Problems 3 - Trigonometric Interpolation

Approximation Theory (MATH3081/4221) - Epiphany 2015 - anthony.yeates@dur.ac.uk

The problem marked \star should be handed in for marking at the lecture on Monday 9th March. There will be a problem class on this chapter on Monday 2nd March. I use \dagger to indicate (what I consider to be) trickier problems.
29. Discrete Fourier transforms. Compute the discrete Fourier transform of the following vectors, and interpret your results: (a) $\mathbf{x}=(1,1,1,1)^{\top}$; (b) $\mathbf{x}=(0,1,0,-1,0,1,0,-1)^{\top}$.
Solution: (a) Let $\omega=e^{i 2 \pi / 4}=e^{i \pi / 2}=i$. Then

$$
F_{4}^{-1} \mathbf{x}=\frac{1}{4}\left(\begin{array}{cccc}
\omega^{0} & \omega^{0} & \omega^{0} & \omega^{0} \\
\omega^{0} & \omega^{-1} & \omega^{-2} & \omega^{-3} \\
\omega^{0} & \omega^{-2} & \omega^{-4} & \omega^{-6} \\
\omega^{0} & \omega^{-3} & \omega^{-6} & \omega^{-9}
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=\frac{1}{4}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Interpretation: the only non-zero coefficient is c_{0}, which is the constant term in the trigonometric polynomial (as expected).
(b) Let $\omega=e^{i 2 \pi / 8}=e^{i \pi / 4}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$. Then

$$
\begin{aligned}
F_{8}^{-1} \mathbf{x} & =\frac{1}{8}\left(\begin{array}{cccccccc}
\omega^{0} & \omega^{0} \\
\omega^{0} & \omega^{-1} & \omega^{-2} & \omega^{-3} & \omega^{-4} & \omega^{-5} & \omega^{-6} & \omega^{-7} \\
\omega^{0} & \omega^{-2} & \omega^{-4} & \omega^{-6} & \omega^{-8} & \omega^{-10} & \omega^{-12} & \omega^{-14} \\
\omega^{0} & \omega^{-3} & \omega^{-6} & \omega^{-9} & \omega^{-12} & \omega^{-15} & \omega^{-18} & \omega^{-21} \\
\omega^{0} & \omega^{-4} & \omega^{-8} & \omega^{-12} & \omega^{-16} & \omega^{-20} & \omega^{-24} & \omega^{-28} \\
\omega^{0} & \omega^{-5} & \omega^{-10} & \omega^{-15} & \omega^{-20} & \omega^{-25} & \omega^{-30} & \omega^{-35} \\
\omega^{0} & \omega^{-6} & \omega^{-12} & \omega^{-18} & \omega^{-24} & \omega^{-30} & \omega^{-36} & \omega^{-42} \\
\omega^{0} & \omega^{-7} & \omega^{-14} & \omega^{-21} & \omega^{-28} & \omega^{-35} & \omega^{-42} & \omega^{-49}
\end{array}\right)\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
-1
\end{array}\right) \\
& =\frac{1}{8}\left(\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \omega^{-4} & \omega^{-5} & \omega^{-6} \\
\omega^{-7} \\
1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & 1 & \omega^{-2} & \omega^{-4} \\
\omega^{-6} \\
1 & \omega^{-3} & \omega^{-6} & \omega^{-1} & \omega^{-4} & \omega^{-7} & \omega^{-2} \\
1 & \omega^{-5} \\
1 & \omega^{-4} & 1 & \omega^{-4} & 1 & \omega^{-4} & 1 \\
\omega^{-4} \\
1 & \omega^{-5} & \omega^{-2} & \omega^{-7} & \omega^{-4} & \omega^{-1} & \omega^{-6} \\
\omega^{-3} \\
1 & \omega^{-6} & \omega^{-4} & \omega^{-2} & 1 & \omega^{-6} & 1 \\
\omega^{-2} \\
1 & \omega^{-7} & \omega^{-6} & \omega^{-5} & \omega^{-4} & \omega^{-3} & \omega^{-2} \\
\omega^{-1}
\end{array}\right)\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1 \\
0 \\
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1-1+1-1 \\
\omega^{-1}-\omega^{-3}+\omega^{-5}-\omega^{-7} \\
\omega^{-2}-\omega^{-6}+\omega^{-2}-\omega^{-6} \\
\omega^{-3}-\omega^{-1}+\omega^{-7}-\omega^{-5} \\
\omega^{-4}-\omega^{-4}+\omega^{-4}-\omega^{-4} \\
\omega^{-5}-\omega^{-7}+\omega^{-1}-\omega^{-3} \\
\omega^{-6}-\omega^{-2}+\omega^{-6}-\omega^{-2} \\
\omega^{-7}-\omega^{-5}+\omega^{-3}-\omega^{-1}
\end{array}\right)=\frac{1}{8}\left(\begin{array}{c}
\omega^{-2}-\omega^{-6}+\omega^{-2}-\omega^{-6} \\
0 \\
0 \\
0 \\
\omega^{-6}-\omega^{-2}+\omega^{-6}-\omega^{-2} \\
0
\end{array}\right)
\end{aligned}
$$

Note that we used the fact that $\omega^{-3}=-\omega^{-5}$ and $\omega^{-1}=-\omega^{-7}$ (think of the unit circle), and that $\omega^{-2}=-i, \omega^{-6}=i$. Interpretation: the only non-zero terms are c_{2} and c_{6}, and they are purely imaginary. Thus the real trigonometric polynomial has only a $\sin (2 x)$ term (which matches the original function being interpolated) and a $\sin (6 x)$ term (which is an alias of $\sin (2 x)$).
30. Real entries. Suppose that the entries of \mathbf{f} are all real. If $\mathbf{c}=F_{n}^{-1} \mathbf{f}$ is the discrete Fourier transform of \mathbf{f}, show that $\bar{c}_{n-k}=c_{k}$ for $k=0, \ldots, n-1$.

Solution: We know that

$$
c_{k}=\left(F_{n}^{-1}\right)_{k j} f_{j}=\frac{1}{n} \sum_{j=0}^{n-1} \omega^{-j k} f_{j},
$$

so using the fact that f_{j} are real,

$$
\bar{c}_{n-k}=\overline{\frac{1}{n} \sum_{j=0}^{n-1} \omega^{-j(n-k)} f_{j}}=\frac{1}{n} \sum_{j=0}^{n-1} \omega^{-j k} \omega^{j n} f_{j}=\frac{1}{n} \sum_{j=0}^{n-1} \omega^{-j k} \omega^{i 2 \pi j} f_{j}=\frac{1}{n} \sum_{j=0}^{n-1} \omega^{-j k}(1) f_{j}=c_{k} .
$$

^ 31. Trigonometric interpolation. Consider the periodic function $f(x)=\sin (x)+2 \cos (2 x)$.
(a) Write down the Fourier matrix F_{3}, and its inverse F_{3}^{-1}.
(b) Use this to find a real trigonometric polynomial of the form

$$
p_{3}(x)=\sum_{k=0}^{2}\left(a_{k} \cos (k x)-b_{k} \sin (k x)\right)
$$

that interpolates f at three equally-spaced nodes on $[0,2 \pi)$.
(c) Explain how it can be that the interpolant p_{3} you found in part (b) does not reproduce the original function f exactly.
(d) Find a trigonometric polynomial of lower degree that interpolates the same data.

Solution: (a) Let $\omega=e^{i 2 \pi / 3}=\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Then $\omega^{2}=\omega^{-1}=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$. Thus

$$
F_{3}=\left(\begin{array}{ccc}
\omega^{0} & \omega^{0} & \omega^{0} \\
\omega^{0} & \omega^{1} & \omega^{2} \\
\omega^{0} & \omega^{2} & \omega^{4}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -\frac{1}{2}+\frac{\sqrt{3}}{2} i & -\frac{1}{2}-\frac{\sqrt{3}}{2} i \\
1 & -\frac{1}{2}-\frac{\sqrt{3}}{2} i & -\frac{1}{2}+\frac{\sqrt{3}}{2} i
\end{array}\right)
$$

and

$$
F_{3}^{-1}=\frac{1}{3} \bar{F}_{3}=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -\frac{1}{2}-\frac{\sqrt{3}}{2} i & -\frac{1}{2}+\frac{\sqrt{3}}{2} i \\
1 & -\frac{1}{2}+\frac{\sqrt{3}}{2} i & -\frac{1}{2}-\frac{\sqrt{3}}{2} i
\end{array}\right)
$$

(b) The coefficients a_{k} and b_{k} are the real and imaginary parts of c_{k}, where $\mathbf{c}=F_{3}^{-1} \mathbf{f}$ and the data are given by

$$
f_{0}=\sin (0)+2 \cos (0)=2, \quad f_{1}=\sin \left(\frac{2 \pi}{3}\right)+2 \cos \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}-1, \quad f_{2}=-\frac{\sqrt{3}}{2}-1
$$

Using the matrix from (a), we obtain

$$
\mathbf{c}=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -\frac{1}{2}-\frac{\sqrt{3}}{2} i & -\frac{1}{2}+\frac{\sqrt{3}}{2} i \\
1 & -\frac{1}{2}+\frac{\sqrt{3}}{2} i & -\frac{1}{2}-\frac{\sqrt{3}}{2} i
\end{array}\right)\left(\begin{array}{c}
2 \\
\frac{\sqrt{3}}{2}-1 \\
-\frac{\sqrt{3}}{2}-1
\end{array}\right)=\left(\begin{array}{c}
0 \\
1-\frac{1}{2} i \\
1+\frac{1}{2} i
\end{array}\right),
$$

so the real trigonometric interpolant is

$$
p_{3}(x)=\cos (x)+\frac{1}{2} \sin (x)+\cos (2 x)-\frac{1}{2} \sin (2 x) .
$$

(c) We see that $p_{3}(x) \neq f(x)$ for most x. Although f is itself a trigonometric polynomial with $n=3$, this is not inconsistent, because the Nyquist frequency for $n=3$ is $k_{0}=\frac{3}{2}$. Since the function f contains a component of frequency $k=2>k_{0}$, there is not a unique trigonometric polynomial with $n=3$ that interpolates f.
(d) We have that

$$
\begin{aligned}
& \cos \left(2 x_{j}\right)=\cos \left((3-1) x_{j}\right)=\cos \left(2 \pi j-\frac{2 \pi j}{3}\right)=\cos (2 \pi j) \cos \left(\frac{2 \pi j}{3}\right)+\sin (2 \pi j) \sin \left(\frac{2 \pi j}{3}\right)=\cos \left(x_{j}\right), \\
& \sin \left(2 x_{j}\right)=\sin \left((3-1) x_{j}\right)=\sin \left(2 \pi j-\frac{2 \pi j}{3}\right)=\sin (2 \pi j) \cos \left(\frac{2 \pi j}{3}\right)-\cos (2 \pi j) \sin \left(\frac{2 \pi j}{3}\right)=-\sin \left(x_{j}\right),
\end{aligned}
$$

so replacing $\sin (2 x)$ by $-\sin (x)$ and $\cos (2 x)$ by $\cos (x)$ yields another interpolant

$$
\tilde{p}_{1}(x)=2 \cos (x)+\sin (x) .
$$

Here is what the functions look like:

32. Splitting. Let $\mathbf{h}=\mathbf{f}+i \mathbf{g}$, where \mathbf{f} and \mathbf{g} are real vectors, and let \mathbf{b} be the DFT of \mathbf{h}. Show that the DFTs of \mathbf{f} and \mathbf{g} are

$$
c_{k}=\frac{1}{2}\left(b_{k}+\bar{b}_{n-k}\right), \quad d_{k}=\frac{i}{2}\left(\bar{b}_{n-k}-b_{k}\right)
$$

Remark: One can speed up the DFT of a real vector \mathbf{f} by splitting into $\mathbf{f}_{\text {even }}$ and $\mathbf{f}_{\text {odd }}$ and finding the size $n / 2$ transform of $\mathbf{h}=\mathbf{f}_{\text {even }}+i \mathbf{f}_{\text {odd }}$.

Solution: This is really an extension of Problem 30. We have

$$
\begin{equation*}
b_{k}=\frac{1}{n} \sum_{j=0}^{n-1} \omega^{-j k} h_{j}=\frac{1}{n} \sum_{j=0}^{n-1} \omega^{-j k}\left(f_{j}+i g_{j}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{b}_{n-k}=\frac{1}{n} \sum_{j=0}^{n-1} \overline{\omega^{-j n} \omega^{j k}\left(f_{j}+i g_{j}\right)}=\frac{1}{n} \sum_{j=0}^{n-1} \omega^{j n} \omega^{-j k}\left(f_{j}-i g_{j}\right)=\frac{1}{n} \sum_{j=0}^{n-1} \omega^{-j k}\left(f_{j}-i g_{j}\right) \tag{2}
\end{equation*}
$$

Adding (1) and (22) gives

$$
\frac{1}{2}\left(b_{k}+\bar{b}_{n-k}\right)=\frac{1}{n} \sum_{j=0}^{n-1} \omega^{-j k} f_{j}=c_{k}
$$

and subtracting gives

$$
\frac{i}{2}\left(\bar{b}_{n-k}-b_{k}\right)=\frac{1}{n} \sum_{j=0}^{n-1} \omega^{-j k} g_{j}=d_{k}
$$

\dagger 33. Eigenvalues of F_{4}.
(a) Find the 4×4 matrix P such that $F_{4}=P \bar{F}_{4}$, and verify that $P^{2}=I_{4}$.
(b) Show that $P=\frac{1}{4} F_{4}^{2}$.
(c) Hence show that $F_{4}^{4}=16 I_{4}$, and deduce that the eigenvalues of F_{4} must be either ± 2 or $\pm 2 i$.

Remark: In fact, for any n, we have $F_{n}^{4}=n^{2} I_{n}$.

Solution: (a) As in Problem 29(a), the matrices are

$$
F_{4}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right), \quad \bar{F}_{4}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right)
$$

Hence the matrix P needs to swap rows 2 and 4. This is achieved with

$$
P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

which is easily shown to satisfy $P^{2}=I_{4}$.
(b) Using the fact that $F_{4}^{-1}=\frac{1}{4} \bar{F}_{4}$, we get

$$
P \bar{F}_{4}=F_{4} \Longrightarrow P \bar{F}_{4} F_{4}=F_{4}^{2} \Longrightarrow P\left(4 I_{4}\right)=F_{4}^{2} \Longrightarrow P=\frac{1}{4} F_{4}^{2} .
$$

(c) Clearly it follows that $F_{4}^{4}=\left(F_{4}^{2}\right)^{2}=(4 P)^{2}=16 P^{2}=16 I_{4}$. This shows that the eigenvalues of F_{4}^{4} are 16 (with multiplicity 4). It follows that the eigenvalues of F_{4} must satisfy $\lambda^{2}= \pm 4$, so each λ must be one of $\pm 2, \pm 2 i$.
34. The columns of F_{n} as eigenvectors. Show that the columns of the Fourier matrix F_{n} are the eigenvectors of the cyclic permutation matrix

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & & & & \ddots & \vdots \\
0 & & & & & 1 \\
1 & 0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

Solution: The columns of F_{n} are vectors $\mathbf{v}^{(k)}$ with components $v_{j}^{(k)}=\omega^{j k}$, where $\omega=e^{i 2 \pi / n}$. For
$j=0, \ldots, n-2$ we have

$$
\left(A \mathbf{v}^{(k)}\right)_{j}=v_{j+1}^{(k)}=\omega^{k(j+1)}=\omega^{k} v_{j}^{(k)}
$$

The last element is

$$
\left(A \mathbf{v}^{(k)}\right)_{n-1}=v_{0}^{(k)}=\omega^{0}=\omega^{n k}=\omega^{n k-k+k}=\omega^{k} \omega^{(n-1) k}=\omega^{k} v_{n-1}^{(k)} .
$$

Hence $\mathbf{v}^{(k)}$ is an eigenvector of A with eigenvalue ω^{k}.
35. Inverse Fast Fourier Transform. Find $\frac{n}{2} \times \frac{n}{2}$ matrices A, B, C, D such that

$$
F_{n}^{-1}=\frac{1}{n}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
F_{n / 2}^{-1} & 0 \\
0 & F_{n / 2}^{-1}
\end{array}\right) P_{n}
$$

where F_{n} is the $n \times n$ Fourier matrix and P_{n} is the odd-even permutation matrix (as defined in the lecture). This shows that the FFT algorithm works in both directions!

Solution: Since $F_{n}^{-1}=\frac{1}{n} \bar{F}_{n}$, the components of $\mathbf{f}=F_{n}^{-1} \mathbf{c}$ are

$$
\begin{aligned}
f_{j}=\frac{1}{n} \sum_{k=0}^{n-1} \omega_{n}^{-j k} c_{k} & =\frac{1}{n} \sum_{k=0}^{n / 2-1} \omega_{n}^{-j 2 k} c_{2 k}+\frac{1}{n} \sum_{k=0}^{n / 2-1} \omega_{n}^{-j(2 k+1)} c_{2 k+1} \\
& =\frac{1}{n} \sum_{k=0}^{n / 2-1}\left(\omega_{n}^{2}\right)^{-j k} c_{2 k}+\frac{1}{n} \omega_{n}^{-j} \sum_{k=0}^{n / 2-1}\left(\omega_{n}^{2}\right)^{-j k} c_{2 k+1}
\end{aligned}
$$

From this we see that the required matrices are

$$
A=C=I_{n / 2}, \quad B=\bar{D}_{n / 2}, \quad D=-\bar{D}_{n / 2}
$$

where $\bar{D}_{n / 2}=\operatorname{diag}\left(1, \omega^{-1}, \omega^{-2}, \ldots, \omega^{-(n / 2-1)}\right)$.
\dagger 36. Applying the FFT. Compute $F_{8} \mathbf{x}$ using the recursive FFT algorithm for $\mathbf{x}=(1,0,1,0,1,0,1,0)^{\top}$.
Solution: Applying the algorithm recursively gives (in block matrix form)

$$
\begin{aligned}
F_{8} & =\left(\begin{array}{cc}
I_{4} & D_{4} \\
I_{4} & -D_{4}
\end{array}\right)\left(\begin{array}{cc}
F_{4} & 0 \\
0 & F_{4}
\end{array}\right) P \\
& =\left(\begin{array}{cc}
I_{4} & D_{4} \\
I_{4} & -D_{4}
\end{array}\right)\left(\begin{array}{cccc}
I_{2} & D_{2} & 0 & 0 \\
I_{2} & -D_{2} & 0 & 0 \\
0 & 0 & I_{2} & D_{2} \\
0 & 0 & I_{2} & -D_{2}
\end{array}\right)\left(\begin{array}{ccc}
F_{2} & 0 & 0 \\
0 & F_{2} & 0 \\
0 \\
0 & 0 & F_{2} \\
0 \\
0 & 0 & 0 \\
F_{2}
\end{array}\right) P^{\prime} \\
& =\left(\begin{array}{cc}
I_{4} & D_{4} \\
I_{4} & -D_{4}
\end{array}\right)\left(\begin{array}{cccc}
I_{2} & D_{2} & 0 & 0 \\
I_{2} & -D_{2} & 0 & 0 \\
0 & 0 & I_{2} & D_{2} \\
0 & 0 & I_{2} & -D_{2}
\end{array}\right)\left(\begin{array}{cccccccc}
I_{1} & D_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
I_{1} & -D_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I_{1} & D_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & I_{1} & -D_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_{1} & D_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & I_{1} & -D_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I_{1} & D_{1} \\
0 & 0 & 0 & 0 & 0 & 0 & I_{1} & -D_{1}
\end{array}\right) P^{\prime \prime}
\end{aligned}
$$

where $P, P^{\prime}, P^{\prime \prime}$ are the appropriate permutation matrices, and we have used that $F_{1}=(1)$. We don't need to compute the matrix $P^{\prime \prime}$ explicitly, only to work out the re-ordering of the \mathbf{x} components. This can be done easily by binary bit-reversal:

$$
\left[\begin{array}{l}
000 \\
001 \\
010 \\
011 \\
100 \\
101 \\
110 \\
111
\end{array}\right] \rightarrow\left[\begin{array}{l}
000 \\
100 \\
010 \\
110 \\
001 \\
101 \\
011 \\
111
\end{array}\right] \text { i.e. } P^{\prime \prime} \mathbf{x}=\left(\begin{array}{l}
x_{0} \\
x_{4} \\
x_{2} \\
x_{6} \\
x_{1} \\
x_{5} \\
x_{3} \\
x_{7}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

We need

$$
D_{4}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \omega_{8} & 0 & 0 \\
0 & 0 & \omega_{8}^{2} & 0 \\
0 & 0 & 0 & \omega_{8}^{3}
\end{array}\right), \quad D_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & \omega_{4}
\end{array}\right), \quad D_{1}=(1)
$$

where $\omega_{8}=e^{i 2 \pi / 8}$ and $\omega_{4}=e^{i 2 \pi / 4}=i$. Putting all of this together gives

$$
\begin{aligned}
& F_{8}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \omega_{8} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & \omega_{8}^{2} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \omega_{8}^{3} \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -\omega_{8} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -\omega_{8}^{2} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -\omega_{8}^{3}
\end{array}\right)\left(\begin{array}{cccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & i & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -i & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & i \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -i
\end{array}\right) \\
& \times\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
4 \\
0 \\
0 \\
0 \\
4 \\
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

37. Radix-3 FFT. The FFT may be applied with more general splittings, instead of the radix-2 algorithm presented in the lecture. Suppose $\mathbf{f}=F_{n} \mathbf{c}$ but now n is a power of 3 .
(a) Show that the entries in \mathbf{f} may be written as

$$
f_{j}=\sum_{k=0}^{n / 3-1}\left(\omega_{n / 3}\right)^{j k} c_{3 k}+\left(\omega_{n}\right)^{j} \sum_{k=0}^{n / 3-1}\left(\omega_{n / 3}\right)^{j k} c_{3 k+1}+\left(\omega_{n}\right)^{2 j} \sum_{k=0}^{n / 3-1}\left(\omega_{n / 3}\right)^{j k} c_{3 k+2} .
$$

\dagger (b) For $n=6$, write out the explicit factorisation of $\mathbf{f}=F_{n} \mathbf{c}$ in matrix form, including the necessary permutation matrix.

Remark: This can be generalised to any radix, which was known already to Gauss.
Solution: (a) This is a simple generalisation of the argument given in the lecture. We split into three sums:

$$
\begin{aligned}
f_{j}=\sum_{k=0}^{n-1} \omega_{n}^{j k} c_{k} & =\sum_{k=0}^{n / 3-1} \omega_{n}^{j 3 k} c_{3 k}+\sum_{k=0}^{n / 3-1} \omega_{n}^{j(3 k+1)} c_{3 k+1}+\sum_{k=0}^{n / 3-1} \omega_{n}^{j(3 k+2)} c_{3 k+2} \\
& =\sum_{k=0}^{n / 3-1}\left(\omega_{n}^{3}\right)^{j k} c_{3 k}+\left(\omega_{n}\right)^{j} \sum_{k=0}^{n / 3-1}\left(\omega_{n}^{3}\right)^{j k} c_{3 k+1}+\left(\omega_{n}\right)^{2 j} \sum_{k=0}^{n / 3-1}\left(\omega_{n}^{3}\right)^{j k} c_{3 k+2} \\
& =\sum_{k=0}^{n / 3-1}\left(\omega_{n / 3}\right)^{j k} c_{3 k}+\left(\omega_{n}\right)^{j} \sum_{k=0}^{n / 3-1}\left(\omega_{n / 3}\right)^{j k} c_{3 k+1}+\left(\omega_{n}\right)^{2 j} \sum_{k=0}^{n / 3-1}\left(\omega_{n / 3}\right)^{j k} c_{3 k+2} .
\end{aligned}
$$

(b) For $n=6$, each of the sums is an $n=2$ transform, and the whole can be expressed in matrix form as

$$
\mathbf{f}=\left(\begin{array}{ccc}
I_{2} & D_{2} & E_{2} \\
I_{2} & \alpha D_{2} & \alpha^{2} D_{2}^{2} \\
I_{2} & \beta D_{2} & \beta^{2} D_{2}^{2}
\end{array}\right)\left(\begin{array}{ccc}
F_{2} & 0 & 0 \\
0 & F_{2} & 0 \\
0 & 0 & F_{2}
\end{array}\right)\left(\begin{array}{l}
c_{0} \\
c_{3} \\
c_{1} \\
c_{4} \\
c_{2} \\
c_{5}
\end{array}\right)
$$

where the 2×2 blocks are

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad D_{2}=\left(\begin{array}{cc}
\omega_{6}^{0} & 0 \\
0 & \omega_{6}^{1}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 3}
\end{array}\right), \quad F_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

The factors α, β are required to renormalise the matrix D_{2} for the three sections. We have that

$$
\omega_{n}^{j-n / 3}=e^{i 2 \pi j / n} e^{-(i 2 \pi / n)(n / 3)}=\omega_{n}^{j} e^{-i 2 \pi / 3} \quad \Longrightarrow \quad \omega_{n}^{j}=e^{i 2 \pi / 3} \omega_{n}^{j-n / 3},
$$

so $\alpha=e^{i 2 \pi / 3}$ and similarly

$$
\omega_{n}^{j-2 n / 3}=e^{i 2 \pi j / n} e^{-(i 2 \pi / n)(2 n / 3)}=\omega_{n}^{j} e^{-i 4 \pi / 3} \quad \Longrightarrow \quad \omega_{n}^{j}=e^{i 4 \pi / 3} \omega_{n}^{j-2 n / 3},
$$

so $\beta=e^{i 4 \pi / 3}=\alpha^{2}$. Overall, including the permutation matrix, we get

$$
\mathbf{f}=\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & \omega_{6} & 0 & \omega_{6}^{2} \\
1 & 0 & \alpha & 0 & \alpha^{2} & 0 \\
0 & 1 & 0 & \alpha \omega_{6} & 0 & \alpha^{2} \omega_{6}^{2} \\
1 & 0 & \alpha^{2} & 0 & \alpha^{4} & 0 \\
0 & 1 & 0 & \alpha^{2} \omega_{6} & 0 & \alpha^{4} \omega_{6}^{2}
\end{array}\right)\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right)\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \mathbf{c} .
$$

38. Discrete cosine transform. Consider the data $\left(\frac{\pi}{8}, 2\right),\left(\frac{3 \pi}{8}, 0\right),\left(\frac{5 \pi}{8},-2\right),\left(\frac{7 \pi}{8}, 0\right)$.
(a) Use the DCT to find an interpolant $p_{4}(x)$ for these data.
(b) Hence find the least-squares approximations of the same form with $m=1, m=2$, and $m=3$ terms, for the same data.

Solution: (a) The interpolation coefficients are given by the following DCT:

$$
\begin{aligned}
\mathbf{a}=C_{4}^{-1} \mathbf{f} & =\sqrt{\frac{2}{4}}\left(\begin{array}{cccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2} \\
\cos \left(\frac{\pi}{4} \frac{1}{2}\right) & \cos \left(\frac{\pi}{4} \frac{3}{2}\right) & \cos \left(\frac{\pi}{4} \frac{5}{2}\right) & \cos \left(\frac{\pi}{4} \frac{7}{2}\right) \\
\cos \left(\frac{2 \pi}{4} \frac{1}{2}\right) & \cos \left(\frac{2 \pi}{4} \frac{3}{2}\right) & \cos \left(\frac{2 \pi}{4} \frac{5}{2}\right) & \cos \left(\frac{2 \pi}{4} \frac{7}{2}\right) \\
\cos \left(\frac{3 \pi}{4} \frac{1}{2}\right) & \cos \left(\frac{3 \pi}{4} \frac{3}{2}\right) & \cos \left(\frac{3 \pi}{4} \frac{5}{2}\right) & \cos \left(\frac{3 \pi}{4} \frac{7}{2}\right)
\end{array}\right)\left(\begin{array}{c}
2 \\
0 \\
-2 \\
0
\end{array}\right) \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2} \\
\cos \left(\frac{\pi}{8}\right) & \cos \left(\frac{3 \pi}{8}\right) & \cos \left(\frac{5 \pi}{8}\right) & \cos \left(\frac{7 \pi}{8}\right) \\
\cos \left(\frac{\pi}{4}\right) & \cos \left(\frac{3 \pi}{4}\right) & \cos \left(\frac{5 \pi}{4}\right) & \cos \left(\frac{7 \pi}{4}\right) \\
\cos \left(\frac{3 \pi}{8}\right) & \cos \left(\frac{9 \pi}{8}\right) & \cos \left(\frac{15 \pi}{8}\right) & \cos \left(\frac{21 \pi}{8}\right)
\end{array}\right)\left(\begin{array}{c}
2 \\
0 \\
-2 \\
0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 \\
\sqrt{2}\left(\cos \left(\frac{\pi}{8}\right)-\cos \left(\frac{5 \pi}{8}\right)\right) \\
\sqrt{2}\left(\cos \left(\frac{\pi}{4}\right)-\cos \left(\frac{5 \pi}{4}\right)\right) \\
\sqrt{2}\left(\cos \left(\frac{3 \pi}{8}\right)-\cos \left(\frac{15 \pi}{8}\right)\right)
\end{array}\right)=\left(\begin{array}{c}
1.8478 \\
2.0 \\
-0.7654
\end{array}\right) .
\end{aligned}
$$

Thus the interpolating function is

$$
p_{4}(x)=\frac{1}{2} a_{0}+\frac{1}{\sqrt{2}} \sum_{k=1}^{3} a_{k} \cos (k x)=1.3066 \cos (x)+1.4142 \cos (2 x)-0.5412 \cos (3 x) .
$$

(b) To find the least-squares approximations we just leave off the subsequent terms of p_{4}. So

$$
p_{1}(x)=0, \quad p_{2}(x)=1.3066 \cos (x), \quad p_{3}(x)=1.3066 \cos (x)+1.4142 \cos (2 x) .
$$

This is what the different functions look like:

39. $D C T-4$. An alternative version of the discrete cosine transform known as DCT-4 is used in sound compression. It is based on the $n \times n$ matrix E_{n} with entries

$$
\left(E_{n}\right)_{j k}=\sqrt{\frac{2}{n}} \cos \frac{\pi\left(j+\frac{1}{2}\right)\left(k+\frac{1}{2}\right)}{n} .
$$

By considering the circulant matrix

$$
\left(\begin{array}{cccccc}
1 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 2 & -1 \\
& & & & -1 & 3
\end{array}\right)
$$

show that the matrix E_{n} is orthogonal.
Solution: Let $\mathbf{v}^{(k)}$ denote column k of E_{n}. We will show that these are the eigenvectors of the circulant matrix. Consider the first entry of $A \mathbf{v}^{(k)}$, where A is the circulant matrix, and use the shorthand

$$
\theta=\frac{\pi\left(k+\frac{1}{2}\right)}{2 n}
$$

We have

$$
\begin{aligned}
\left(A \mathbf{v}^{(k)}\right)_{0}=A_{0 l} v_{l}^{(k)}=v_{0}^{(k)}-v_{1}^{(k)} & =\sqrt{\frac{2}{n}}(\cos (\theta)-\cos (3 \theta)) \\
& =\sqrt{\frac{2}{n}}(\cos (\theta)-\cos (\theta) \cos (2 \theta)+\sin (\theta) \sin (2 \theta)) \\
& =\sqrt{\frac{2}{n}}\left(\cos (\theta)-\cos (\theta) \cos (2 \theta)+2 \sin ^{2}(\theta) \cos (\theta)\right) \\
& =\sqrt{\frac{2}{n}} \cos (\theta)(2-2 \cos (2 \theta))=(2-2 \cos (2 \theta)) v_{0}^{(k)}
\end{aligned}
$$

For $j=1, \ldots, n-2$ we have

$$
\begin{aligned}
\left(A \mathbf{v}^{(k)}\right)_{j} & =-v_{j-1}^{(k)}+2 v_{j}^{(k)}-v_{j+1}^{(k)} \\
& =\sqrt{\frac{2}{n}}\left(-\cos \frac{\pi\left(j+\frac{1}{2}-1\right)\left(k+\frac{1}{2}\right)}{n}+2 \cos \frac{\pi\left(j+\frac{1}{2}\right)\left(k+\frac{1}{2}\right)}{n}-\cos \frac{\pi\left(j+\frac{1}{2}+1\right)\left(k+\frac{1}{2}\right)}{n}\right) \\
& =\sqrt{\frac{2}{n}}\left(-2 \cos \frac{\pi\left(j+\frac{1}{2}\right)\left(k+\frac{1}{2}\right)}{n} \cos \frac{\pi\left(k+\frac{1}{2}\right)}{n}+2 \cos \frac{\pi\left(j+\frac{1}{2}\right)\left(k+\frac{1}{2}\right)}{n}\right) \\
& =\left(2-2 \cos \frac{\pi\left(k+\frac{1}{2}\right)}{n}\right) v_{j}^{(k)}=(2-2 \cos (2 \theta)) v_{j}^{(k)} .
\end{aligned}
$$

Finally, let

$$
\phi=\frac{\pi\left(n-\frac{1}{2}\right)\left(k+\frac{1}{2}\right)}{n},
$$

so

$$
\begin{aligned}
\left(A \mathbf{v}^{(k)}\right)_{n-1}=-v_{n-2}^{(k)}+3 v_{n-1}^{(k)} & =\sqrt{\frac{2}{n}}(-\cos (\phi-2 \theta)+3 \cos (\phi)) \\
& =\sqrt{\frac{2}{n}}(-\cos (\phi) \cos (2 \theta)-\sin (\phi) \sin (2 \theta)+3 \cos (\phi)) \\
& =\sqrt{\frac{2}{n}}(-2 \cos (\phi) \cos (2 \theta)+2 \cos (\phi)) \\
& =(2-2 \cos (2 \theta)) v_{n-1}^{(k)} .
\end{aligned}
$$

Therefore we see that each column $\mathbf{v}^{(k)}$ is an eigenvector of A with eigenvalue

$$
\lambda=2-2 \cos \frac{\pi\left(k+\frac{1}{2}\right)}{n} .
$$

Since A is real and symmetric, it follows that the matrix E_{n} is orthogonal.
40. Two-dimensional $D C T$. A very simple "image" is represented by the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)
$$

Compute the two-dimensional DCT of this matrix, and hence the corresponding interpolation function $p_{2}(x, y)$ for the nodes $\left(\frac{\pi}{4}, \frac{\pi}{4}\right),\left(\frac{3 \pi}{4}, \frac{\pi}{4}\right),\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right),\left(\frac{3 \pi}{4}, \frac{3 \pi}{4}\right)$.

Solution: The one-dimensional DCT matrix we require is

$$
C_{2}^{-1}=\sqrt{\frac{2}{2}}\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\cos \left(\frac{\pi}{2} \frac{1}{2}\right) & \cos \left(\frac{\pi}{2} \frac{3}{2}\right)
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

To apply the two-dimensional DCT, we simply compute $C_{2}^{-1} X C_{2}$ where X is the matrix of data values. Using the fact that $C_{2}^{-1}=C_{2}^{\top}$, this gives

$$
Y=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) .
$$

This means that the corresponding interpolation function is

$$
p_{2}(x, y)=\frac{2}{2} \sum_{k=0}^{1} \sum_{l=0}^{1} y_{k l} \sigma_{k} \sigma_{l} \cos (l x) \cos (k y)
$$

where

$$
\sigma_{j}= \begin{cases}\frac{1}{\sqrt{2}} & j=0 \\ 1 & j>0\end{cases}
$$

Thus

$$
p_{2}(x, y)=\frac{1}{2} y_{00}+\frac{1}{\sqrt{2}} y_{10} \cos (y)+\frac{1}{\sqrt{2}} y_{01} \cos (x)+\frac{1}{2} y_{11} \cos (x) \cos (y)=\frac{1}{2}+\frac{1}{\sqrt{2}} \cos (x)
$$

You can see that this satisfies the required interpolation conditions.

