The problem marked \star should be handed in for marking at the lecture on Thursday 22nd January. I use \dagger to indicate (what I consider to be) trickier problems.

1. Interpolation error.
(a) Write down the Lagrange interpolation polynomial of degree 1 for the function $f(x)=x^{3}$, using the points $x_{0}=0, x_{1}=a$.
(b) Verify Theorem 0.1 by direct calculation, and show that in this case ξ is unique and has the value $\xi=\frac{1}{3}(x+a)$.
2. Equally-spaced versus Chebyshev nodes. Consider the problem of finding a degree 4 polynomial interpolant $p_{4}(x)$ for the function $f(x)=e^{x}$ on the interval $[-1,1]$.
(a) Suppose we choose the equally-spaced nodes $-1,-\frac{1}{2}, 0, \frac{1}{2}, 1$. Find an upper bound for the difference between f and p_{4} at (i) $x=\frac{1}{4}$ and (ii) $x=\frac{3}{4}$.
(b) Without computing the locations of the Chebyshev nodes, find an upper bound on the error in the Chebyshev interpolant q_{4}, and comment on how this compares to part (a).

* 3. Chebyshev nodes. Consider the problem of fitting a linear polynomial to the function $f(x)=x^{2}$ on $[-1,1]$.
(a) Find the Chebyshev nodes and the linear polynomial p_{1} that interpolates f at these nodes.
(b) Compute $\left\|f-p_{1}\right\|_{\infty}$. Is it possible to find a linear polynomial q_{1} (not necessarily interpolating f at the same nodes) such that $\left\|f-q_{1}\right\|_{\infty}$ is any smaller?
(c) Find the linear polynomial that interpolates $g(x)=x^{3}$ at the same Chebyshev nodes. Is this the polynomial that minimises $\left\|g-p_{1}\right\|_{\infty}$ among all $p_{1} \in \mathcal{P}_{1}$? Explain why or why not.

4. Barycentric formulae.
(a) Let $\lambda_{i}=1 / w_{n+1}^{\prime}\left(x_{i}\right)$, where w_{n+1} is the usual error polynomial from Theorem 0.1 and x_{i} for $i=0, \ldots, n$ are the interpolation nodes. Show that the polynomial interpolating f may be written as

$$
p_{n}(x)=w_{n+1}(x) \sum_{i=0}^{n} \frac{\lambda_{i}}{x-x_{i}} f_{i}
$$

Remark: This was derived by Jacobi in his 1825 PhD thesis. Once the weights λ_{i} are known, it allow you to compute each value $p_{n}(x)$ with only $O(n)$ operations.
$\dagger(\mathrm{b})$ Show that $p_{n}(x)$ may alternatively be written as the barycentric interpolation formula

$$
p_{n}(x)=\sum_{i=0}^{n} \frac{\lambda_{i} f_{i}}{x-x_{i}} / \sum_{i=0}^{n} \frac{\lambda_{i}}{x-x_{i}}
$$

Remark: This formula is an efficient and stable way to compute Chebyshev interpolants (although it should not be used at the nodes themselves because both numerator and denominator are infinite).

