
Problems 1 - Piecewise Polynomial Interpolation
Approximation Theory (MATH3081/4221) — Epiphany 2015 — anthony.yeates@dur.ac.uk

The problem marked ? should be handed in for marking at the lecture on Thursday 5th February.
There will be a problem class on this chapter on Monday 2nd February.
I use † to indicate (what I consider to be) trickier problems.

5. General splines. An interpolating spline of degree N is required to have continuous derivatives
up to and including order N − 1. How many additional conditions are required to specify the
spline uniquely?

Solution: A degree N spline has N + 1 unknowns on each of the n intervals (assuming there are n + 1
knots), so n(N + 1) unkowns in total.

We have two interpolation conditions for each interval [2n equations]. We have a matching condition
for each derivative from 1 to N − 1, at each of the (n − 1) interior knots [(N − 1)(n − 1) equations].
So in total we have 2n+ (N − 1)(n− 1) equations.

The number of additional conditions required is therefore

n(N + 1)− 2n− (N − 1)(n− 1) = N − 1.

[So for linear splines the system is fully determined, while for cubic splines there are two additional
conditions required. This agrees with what we know already.]

6. Flatness of linear splines. Let f(x) = x3.

(a) Compute the linear spline s which interpolates f at the knots 0, 1, and 2.

(b) Compute the quadratic polynomial p2 which interpolates f at the same knots.

(c) Verify that ‖s′‖2 ≤ ‖f ′‖2 and ‖s′‖2 ≤ ‖p′2‖2, where the norm is defined on the interval
[0, 2].

Solution: (a) We have x0 = 0, x1 = 1, x2 = 2 and f0 = 0, f1 = 1, f2 = 8, so

s(x) =

{
s0(x), 0 ≤ x ≤ 1,

s1(x), 1 ≤ x ≤ 2,

where

s0(x) = 0 +

(
1− 0

1− 0

)
(x− 0) = x, s1(x) = 1 +

(
8− 1

2− 1

)
(x− 1) = 7x− 6.

(b) The three Lagrange polynomials for these nodes are

l0(x) =
(x− 1)(x− 2)

(0− 1)(0− 2)
= 1

2 (x− 1)(x− 2),

l1(x) =
(x− 0)(x− 2)

(1− 0)(1− 2)
= −x(x− 2),

l2(x) =
(x− 0)(x− 1)

(2− 0)(2− 1)
= 1

2x(x− 1).

The quadratic interpolant is then

p2(x) =

2∑
i=0

fili(x) = l1(x) + 8l2(x) = −x(x− 2) + 4x(x− 1) = x(3x− 2).

(c) Since

s′ =

{
1, 0 ≤ x ≤ 1,

7, 1 ≤ x ≤ 2,

we have

‖s′‖22 =

∫ 2

0

|s′|2 dx =

∫ 1

0

dx+

∫ 2

1

72 dx = 50.
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On the other hand,

‖f ′‖22 =

∫ 2

0

9x4 dx = 9
525 = 57.6

and

‖p′2‖22 =

∫ 2

0

(6x− 2)2 dx =

∫ 2

0

(36x2 − 24x+ 4) dx = 12(2)3 − 12(2)2 + 4(2) = 56.

7. Quadratic splines. Let a = x0 < x1 < . . . < xn = b be a sequence of equally spaced knots on
an interval [a, b], and let s ∈ C1[a, b] be a quadratic spline that interpolates a function f at the
knots.

(a) Define the moments Mi = s′(xi) for i = 0, . . . , n. Construct the spline s in terms of these
Mi and derive a system of linear equations for the Mi. For what values of i must they hold?
How many extra conditions are necessary?

† (b) If the function to be interpolated is periodic, we might try to introduce the extra condition
s′(a) = s′(b). Show, by considering the resulting system of equations, that this “periodic”
quadratic spline exists for certain conditions on the knots.

(c) Use the above to approximate f(x) = sin(2πx) on the interval [0, 1] with four knots.

Solution: (a) Follow a similar procedure as we used in lectures for the cubic spline. Since each piece si is
quadratic, s′i must be linear, so in [xi, xi+1] we can write

s′i(x) =

(
xi+1 − x

h

)
Mi +

(
x− xi
h

)
Mi+1,

where h is the (uniform) grid spacing. This construction guarantees that s′ is continuous at the
interior knots. Now integrate to find

si(x) =

(
−(xi+1 − x)2

2h

)
Mi +

(
(x− xi)2

2h

)
Mi+1 + αi,

We must then apply the interpolation conditions si(xi) = fi and si(xi+1) = fi+1, for each interval
i = 0, . . . , n− 1. The first gives the equations(

−(xi+1 − xi)2

2h

)
Mi + αi = fi ⇐⇒ −h2Mi + αi = fi, for i = 0, . . . , n− 1.

The second gives the equations(
(xi+1 − xi)2

2h

)
Mi+1 + αi = fi+1 ⇐⇒ h

2Mi+1 + αi = fi+1, for i = 0, . . . , n− 1.

We can eliminate the αi to give a system of n equations

h
2Mi + h

2Mi+1 = fi+1 − fi, for i = 0, . . . , n− 1.

Since there are n+ 1 unknowns (the Mi), one additional condition is necessary [cf. Problem 5].

(b) The extra condition gives the extra equation s′0(x0) = s′n−1(xn), i.e.,(
x1 − x0

h

)
M0 =

(
xn − xn−1

h

)
Mn ⇐⇒ M0 −Mn = 0.

Thus the system is
h
2

h
2 0 · · · 0

0 h
2

h
2 0 · · · 0

...
. . .

. . .
. . .

...
0 · · · 0 h

2
h
2

1 0 · · · 0 −1




M0

M1

...
Mn−1
Mn

 =


f1 − f0
f2 − f1

...
fn − fn−1

0
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For the quadratic spline to exist, the determinant of the above matrix (call it A) must be non-zero.
We have

detA = (h2 )n

∣∣∣∣∣∣∣∣∣∣∣

1 1 0 · · · 0
0 1 1 0
...

...
0 0 · · · 1 1
1 0 · · · −1

∣∣∣∣∣∣∣∣∣∣∣
= (h2 )n

∣∣∣∣∣∣∣∣∣
1 1 · · · 0
...

...
0 · · · 1 1
0 · · · −1

∣∣∣∣∣∣∣∣∣+ (h2 )n(−1)n

∣∣∣∣∣∣∣∣∣
1 0 · · · 0
1 1 0
...

...
0 · · · 1 1

∣∣∣∣∣∣∣∣∣
= (h2 )n

(
− 1 + (−1)n

)
.

which is non-zero iff n+ 1 is even (i.e., there are an even number of knots).

(c) We have x0 = 0, x1 = 1
3 , x2 = 2

3 , x3 = 1, and f0 = 0, f1 =
√
3
2 , f2 = −

√
3
2 , f3 = 0. Since h = 1

3
the system is

1
6


1 1 0 0
0 1 1 0
0 0 1 1
6 0 0 −6



M0

M1

M2

M3

 =


√

3/2

−
√

3√
3/2
0


The solution to this system (by e.g. Gaussian elimination) is

M0 = 6
√

3, M1 = −3
√

3, M2 = −3
√

3, M3 = 6
√

3.

Computing the αi = fi + 1
6Mi we find

α0 =
√

3, α1 = 0, α2 = −
√

3.

Hence the pieces of the quadratic spline are

s0(x) =
−( 1

3 − x)2

2
3

(6
√

3) +
x2

2
3

(−3
√

3) +
√

3,

s1(x) =
−( 2

3 − x)2

2
3

(−3
√

3) +
( 1
3 − x)2

2
3

(−3
√

3),

s2(x) =
−(1− x)2

2
3

(−3
√

3) +
( 2
3 − x)2

2
3

(6
√

3)−
√

3.

8. Is it a spline? Is the following function a cubic spline? Why or why not?

s(x) =



0, x < 0,

x3, 0 ≤ x < 1,

x3 + (x− 1)3, 1 ≤ x < 2,

−(x− 3)3 − (x− 4)3, 2 ≤ x < 3,

−(x− 4)3, 3 ≤ x < 4,

0, 4 ≤ x.

Solution: To decide this, we must check the continuity (interpolation) and derivative conditions. Firstly, s
is continuous at each node. Next we have

s′(x) =



0, x < 0,

3x2, 0 ≤ x < 1,

3x2 + 3(x− 1)2, 1 ≤ x < 2,

−3(x− 3)2 − 3(x− 4)2, 2 ≤ x < 3,

−3(x− 4)2, 3 ≤ x < 4,

0, 4 ≤ x.

At x = 2, we find that s′ is discontinuous (15 on one side and −15 on the other), so this cannot be a
cubic spline.
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9. Natural cubic spline. Compute the natural cubic spline interpolating (0, 0), (1, 12), (2, 0).

Solution: Each piece of the cubic spline i = 0, 1 takes the form

si(x) =
(xi+1 − x)3

6h
Mi +

(x− xi)3

6h
Mi+1 + αi(x− xi) + βi(xi+1 − x),

so using the natural conditions M0 = M2 = 0 we have

s0(x) =
(1− x)3

6
M0 +

x3

6
M1 + α0x+ β0(1− x) = 1

6x
3M1 + α0x+ β0(1− x),

s1(x) =
(2− x)3

6
M1 +

(x− 1)3

6
M2 + α1(x− 1) + β1(2− x) = 1

6 (2− x)3M1 + α1(x− 1) + β1(2− x).

The interpolation conditions give

s0(0) = 0 =⇒ β0 = 0, s0(1) = 1
2 =⇒ α0 = 1

2 −
1
6M1,

s1(1) = 1
2 =⇒ β1 = 1

2 −
1
6M1, s1(2) = 0 =⇒ α1 = 0.

Hence

s0(x) = (1
6x

3 − 1
6x)M1 + 1

2x, s1(x) = (1
6 (2− x)3 − 1

6 (2− x))M1 + 1
2 (2− x).

Finally we determine M1 from the first derivative condition at x = 1. Matching s′0(1) = s′1(1) gives

( 1
2 (1)2 − 1

6 )M1 + 1
2 = (− 1

2 (1)2 + 1
6 )M1 − 1

2 =⇒ M1 = − 3
2 .

So the two pieces of the cubic spline are

s0(x) = − 1
4x

3 + 3
4x, s1(x) = − 1

4 (2− x)3 + 3
4 (2− x).

? 10. Not-a-knot cubic spline. Let s be a cubic spline interpolating a function f at the evenly-spaced
knots a = x0 < x1 < . . . < xn = b, with spacing h, and suppose that s satisfies the so-called
“not-a-knot” conditions that s′′′ is continuous at the two knots x1 and xn−1.

(a) Derive the system of linear equations satisfied by the moments Mi := s′′(xi) for n+1 knots.

(b) Suppose we try to find the not-a-knot cubic spline through the data (0, 0), (1, 1) and (2, 8).
Write down the system of linear equations in this case, show that the solution is not unique,
and write the resulting spline in terms of M0 as a free parameter.

(c) Explain why you expected the solution in (b) to be non-unique.

(d) By considering the two pieces of the cubic spline derived in (b), or otherwise, explain why
this type of cubic spline is called “not-a-knot”.

Solution: (a) As for the natural cubic spline, the general form is

si(x) =
(xi+1 − x)3

6h
Mi +

(x− xi)3

6h
Mi+1 + αi(x− xi) + βi(xi+1 − x),

where the moments Mi and the constants αi and βi are to be determined. First apply the interpo-
lation conditions:

fi = si(xi) = 1
6h

2Mi + hβi =⇒ βi = (fi − 1
6h

2Mi)/h,

fi+1 = si(xi+1) = 1
6h

2Mi+1 + hαi =⇒ αi = (fi+1 − 1
6h

2Mi+1)/h.

We then have to apply the first derivative condition. For each piece, we have

s′i(x) =
−(xi+1 − x)2

2h
Mi +

(x− xi)2

2h
Mi+1 + αi − βi,

=
−(xi+1 − x)2

2h
Mi +

(x− xi)2

2h
Mi+1 +

fi+1 − fi
h

+
Mi −Mi+1

6
h.
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Equating s′i−1(xi) and s′i(xi) and rearranging gives the equations

hMi−1 + 4hMi−1 + hMi+1 = 6

(
fi−1 − 2fi + fi+1

h

)
, for i = 1, . . . , n = 1.

Up to here, everything is the same as for the natural cubic spline. The new things here are the two
not-a-knot conditions. We have

s′′′i (x) =
Mi+1 −Mi

h

so the two equations that close the system are

s′′′0 (x1) = s′′′1 (x1) ⇐⇒ M1 −M0

h
=
M2 −M1

h
⇐⇒ M0 − 2M1 +M2 = 0,

s′′′n−2(xn−1) = s′′′n−1(xn−1) ⇐⇒ Mn−1 −Mn−2

h
=
Mn −Mn−1

h
⇐⇒ Mn−2 − 2Mn−1 +Mn = 0.

In summary, the system of equations has the form

1 −2 1 0 · · · 0

h 4h h 0
...

0 h 4h h
...

. . .
. . .

. . .

h 4h h
0 · · · 1 −2 1





M0

M1

M2

...
Mn−1
Mn


=

6

h



0
f0 − 2f1 + f2
f1 − 2f2 + f3

...
fn−2 − 2fn−1 + fn

0


(1)

(b) We can use the general system derived in part (a) with h = 1, x0 = 0, x1 = 1, x2 = 2, f0 = 0,
f1 = 1, f2 = 8, i.e., 1 −2 1

1 4 1
1 −2 1

M0

M1

M2

 =

 0
36
0

 .

This system clearly has multiple solutions, since there are only two distinct equations. Solving in
terms of M0 leads to

M1 = 6, M2 = 12−M0,

which gives

α0 = 1− 1
6M1 = 0, β0 = − 1

6M0, α1 = 8− 1
6 (12−M0) = 6 + 1

6M0, β1 = 0.

Thus the components of the spline are

s0(x) = 1
6 (1−x)3M0+x3− 1

6M0(1−x), s1(x) = (2−x)3+ 1
6 (x−1)3(12−M0)+(6+ 1

6M0)(x−1).
(2)

(c) I expected the solution to be non-unique because we are only really imposing one additional condi-
tion: for three knots, we have that x1 = xn−1.

(d) If you multiply out the brackets in (2), you will see that s0 ≡ s1. So x = 1 is “not a knot”, in
the sense that s is infinitely differentiable at x = 1. For larger n, this will be true at the knots x1
and xn−1 (because two cubics which match first, second and third derivatives must be the same),
meaning that these two knots are removable! At the other knots in between, the cubic pieces will
of course be different on either side.

† 11. By reducing the linear system found in Problem 10(a) to a strictly diagonally dominant form,
or otherwise, show that there is a unique not-a-knot cubic spline for n ≥ 3.

Solution: One possible way is to eliminate M0 and Mn from the second and (n − 1)th rows of the matrix
in (1) respectively. To do this, subtract h times row 1 from row 2, and h times row n from row n− 1.
This leaves an (n− 1)× (n− 1) linear system

6h 0 0 0

h 4h h
...

...
. . .

. . .
. . .

h 4h h
0 · · · 0 6h




M1

M2

...

...
Mn−1

 =
6

h


f0 − 2f1 + f2
f1 − 2f2 + f3

...

...
fn−2 − 2fn−1 + fn

 ,
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which is strictly diagonally dominant and therefore invertible. One can then find M0 and Mn from the
original rows 1 and n.

12. Holladay’s Theorem for complete cubic splines. The cubic spline interpolating the points (x0, f0),
(x1, f1), . . . (xn, fn) and satisfying the end conditions s′(x0) = c, s′(xn) = d for fixed constants
c, d is known as the complete cubic spline. Adapt the proof of Theorem 1.3 to show that the
complete cubic spline minimises ‖f ′′‖2 among all functions f ∈ C2[x0, xn] that satisfy f ′(x0) = c
and f ′(xn) = d.

Solution: As for the natural cubic spline we have

‖f ′′ − s′′‖22 = ‖f ′′‖22 − ‖s′′‖22 − 2

∫ b

a

(f ′′ − s′′)s′′ dx,

and we need to show that the last term vanishes so that ‖s′′‖2 ≤ ‖f ′′‖2. As for the natural spline, the
last term reduces to∫ b

a

(f ′′ − s′′)s′′ dx =
(
f ′(xn)− s′n−1(xn)

)
s′′n−1(xn)−

(
f ′(x0)− s′0(x0)

)
s′′0(x0),

=
(
f ′(xn)− d

)
s′′n−1(xn)−

(
f ′(x0)− c

)
s′′0(x0)

So provided that we consider only those f for which f ′(x0) = c and f ′(xn) = d, this term vanishes.

13. General B-splines. The B-spline of degree N for equally-spaced knots is defined as

BN (x) =
N+1∑
k=0

(−1)k
(
N + 1
k

)
(x− kh)N+ ,

where h is the knot spacing, the subscript + means the positive part

f(x)+ =

{
f(x), f(x) > 0,

0, f(x) ≤ 0,

and (
n
r

)
=

n!

r!(n− r)!
is the usual binomial coefficient.

(a) Find and sketch the linear B-spline B1(x) and verify that it is indeed a linear spline function.

(b) Find the cubic B-spline B3(x) and verify that it is the same function as given in the lecture.

† (c) Show that the function BN (x) is always a spline of degree N .

Solution: (a) For N = 1 we have

B1(x) = (−1)0
(

2
0

)
x+ + (−1)1

(
2
1

)
(x− h)+ + (−1)2

(
2
2

)
(x− 2h)+,

=


0, x < 0,

x, 0 ≤ x ≤ h,
x− 2(x− h) = 2h− x, h ≤ x ≤ 2h,

x− 2(x− h) + x− 2h = 0, x > 2h.
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This function is piecewise-linear and continuous, so is a linear spline.

(b) For N = 3 we have

B3(x) = (−1)0
(

4
0

)
x3+ + (−1)1

(
4
1

)
(x− h)3+ + (−1)2

(
4
2

)
(x− 2h)3+

+ (−1)3
(

4
3

)
(x− 3h)3+ + (−1)4

(
4
4

)
(x− 4h)3+,

= x3+ − 4(x− h)3+ + 6(x− 2h)3+ − 4(x− 3h)3+ + (x− 4h)3+,

=



0, x < 0,

x3, 0 ≤ x ≤ h,
x3 − 4(x− h)3, h ≤ x ≤ 2h,

x3 − 4(x− h)3 + 6(x− 2h)3, 2h ≤ x ≤ 3h,

x3 − 4(x− h)3 + 6(x− 2h)3 − 4(x− 3h)3, 3h ≤ x ≤ 4h,

x3 − 4(x− h)3 + 6(x− 2h)3 − 4(x− 3h)3 + (x− 4h)3, x > 4h.

To see that this is equal to the cubic B-spline given in the lecture notes, multiply out the penultimate
part and show that it equals (4h− x)3, and multiply out the last part and show that it vanishes.

(c) To see that BN (x) is a spline of degree N , we need to show that it is continuous at the knots
x = 0, h, 2h, . . . , (N + 1)h and has continuous first and second derivatives there. To see why this
holds, look at what we found above for B3(x). You see that in general the neighbouring pieces for
(k − 1)h ≤ x ≤ kh and kh ≤ x ≤ (k + 1)h differ by a term

(−1)k
(
N + 1
k

)
(x− kh)N

which vanishes at x = kh along with its first N − 1 derivatives. Therefore this pair of neighbouring
pieces match at x = kh along with their first N − 1 derivatives. The same is true at every knot, so
BN (x) is a spline of degree N .

14. Applying linear B-splines. Any linear spline may be expressed as

s(x) =
n∑

i=0

αiφi(x)

where the basis functions are linear B-splines φi(x) = h−1B1(x − xi−1), with B1 as defined in
Problem 13. For the data (0, 1), (1, 2), (2, 3) and (3, 4), write down and sketch the linear spline
basis functions φk(x), and hence form the linear spline s(x). Use this to evaluate the spline at
x = 3

2 .

Solution: The four required basis functions are

φ0(x) =


2− (x+ 1), 0 ≤ x ≤ 1,

0, 1 ≤ x ≤ 2,

0, 2 ≤ x ≤ 3,

, φ1(x) =


x, 0 ≤ x ≤ 1,

2− x, 1 ≤ x ≤ 2,

0, 2 ≤ x ≤ 3,

,

φ2(x) =


0, 0 ≤ x ≤ 1,

x− 1, 1 ≤ x ≤ 2,

2− (x− 1), 2 ≤ x ≤ 3,

, φ3(x) =


0, 0 ≤ x ≤ 1,

0, 1 ≤ x ≤ 2,

x− 2, 2 ≤ x ≤ 3.
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The interpolation conditions at the four nodes then give
α0φ0(0) + α1φ1(0) + α2φ2(0) + α3φ3(0) = 1,

α0φ0(1) + α1φ1(1) + α2φ2(1) + α3φ3(1) = 2,

α0φ0(2) + α1φ1(2) + α2φ2(2) + α3φ3(2) = 3,

α0φ0(3) + α1φ1(3) + α2φ2(3) + α3φ3(3) = 4.

=⇒


α0 = 1,

α1 = 2,

α2 = 3,

α3 = 4.

Hence the linear spline is

s(x) =


1− x+ 2x, 0 ≤ x ≤ 1,

2(2− x) + 3(x− 1), 1 ≤ x ≤ 2,

3(3− x) + 4(x− 2), 2 ≤ x ≤ 3.

We have s( 3
2 ) = 2(2− 3

2 ) + 3( 3
2 − 1) = 5

2 .

15. Applying cubic B-splines. If cubic B-splines are used to compute the complete cubic spline that
interpolates the function f(x) = sin(πx/2) at the knots x0 = 0, x1 = 1 and x2 = 2, find the
linear system that has to be solved.

Solution: Here h = 1 and n = 2, so we need φ−1, φ0, φ1, φ2, φ3. We have simply xj = j. It is dangerous
not to first sketch the basis functions that are involved:

Using the formula for cubic B-splines given in the lecture, and taking only the parts in [0, 1] and [1, 2],
we get

φ−1(x) = B3(x− x−3) =

{
(4− x− 3)3, 0 ≤ x ≤ 1,

0, 1 ≤ x ≤ 2,

φ0(x) = B3(x− x−2) =

{
(x+ 2)3 − 4(x+ 1)3 + 6x3, 0 ≤ x ≤ 1,

(2− x)3, 1 ≤ x ≤ 2,

φ1(x) = B3(x− x−1) =

{
(x+ 1)3 − 4x3, 0 ≤ x ≤ 1,

(x+ 1)3 − 4x3 + 6(x− 1)3, 1 ≤ x ≤ 2,

φ2(x) = B3(x− x0) =

{
x3, 0 ≤ x ≤ 1,

x3 − 4(x− 1)3, 1 ≤ x ≤ 2,

φ3(x) = B3(x− x1) =

{
0, 0 ≤ x ≤ 1,

(x− 1)3, 1 ≤ x ≤ 2.

The interpolation conditions give three equations

α−1φ−1(0) + α0φ0(0) + α1φ1(0) + α2φ2(0) + α3φ3(0) = sin(0) = 0,

α−1φ−1(1) + α0φ0(1) + α1φ1(1) + α2φ2(1) + α3φ3(1) = sin(π/2) = 1,

α−1φ−1(2) + α0φ0(2) + α1φ1(2) + α2φ2(2) + α3φ3(2) = sin(π) = 0.
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You can quickly get the values of the basis functions at the knots by referring to the sketch and knowing
that they all have the same shape, with knot values 0, 1, 4, 1, 0. This gives

α−1 + 4α0 + α1 = 0,

α0 + 4α1 + α2 = 1,

α1 + 4α2 + α3 = 0.

We get a further two equations from the complete conditions that s′0(0) = f ′(0) = π
2 and s′1(2) =

f ′(2) = −π2 . Using the fact that the derivatives of the basis functions are 3, 0, −3 at the knots, we have

α−1φ
′
−1(0) + α0φ

′
0(0) + α1φ

′
1(0) = π

2 ⇐⇒ −3α−1 + 3α1 = π
2 ,

α1φ
′
1(2) + α2φ

′
2(2) + α3φ

′
3(2) = −π2 ⇐⇒ −3α1 + 3α3 = −π2 .

So the linear system we have to solve is
−3 0 3 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 −3 0 3



α−1
α0

α1

α2

α3

 =


π
2
0
1
0
−π2


Here is a plot of the spline obtained from solving the linear system, and the original function f (black
dashed line) - you can see the approximation is pretty good:


