The problem marked \star should be handed in for marking at the lecture on **Thursday 22nd January**. I use \dagger to indicate (what I consider to be) trickier problems.

- 1. Interpolation error.
 - (a) Write down the Lagrange interpolation polynomial of degree 1 for the function $f(x) = x^3$, using the points $x_0 = 0$, $x_1 = a$.
 - (b) Verify Theorem 0.1 by direct calculation, and show that in this case ξ is unique and has the value $\xi = \frac{1}{3}(x+a)$.
- 2. Equally-spaced versus Chebyshev nodes. Consider the problem of finding a degree 4 polynomial interpolant $p_4(x)$ for the function $f(x) = e^x$ on the interval [-1, 1].
 - (a) Suppose we choose the equally-spaced nodes $-1, -\frac{1}{2}, 0, \frac{1}{2}, 1$. Find an upper bound for the difference between f and p_4 at (i) $x = \frac{1}{4}$ and (ii) $x = \frac{3}{4}$.
 - (b) Without computing the locations of the Chebyshev nodes, find an upper bound on the error in the Chebyshev interpolant q_4 , and comment on how this compares to part (a).
- * 3. Chebyshev nodes. Consider the problem of fitting a linear polynomial to the function $f(x) = x^2$ on [-1, 1].
 - (a) Find the Chebyshev nodes and the linear polynomial p_1 that interpolates f at these nodes.
 - (b) Compute $||f p_1||_{\infty}$. Is it possible to find a linear polynomial q_1 (not necessarily interpolating f at the same nodes) such that $||f q_1||_{\infty}$ is any smaller?
 - (c) Find the linear polynomial that interpolates $g(x) = x^3$ at the same Chebyshev nodes. Is this the polynomial that minimises $||g p_1||_{\infty}$ among all $p_1 \in \mathcal{P}_1$? Explain why or why not.
 - 4. Barycentric formulae.
 - (a) Let $\lambda_i = 1/w'_{n+1}(x_i)$, where w_{n+1} is the usual error polynomial from Theorem 0.1 and x_i for $i = 0, \ldots, n$ are the interpolation nodes. Show that the polynomial interpolating f may be written as

$$p_n(x) = w_{n+1}(x) \sum_{i=0}^n \frac{\lambda_i}{x - x_i} f_i.$$

Remark: This was derived by Jacobi in his 1825 PhD thesis. Once the weights λ_i are known, it allow you to compute each value $p_n(x)$ with only O(n) operations.

 \dagger (b) Show that $p_n(x)$ may alternatively be written as the barycentric interpolation formula

$$p_n(x) = \sum_{i=0}^n \frac{\lambda_i f_i}{x - x_i} \bigg/ \sum_{i=0}^n \frac{\lambda_i}{x - x_i}.$$

Remark: This formula is an efficient and stable way to compute Chebyshev interpolants (although it should not be used at the nodes themselves because both numerator and denominator are infinite).