Problems 2-Minimax Approximation

Approximation Theory (MATH3081/4221) - Epiphany 2015 - anthony.yeates@dur.ac.uk

The problem marked \star should be handed in for marking at the lecture on Thursday 19th February. There will be a problem class on this chapter on Monday 16th February.
I use \dagger to indicate (what I consider to be) trickier problems.
16. Bernstein polynomial approximation. Compute the approximations using Bernstein polynomials of degree $n=1$ and $n=2$ to the function $f(x)=1-\left|x-\frac{1}{3}\right|$ on $[0,1]$. Verify that the approximation is converging in the ∞-norm.

Solution: We have

$$
\begin{aligned}
B_{1}(f, x) & =f(0)\binom{1}{0}(1-x)+f(1)\binom{1}{1} x=f(0)(1-x)+f(1) x=\frac{2}{3}(1-x)+\frac{1}{3} x=\frac{2}{3}-\frac{1}{3} x \\
B_{2}(f, x) & =f(0)\binom{2}{0}(1-x)^{2}+f\left(\frac{1}{2}\right)\binom{2}{1} x(1-x)+f(1)\binom{2}{2} x^{2} \\
& =f(0)(1-x)^{2}+2 f\left(\frac{1}{2}\right) x(1-x)+f(1) x^{2}=\frac{2}{3}(1-x)^{2}+\frac{5}{3} x(1-x)+\frac{1}{3} x^{2}=-\frac{2}{3} x^{2}+\frac{1}{3} x+\frac{2}{3} .
\end{aligned}
$$

In pictures,

To verify convergence, we compute $\left\|f-B_{1}(f, x)\right\|_{\infty}$ and $\left\|f-B_{2}(f, x)\right\|_{\infty}$.
From the picture, we see that the maximum of $\left|f(x)-B_{1}(f, x)\right|$ occurs at $x=\frac{1}{3}$, so

$$
\left\|f-B_{1}(f, x)\right\|_{\infty}=1-\left(\frac{2}{3}-\frac{1}{9}\right)=\frac{4}{9} .
$$

To find $\left\|f-B_{2}(f, x)\right\|_{\infty}$, we check each subinterval. In $\left[0, \frac{1}{3}\right]$, we have
$f(x)-B_{2}(f, x)=\frac{2}{3}+x-\left(-\frac{2}{3} x^{2}+\frac{1}{3} x+\frac{2}{3}\right)=\frac{2}{3} x+\frac{2}{3} x^{2} \quad \Longrightarrow \quad \frac{d}{d x}\left(f(x)-B_{2}(f, x)\right)=\frac{2}{3}+\frac{4}{3} x$.
Hence $\left|f(x)-B_{2}(f, x)\right|$ is largest at $x=\frac{1}{3}$, where $f(x)-B_{2}(f, x)=\frac{8}{27}$. On the other hand, in $\left[\frac{1}{3}, 1\right]$, we have
$f(x)-B_{2}(f, x)=\frac{4}{3}-x-\left(-\frac{2}{3} x^{2}+\frac{1}{3} x+\frac{2}{3}\right)=\frac{2}{3}-\frac{4}{3} x+\frac{2}{3} x^{2} \quad \Longrightarrow \quad \frac{d}{d x}\left(f(x)-B_{2}(f, x)\right)=-\frac{4}{3}+\frac{4}{3} x$.
We conclude that the largest value of $\left|f(x)-B_{2}(f, x)\right|$ in this subinterval is also at $x=\frac{1}{3}$. Hence $\left\|f-B_{2}(f, x)\right\|_{\infty}=\frac{8}{27}$. This is less than $\left\|f-B_{1}(f, x)\right\|_{\infty}=\frac{4}{9}=\frac{12}{27}$, so we are indeed seeing convergence as n increases.
17. Recursive definition of Bernstein polynomials. Let $b_{n, k}$ for $k=0, \ldots, n$ be the Bernstein basis functions, as defined in the lecture. Show that these basis functions satisfy the recursion relation

$$
b_{n, k}(x)=(1-x) b_{n-1, k}(x)+x b_{n-1, k-1}(x)
$$

Remark: This is the basis of de Casteljau's fast algorithm for drawing Bézier curves.

Solution: This is just an exercise in algebra. We have

$$
\begin{aligned}
(1-x) b_{n-1, k}(x)+x b_{n-1, k-1}(x) & =(1-x)\binom{n-1}{k} x^{k}(1-x)^{n-1-k}+x\binom{n-1}{k-1} x^{k-1}(1-x)^{n-1-(k-1)}, \\
& =\binom{n-1}{k} x^{k}(1-x)^{n-k}+\binom{n-1}{k-1} x^{k}(1-x)^{n-k}, \\
& =\left[\binom{n-1}{k}+\binom{n-1}{k-1}\right] x^{k}(1-x)^{n-k}, \\
& =\left[\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!}\right] x^{k}(1-x)^{n-k}, \\
& =\left[\frac{(n-1)!(n-k)}{k!(n-k)!}+\frac{(n-1)!k}{(k)!(n-k)!}\right] x^{k}(1-x)^{n-k}, \\
& =\binom{n}{k} x^{k}(1-x)^{n-k}=b_{n, k}(x) .
\end{aligned}
$$

18. Derivatives of Bernstein polynomials. Show that the derivatives of the Bernstein basis functions $b_{n, k}(x)$ for $k=0, \ldots, n$ satisfy

$$
\frac{d}{d x} b_{n, k}(x)=n\left(b_{n-1, k-1}(x)-b_{n-1, k}(x)\right) .
$$

Solution: This can be shown by direct differentiation:

$$
\begin{aligned}
\frac{d}{d x} b_{n, k}(x) & =\binom{n}{k} \frac{d}{d x}\left(x^{k}(1-x)^{n-k}\right) \\
& =\frac{k n!}{k!(n-k)!} x^{k-1}(1-x)^{n-k}+\frac{(n-k) n!}{k!(n-k)!} x^{k}(1-x)^{n-k-1} \\
& =\frac{n(n-1)!}{(k-1)!(n-k)!} x^{k-1}(1-x)^{n-k}+\frac{n(n-1)!}{k!(n-k-1)!} x^{k}(1-x)^{n-k-1}, \\
& =n\left(b_{n-1, k-1}(x)-b_{n-1, k}(x)\right)
\end{aligned}
$$

19. Cubic Bézier curves. Verify that the cubic Bézier curve $\mathbf{B}_{3}(t)$ with control points $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ is tangent (i) at \mathbf{x}_{0} to the line joining \mathbf{x}_{0} and \mathbf{x}_{1}, and (ii) at \mathbf{x}_{3} to the line joining \mathbf{x}_{2} and \mathbf{x}_{3}.

Solution: The cubic Bézier curve is

$$
\mathbf{B}_{3}(t)=(1-t)^{3} \mathbf{x}_{0}+3 t(1-t)^{2} \mathbf{x}_{1}+3 t^{2}(1-t) \mathbf{x}_{2}+t^{3} \mathbf{x}_{3}
$$

so

$$
\mathbf{B}_{3}^{\prime}(t)=-3(1-t)^{2} \mathbf{x}_{0}+3(1-t)(1-3 t) \mathbf{x}_{1}+3 t(2-3 t) \mathbf{x}_{2}+3 t^{2} \mathbf{x}_{3}
$$

The tangent direction at \mathbf{x}_{0} is $\mathbf{B}_{3}^{\prime}(0)=-3\left(\mathbf{x}_{1}-\mathbf{x}_{0}\right)$, while at \mathbf{x}_{3} it is $\mathbf{B}_{3}^{\prime}(1)=-3\left(\mathbf{x}_{3}-\mathbf{x}_{2}\right)$. This shows that the required lines are indeed the tangents at these two points.
20. A Bézier curve. Find the parametric equations of the Bézier curve with control points $(0,1)$, $\left(\frac{1}{5}, \frac{3}{2}\right),\left(\frac{3}{5}, 2\right)$ and $(1,0)$. Find the slope of the curve at each of its end-points and make a rough sketch of the curve.
As a check, you could try drawing the curve in Postscript.
Solution: We have

$$
\begin{aligned}
& x(t)=(1-t)^{3}(0)+3 t(1-t)^{2}\left(\frac{1}{5}\right)+3 t^{2}(1-t)\left(\frac{3}{5}\right)+t^{3}(1)=\frac{1}{5} t\left(3+3 t-t^{2}\right) \\
& y(t)=(1-t)^{3}(1)+3 t(1-t)^{2}\left(\frac{3}{2}\right)+3 t^{2}(1-t)(2)+t^{3}(0)=\frac{1}{2}(1-t)\left(2+5 t+5 t^{2}\right)
\end{aligned}
$$

For the slope, note that $x^{\prime}(t)=\frac{3}{5}+\frac{6}{5} t-\frac{3}{5} t^{2}$ and $y^{\prime}(t)=\frac{3}{2}-\frac{15}{2} t^{2}$. So at the endpoints $d y / d x(0)=$ $y^{\prime}(0) / x^{\prime}(0)=\frac{5}{2}$ and $d y / d x(1)=y^{\prime}(1) / x^{\prime}(1)=-5$. Alternatively, you could get these from the slopes of the straight lines between the control points. Note that $x^{\prime}(t)$ is always positive for $t \in[0,1]$, so that x is monotonically increasing. On the other hand, $y^{\prime}(t)$ changes sign, so there is a maximum in y. The curve and its control points are shown below:

21. Minimax approximation. Find the minimax linear approximation to $f(x)=\sinh (x)$ on $[0,1]$.

Solution: We look for a straight line $p_{1}^{*}(x)=a+b x$ such that f, p_{1}^{*} have an alternating set $\{0, \theta, 1\}$. We require

$$
\begin{align*}
f(0)-p_{1}^{*}(0)=0-a & =E \tag{1}\\
f(\theta)-p_{1}^{*}(\theta)=\sinh (\theta)-a-b \theta & =-E \tag{2}\\
f(1)-p_{1}^{*}(1)=\sinh (1)-a-b & =E \tag{3}
\end{align*}
$$

There are four unknowns (a, b, θ, E) but only three equations - we get a fourth equation by requiring that the error has a turning point at $x=\theta$. This gives

$$
\begin{equation*}
\cosh (\theta)-b=0 \tag{4}
\end{equation*}
$$

Eliminating E from (3) gives $b=\sinh (1)=1.1752$, and from (2) gives $a=\frac{1}{2}(\sinh (\theta)-\sinh (1) \theta) \approx$ -0.0343 , where θ is given by $\cosh (\theta)=\sinh (1)$ [from (4)]. The solution looks like this:

22. Minimax approximation to a polynomial. Find the minimax approximation of degree 4 to the polynomial $f(x)=x^{5}+2 x^{2}-x$.

Solution: As shown in the lecture,

$$
p_{4}^{*}(x)=f(x)-\frac{1}{2^{4}} T_{5}(x)
$$

We use the recurrence relation to compute the Chebyshev polynomial $T_{5}(x)$:

$$
\begin{aligned}
& T_{0}(x)=1, \quad T_{1}(x)=x \\
& T_{2}(x)=2 x T_{1}(x)-T_{0}(x)=2 x^{2}-1 \\
& T_{3}(x)=2 x T_{2}(x)-T_{1}(x)=4 x^{3}-3 x \\
& T_{4}(x)=2 x T_{3}(x)-T_{2}(x)=8 x^{4}-8 x^{2}+1, \\
& T_{5}(x)=2 x T_{4}(x)-T_{3}(x)=16 x^{5}-20 x^{3}+5 x .
\end{aligned}
$$

Therefore

$$
p_{4}^{*}(x)=x^{5}+2 x^{2}-x-x^{5}+\frac{5}{4} x^{3}-\frac{5}{16} x=\frac{5}{4} x^{3}+2 x^{2}-\frac{21}{16} x .
$$

23. Non-monic polynomials. Prove that, if p_{m}^{*} is the minimax polynomial of degree m for a polynomial $f \in \mathcal{P}_{m+1}$, then αp_{m}^{*} is the minimax approximation for αf.

Solution: We need to show that

$$
\left\|\alpha f-\alpha p_{m}^{*}\right\|_{\infty} \leq\left\|\alpha f-p_{m}\right\|_{\infty}
$$

for all $p_{m} \in \mathcal{P}_{m}$. For a scalar α, all norms satisfy $\|\alpha g\|=|\alpha| \cdot\|g\|$, so for any $q_{m} \in \mathcal{P}_{m}$ we have

$$
\left\|\alpha f-\alpha p_{m}^{*}\right\|_{\infty}=|\alpha| \cdot\left\|f-p_{m}^{*}\right\|_{\infty} \leq|\alpha| \cdot\left\|f-q_{m}\right\|_{\infty}=\left\|\alpha f-\alpha q_{m}\right\|_{\infty}
$$

Writing $q_{m}=p_{m} / \alpha$ gives the result (unless $\alpha=0$ in which case it is trivial).

夫 24. De la Vallée Poussin Theorem. Let $f(x)=-\cos (x)$ and $q_{1}(x)=0.5 x-1.1$.
(a) Show that $\left\{0, \frac{1}{2}, 1\right\}$ is a non-uniform alternating set for f and q_{1} on $[0,1]$.
(b) Use the De la Vallée Poussin Theorem with these points to find a lower bound for $\left\|f-p_{1}^{*}\right\|_{\infty}$, where p_{1}^{*} is the minimax degree 1 polynomial for f on $[0,1]$.
(c) Use q_{1} to find an upper bound for $\left\|f-p_{1}^{*}\right\|_{\infty}$.
(d) By postulating a suitable alternating set, or otherwise, find p_{1}^{*}.

Solution: (a) We have

$$
\begin{aligned}
f(0)-q_{1}(0)=0.1 & :=e_{0}, \\
f\left(\frac{1}{2}\right)-q_{1}\left(\frac{1}{2}\right)=-0.0276 & :=e_{1}, \\
f(1)-q_{1}(1)=0.0597 & :=e_{2} .
\end{aligned}
$$

The points are ordered and the successive e_{i} alternate in sign, so this is a non-uniform alternating set for f and q_{1}.
(b) By the DLVP Theorem, it follows from (a) that $\left\|f-p_{1}^{*}\right\|_{\infty}>0.0276$.
(c) To find an upper bound, we can use $\left\|f-q_{1}\right\|_{\infty}$. To find this, consider the derivative

$$
f^{\prime}(x)-q_{1}^{\prime}(x)=\sin (x)-0.5
$$

Thus the error has a turning point at $\sin (x)=0.5$, or $x=\frac{\pi}{6}$. At this point $f\left(\frac{\pi}{6}\right)-q_{1}\left(\frac{\pi}{6}\right)=-0.0278$. Thus the maximum on $[0,1]$ is $\left\|f-q_{1}\right\|_{\infty}=0.1$ (at the left end). Hence our upper bound is

$$
\left\|f-p_{1}^{*}\right\|_{\infty} \leq 0.1
$$

(d) We look for a straight line $p_{1}^{*}(x)=a+b x$ such that f, p_{1}^{*} have an alternating set $\{0, \theta, 1\}$. We require

$$
\begin{align*}
f(0)-p_{1}^{*}(0)=-1-a & =E \tag{5}\\
f(\theta)-p_{1}^{*}(\theta)=-\cos (\theta)-a-b \theta & =-E \tag{6}\\
f(1)-p_{1}^{*}(1)=-\cos (1)-a-b & =E \tag{7}
\end{align*}
$$

There are four unknowns (a, b, θ, E) but only three equations - we get a fourth equation by requiring that the error has a turning point at $x=\theta$. This gives

$$
\begin{equation*}
\sin (\theta)-b=0 \tag{8}
\end{equation*}
$$

Eliminating E from (7) gives $b=1-\cos (1)=0.4597$, and from (6) gives $a=\frac{1}{2}(-1-\cos (\theta)-$ $[1-\cos (1)] \theta) \approx-1.0538$, where θ is given by $\sin (\theta)=1-\cos (1)$ [from (8)]. The solution looks like:

25. The Equioscillation Theorem. In light of the Chebyshev Equioscillation Theorem, explain why the function $q_{1}(x)$ in Problem 24 could not possibly be the minimax degree 1 polynomial.

Solution: In the solution to Problem 24(c), we found that the local extrema of the error $f-q_{1}$ were 0.1 , $-0.0278,0.0597$. Therefore it is impossible to find an alternating set of length 3 for f and q_{1} (remember that alternating sets must attain $\pm\left\|f-q_{1}\right\|_{\infty}$ at each point), meaning that q_{1} cannot possibly be the minimax polynomial (by the Equioscillation Theorem).
26. Every minimax polynomial is an interpolant. Let $p_{n}^{*} \in \mathcal{P}_{n}$ be a minimax approximation to $f \in C[a, b]$. Show that there exist $n+1$ distinct points $a<x_{0}<x_{1}<\ldots<x_{n}<b$ such that p_{n}^{*} is the polynomial interpolant in \mathcal{P}_{n} to f at these $n+1$ points.

Solution: We know from the Equioscillation Theorem that f and p_{n}^{*} have an alternating set of length $n+2$. Therefore, $f-p_{n}^{*}$ changes sign at $n+1$ distinct points, which are the required interpolation points.
\dagger 27. Minimax polynomials of even functions. Let $f \in C[-1,1]$ be even, i.e. $f(-x)=f(x)$.
(a) Use the Equioscillation Theorem to prove that the minimax polynomial p_{n}^{*} is even for any $n \geq 0$.
(b) Prove that for any $n \geq 0, p_{2 n}^{*}=p_{2 n+1}^{*}$.
(c) Find the minimax polynomial of degree 1 for $f(x)=|x|$ on $[-1,1]$.

Solution: (a) Since p_{n}^{*} is the minimax polynomial for f, these two functions have an alternating set $\left\{x_{i}\right\}$ of length $n+2$ such that

$$
f\left(x_{i}\right)-p_{n}^{*}\left(x_{i}\right)=(-1)^{i} E, \quad \text { for } i=0, \ldots, n+1, \text { where } E=\left\|f-p_{n}^{*}\right\|_{\infty}
$$

Now let $g(x)=f(-x)$. We have

$$
g\left(-x_{i}\right)-p_{n}^{*}\left(x_{i}\right)=(-1)^{i} E, \quad \text { for } i=0, \ldots, n+1,
$$

so $\left\{-x_{i}\right\}$ are an alternating set for $g(x), p_{n}^{*}(-x)$. Thus $p_{n}^{*}(-x)$ is a minimax polynomial for $g(x)$. But f is even so $g=f$. Therefore $p_{n}^{*}(-x)$ is also a minimax polynomial for f. Since the minimax polynomial is unique (Corollary 2.4), it follows that $p_{n}^{*}(-x)=p_{n}^{*}(x)$, i.e. p_{n}^{*} is even.
(b) This follows from part (a). Since the minimax polynomial is even for any n, it cannot have any odd powers of x, so the coefficient of $x^{2 n+1}$ must be zero.
(c) Using the above, we know that since $f(x)=|x|$ is even, we must have $p_{1}=p_{0}$. By symmetry, $p_{0}=\frac{1}{2}$. Hence $p_{1}(x)=\frac{1}{2}$.
28. Remez algorithm. Use the Remez Exchange algorithm to compute the linear minimax approximation to $f(x)=x^{2}$ on $[0,3]$, using the initial reference set $\{0,1,3\}$. Comment on the convergence of the algorithm.

Solution: Let $p_{1}=a_{0}+a_{1} x$.
Step 1: solve the linear system

$$
\begin{array}{r}
a_{0}+E=0^{2}=0, \\
a_{0}+a_{1}-E=1^{2}=1, \\
a_{0}+3 a_{1}+E=3^{2}=9 .
\end{array}
$$

Solving this system gives $a_{0}=-1, a_{1}=3, E=1$, i.e. $p_{1}^{(1)}=-1+3 x$.
Step 2: to update the reference set, we look for the point of maximum $\left|f-p_{1}^{(1)}\right|$. We have

$$
f-p_{1}^{(1)}=x^{2}-3 x+1
$$

This has a turning point at $x=\frac{3}{2}$, where $f\left(\frac{3}{2}\right)-p_{1}^{(1)}\left(\frac{3}{2}\right)=-\frac{5}{4}$. At the end-points, $f(0)-p_{1}^{(1)}(0)=-1$ and $f(3)-p_{1}^{(1)}(3)=1$, so $\left\|f-p_{1}^{(1)}\right\|_{\infty}=\frac{5}{4}$. At the middle point of the old reference set, $f(1)-p_{1}^{(1)}(1)=$ -1 . So we form the new reference set $\left\{0, \frac{3}{2}, 3\right\}$.
Step 1: now solve the linear system

$$
\begin{aligned}
a_{0}+E & =0^{2}=0, \\
a_{0}+\frac{3}{2} a_{1}-E & =\left(\frac{3}{2}\right)^{2}=\frac{9}{4}, \\
a_{0}+3 a_{1}+E & =3^{2}=9 .
\end{aligned}
$$

Solving this system gives $a_{0}=-\frac{9}{8}, a_{1}=3, E=\frac{9}{8}$, i.e. $p_{1}^{(2)}=-\frac{9}{8}+3 x$.
Step 2: Now we have

$$
f-p_{1}^{(2)}=x^{2}-3 x+\frac{9}{8} .
$$

Again this has a turning point at $x=\frac{3}{2}$, but now $f\left(\frac{3}{2}\right)-p_{1}^{(2)}\left(\frac{3}{2}\right)=-\frac{9}{8}$. The end point values are now $f(0)-p_{1}^{(2)}(0)=\frac{9}{8}$ and $f(3)-p_{1}^{(2)}(3)=\frac{9}{8}$. Now the maximum $\left|f-p_{1}^{(2)}\right|$ is achieved with alternating signs at $\left\{0, \frac{3}{2}, 3\right\}$, so this is an alternating set. Hence (by Equioscillation Theorem) the minimax polynomial is

$$
p_{1}^{*}(x)=p_{1}^{(2)}=3 x-\frac{9}{8} .
$$

The algorithm has converged to the exact solution after two steps. See the illustration below:

