Problems 1 - Piecewise Polynomial Interpolation

Approximation Theory (MATH3081/4221) - Epiphany 2015 - anthony.yeates@dur.ac.uk

The problem marked \star should be handed in for marking at the lecture on Thursday 5 th February. There will be a problem class on this chapter on Monday 2nd February. I use \dagger to indicate (what I consider to be) trickier problems.
5. General splines. An interpolating spline of degree N is required to have continuous derivatives up to and including order $N-1$. How many additional conditions are required to specify the spline uniquely?
6. Flatness of linear splines. Let $f(x)=x^{3}$.
(a) Compute the linear spline s which interpolates f at the knots 0,1 , and 2 .
(b) Compute the quadratic polynomial p_{2} which interpolates f at the same knots.
(c) Verify that $\left\|s^{\prime}\right\|_{2} \leq\left\|f^{\prime}\right\|_{2}$ and $\left\|s^{\prime}\right\|_{2} \leq\left\|p_{2}^{\prime}\right\|_{2}$, where the norm is defined on the interval [0, 2].
7. Quadratic splines. Let $a=x_{0}<x_{1}<\ldots<x_{n}=b$ be a sequence of equally spaced knots on an interval $[a, b]$, and let $s \in C^{1}[a, b]$ be a quadratic spline that interpolates a function f at the knots.
(a) Define the moments $M_{i}=s^{\prime}\left(x_{i}\right)$ for $i=0, \ldots, n$. Construct the spline s in terms of these M_{i} and derive a system of linear equations for the M_{i}. For what values of i must they hold? How many extra conditions are necessary?
$\dagger(\mathrm{b})$ If the function to be interpolated is periodic, we might try to introduce the extra condition $s^{\prime}(a)=s^{\prime}(b)$. Show, by considering the resulting system of equations, that this "periodic" quadratic spline exists for certain conditions on the knots.
(c) Use the above to approximate $f(x)=\sin (2 \pi x)$ on the interval $[0,1]$ with four knots.
8. Is it a spline? Is the following function a cubic spline? Why or why not?

$$
s(x)= \begin{cases}0, & x<0 \\ x^{3}, & 0 \leq x<1 \\ x^{3}+(x-1)^{3}, & 1 \leq x<2 \\ -(x-3)^{3}-(x-4)^{3}, & 2 \leq x<3 \\ -(x-4)^{3}, & 3 \leq x<4 \\ 0, & 4 \leq x\end{cases}
$$

9. Natural cubic spline. Compute the natural cubic spline interpolating $(0,0),\left(1, \frac{1}{2}\right),(2,0)$.

* 10. Not-a-knot cubic spline. Let s be a cubic spline interpolating a function f at the evenly-spaced knots $a=x_{0}<x_{1}<\ldots<x_{n}=b$, with spacing h, and suppose that s satisfies the so-called "not-a-knot" conditions that $s^{\prime \prime \prime}$ is continuous at the two knots x_{1} and x_{n-1}.
(a) Derive the system of linear equations satisfied by the moments $M_{i}:=s^{\prime \prime}\left(x_{i}\right)$ for $n+1$ knots.
(b) Suppose we try to find the not-a-knot cubic spline through the data $(0,0),(1,1)$ and $(2,8)$. Write down the system of linear equations in this case, show that the solution is not unique, and write the resulting spline in terms of M_{0} as a free parameter.
(c) Explain why you expected the solution in (b) to be non-unique.
(d) By considering the two pieces of the cubic spline derived in (b), or otherwise, explain why this type of cubic spline is called "not-a-knot".
\dagger 11. By reducing the linear system found in Problem 10(a) to a strictly diagonally dominant form, or otherwise, show that there is a unique not-a-knot cubic spline for $n \geq 3$.

12. Holladay's Theorem for complete cubic splines. The cubic spline interpolating the points (x_{0}, f_{0}), $\left(x_{1}, f_{1}\right), \ldots\left(x_{n}, f_{n}\right)$ and satisfying the end conditions $s^{\prime}\left(x_{0}\right)=c, s^{\prime}\left(x_{n}\right)=d$ for fixed constants c, d is known as the complete cubic spline. Adapt the proof of Theorem 1.3 to show that the complete cubic spline minimises $\left\|f^{\prime \prime}\right\|_{2}$ among all functions $f \in C^{2}\left[x_{0}, x_{n}\right]$ that satisfy $f^{\prime}\left(x_{0}\right)=c$ and $f^{\prime}\left(x_{n}\right)=d$.
13. General B-splines. The B-spline of degree N for equally-spaced knots is defined as

$$
B_{N}(x)=\sum_{k=0}^{N+1}(-1)^{k}\binom{N+1}{k}(x-k h)_{+}^{N},
$$

where h is the knot spacing, the subscript + means the positive part

$$
f(x)_{+}= \begin{cases}f(x), & f(x)>0, \\ 0, & f(x) \leq 0\end{cases}
$$

and

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

is the usual binomial coefficient.
(a) Find and sketch the linear B-spline $B_{1}(x)$ and verify that it is indeed a linear spline function.
(b) Find the cubic B-spline $B_{3}(x)$ and verify that it is the same function as given in the lecture.
\dagger (c) Show that the function $B_{N}(x)$ is always a spline of degree N.
14. Applying linear B-splines. Any linear spline may be expressed as

$$
s(x)=\sum_{i=0}^{n} \alpha_{i} \phi_{i}(x)
$$

where the basis functions are linear B-splines $\phi_{i}(x)=h^{-1} B_{1}\left(x-x_{i-1}\right)$, with B_{1} as defined in Problem 13. For the data $(0,1),(1,2),(2,3)$ and $(3,4)$, write down and sketch the linear spline basis functions $\phi_{k}(x)$, and hence form the linear spline $s(x)$. Use this to evaluate the spline at $x=\frac{3}{2}$.
15. Applying cubic B-splines. If cubic B-splines are used to compute the complete cubic spline that interpolates the function $f(x)=\sin (\pi x / 2)$ at the knots $x_{0}=0, x_{1}=1$ and $x_{2}=2$, find the linear system that has to be solved.

