The problem marked \star should be handed in for marking at the lecture on **Thursday 19th February**. There will be a problem class on this chapter on Monday 16th February. I use \dagger to indicate (what I consider to be) trickier problems.

- 16. Bernstein polynomial approximation. Compute the approximations using Bernstein polynomials of degree n = 1 and n = 2 to the function $f(x) = 1 |x \frac{1}{3}|$ on [0, 1]. Verify that the approximation is converging in the ∞ -norm.
- 17. Recursive definition of Bernstein polynomials. Let $b_{n,k}$ for k = 0, ..., n be the Bernstein basis functions, as defined in the lecture. Show that these basis functions satisfy the recursion relation

$$b_{n,k}(x) = (1-x)b_{n-1,k}(x) + xb_{n-1,k-1}(x).$$

Remark: This is the basis of de Casteljau's fast algorithm for drawing Bézier curves.

18. Derivatives of Bernstein polynomials. Show that the derivatives of the Bernstein basis functions $b_{n,k}(x)$ for $k = 0, \ldots, n$ satisfy

$$\frac{d}{dx}b_{n,k}(x) = n\Big(b_{n-1,k-1}(x) - b_{n-1,k}(x)\Big).$$

- 19. Cubic Bézier curves. Verify that the cubic Bézier curve $\mathbf{B}_3(t)$ with control points \mathbf{x}_0 , \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 is tangent (i) at \mathbf{x}_0 to the line joining \mathbf{x}_0 and \mathbf{x}_1 , and (ii) at \mathbf{x}_3 to the line joining \mathbf{x}_2 and \mathbf{x}_3 .
- 20. A Bézier curve. Find the parametric equations of the Bézier curve with control points (0,1), (¹/₅, ³/₂), (³/₅, 2) and (1,0). Find the slope of the curve at each of its end-points and make a rough sketch of the curve.
 As a check, you could try drawing the curve in Postscript.
- 21. Minimax approximation. Find the minimax linear approximation to $f(x) = \sinh(x)$ on [0, 1].
- 22. Minimax approximation to a polynomial. Find the minimax approximation of degree 4 to the polynomial $f(x) = x^5 + 2x^2 x$.
- 23. Non-monic polynomials. Prove that, if p_m^* is the minimax polynomial of degree m for a polynomial $f \in \mathcal{P}_{m+1}$, then αp_m^* is the minimax approximation for αf .
- * 24. De la Vallée Poussin Theorem. Let $f(x) = -\cos(x)$ and $q_1(x) = 0.5x 1.1$.
 - (a) Show that $\{0, \frac{1}{2}, 1\}$ is a non-uniform alternating set for f and q_1 on [0, 1].
 - (b) Use the De la Vallée Poussin Theorem with these points to find a lower bound for $||f p_1^*||_{\infty}$, where p_1^* is the minimax degree 1 polynomial for f on [0, 1].
 - (c) Use q_1 to find an upper bound for $||f p_1^*||_{\infty}$.
 - (d) By postulating a suitable alternating set, or otherwise, find p_1^* .

- 25. The Equioscillation Theorem. In light of the Chebyshev Equioscillation Theorem, explain why the function $q_1(x)$ in Problem 24 could not possibly be the minimax degree 1 polynomial.
- 26. Every minimax polynomial is an interpolant. Let $p_n^* \in \mathcal{P}_n$ be a minimax approximation to $f \in C[a, b]$. Show that there exist n + 1 distinct points $a < x_0 < x_1 < \ldots < x_n < b$ such that p_n^* is the polynomial interpolant in \mathcal{P}_n to f at these n + 1 points.
- †27. Minimax polynomials of even functions. Let $f \in C[-1, 1]$ be even, i.e. f(-x) = f(x).
 - (a) Use the Equioscillation Theorem to prove that the minimax polynomial p_n^* is even for any $n \ge 0$.
 - (b) Prove that for any $n \ge 0$, $p_{2n}^* = p_{2n+1}^*$.
 - (c) Find the minimax polynomial of degree 1 for f(x) = |x| on [-1, 1].
 - 28. Remez algorithm. Use the Remez Exchange algorithm to compute the linear minimax approximation to $f(x) = x^2$ on [0,3], using the initial reference set $\{0, 1, 3\}$. Comment on the convergence of the algorithm.