Problems 2 - Minimax Approximation

Approximation Theory (MATH3081/4221) - Epiphany 2015 - anthony.yeates@dur.ac.uk

The problem marked \star should be handed in for marking at the lecture on Thursday 19th February. There will be a problem class on this chapter on Monday 16th February.
I use \dagger to indicate (what I consider to be) trickier problems.
16. Bernstein polynomial approximation. Compute the approximations using Bernstein polynomials of degree $n=1$ and $n=2$ to the function $f(x)=1-\left|x-\frac{1}{3}\right|$ on $[0,1]$. Verify that the approximation is converging in the ∞-norm.
17. Recursive definition of Bernstein polynomials. Let $b_{n, k}$ for $k=0, \ldots, n$ be the Bernstein basis functions, as defined in the lecture. Show that these basis functions satisfy the recursion relation

$$
b_{n, k}(x)=(1-x) b_{n-1, k}(x)+x b_{n-1, k-1}(x)
$$

Remark: This is the basis of de Casteljau's fast algorithm for drawing Bézier curves.
18. Derivatives of Bernstein polynomials. Show that the derivatives of the Bernstein basis functions $b_{n, k}(x)$ for $k=0, \ldots, n$ satisfy

$$
\frac{d}{d x} b_{n, k}(x)=n\left(b_{n-1, k-1}(x)-b_{n-1, k}(x)\right) .
$$

19. Cubic Bézier curves. Verify that the cubic Bézier curve $\mathbf{B}_{3}(t)$ with control points $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ is tangent (i) at \mathbf{x}_{0} to the line joining \mathbf{x}_{0} and \mathbf{x}_{1}, and (ii) at \mathbf{x}_{3} to the line joining \mathbf{x}_{2} and \mathbf{x}_{3}.
20. A Bézier curve. Find the parametric equations of the Bézier curve with control points $(0,1)$, $\left(\frac{1}{5}, \frac{3}{2}\right),\left(\frac{3}{5}, 2\right)$ and $(1,0)$. Find the slope of the curve at each of its end-points and make a rough sketch of the curve.
As a check, you could try drawing the curve in Postscript.
21. Minimax approximation. Find the minimax linear approximation to $f(x)=\sinh (x)$ on $[0,1]$.
22. Minimax approximation to a polynomial. Find the minimax approximation of degree 4 to the polynomial $f(x)=x^{5}+2 x^{2}-x$.
23. Non-monic polynomials. Prove that, if p_{m}^{*} is the minimax polynomial of degree m for a polynomial $f \in \mathcal{P}_{m+1}$, then αp_{m}^{*} is the minimax approximation for αf.

* 24. De la Vallée Poussin Theorem. Let $f(x)=-\cos (x)$ and $q_{1}(x)=0.5 x-1.1$.
(a) Show that $\left\{0, \frac{1}{2}, 1\right\}$ is a non-uniform alternating set for f and q_{1} on $[0,1]$.
(b) Use the De la Vallée Poussin Theorem with these points to find a lower bound for $\left\|f-p_{1}^{*}\right\|_{\infty}$, where p_{1}^{*} is the minimax degree 1 polynomial for f on $[0,1]$.
(c) Use q_{1} to find an upper bound for $\left\|f-p_{1}^{*}\right\|_{\infty}$.
(d) By postulating a suitable alternating set, or otherwise, find p_{1}^{*}.

25. The Equioscillation Theorem. In light of the Chebyshev Equioscillation Theorem, explain why the function $q_{1}(x)$ in Problem 24 could not possibly be the minimax degree 1 polynomial.
26. Every minimax polynomial is an interpolant. Let $p_{n}^{*} \in \mathcal{P}_{n}$ be a minimax approximation to $f \in C[a, b]$. Show that there exist $n+1$ distinct points $a<x_{0}<x_{1}<\ldots<x_{n}<b$ such that p_{n}^{*} is the polynomial interpolant in \mathcal{P}_{n} to f at these $n+1$ points.
\dagger 27. Minimax polynomials of even functions. Let $f \in C[-1,1]$ be even, i.e. $f(-x)=f(x)$.
(a) Use the Equioscillation Theorem to prove that the minimax polynomial p_{n}^{*} is even for any $n \geq 0$.
(b) Prove that for any $n \geq 0, p_{2 n}^{*}=p_{2 n+1}^{*}$.
(c) Find the minimax polynomial of degree 1 for $f(x)=|x|$ on $[-1,1]$.
27. Remez algorithm. Use the Remez Exchange algorithm to compute the linear minimax approximation to $f(x)=x^{2}$ on $[0,3]$, using the initial reference set $\{0,1,3\}$. Comment on the convergence of the algorithm.
