The problem marked \star should be handed in for marking at the lecture on **Monday 9th March**. There will be a problem class on this chapter on Monday 2nd March. I use \dagger to indicate (what I consider to be) trickier problems.

- 29. Discrete Fourier transforms. Compute the discrete Fourier transform of the following vectors, and interpret your results: (a) $\mathbf{x} = (1, 1, 1, 1)^{\top}$; (b) $\mathbf{x} = (0, 1, 0, -1, 0, 1, 0, -1)^{\top}$.
- 30. Real entries. Suppose that the entries of **f** are all real. If $\mathbf{c} = F_n^{-1}\mathbf{f}$ is the discrete Fourier transform of **f**, show that $\bar{c}_{n-k} = c_k$ for $k = 0, \ldots, n-1$.
- * 31. Trigonometric interpolation. Consider the periodic function $f(x) = \sin(x) + 2\cos(2x)$.
 - (a) Write down the Fourier matrix F_3 , and its inverse F_3^{-1} .
 - (b) Use this to find a real trigonometric polynomial of the form

$$p_3(x) = \sum_{k=0}^{2} \left(a_k \cos(kx) - b_k \sin(kx) \right)$$

that interpolates f at three equally-spaced nodes on $[0, 2\pi)$.

- (c) Explain how it can be that the interpolant p_3 you found in part (b) does not reproduce the original function f exactly.
- (d) Find a trigonometric polynomial of lower degree that interpolates the same data.
- 32. Splitting. Let $\mathbf{h} = \mathbf{f} + i\mathbf{g}$, where \mathbf{f} and \mathbf{g} are real vectors, and let \mathbf{b} be the DFT of \mathbf{h} . Show that the DFTs of \mathbf{f} and \mathbf{g} are

$$c_k = \frac{1}{2} (b_k + \bar{b}_{n-k}), \qquad d_k = \frac{i}{2} (\bar{b}_{n-k} - b_k).$$

Remark: One can speed up the DFT of a real vector \mathbf{f} by splitting into \mathbf{f}_{even} and \mathbf{f}_{odd} and finding the size n/2 transform of $\mathbf{h} = \mathbf{f}_{even} + i\mathbf{f}_{odd}$.

- $\dagger 33.$ Eigenvalues of F_4 .
 - (a) Find the 4 × 4 matrix P such that $F_4 = P\bar{F}_4$, and verify that $P^2 = I_4$.
 - (b) Show that $P = \frac{1}{4}F_4^2$.
 - (c) Hence show that $F_4^4 = 16I_4$, and deduce that the eigenvalues of F_4 must be either ± 2 or $\pm 2i$.

Remark: In fact, for any n, we have $F_n^4 = n^2 I_n$.

34. The columns of F_n as eigenvectors. Show that the columns of the Fourier matrix F_n are the eigenvectors of the cyclic permutation matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & & & & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

35. Inverse Fast Fourier Transform. Find $\frac{n}{2} \times \frac{n}{2}$ matrices A, B, C, D such that

$$F_n^{-1} = \frac{1}{n} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} F_{n/2}^{-1} & 0 \\ 0 & F_{n/2}^{-1} \end{pmatrix} P_n,$$

where F_n is the $n \times n$ Fourier matrix and P_n is the odd-even permutation matrix (as defined in the lecture). This shows that the FFT algorithm works in both directions!

- † 36. Applying the FFT. Compute $F_8 \mathbf{x}$ using the recursive FFT algorithm for $\mathbf{x} = (1, 0, 1, 0, 1, 0, 1, 0)^{\top}$.
- 37. Radix-3 FFT. The FFT may be applied with more general splittings, instead of the radix-2 algorithm presented in the lecture. Suppose $\mathbf{f} = F_n \mathbf{c}$ but now n is a power of 3.
 - (a) Show that the entries in **f** may be written as

$$f_j = \sum_{k=0}^{n/3-1} (\omega_{n/3})^{jk} c_{3k} + (\omega_n)^j \sum_{k=0}^{n/3-1} (\omega_{n/3})^{jk} c_{3k+1} + (\omega_n)^{2j} \sum_{k=0}^{n/3-1} (\omega_{n/3})^{jk} c_{3k+2}$$

 \dagger (b) For n = 6, write out the explicit factorisation of $\mathbf{f} = F_n \mathbf{c}$ in matrix form, including the necessary permutation matrix.

Remark: This can be generalised to any radix, which was known already to Gauss.

- 38. Discrete cosine transform. Consider the data $(\frac{\pi}{8}, 2), (\frac{3\pi}{8}, 0), (\frac{5\pi}{8}, -2), (\frac{7\pi}{8}, 0).$
 - (a) Use the DCT to find an interpolant $p_4(x)$ for these data.
 - (b) Hence find the least-squares approximations of the same form with m = 1, m = 2, and m = 3 terms, for the same data.
- 39. DCT-4. An alternative version of the discrete cosine transform known as DCT-4 is used in sound compression. It is based on the $n \times n$ matrix E_n with entries

$$(E_n)_{jk} = \sqrt{\frac{2}{n}} \cos \frac{\pi (j + \frac{1}{2})(k + \frac{1}{2})}{n}.$$

By considering the circulant matrix

$$\begin{pmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \\ & & & & -1 & 3 \end{pmatrix},$$

show that the matrix E_n is orthogonal.

40. Two-dimensional DCT. A very simple "image" is represented by the matrix

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

Compute the two-dimensional DCT of this matrix, and hence the corresponding interpolation function $p_2(x, y)$ for the nodes $(\frac{\pi}{4}, \frac{\pi}{4}), (\frac{3\pi}{4}, \frac{\pi}{4}), (\frac{\pi}{4}, \frac{3\pi}{4}), (\frac{3\pi}{4}, \frac{3\pi}{4})$.