Quantum Mechanics Term 1 Problems Class 4

Dr A. Donos
(Michaelmas 2021)

Consider the 1-D Simple Harmonic Oscillator with frequency w, If a^ is the annihilation operator
a) Construct the eigenstates |z
b) Normalise it
c) Find its time evolution
d) Describe the time evolution of the corresponding wavefunction in position space.

Hint: Baker-Campell-Haussdorff formula

eX^eY^=eY^+[X^,Y^]+12[X^,[X^,Y^]]+13![X^,[X^,[X^,Y^]]]+eX^ (1)

Other facts of the 1-D SHO

H^ =w(a^+a^+12)
|n =(a^+)nn!|0
a^ =12mw(mwx^+ip^)

a) We need to solve a^|z=z|z. An important thing to note is that since a^ is not hermitian, its eigenvalues does not have to be real. We also choose to write |z in terms of the eigenbasis of the SHO.

|z =n=0cn(z)|n
z|z =n=0zcn(z)|n
a^|z =n=0cn(z)a^|n
=n=0cn(z)n!a^(a^+)n|0
=n=0cn(z)n!((a^+)na^+[a^,(a^+)n])|0
=n=0cn(z)n!n(a^+)n-1|0
=n=1ncn(z)|n-1
=n=0n+1cn+1(z)|n
zcn(z) =n+1cn+1(z)
cn(z) =cznn!
|z =cn=0znn!(a^+)nn!|0
=cn=0znn!(a^+)n|0
=ceza^+|0

b) We need z|z=1.

z| =c*ez*a^0|
z|z =|c|20|ez*a^eza^+|0

We also note the following fact

ez*a^|0 =(I^+z^*a^+)|0=|0
0|eza^+ =0|

So we use the hint with X^=z*a^,Y^=za^+.

[X^,Y^] =|z|2[a^,a^+]=|z|2
[X^,[X^,Y^]] =[z*a^,|z|2]=0
ez*a^eza^+ =eza^++|z|2ez*a^
=e|z|2eza^+ez*a^
z|z =|c|2e|z|20|eza^+ez*a^|0
=|c|2e|z|2
c =e-|z|22

c) If |ψ(t=0)=|z,

|ψ(t) =e-itH^|z
=c(z)e-itH^eza^+|0

We know again from a 1-D SHO,

H^|0 =w2|0
e-itH^|0 =e-iwt2|0

So we again use the hint to commute the exponentials. This time X^=-itH^,Y^=za^+.

[X^,Y^] =-itzw[a^+a^,a^+]
=-itwz(a^+[a^,a^+]+[a^+,a^+]a^)
=-itwza^+
] =-itw.-itwz[a^+a^,a^+]
=(-itw)2za^+

We make a hypothesis that [X^,[X^,,[X^,Y^]]]=(-itw)nza^+. We prove this using induction.

[X^,[X^,,[X^,Y^]]] =-itw(-itw)nz[a^+a^,a^+]
=(-itw)n+1za^+
Y^+[X^,Y^]+12![X^,[X^,Y^]]+ =zn=0(-itw)nn!a^+
=ze-itwa^+
|ψ(t) =c(z)eze-itwa^+e-itH^|0
=c(z)e-itw2eze-itwa^+|0
=e-itw2|ze-itw

Just as a reminder we are now working in the eigenbasis of z^ as ze-itw is no longer an integer and hence not in the eigenbasis of k^(H^=wk^).

d) In equation form, the question is really asking for ψz(x)=x|z.

a^|z =z|z
x|a^|z =zx|z
12mwx|mwx^+ip^|z =zψz(x)
12mw(mwxψz(x)+ψz(x)) =zψz(x)
2mwψz(x) =(z-mw2x)ψz(x)
2mwψz(x)ψz(x) =z-mw2x
ddxln(ψz(x)) =2mwddx(zx-12mw2x2)
ln(ψz(x)) =2mw(zx-12mw2x2)+λ
ψz(x) =de2mw(zx-12mw2x2)
=dexp(2mwzx)exp(-mw2x2)
=dexp(-mw2(x2-8mwzx))
=dexp(-mw2((x-2mwz)2-2mwz2))
=dexp(z2)exp(-mw2(x-2mwz)2)
|ψz(x)|2 =|d|2exp(2mw(z+z*)x)exp(-mwx2)
=|d|2exp(22mw(z)x)exp(-mwx2)
=|d|2exp(-mw(-22mw(z)x+x2))
=|d|2exp(-mw((x-2mw(z))2-2mw((z))2))
=|d|2exp(2((z))2)exp(-mw(x-2mw(z))2)

However, we must remember that our |z is really e-itw2|e-itwz0. Hence,

(z)=(z0)cos(wt)+(z0)sin(wt)

This shows that the time evolution corresponding to the wavefunction is a Gaussian which does not change form but oscillates with frequency w.