
Problems 3 - Trigonometric Interpolation
Approximation Theory (MATH3081/4221) — Epiphany 2015 — anthony.yeates@dur.ac.uk

The problem marked ? should be handed in for marking at the lecture on Monday 9th March.
There will be a problem class on this chapter on Monday 2nd March.
I use † to indicate (what I consider to be) trickier problems.

29. Discrete Fourier transforms. Compute the discrete Fourier transform of the following vectors,
and interpret your results: (a) x = (1, 1, 1, 1)>; (b) x = (0, 1, 0,−1, 0, 1, 0,−1)>.

Solution: (a) Let ω = ei2π/4 = eiπ/2 = i. Then

F−14 x = 1
4


ω0 ω0 ω0 ω0

ω0 ω−1 ω−2 ω−3

ω0 ω−2 ω−4 ω−6

ω0 ω−3 ω−6 ω−9




1
1
1
1

 = 1
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
1
1
1

 =


1
0
0
0

 .

Interpretation: the only non-zero coefficient is c0, which is the constant term in the trigonometric
polynomial (as expected).

(b) Let ω = ei2π/8 = eiπ/4 = 1√
2

+ 1√
2
i. Then

F−18 x = 1
8



ω0 ω0 ω0 ω0 ω0 ω0 ω0 ω0

ω0 ω−1 ω−2 ω−3 ω−4 ω−5 ω−6 ω−7

ω0 ω−2 ω−4 ω−6 ω−8 ω−10 ω−12 ω−14

ω0 ω−3 ω−6 ω−9 ω−12 ω−15 ω−18 ω−21

ω0 ω−4 ω−8 ω−12 ω−16 ω−20 ω−24 ω−28

ω0 ω−5 ω−10 ω−15 ω−20 ω−25 ω−30 ω−35

ω0 ω−6 ω−12 ω−18 ω−24 ω−30 ω−36 ω−42

ω0 ω−7 ω−14 ω−21 ω−28 ω−35 ω−42 ω−49





0
1
0
−1
0
1
0
−1



= 1
8



1 1 1 1 1 1 1 1
1 ω−1 ω−2 ω−3 ω−4 ω−5 ω−6 ω−7

1 ω−2 ω−4 ω−6 1 ω−2 ω−4 ω−6

1 ω−3 ω−6 ω−1 ω−4 ω−7 ω−2 ω−5

1 ω−4 1 ω−4 1 ω−4 1 ω−4

1 ω−5 ω−2 ω−7 ω−4 ω−1 ω−6 ω−3

1 ω−6 ω−4 ω−2 1 ω−6 1 ω−2

1 ω−7 ω−6 ω−5 ω−4 ω−3 ω−2 ω−1





0
1
0
−1
0
1
0
−1



= 1
8



1− 1 + 1− 1
ω−1 − ω−3 + ω−5 − ω−7
ω−2 − ω−6 + ω−2 − ω−6
ω−3 − ω−1 + ω−7 − ω−5
ω−4 − ω−4 + ω−4 − ω−4
ω−5 − ω−7 + ω−1 − ω−3
ω−6 − ω−2 + ω−6 − ω−2
ω−7 − ω−5 + ω−3 − ω−1


= 1

8



0
0

ω−2 − ω−6 + ω−2 − ω−6
0
0
0

ω−6 − ω−2 + ω−6 − ω−2
0


=
i

2



0
0
−1
0
0
0
1
0


.

Note that we used the fact that ω−3 = −ω−5 and ω−1 = −ω−7 (think of the unit circle), and that
ω−2 = −i, ω−6 = i. Interpretation: the only non-zero terms are c2 and c6, and they are purely
imaginary. Thus the real trigonometric polynomial has only a sin(2x) term (which matches the
original function being interpolated) and a sin(6x) term (which is an alias of sin(2x)).

30. Real entries. Suppose that the entries of f are all real. If c = F−1n f is the discrete Fourier
transform of f , show that c̄n−k = ck for k = 0, . . . , n− 1.

Solution: We know that

ck = (F−1n )kjfj =
1

n

n−1∑
j=0

ω−jkfj ,
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so using the fact that fj are real,

c̄n−k =
1

n

n−1∑
j=0

ω−j(n−k)fj =
1

n

n−1∑
j=0

ω−jkωjnfj =
1

n

n−1∑
j=0

ω−jkωi2πjfj =
1

n

n−1∑
j=0

ω−jk(1)fj = ck.

? 31. Trigonometric interpolation. Consider the periodic function f(x) = sin(x) + 2 cos(2x).

(a) Write down the Fourier matrix F3, and its inverse F−13 .

(b) Use this to find a real trigonometric polynomial of the form

p3(x) =
2∑

k=0

(
ak cos(kx)− bk sin(kx)

)
that interpolates f at three equally-spaced nodes on [0, 2π).

(c) Explain how it can be that the interpolant p3 you found in part (b) does not reproduce the
original function f exactly.

(d) Find a trigonometric polynomial of lower degree that interpolates the same data.

Solution: (a) Let ω = ei2π/3 = cos( 2π
3 ) + i sin( 2π

3 ) = − 1
2 +

√
3
2 i. Then ω2 = ω−1 = − 1

2 −
√
3
2 i. Thus

F3 =

ω0 ω0 ω0

ω0 ω1 ω2

ω0 ω2 ω4

 =

1 1 1
1 ω ω2

1 ω2 ω

 =

1 1 1

1 − 1
2 +

√
3
2 i −

1
2 −

√
3
2 i

1 − 1
2 −

√
3
2 i −

1
2 +

√
3
2 i

 ,

and

F−13 = 1
3 F̄3 = 1

3

1 1 1

1 − 1
2 −

√
3
2 i −

1
2 +

√
3
2 i

1 − 1
2 +

√
3
2 i −

1
2 −

√
3
2 i

 ,

(b) The coefficients ak and bk are the real and imaginary parts of ck, where c = F−13 f and the data
are given by

f0 = sin(0) + 2 cos(0) = 2, f1 = sin( 2π
3 ) + 2 cos( 2π

3 ) =
√
3
2 − 1, f2 = −

√
3
2 − 1.

Using the matrix from (a), we obtain

c = 1
3

1 1 1

1 − 1
2 −

√
3
2 i −

1
2 +

√
3
2 i

1 − 1
2 +

√
3
2 i −

1
2 −

√
3
2 i


 2√

3
2 − 1

−
√
3
2 − 1

 =

 0
1− 1

2 i
1 + 1

2 i

 ,

so the real trigonometric interpolant is

p3(x) = cos(x) + 1
2 sin(x) + cos(2x)− 1

2 sin(2x).

(c) We see that p3(x) 6= f(x) for most x. Although f is itself a trigonometric polynomial with n = 3,
this is not inconsistent, because the Nyquist frequency for n = 3 is k0 = 3

2 . Since the function
f contains a component of frequency k = 2 > k0, there is not a unique trigonometric polynomial
with n = 3 that interpolates f .

(d) We have that

cos(2xj) = cos((3− 1)xj) = cos(2πj − 2πj
3 ) = cos(2πj) cos( 2πj

3 ) + sin(2πj) sin(2πj
3 ) = cos(xj),

sin(2xj) = sin((3− 1)xj) = sin(2πj − 2πj
3 ) = sin(2πj) cos( 2πj

3 )− cos(2πj) sin(2πj
3 ) = − sin(xj),

so replacing sin(2x) by − sin(x) and cos(2x) by cos(x) yields another interpolant

p̃1(x) = 2 cos(x) + sin(x).
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Here is what the functions look like:

32. Splitting. Let h = f + ig, where f and g are real vectors, and let b be the DFT of h. Show that
the DFTs of f and g are

ck =
1

2

(
bk + b̄n−k

)
, dk =

i

2

(
b̄n−k − bk

)
.

Remark: One can speed up the DFT of a real vector f by splitting into feven and fodd and finding
the size n/2 transform of h = feven + ifodd.

Solution: This is really an extension of Problem 30. We have

bk =
1

n

n−1∑
j=0

ω−jkhj =
1

n

n−1∑
j=0

ω−jk(fj + igj), (1)

and

b̄n−k =
1

n

n−1∑
j=0

ω−jnωjk(fj + igj) =
1

n

n−1∑
j=0

ωjnω−jk(fj − igj) =
1

n

n−1∑
j=0

ω−jk(fj − igj). (2)

Adding (1) and (2) gives

1

2

(
bk + b̄n−k

)
=

1

n

n−1∑
j=0

ω−jkfj = ck,

and subtracting gives

i

2

(
b̄n−k − bk

)
=

1

n

n−1∑
j=0

ω−jkgj = dk.

† 33. Eigenvalues of F4.

(a) Find the 4× 4 matrix P such that F4 = PF̄4, and verify that P 2 = I4.

(b) Show that P = 1
4F

2
4 .

(c) Hence show that F 4
4 = 16I4, and deduce that the eigenvalues of F4 must be either ±2 or

±2i.

Remark: In fact, for any n, we have F 4
n = n2In.
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Solution: (a) As in Problem 29(a), the matrices are

F4 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 , F̄4 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .

Hence the matrix P needs to swap rows 2 and 4. This is achieved with

P =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ,

which is easily shown to satisfy P 2 = I4.

(b) Using the fact that F−14 = 1
4 F̄4, we get

PF̄4 = F4 =⇒ PF̄4F4 = F 2
4 =⇒ P (4I4) = F 2

4 =⇒ P = 1
4F

2
4 .

(c) Clearly it follows that F 4
4 = (F 2

4 )2 = (4P )2 = 16P 2 = 16I4. This shows that the eigenvalues of
F 4
4 are 16 (with multiplicity 4). It follows that the eigenvalues of F4 must satisfy λ2 = ±4, so each
λ must be one of ±2,±2i.

34. The columns of Fn as eigenvectors. Show that the columns of the Fourier matrix Fn are the
eigenvectors of the cyclic permutation matrix

A =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

. . .
...

0 1
1 0 0 0 · · · 0


.

Solution: The columns of Fn are vectors v(k) with components v
(k)
j = ωjk, where ω = ei2π/n. For

j = 0, . . . , n− 2 we have

(Av(k))j = v
(k)
j+1 = ωk(j+1) = ωkv

(k)
j .

The last element is

(Av(k))n−1 = v
(k)
0 = ω0 = ωnk = ωnk−k+k = ωkω(n−1)k = ωkv

(k)
n−1.

Hence v(k) is an eigenvector of A with eigenvalue ωk.

35. Inverse Fast Fourier Transform. Find n
2 ×

n
2 matrices A, B, C, D such that

F−1n =
1

n

(
A B
C D

)(
F−1n/2 0

0 F−1n/2

)
Pn,

where Fn is the n× n Fourier matrix and Pn is the odd-even permutation matrix (as defined in
the lecture). This shows that the FFT algorithm works in both directions!

Solution: Since F−1n = 1
n F̄n, the components of f = F−1n c are

fj =
1

n

n−1∑
k=0

ω−jkn ck =
1

n

n/2−1∑
k=0

ω−j2kn c2k +
1

n

n/2−1∑
k=0

ω−j(2k+1)
n c2k+1

=
1

n

n/2−1∑
k=0

(ω2
n)−jkc2k +

1

n
ω−jn

n/2−1∑
k=0

(ω2
n)−jkc2k+1.
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From this we see that the required matrices are

A = C = In/2, B = D̄n/2, D = −D̄n/2,

where D̄n/2 = diag
(
1, ω−1, ω−2, . . . , ω−(n/2−1)

)
.

† 36. Applying the FFT. Compute F8x using the recursive FFT algorithm for x = (1, 0, 1, 0, 1, 0, 1, 0)>.

Solution: Applying the algorithm recursively gives (in block matrix form)

F8 =

(
I4 D4

I4 −D4

)(
F4 0
0 F4

)
P

=

(
I4 D4

I4 −D4

)
I2 D2 0 0
I2 −D2 0 0
0 0 I2 D2

0 0 I2 −D2



F2 0 0 0
0 F2 0 0
0 0 F2 0
0 0 0 F2

P ′

=

(
I4 D4

I4 −D4

)
I2 D2 0 0
I2 −D2 0 0
0 0 I2 D2

0 0 I2 −D2





I1 D1 0 0 0 0 0 0
I1 −D1 0 0 0 0 0 0
0 0 I1 D1 0 0 0 0
0 0 I1 −D1 0 0 0 0
0 0 0 0 I1 D1 0 0
0 0 0 0 I1 −D1 0 0
0 0 0 0 0 0 I1 D1

0 0 0 0 0 0 I1 −D1


P ′′

where P , P ′, P ′′ are the appropriate permutation matrices, and we have used that F1 = (1). We don’t
need to compute the matrix P ′′ explicitly, only to work out the re-ordering of the x components. This
can be done easily by binary bit-reversal:

000
001
010
011
100
101
110
111


→



000
100
010
110
001
101
011
111


i.e. P ′′x =



x0
x4
x2
x6
x1
x5
x3
x7


=



1
1
1
1
0
0
0
0


.

We need

D4 =


1 0 0 0
0 ω8 0 0
0 0 ω2

8 0
0 0 0 ω3

8

 , D2 =

(
1 0
0 ω4

)
, D1 = (1),

where ω8 = ei2π/8 and ω4 = ei2π/4 = i. Putting all of this together gives

F8 =



1 0 0 0 1 0 0 0
0 1 0 0 0 ω8 0 0
0 0 1 0 0 0 ω2

8 0
0 0 0 1 0 0 0 ω3

8

1 0 0 0 −1 0 0 0
0 1 0 0 0 −ω8 0 0
0 0 1 0 0 0 −ω2

8 0
0 0 0 1 0 0 0 −ω3

8





1 0 1 0 0 0 0 0
0 1 0 i 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −i 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 i
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −i


×

×



1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1





1
1
1
1
0
0
0
0


= . . . =



4
0
0
0
4
0
0
0


.
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37. Radix-3 FFT. The FFT may be applied with more general splittings, instead of the radix-2
algorithm presented in the lecture. Suppose f = Fnc but now n is a power of 3.

(a) Show that the entries in f may be written as

fj =

n/3−1∑
k=0

(ωn/3)
jkc3k + (ωn)j

n/3−1∑
k=0

(ωn/3)
jkc3k+1 + (ωn)2j

n/3−1∑
k=0

(ωn/3)
jkc3k+2.

† (b) For n = 6, write out the explicit factorisation of f = Fnc in matrix form, including the
necessary permutation matrix.

Remark: This can be generalised to any radix, which was known already to Gauss.

Solution: (a) This is a simple generalisation of the argument given in the lecture. We split into three sums:

fj =

n−1∑
k=0

ωjkn ck =

n/3−1∑
k=0

ωj3kn c3k +

n/3−1∑
k=0

ωj(3k+1)
n c3k+1 +

n/3−1∑
k=0

ωj(3k+2)
n c3k+2

=

n/3−1∑
k=0

(ω3
n)jkc3k + (ωn)j

n/3−1∑
k=0

(ω3
n)jkc3k+1 + (ωn)2j

n/3−1∑
k=0

(ω3
n)jkc3k+2

=

n/3−1∑
k=0

(ωn/3)jkc3k + (ωn)j
n/3−1∑
k=0

(ωn/3)jkc3k+1 + (ωn)2j
n/3−1∑
k=0

(ωn/3)jkc3k+2.

(b) For n = 6, each of the sums is an n = 2 transform, and the whole can be expressed in matrix form
as

f =

I2 D2 E2

I2 αD2 α2D2
2

I2 βD2 β2D2
2

F2 0 0
0 F2 0
0 0 F2



c0
c3
c1
c4
c2
c5


where the 2× 2 blocks are

I2 =

(
1 0
0 1

)
, D2 =

(
ω0
6 0

0 ω1
6

)
=

(
1 0
0 eiπ/3

)
, F2 =

(
1 1
1 −1

)
.

The factors α, β are required to renormalise the matrix D2 for the three sections. We have that

ωj−n/3n = ei2πj/ne−(i2π/n)(n/3) = ωjne
−i2π/3 =⇒ ωjn = ei2π/3ωj−n/3n ,

so α = ei2π/3 and similarly

ωj−2n/3n = ei2πj/ne−(i2π/n)(2n/3) = ωjne
−i4π/3 =⇒ ωjn = ei4π/3ωj−2n/3n ,

so β = ei4π/3 = α2. Overall, including the permutation matrix, we get

f =


1 0 1 0 1 0
0 1 0 ω6 0 ω2

6

1 0 α 0 α2 0
0 1 0 αω6 0 α2ω2

6

1 0 α2 0 α4 0
0 1 0 α2ω6 0 α4ω2

6




1 1 0 0 0 0
1 −1 0 0 0 0
0 0 1 1 0 0
0 0 1 −1 0 0
0 0 0 0 1 1
0 0 0 0 1 −1




1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

 c.

38. Discrete cosine transform. Consider the data (π8 , 2), (3π8 , 0), (5π8 ,−2), (7π8 , 0).

(a) Use the DCT to find an interpolant p4(x) for these data.



Approximation Theory - Epiphany 2015

(b) Hence find the least-squares approximations of the same form with m = 1, m = 2, and
m = 3 terms, for the same data.

Solution: (a) The interpolation coefficients are given by the following DCT:

a = C−14 f =

√
2

4


1/
√

2 1/
√

2 1/
√

2 1/
√

2
cos(π4

1
2 ) cos(π4

3
2 ) cos(π4

5
2 ) cos(π4

7
2 )

cos( 2π
4

1
2 ) cos( 2π

4
3
2 ) cos( 2π

4
5
2 ) cos( 2π

4
7
2 )

cos( 3π
4

1
2 ) cos( 3π

4
3
2 ) cos( 3π

4
5
2 ) cos( 3π

4
7
2 )




2
0
−2
0



=
1√
2


1/
√

2 1/
√

2 1/
√

2 1/
√

2
cos(π8 ) cos( 3π

8 ) cos( 5π
8 ) cos( 7π

8 )
cos(π4 ) cos( 3π

4 ) cos( 5π
4 ) cos( 7π

4 )
cos( 3π

8 ) cos( 9π
8 ) cos( 15π

8 ) cos( 21π
8 )




2
0
−2
0



=


0√

2
(

cos(π8 )− cos( 5π
8 )
)

√
2
(

cos(π4 )− cos( 5π
4 )
)

√
2
(

cos( 3π
8 )− cos( 15π

8 )
)
 =


0

1.8478
2.0

−0.7654

 .

Thus the interpolating function is

p4(x) = 1
2a0 + 1√

2

3∑
k=1

ak cos(kx) = 1.3066 cos(x) + 1.4142 cos(2x)− 0.5412 cos(3x).

(b) To find the least-squares approximations we just leave off the subsequent terms of p4. So

p1(x) = 0, p2(x) = 1.3066 cos(x), p3(x) = 1.3066 cos(x) + 1.4142 cos(2x).

This is what the different functions look like:

39. DCT-4. An alternative version of the discrete cosine transform known as DCT-4 is used in sound
compression. It is based on the n× n matrix En with entries

(En)jk =

√
2

n
cos

π(j + 1
2)(k + 1

2)

n
.

By considering the circulant matrix

1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 3


,
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show that the matrix En is orthogonal.

Solution: Let v(k) denote column k of En. We will show that these are the eigenvectors of the circulant
matrix. Consider the first entry of Av(k), where A is the circulant matrix, and use the shorthand

θ =
π(k + 1

2 )

2n
.

We have

(Av(k))0 = A0lv
(k)
l = v

(k)
0 − v(k)1 =

√
2

n

(
cos(θ)− cos(3θ)

)
=

√
2

n

(
cos(θ)− cos(θ) cos(2θ) + sin(θ) sin(2θ)

)
=

√
2

n

(
cos(θ)− cos(θ) cos(2θ) + 2 sin2(θ) cos(θ)

)
=

√
2

n
cos(θ)

(
2− 2 cos(2θ)

)
=
(

2− 2 cos(2θ)
)
v
(k)
0 .

For j = 1, . . . , n− 2 we have

(Av(k))j = −v(k)j−1 + 2v
(k)
j − v

(k)
j+1

=

√
2

n

(
− cos

π(j + 1
2 − 1)(k + 1

2 )

n
+ 2 cos

π(j + 1
2 )(k + 1

2 )

n
− cos

π(j + 1
2 + 1)(k + 1

2 )

n

)
=

√
2

n

(
−2 cos

π(j + 1
2 )(k + 1

2 )

n
cos

π(k + 1
2 )

n
+ 2 cos

π(j + 1
2 )(k + 1

2 )

n

)
=

(
2− 2 cos

π(k + 1
2 )

n

)
v
(k)
j =

(
2− 2 cos(2θ)

)
v
(k)
j .

Finally, let

φ =
π(n− 1

2 )(k + 1
2 )

n
,

so

(Av(k))n−1 = −v(k)n−2 + 3v
(k)
n−1 =

√
2

n

(
− cos(φ− 2θ) + 3 cos(φ)

)
=

√
2

n

(
− cos(φ) cos(2θ)− sin(φ) sin(2θ) + 3 cos(φ)

)
=

√
2

n

(
− 2 cos(φ) cos(2θ) + 2 cos(φ)

)
=
(

2− 2 cos(2θ)
)
v
(k)
n−1.

Therefore we see that each column v(k) is an eigenvector of A with eigenvalue

λ = 2− 2 cos
π(k + 1

2 )

n
.

Since A is real and symmetric, it follows that the matrix En is orthogonal.

40. Two-dimensional DCT. A very simple “image” is represented by the matrix(
1 0
1 0

)
.

Compute the two-dimensional DCT of this matrix, and hence the corresponding interpolation
function p2(x, y) for the nodes (π4 ,

π
4 ), (3π4 ,

π
4 ), (π4 ,

3π
4 ), (3π4 ,

3π
4 ).
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Solution: The one-dimensional DCT matrix we require is

C−12 =

√
2

2

( 1√
2

1√
2

cos(π2
1
2 ) cos(π2

3
2 )

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)
=

1√
2

(
1 1
1 −1

)
.

To apply the two-dimensional DCT, we simply compute C−12 XC2 where X is the matrix of data values.
Using the fact that C−12 = C>2 , this gives

Y =
1

2

(
1 1
1 −1

)(
1 0
1 0

)(
1 1
1 −1

)
=

(
1 1
0 0

)
.

This means that the corresponding interpolation function is

p2(x, y) =
2

2

1∑
k=0

1∑
l=0

yklσkσl cos(lx) cos(ky)

where

σj =

{
1√
2

j = 0,

1 j > 0.

Thus

p2(x, y) = 1
2y00 + 1√

2
y10 cos(y) + 1√

2
y01 cos(x) + 1

2y11 cos(x) cos(y) = 1
2 + 1√

2
cos(x).

You can see that this satisfies the required interpolation conditions.


