Coxeter group and $H \subset G$ be a proper standard subgroup of G. Then $[G:H] = \infty$.

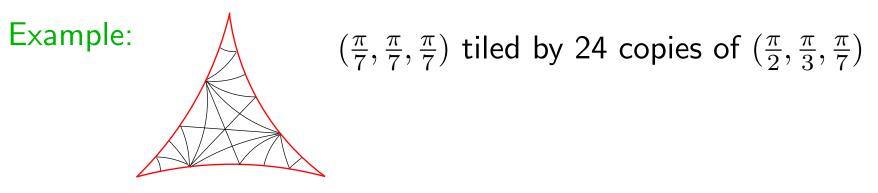
Question. What about finite index reflection subgroups?

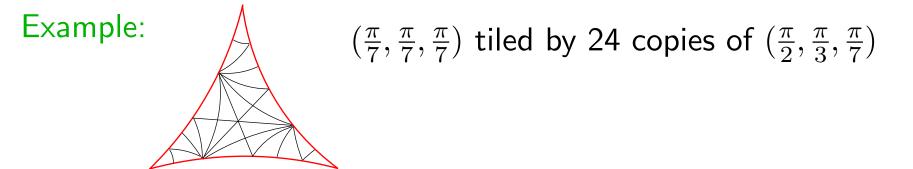
• A standard subgroup of a reflection group $G = \{r_i \mid ...\}$ is a reflection group generated by some of r_i .

Thm. (Deodhar '82). Let G be an infinite indecomposable Coxeter group and $H \subset G$ be a proper standard subgroup of G. Then $[G:H] = \infty$.

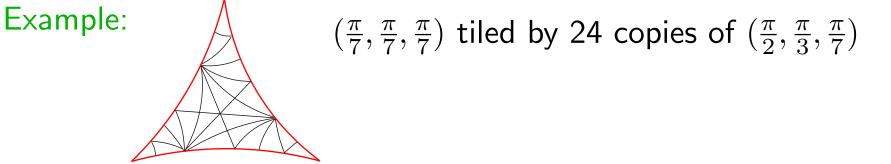
Question. What about finite index reflection subgroups?

"yes" \leftrightarrow tiling of a Coxeter polytope by Coxeter polytopes.





Example: A reflection group generated by $(\frac{\pi}{5}, \frac{\pi}{5}, \frac{\pi}{5})$ has no finite index reflection subgroups.



Example: A reflection group generated by $(\frac{\pi}{5}, \frac{\pi}{5}, \frac{\pi}{5})$ has no finite index reflection subgroups.

Thm. (T,F '03) G infinite indecomposable group, $H \subset G$ a finite index reflection subgroup. Then $rk \ H \ge rk \ G$.

 $(rk \ G \text{ is a number of reflections generating } G).$

