Problems 0 - Polynomial interpolation

Approximation Theory (MATH3081/4221) - Epiphany 2015 - anthony.yeates@dur.ac.uk

The problem marked \star should be handed in for marking at the lecture on Thursday 22nd January. I use \dagger to indicate (what I consider to be) trickier problems.

1. Interpolation error.

(a) Write down the Lagrange interpolation polynomial of degree 1 for the function $f(x)=x^{3}$, using the points $x_{0}=0, x_{1}=a$.
(b) Verify Theorem 0.1 by direct calculation, and show that in this case ξ is unique and has the value $\xi=\frac{1}{3}(x+a)$.

Solution: (a) We have

$$
p_{1}(x)=\frac{x-x_{1}}{x_{0}-x_{1}} f_{0}+\frac{x-x_{0}}{x_{1}-x_{0}} f_{1}=\frac{x-a}{-a}(0)^{3}+\frac{x-0}{a-0}(a)^{3}=a^{2} x .
$$

(b) Here $n=1$, so

$$
w_{n+1}(x)=(x-0)(x-a)=x(x-a), \quad f^{n+1}(x)=f^{\prime \prime}(x)=6 x .
$$

From calculating p_{1}, we know that $f-p_{1}=x^{3}-a^{2} x=x\left(x-a^{2}\right)$, so to verify Theorem 0.1 we need to find $\xi \in[0, a]$ such that

$$
\frac{w_{n+1}(x) f^{\prime \prime}(\xi)}{2!}=x(x-a) \quad \Longleftrightarrow \quad \frac{x(x-a) 6 \xi}{2}=x\left(x-a^{2}\right) \quad \Longleftrightarrow \quad \xi=\frac{1}{3}(x+a)
$$

This lies in the required interval (in this case, the same ξ is true for all x in $[0, a]$).
2. Equally-spaced versus Chebyshev nodes. Consider the problem of finding a degree 4 polynomial interpolant $p_{4}(x)$ for the function $f(x)=e^{x}$ on the interval $[-1,1]$.
(a) Suppose we choose the equally-spaced nodes $-1,-\frac{1}{2}, 0, \frac{1}{2}, 1$. Find an upper bound for the difference between f and p_{4} at (i) $x=\frac{1}{4}$ and (ii) $x=\frac{3}{4}$.
(b) Without computing the locations of the Chebyshev nodes, find an upper bound on the error in the Chebyshev interpolant q_{4}, and comment on how this compares to part (a).

Solution: (a) We can use Theorem 0.1, which gives

$$
\left|f(x)-p_{4}(x)\right| \leq \frac{\left|w_{5}(x)\right|\left\|f^{(5)}\right\|_{\infty}}{5!}
$$

where $w_{5}(x)=(x+1)\left(x+\frac{1}{2}\right)(x-0)\left(x-\frac{1}{2}\right)(x-1),\left\|f^{(5)}\right\|_{\infty}=e$ (maximum is at $x=1$), and $5!=120$.
i. For $x=\frac{1}{4}$, we have $\left|w_{5}\left(\frac{1}{4}\right)\right|=\frac{45}{1024}$, so

$$
\left|f\left(\frac{1}{4}\right)-p_{4}\left(\frac{1}{4}\right)\right| \leq \frac{\frac{45}{1024} e}{120}=9.96 \times 10^{-4}
$$

ii. For $x=\frac{3}{4}$, we have $\left|w_{5}\left(\frac{1}{4}\right)\right|=\frac{105}{1024}$, so

$$
\left|f\left(\frac{3}{4}\right)-p_{4}\left(\frac{3}{4}\right)\right| \leq \frac{\frac{105}{1024} e}{120}=2.3 \times 10^{-3}
$$

(b) For the Chebyshev nodes, Lemma 0.2 gives $w_{5}(x)=T_{5}(x) / 2^{5}$. Since $\left|T_{k}(x)\right| \leq 1$ for all of the Chebyshev polynomials, we have

$$
\left|w_{5}(x)\right|=\left|\frac{1}{32} T_{5}(x)\right| \leq \frac{1}{32}
$$

for any $x \in[-1,1]$. Therefore

$$
\begin{aligned}
& \left|f\left(\frac{1}{4}\right)-q_{4}\left(\frac{1}{4}\right)\right| \leq \frac{\frac{1}{32} e}{120}=7.1 \times 10^{-4} \\
& \left|f\left(\frac{3}{4}\right)-q_{4}\left(\frac{3}{4}\right)\right| \leq \frac{\frac{1}{32} e}{120}=7.1 \times 10^{-4}
\end{aligned}
$$

Notice that (i) both of these error bounds are lower than the equally-spaced interpolant, and (ii) we get the same error bound at any x (although the error itself will be different, of course).
3. Chebyshev nodes. Consider the problem of fitting a linear polynomial to the function $f(x)=x^{2}$ on $[-1,1]$.
(a) Find the Chebyshev nodes and the linear polynomial p_{1} that interpolates f at these nodes.
(b) Compute $\left\|f-p_{1}\right\|_{\infty}$. Is it possible to find a linear polynomial q_{1} (not necessarily interpolating f at the same nodes) such that $\left\|f-q_{1}\right\|_{\infty}$ is any smaller?
(c) Find the linear polynomial that interpolates $g(x)=x^{3}$ at the same Chebyshev nodes. Is this the polynomial that minimises $\left\|g-p_{1}\right\|_{\infty}$ among all $p_{1} \in \mathcal{P}_{1}$? Explain why or why not.

Solution: (a) We have $n=1$ so need two Chebyshev nodes. These are

$$
\tilde{x}_{1}=\cos \left(\pi-\frac{\frac{1}{2} \pi}{2}\right)=\cos \left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}, \quad \tilde{x}_{2}=\cos \left(\pi-\frac{\frac{3}{2} \pi}{2}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}
$$

The linear interpolating polynomial with these nodes is

$$
p_{1}(x)=\frac{x-\tilde{x}_{2}}{\tilde{x}_{1}-\tilde{x}_{2}} f_{0}+\frac{x-\tilde{x}_{1}}{\tilde{x}_{2}-\tilde{x}_{1}} f_{1}=\frac{x-1 / \sqrt{2}}{-2 / \sqrt{2}}\left(\frac{1}{2}\right)+\frac{x+1 / \sqrt{2}}{2 / \sqrt{2}}\left(\frac{1}{2}\right)=\frac{1}{2}
$$

So in fact it is a horizontal line.
(b) Note that $f-p_{1}=x^{2}-\frac{1}{2}$. The extremum of this function occurs either at $x=-1$ or $x=1$ (the boundary points), or at the turning point $x=0$. In fact, at all of these points we have $\left|f-p_{1}\right|=\frac{1}{2}$, so $\left\|f-p_{1}\right\|_{\infty}=\frac{1}{2}$.
To decide whether any other straight line could give a smaller error, consider the graphs. Moving the horizontal line up or down would lead to larger $\left\|f-p_{1}\right\|_{\infty}$, as would changing the slope. So in fact p_{1} has the minimum possible $\left\|f-p_{1}\right\|_{\infty}$ on this interval.
Remark: Once we do Chapter 2 on minimax approximation, you will know how to prove this rigorously, using the fact that $\{-1,0,1\}$ are an "alternating set" for f, p_{1}.
(c) Now we have

$$
p_{1}(x)=\frac{x-\frac{1}{\sqrt{2}}}{-\frac{2}{\sqrt{2}}}\left(-\frac{1}{2 \sqrt{2}}\right)+\frac{x+\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{2}}}\left(\frac{1}{2 \sqrt{2}}\right)=\frac{1}{2} x .
$$

Now $g-p_{1}=x^{3}-\frac{1}{2} x$. Now

$$
\frac{d}{d x}\left(g-p_{1}\right)=3 x^{2}-\frac{1}{2}
$$

so there are turning points at $x= \pm 1 / \sqrt{6}$. We have

$$
g\left(\pm \frac{1}{\sqrt{6}}\right)-p_{1}\left(\frac{1}{\sqrt{6}}\right)=\left(\pm \frac{1}{\sqrt{6}}\right)^{3} \mp \frac{1}{2}\left(\frac{1}{\sqrt{6}}\right)=\mp \frac{1}{3}\left(\frac{1}{\sqrt{6}}\right) \approx 0.136 .
$$

while the values at the endpoints $x= \pm 1$ are

$$
g(\pm 1)-p_{1}(\pm 1)=\frac{1}{2}
$$

Sketching the graph shows that the distance between p_{1} and $g=x^{3}$ is different at the turning points of $g-p_{1}$ from at the end-points. Therefore you could reduce $\left\|g-p_{1}\right\|_{\infty}$ by increasing the slope of the line p_{1} to equalize the four extreme distances. The figure below shows $g=x^{3}$ (in blue) and p_{1} (in red), with the interpolation nodes and the points $\pm \frac{1}{\sqrt{6}}$ marked.

Remark: Once we do Chapter 2 on minimax approximation, you will know how to prove rigorously that this Chebyshev interpolant is not the minimax polynomial.
4. Barycentric formulae.
(a) Let $\lambda_{i}=1 / w_{n+1}^{\prime}\left(x_{i}\right)$, where w_{n+1} is the usual error polynomial from Theorem 0.1 and x_{i} for $i=0, \ldots, n$ are the interpolation nodes. Show that the polynomial interpolating f may be written as

$$
p_{n}(x)=w_{n+1}(x) \sum_{i=0}^{n} \frac{\lambda_{i}}{x-x_{i}} f_{i} .
$$

Remark: This was derived by Jacobi in his 1825 PhD thesis. Once the weights λ_{i} are known, it allows you to compute each value $p_{n}(x)$ with only $O(n)$ operations.
$\dagger(\mathrm{b})$ Show that $p_{n}(x)$ may alternatively be written as the barycentric interpolation formula

$$
p_{n}(x)=\sum_{i=0}^{n} \frac{\lambda_{i} f_{i}}{x-x_{i}} / \sum_{i=0}^{n} \frac{\lambda_{i}}{x-x_{i}} .
$$

Remark: This formula is an efficient and stable way to compute Chebyshev interpolants (although it should not be used at the nodes themselves because both numerator and denominator are infinite).

Solution: (a) Firstly, note that

$$
w_{n+1}^{\prime}(x)=\prod_{\substack{j=0 \\ j \neq 0}}^{n}\left(x-x_{j}\right)+\prod_{\substack{j=0 \\ j \neq 1}}^{n}\left(x-x_{j}\right)+\ldots+\prod_{\substack{j=0 \\ j \neq n}}^{n}\left(x-x_{j}\right),
$$

so at the nodes x_{i}, we have

$$
w_{n+1}^{\prime}\left(x_{i}\right)=\prod_{\substack{j=0 \\ j \neq i}}^{n}\left(x_{i}-x_{j}\right)
$$

From the first lecture, the Lagrange polynomials are

$$
l_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}}=\frac{1}{w_{n+1}^{\prime}\left(x_{i}\right)} \prod_{\substack{j=0 \\ j \neq i}}^{n}\left(x-x_{j}\right)=\frac{\lambda_{i}}{x-x_{i}} w_{n+1}(x) .
$$

and the result follows from $p_{n}(x)=\sum_{i=0}^{n} f_{i} l_{i}(x)$.
(b) The trick is to use the fact that

$$
\sum_{j=0}^{n} l_{j}(x)=1
$$

You can see this from the fact that this is just the interpolant to a function $f(x)=1$. Then, we divide $l_{i}(x)$ from part (a) by this expression:

$$
l_{i}(x)=\frac{\lambda_{i} w_{n+1}(x)}{x-x_{i}} / \sum_{j=0}^{n} l_{j}(x)=\frac{\lambda_{i} w_{n+1}(x)}{x-x_{i}} / \sum_{j=0}^{n} \frac{\lambda_{j} w_{n+1}(x)}{x-x_{j}}=\frac{\lambda_{i}}{x-x_{i}} / \sum_{j=0}^{n} \frac{\lambda_{j}}{x-x_{j}} .
$$

Substituting this into $p_{n}(x)=\sum_{i=0}^{n} f_{i} l_{i}(x)$ and relabelling the index $j \rightarrow i$ gives the required formula.

