Superstrings Term 1

Lecturer: Arthur Lipstein

Contents

1 Introduction ..... 2
2 Basics ..... 2
2.1 Special Relativity ..... 3
2.2 Field theory ..... 6
2.2.1 Klein-Gordon ..... 6
2.2.2 Maxwell ..... 8
2.3 General Relativity ..... 10
3 Relativistic Point Particle ..... 12
4 Nambu - Goto Action ..... 15
5 Polyakov Action ..... 16
5.1 Symmetries and Gauge-fixing ..... 18
5.2 Equations of motion and boundary conditions ..... 18
5.3 Conserved Charges ..... 20
6 Mode expansion ..... 22
7 Virasoro algebra ..... 26
8 Light cone gauge ..... 28
9 Canonical Quantisation ..... 30
10 Spectrum and Critical Dimension ..... 33
11 CFT: Virasoro from Stress Tensor ..... 36
12 Operator Product Expansion ..... 39
13 Critical Dimension from CFT ..... 43
14 Vertex operators ..... 47
15 String interactions ..... 49

1 Introduction

The main references for this course will be:
  • Zwiebach: A First Course in String Theory
  • Becker, Becker, Schwarz: String theory and M-theory
  • Tong: String Theory (online lecture notes)
  • Green, Schwarz, Witten: Superstring Theory (Volume 1)
  • Polchinski: Joe's Little Book of String (Polchinski's online lecture notes)
  • Srednicki: Quantum Field Theory
This section is based on Zwiebach Chapter 1. The Standard Model describes four fundamental forces (strong, weak, electromagnetic, gravity). The first three give consistent quantum theories, but quantum Einstein gravity is plagued by divergences and is believed to break down at sufficiently small distances/high energies given by
l p = G c 3 10 33 c m , m p = c G 10 19 G e V / c 2 l p = G c 3 10 33 c m , m p = c G 10 19 G e V / c 2 l_(p)=sqrt((Gℏ)/(c^(3)))∼10^(-33)cm,m_(p)=sqrt((ℏc)/(G))∼10^(19)GeV//c^(2)l_{p}=\sqrt{\frac{G \hbar}{c^{3}}} \sim 10^{-33} \mathrm{~cm}, m_{p}=\sqrt{\frac{\hbar c}{G}} \sim 10^{19} \mathrm{GeV} / \mathrm{c}^{2}lp=Gc31033 cm,mp=cG1019GeV/c2
where G = G = G=G=G= Newton's constant, = = ℏ=\hbar== Planck's constant, c = c = c=c=c= speed of light. Planck length l p = l p = l_(p)=l_{p}=lp= is the unique length that can be constructed using only powers of G , , c G , , c G,ℏ,cG, \hbar, cG,,c. Similarly Planck mass m p = m p = m_(p)=m_{p}=mp= is unique mass that can be constructed in this way.
String theory provides a mathematically consistent theory of quantum gravity (no UV divergences). It also unifies gravity with the other forces. Roughly speaking, gravity comes from fluctuations of closed strings, while gauge theories (like electromagnetism) come from fluctuations of open strings. Since open strings can close to form closed strings, it's not possible to have a theory with only open strings. Hence, gravity is required by string theory.
String theory is also important theoretically because it lead to the discovery of supersymmety and the AdS/CFT correspondence. The latter relates quantum gravity to a lower-dimensional non-gravitational quantum theory. On the other hand making experimentally testable predictions remains a challenge for string theory. This may require a better understanding of its conceptual foundations. The goal of this course is to understand the emergence gravity, its unification with gauge theory, and its good high energy behaviour in the context of bosonic string theory. Supersymmetry will be described next term.

2 Basics

In this section we will review some basic concepts:
  • Special relativity
  • Field theory: Klein-Gordon, Maxwell
  • General relativity

2.1 Special Relativity

The principle of Relativity states that equations of motion should be the same in all frames. Frames are coordinate systems that observers use to measure locations of events in space and time, which are tied to how the observer is moving. There is a special set of frames in which objects follow linear trajectories (at least locally). These are known as inertial frames. Physically, these arise in the absence of gravity and acceleration. Even in the presence of gravity, it is possible for an observer to have a locally inertial frame by going to a state of free-fall. Special Relativity describes motion in inertial frames. General Relativity describes motion in general frames and explains how gravity arises from the curvature of spacetime.
Events are labelled by spacetime coordinates:
x μ = ( x 0 , x 1 , x 2 , x 3 ) x μ = x 0 , x 1 , x 2 , x 3 x^(mu)=(x^(0),x^(1),x^(2),x^(3))x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)xμ=(x0,x1,x2,x3)
where x 0 x 0 x^(0)x^{0}x0 is time and x 1 , 2 , 3 x 1 , 2 , 3 x^(1,2,3)x^{1,2,3}x1,2,3 are spatial directions. Suppose an inertial observer measures two events at x μ x μ x^(mu)x^{\mu}xμ and x μ + Δ x μ x μ + Δ x μ x^(mu)+Deltax^(mu)x^{\mu}+\Delta x^{\mu}xμ+Δxμ. The distance in spacetime between these two events is given by
Δ s 2 = ( Δ x 0 ) 2 + ( Δ x 1 ) 2 + ( Δ x 2 ) 2 + ( Δ x 3 ) 2 Δ s 2 = Δ x 0 2 + Δ x 1 2 + Δ x 2 2 + Δ x 3 2 -Deltas^(2)=-(Deltax^(0))^(2)+(Deltax^(1))^(2)+(Deltax^(2))^(2)+(Deltax^(3))^(2)-\Delta s^{2}=-\left(\Delta x^{0}\right)^{2}+\left(\Delta x^{1}\right)^{2}+\left(\Delta x^{2}\right)^{2}+\left(\Delta x^{3}\right)^{2}Δs2=(Δx0)2+(Δx1)2+(Δx2)2+(Δx3)2
Now suppose that another inertial observer measures the events to be at x μ x μ x^('mu)x^{\prime \mu}xμ and x μ + Δ x μ x μ + Δ x μ x^('mu)+Deltax^('mu)x^{\prime \mu}+\Delta x^{\prime \mu}xμ+Δxμ. The spacetime distance they measure is the same:
Δ s 2 = Δ s 2 Δ s 2 = Δ s 2 Deltas^('2)=Deltas^(2)\Delta s^{\prime 2}=\Delta s^{2}Δs2=Δs2
Hence Δ S 2 Δ S 2 DeltaS^(2)\Delta S^{2}ΔS2 is an invariant interval.
  • Δ s 2 > 0 Δ s 2 > 0 Deltas^(2) > 0\Delta s^{2}>0Δs2>0 time-like
  • Δ s 2 < 0 Δ s 2 < 0 Deltas^(2) < 0quad\Delta s^{2}<0 \quadΔs2<0 spacelike
  • Δ s 2 = 0 Δ s 2 = 0 Deltas^(2)=0\Delta s^{2}=0Δs2=0
If Δ s 2 = 0 Δ s 2 = 0 Deltas^(2)=0\Delta s^{2}=0Δs2=0, then the two events can be separated by a light ray. Since the distance between the two events is invariant, the speed of light is the same in all frames.
For events that are infinitesimally close together, we denote the invariant interval as
d s 2 = ( d x 0 ) 2 + ( d x 1 ) 2 + ( d x 2 ) 2 + ( d x 3 ) 2 = μ = 0 3 ν = 0 3 η μ v d x μ d x ν d s 2 = d x 0 2 + d x 1 2 + d x 2 2 + d x 3 2 = μ = 0 3 ν = 0 3 η μ v d x μ d x ν {:[-ds^(2)=-(dx^(0))^(2)+(dx^(1))^(2)+(dx^(2))^(2)+(dx^(3))^(2)],[=sum_(mu=0)^(3)sum_(nu=0)^(3)eta_(mu v)dx^(mu)dx^(nu)]:}\begin{aligned} -d s^{2} & =-\left(d x^{0}\right)^{2}+\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2} \\ & =\sum_{\mu=0}^{3} \sum_{\nu=0}^{3} \eta_{\mu v} d x^{\mu} d x^{\nu} \end{aligned}ds2=(dx0)2+(dx1)2+(dx2)2+(dx3)2=μ=03ν=03ημvdxμdxν
where
η μ v = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) Minkowski metric η μ v = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1  Minkowski metric  eta_(mu v)=([-1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1])quad" Minkowski metric "\eta_{\mu v}=\left(\begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \quad \text { Minkowski metric }ημv=(1000010000100001) Minkowski metric 
We will use the Einstein summation convention where repeated indices summed:
d s 2 = η μ ν d x μ d x ν d s 2 = η μ ν d x μ d x ν -ds^(2)=eta_(mu nu)dx^(mu)dx^(nu)-d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}ds2=ημνdxμdxν
Denote inverse Minkowsi metric with upper indices η μ ν η μ ν eta^(mu nu)\eta^{\mu \nu}ημν. Then
η ν ρ η ρ μ = δ μ ν , where δ μ ν = { 1 if μ = ν 0 if μ ν η ν ρ η ρ μ = δ μ ν ,  where  δ μ ν = 1       if  μ = ν 0       if  μ ν eta^(nu rho)eta_(rho mu)=delta_(mu)^(nu)," where "delta_(mu)^(nu)={[1," if "mu=nu],[0," if "mu!=nu]:}\eta^{\nu \rho} \eta_{\rho \mu}=\delta_{\mu}^{\nu}, \text { where } \delta_{\mu}^{\nu}= \begin{cases}1 & \text { if } \mu=\nu \\ 0 & \text { if } \mu \neq \nu\end{cases}ηνρηρμ=δμν, where δμν={1 if μ=ν0 if μν
We can use the metric to raise and lower indices:
b μ η μ ν b ν b μ = η μ ν b ν = η μ ν η ν ρ b ρ = δ ρ μ b ρ = b μ a b η μ ν a μ b ν = a μ b μ = a μ b μ = a 0 b 0 + a 1 b 1 + a 2 b 2 + a 3 b 3 b μ η μ ν b ν b μ = η μ ν b ν = η μ ν η ν ρ b ρ = δ ρ μ b ρ = b μ a b η μ ν a μ b ν = a μ b μ = a μ b μ = a 0 b 0 + a 1 b 1 + a 2 b 2 + a 3 b 3 {:[b_(mu)-=eta_(mu nu)b^(nu)rarrb^(mu)=eta^(mu nu)b_(nu)=eta^(mu nu)eta_(nu rho)b^(rho)=delta_(rho)^(mu)b^(rho)=b^(mu)],[a*b-=eta_(mu nu)a^(mu)b^(nu)=a^(mu)b_(mu)=a_(mu)b^(mu)=-a^(0)b^(0)+a^(1)b^(1)+a^(2)b^(2)+a^(3)b^(3)]:}\begin{aligned} & b_{\mu} \equiv \eta_{\mu \nu} b^{\nu} \rightarrow b^{\mu}=\eta^{\mu \nu} b_{\nu}=\eta^{\mu \nu} \eta_{\nu \rho} b^{\rho}=\delta_{\rho}^{\mu} b^{\rho}=b^{\mu} \\ & a \cdot b \equiv \eta_{\mu \nu} a^{\mu} b^{\nu}=a^{\mu} b_{\mu}=a_{\mu} b^{\mu}=-a^{0} b^{0}+a^{1} b^{1}+a^{2} b^{2}+a^{3} b^{3} \end{aligned}bμημνbνbμ=ημνbν=ημνηνρbρ=δρμbρ=bμabημνaμbν=aμbμ=aμbμ=a0b0+a1b1+a2b2+a3b3
In general, inertial frames are related by Poincare transformations:
x μ = L ν μ x ν + T μ x μ = L ν μ x ν + T μ x^('mu)=L_(nu)^(mu)x^(nu)+T^(mu)x^{\prime \mu}=L_{\nu}^{\mu} x^{\nu}+T^{\mu}xμ=Lνμxν+Tμ
where L L LLL is a Lorentz transformation and T T TTT is a translation. This change of coordinatess leaves the metric invariant:
d s 2 = n α β d x α d x β = n μ ν d x μ d x ν = n μ ν x μ x α x ν x β d x α d x β = η μ ν L α μ L β ν d x α d x β η μ ν L α μ L β ν = η α β d s 2 = n α β d x α d x β = n μ ν d x μ d x ν = n μ ν x μ x α x ν x β d x α d x β = η μ ν L α μ L β ν d x α d x β η μ ν L α μ L β ν = η α β {:[ds^(2)=n_(alpha beta)dx^(alpha)dx^(beta)],[=n_(mu nu)dx^(mu)dx^(nu)],[=n_(mu nu)(delx^('mu))/(delx^(alpha))(delx^(nu))/(delx^(beta))dx^(alpha)dx^(beta)],[=eta_(mu nu)L_(alpha)^(mu)L_(beta)^(nu)dx^(alpha)dx^(beta)],[ rarreta_(mu nu)L_(alpha)^(mu)L_(beta)^(nu)=eta_(alpha beta)]:}\begin{aligned} & d s^{2}=n_{\alpha \beta} d x^{\alpha} d x^{\beta} \\ & =n_{\mu \nu} d x^{\mu} d x^{\nu} \\ & =n_{\mu \nu} \frac{\partial x^{\prime \mu}}{\partial x^{\alpha}} \frac{\partial x^{\nu}}{\partial x^{\beta}} d x^{\alpha} d x^{\beta} \\ & =\eta_{\mu \nu} L_{\alpha}^{\mu} L_{\beta}^{\nu} d x^{\alpha} d x^{\beta} \\ & \rightarrow \eta_{\mu \nu} L_{\alpha}^{\mu} L_{\beta}^{\nu}=\eta_{\alpha \beta} \end{aligned}ds2=nαβdxαdxβ=nμνdxμdxν=nμνxμxαxνxβdxαdxβ=ημνLαμLβνdxαdxβημνLαμLβν=ηαβ
In terms of matrices, this can be written as L T η L = η L T η L = η L^(T)eta L=etaL^{T} \eta L=\etaLTηL=η. Lorentz transformations can be thought of as rotations in spacetime. For example a rotation in the x 1 x 2 x 1 x 2 x^(1)-x^(2)x^{1}-x^{2}x1x2 plane takes in the form
L = ( 1 0 0 0 0 cos θ sin θ 0 0 sin θ cos θ 0 0 0 0 1 ) L = 1 0 0 0 0 cos θ sin θ 0 0 sin θ cos θ 0 0 0 0 1 L=([1,0,0,0],[0,cos theta,sin theta,0],[0,-sin theta,cos theta,0],[0,0,0,1])L=\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & \sin \theta & 0 \\ 0 & -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)L=(10000cosθsinθ00sinθcosθ00001)
and a boost along the x 1 x 1 x^(1)x^{1}x1 direction is given by
L = ( γ γ β 0 0 γ β γ 0 0 0 0 1 0 0 0 0 1 ) L = γ γ β 0 0 γ β γ 0 0 0 0 1 0 0 0 0 1 L=([gamma,gamma beta,0,0],[gamma beta,gamma,0,0],[0,0,1,0],[0,0,0,1])L=\left(\begin{array}{cccc} \gamma & \gamma \beta & 0 & 0 \\ \gamma \beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)L=(γγβ00γβγ0000100001)
where β = | v | / c , v β = | v | / c , v beta=| vec(v)|//c, vec(v)\beta=|\vec{v}| / c, \vec{v}β=|v|/c,v relative velocity of the observers, and
γ = 1 1 β 2 γ = 1 1 β 2 gamma=(1)/(sqrt(1-beta^(2)))\gamma=\frac{1}{\sqrt{1-\beta^{2}}}γ=11β2
If L L LLL is a Lorentz transformation then so are L 1 L 1 L^(-1)L^{-1}L1 and L T L T L^(T)L^{T}LT. It follows that
( L 1 ) T η L 1 = η , L η L T = η L 1 η ( L 1 ) T = η L 1 T η L 1 = η , L η L T = η L 1 η L 1 T = η (L^(-1))^(T)etaL^(-1)=eta,quad L etaL^(T)=eta rarrquadL^(-1)eta(L^(-1))^(T)=eta\left(L^{-1}\right)^{T} \eta L^{-1}=\eta, \quad L \eta L^{T}=\eta \rightarrow \quad L^{-1} \eta\left(L^{-1}\right)^{T}=\eta(L1)TηL1=η,LηLT=ηL1η(L1)T=η
In terms of Lorentz indices we therefore have
η μ ν ( L 1 ) μ α ( L 1 ) ν β = η α β η μ ν L 1 μ α L 1 ν β = η α β eta^(mu nu)(L^(-1))_(mu)^(alpha)(L^(-1))_(nu)^(beta)=eta^(alpha beta)\eta^{\mu \nu}\left(L^{-1}\right)_{\mu}^{\alpha}\left(L^{-1}\right)_{\nu}^{\beta}=\eta^{\alpha \beta}ημν(L1)μα(L1)νβ=ηαβ
Hence, the Laplacian is Lorentz invariant:
η μ ν x μ x ν ϕ = η μ ν x α x μ x β x ν x α x β ϕ = η μ ν ( L 1 ) μ α ( L 1 ) ν β x α x β ϕ = η α β x α x β ϕ η μ ν x μ x ν ϕ = η μ ν x α x μ x β x ν x α x β ϕ = η μ ν L 1 μ α L 1 ν β x α x β ϕ = η α β x α x β ϕ {:[eta^(mu nu)(del)/(delx^(mu))(del)/(delx^('nu))phi=eta^(mu nu)(delx^(alpha))/(delx^(mu))(delx^(beta))/(delx^('nu))(del)/(delx^(alpha))(del)/(delx^(beta))phi],[=eta^(mu nu)(L^(-1))_(mu)^(alpha)(L^(-1))_(nu)^(beta)(del)/(delx^(alpha))(del)/(delx^(beta))phi],[=eta^(alpha beta)(del)/(delx^(alpha))(del)/(delx^(beta))phi]:}\begin{aligned} \eta^{\mu \nu} \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial x^{\prime \nu}} \phi & =\eta^{\mu \nu} \frac{\partial x^{\alpha}}{\partial x^{\mu}} \frac{\partial x^{\beta}}{\partial x^{\prime \nu}} \frac{\partial}{\partial x^{\alpha}} \frac{\partial}{\partial x^{\beta}} \phi \\ & =\eta^{\mu \nu}\left(L^{-1}\right)_{\mu}^{\alpha}\left(L^{-1}\right)_{\nu}^{\beta} \frac{\partial}{\partial x^{\alpha}} \frac{\partial}{\partial x^{\beta}} \phi \\ & =\eta^{\alpha \beta} \frac{\partial}{\partial x^{\alpha}} \frac{\partial}{\partial x^{\beta}} \phi \end{aligned}ημνxμxνϕ=ημνxαxμxβxνxαxβϕ=ημν(L1)μα(L1)νβxαxβϕ=ηαβxαxβϕ
where ϕ ϕ phi\phiϕ is some function which is Lorentz invariant, i.e. a scalar field.
Relativistic Momentum: (from now on we will set c = 1 c = 1 c=1c=1c=1 and = 1 = 1 ℏ=1\hbar=1=1 ) Massive parties follow timelike trajectories:
d s 2 = ( d x 0 ) 2 + ( d x 1 ) 2 + ( d x 2 ) 2 + ( d x 3 ) 3 < 0 d s 2 = d x 0 2 + d x 1 2 + d x 2 2 + d x 3 3 < 0 -ds^(2)=-(dx^(0))^(2)+(dx^(1))^(2)+(dx^(2))^(2)+(dx^(3))^(3) < 0-d s^{2}=-\left(d x^{0}\right)^{2}+\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{3}<0ds2=(dx0)2+(dx1)2+(dx2)2+(dx3)3<0
In this case, s s sss is called the proper time. It corresponds to the time elapsed in the rest frame of the particle; where d x 1 = d x 2 = d x 3 = 0 d x 1 = d x 2 = d x 3 = 0 dx^(1)=dx^(2)=dx^(3)=0d x^{1}=d x^{2}=d x^{3}=0dx1=dx2=dx3=0 so, d s 2 = ( d x 0 ) 2 d s 2 = d x 0 2 ds^(2)=(dx^(0))^(2)d s^{2}=\left(d x^{0}\right)^{2}ds2=(dx0)2. We then define the 4 -velocity as
u μ = d x μ d s u μ = d x μ d s u^(mu)=(dx^(mu))/(ds)u^{\mu}=\frac{d x^{\mu}}{d s}uμ=dxμds
Since d s d s dsd sds is Lorentz -invariant and d x μ d x μ dx^(mu)d x^{\mu}dxμ is a Lorentz Vector, u μ u μ u^(mu)u^{\mu}uμ also transforms like a vector under coordinate transformations. More explicitly, it can be written as
u μ = d x 0 d s ( 1 , d x 1 d x 0 , d x 2 d x 0 , d x 3 d x 0 ) = γ ( 1 , v ) , v = d x d x 0 u μ = d x 0 d s 1 , d x 1 d x 0 , d x 2 d x 0 , d x 3 d x 0 = γ ( 1 , v ) , v = d x d x 0 {:[u^(mu)=(dx^(0))/(ds)(1,(dx^(1))/(dx^(0)),(dx^(2))/(dx^(0)),(dx^(3))/(dx^(0)))],[=gamma(1"," vec(v))"," vec(v)=(d( vec(x)))/(dx^(0))]:}\begin{aligned} u^{\mu} & =\frac{d x^{0}}{d s}\left(1, \frac{d x^{1}}{d x^{0}}, \frac{d x^{2}}{d x^{0}}, \frac{d x^{3}}{d x^{0}}\right) \\ & =\gamma(1, \vec{v}), \vec{v}=\frac{d \vec{x}}{d x^{0}} \end{aligned}uμ=dx0ds(1,dx1dx0,dx2dx0,dx3dx0)=γ(1,v),v=dxdx0
where we noted that d s 2 = ( d x 0 ) 2 ( 1 ( d x / d x 0 ) 2 ) d s 2 = d x 0 2 1 d x / d x 0 2 ds^(2)=(dx^(0))^(2)(1-(d( vec(x))//dx^(0))^(2))d s^{2}=\left(d x^{0}\right)^{2}\left(1-\left(d \vec{x} / d x^{0}\right)^{2}\right)ds2=(dx0)2(1(dx/dx0)2)
= ( d x 0 ) 2 ( 1 β 2 ) d x 0 d s = 1 1 β 2 = γ = d x 0 2 1 β 2 d x 0 d s = 1 1 β 2 = γ {:[=(dx^(0))^(2)(1-beta^(2))],[ rarr(dx^(0))/(ds)=(1)/(sqrt(1-beta^(2)))=gamma]:}\begin{aligned} & =\left(d x^{0}\right)^{2}\left(1-\beta^{2}\right) \\ & \rightarrow \frac{d x^{0}}{d s}=\frac{1}{\sqrt{1-\beta^{2}}}=\gamma \end{aligned}=(dx0)2(1β2)dx0ds=11β2=γ
Note that u μ u ν = γ 2 ( 1 + β 2 ) = 1 u μ u ν = γ 2 1 + β 2 = 1 u^(mu)u_(nu)=gamma^(2)(-1+beta^(2))=-1u^{\mu} u_{\nu}=\gamma^{2}\left(-1+\beta^{2}\right)=-1uμuν=γ2(1+β2)=1
Finally, we define the 4-momentum for particle of mass m m mmm as
p μ = m u μ p μ p μ = m 2 u μ u μ = m 2 p μ = m u μ p μ p μ = m 2 u μ u μ = m 2 p^(mu)=mu^(mu)rarrp^(mu)p_(mu)=m^(2)u^(mu)u_(mu)=-m^(2)p^{\mu}=m u^{\mu} \rightarrow p^{\mu} p_{\mu}=m^{2} u^{\mu} u_{\mu}=-m^{2}pμ=muμpμpμ=m2uμuμ=m2
In the non-relativistic limit β 1 β 1 beta≪1\beta \ll 1β1,
p 0 = m + 1 2 m β 2 + p 0 = m + 1 2 m β 2 + p^(0)=m+(1)/(2)mbeta^(2)+dotsp^{0}=m+\frac{1}{2} m \beta^{2}+\ldotsp0=m+12mβ2+
which we recognise as the rest energy plus the the kinetic energy. Hence p 0 = E p 0 = E p^(0)=Ep^{0}=Ep0=E (energy). In general, the energy is related to the mass an spatial momentum as:
p 2 p μ p μ = E 2 + p 2 = m 2 E 2 = p 2 + m 2 p 2 p μ p μ = E 2 + p 2 = m 2 E 2 = p 2 + m 2 p^(2)-=p_(mu)p^(mu)=-E^(2)+ vec(p)^(2)=-m^(2)rarrE^(2)= vec(p)^(2)+m^(2)p^{2} \equiv p_{\mu} p^{\mu}=-E^{2}+\vec{p}^{2}=-m^{2} \rightarrow E^{2}=\vec{p}^{2}+m^{2}p2pμpμ=E2+p2=m2E2=p2+m2
It will be convenient later on to use light cone coordinates:
x ± = 1 2 ( x 0 ± x 1 ) x ± = 1 2 x 0 ± x 1 x^(+-)=(1)/(sqrt2)(x^(0)+-x^(1))x^{ \pm}=\frac{1}{\sqrt{2}}\left(x^{0} \pm x^{1}\right)x±=12(x0±x1)
Note that
d x + d x = 1 2 ( d x 0 + d x 1 ) ( d x 0 d x 1 ) = 1 2 ( ( d x 0 ) 2 ( d x 1 ) 2 ) d x + d x = 1 2 d x 0 + d x 1 d x 0 d x 1 = 1 2 d x 0 2 d x 1 2 dx^(+)dx^(-)=(1)/(2)(dx^(0)+dx^(1))(dx^(0)-dx^(1))=(1)/(2)((dx^(0))^(2)-(dx^(1))^(2))d x^{+} d x^{-}=\frac{1}{2}\left(d x^{0}+d x^{1}\right)\left(d x^{0}-d x^{1}\right)=\frac{1}{2}\left(\left(d x^{0}\right)^{2}-\left(d x^{1}\right)^{2}\right)dx+dx=12(dx0+dx1)(dx0dx1)=12((dx0)2(dx1)2)
Hence, in these coords
d s 2 = 2 d x + d x + ( d x 2 ) 2 + ( d x 3 ) 2 = η ^ μ ν d x ^ μ d x ^ ν , x ^ μ = ( x + , x , x 2 , x 3 ) η ^ = ( 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 ) d s 2 = 2 d x + d x + d x 2 2 + d x 3 2 = η ^ μ ν d x ^ μ d x ^ ν , x ^ μ = x + , x , x 2 , x 3 η ^ = 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 {:[-ds^(2)=-2dx^(+)dx^(-)+(dx^(2))^(2)+(dx^(3))^(2)],[= hat(eta)_(mu nu)d hat(x)^(mu)d hat(x)^(nu)","quad hat(x)^(mu)=(x^(+),x^(-),x^(2),x^(3))],[ hat(eta)=([0,-1,0,0],[-1,0,0,0],[0,0,1,0],[0,0,0,1])]:}\begin{aligned} -d s^{2} & =-2 d x^{+} d x^{-}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2} \\ & =\hat{\eta}_{\mu \nu} d \hat{x}^{\mu} d \hat{x}^{\nu}, \quad \hat{x}^{\mu}=\left(x^{+}, x^{-}, x^{2}, x^{3}\right) \\ \hat{\eta} & =\left(\begin{array}{cccc} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \end{aligned}ds2=2dx+dx+(dx2)2+(dx3)2=η^μνdx^μdx^ν,x^μ=(x+,x,x2,x3)η^=(0100100000100001)
Similarly, we define p ± = 1 2 ( p 0 ± p 1 ) p ± = 1 2 p 0 ± p 1 p^(+-)=(1)/(sqrt2)(p^(0)+-p^(1))p^{ \pm}=\frac{1}{\sqrt{2}}\left(p^{0} \pm p^{1}\right)p±=12(p0±p1)
p 2 = 2 p + p + ( p 2 ) 2 + ( p 3 ) 2 = m 2 p 2 = 2 p + p + p 2 2 + p 3 2 = m 2 rarrquadp^(2)=-2p^(+)p^(-)+(p^(2))^(2)+(p^(3))^(2)=-m^(2)\rightarrow \quad p^{2}=-2 p^{+} p^{-}+\left(p^{2}\right)^{2}+\left(p^{3}\right)^{2}=-m^{2}p2=2p+p+(p2)2+(p3)2=m2

2.2 Field theory

2.2.1 Klein-Gordon

This will be based on Zwiebach 10.2-10.4, Srednicki Chapter 3. First we consider scalar (or spin-0) fields. This is described by the Klein-Gordon equation:
η μ ν μ ν ϕ m 2 ϕ = 0 η μ ν μ ν ϕ m 2 ϕ = 0 eta^(mu nu)del_(mu)del_(nu)phi-m^(2)phi=0\eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi-m^{2} \phi=0ημνμνϕm2ϕ=0
where η μ ν μ ν ϕ = ( 0 2 + 2 ) ϕ = 2 ϕ η μ ν μ ν ϕ = 0 2 + 2 ϕ = 2 ϕ eta^(mu nu)del_(mu)del_(nu)phi=(-del_(0)^(2)+ vec(grad)^(2))phi=del^(2)phi\eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi=\left(-\partial_{0}^{2}+\vec{\nabla}^{2}\right) \phi=\partial^{2} \phiημνμνϕ=(02+2)ϕ=2ϕ We previously showed that the Laplacian is Lorentz invariant we see that the equation of motion is the same in all frames.
Let us Fourier transform expand the scalar field:
ϕ ( x ) = d D p ( 2 π ) D e i p x ϕ ( p ) ϕ ( x ) = d D p ( 2 π ) D e i p x ϕ ( p ) phi(x)=int(d^(D)p)/((2pi)^(D))e^(ip*x)phi(p)\phi(x)=\int \frac{d^{D} p}{(2 \pi)^{D}} e^{i p \cdot x} \phi(p)ϕ(x)=dDp(2π)Deipxϕ(p)
where D D DDD is spacetime dimension, and we recall that
p x = p μ x μ = p 0 x 0 + p x p x = p μ x μ = p 0 x 0 + p x p*x=p_(mu)x^(mu)=-p^(0)x^(0)+ vec(p)* vec(x)p \cdot x=p_{\mu} x^{\mu}=-p^{0} x^{0}+\vec{p} \cdot \vec{x}px=pμxμ=p0x0+px
Plugging the Fourier transform into the equation of motion gives
( 2 m 2 ) ϕ ( x ) = d D p ( 2 π ) D e i p x ( p 2 m 2 ) ϕ ( p ) = 0 ( p 2 + m 2 ) ϕ ( p ) = 0 2 m 2 ϕ ( x ) = d D p ( 2 π ) D e i p x p 2 m 2 ϕ ( p ) = 0 p 2 + m 2 ϕ ( p ) = 0 (del^(2)-m^(2))phi(x)=int(d^(D)p)/((2pi)^(D))int^(-e^(ip*x))(-p^(2)-m^(2))phi(p)=0rarr(p^(2)+m^(2))phi(p)=0\left(\partial^{2}-m^{2}\right) \phi(x)=\int \frac{d^{D} p}{(2 \pi)^{D}} \int^{-e^{i p \cdot x}}\left(-p^{2}-m^{2}\right) \phi(p)=0 \rightarrow\left(p^{2}+m^{2}\right) \phi(p)=0(2m2)ϕ(x)=dDp(2π)Deipx(p2m2)ϕ(p)=0(p2+m2)ϕ(p)=0
For this to hold for arbitrary ϕ ( p ) ϕ ( p ) phi(p)\phi(p)ϕ(p), the momentum must be "on-shell":
p 2 + m 2 = 0 ( p 0 ) 2 p 2 m 2 = 0 p 0 = ± p 2 + m 2 E p p 2 + m 2 = 0 p 0 2 p 2 m 2 = 0 p 0 = ± p 2 + m 2 E p {:[p^(2)+m^(2)=0 rarr(p^(0))^(2)- vec(p)^(2)-m^(2)=0],[ rarrp^(0)=+-ubrace(sqrt vec(p)^(2)+m^(2)ubrace)_(E_(p))]:}\begin{aligned} p^{2}+m^{2}=0 & \rightarrow\left(p^{0}\right)^{2}-\vec{p}^{2}-m^{2}=0 \\ & \rightarrow p^{0}= \pm \underbrace{\sqrt{\vec{p}^{2}+m^{2}}}_{E_{p}} \end{aligned}p2+m2=0(p0)2p2m2=0p0=±p2+m2Ep
Hence, for each p p vec(p)\vec{p}p there are two solutions to the equations of motion which can come with arbitrary coefficients a a aaa and b b bbb.
Plugging this solution back into the Fourier expansion then gives
ϕ ( x ) = d D 1 p ( 2 π ) D 1 d p 0 δ ( p 2 + m 2 ) θ ( p 0 ) [ a ( p ) e i E p x 0 + i p x + b ( p ) e i E p x 0 + i p x ] ϕ ( x ) = d D 1 p ( 2 π ) D 1 d p 0 δ p 2 + m 2 θ p 0 a ( p ) e i E p x 0 + i p x + b ( p ) e i E p x 0 + i p x phi(x)=int(d^(D-1)p)/((2pi)^(D-1))int dp^(0)delta(p^(2)+m^(2))theta(p^(0))[a(( vec(p)))e^(-iE_(p)x^(0)+i vec(p)*x)+b(( vec(p)))e^(iE_(p)x^(0)+i vec(p)* vec(x))]\phi(x)=\int \frac{d^{D-1} p}{(2 \pi)^{D-1}} \int d p^{0} \delta\left(p^{2}+m^{2}\right) \theta\left(p^{0}\right)\left[a(\vec{p}) e^{-i E_{p} x^{0}+i \vec{p} \cdot x}+b(\vec{p}) e^{i E_{p} x^{0}+i \vec{p} \cdot \vec{x}}\right]ϕ(x)=dD1p(2π)D1dp0δ(p2+m2)θ(p0)[a(p)eiEpx0+ipx+b(p)eiEpx0+ipx] where we absorbed 1 / 2 π 1 / 2 π 1//2pi1 / 2 \pi1/2π from measure into definition the coefficients a , b a , b a,ba, ba,b. Using
d x f ( f ( x ) ) = i 1 / | f ( x i ) | f ( x i ) = 0 d x f ( f ( x ) ) = i 1 / f x i f x i = 0 int dxf(f(x))=sum_(i)1//|f^(')(x_(i))|f(x_(i))=0\int d x f(f(x))=\sum_{i} 1 /\left|f^{\prime}\left(x_{i}\right)\right| f\left(x_{i}\right)=0dxf(f(x))=i1/|f(xi)|f(xi)=0
we finally get
ϕ ( x ) = d D 1 p ( 2 π ) D 1 2 E p [ a ( p ) e i E p x 0 + i p x + b ( p ) e i E p x 0 + i p x ] ϕ ( x ) = d D 1 p ( 2 π ) D 1 2 E p a ( p ) e i E p x 0 + i p x + b ( p ) e i E p x 0 + i p x phi(x)=int(d^(D-1)p)/((2pi)^(D-1)2E_(p))[a(( vec(p)))e^(-iE_(p)x^(0)+i vec(p)* vec(x))+b(( vec(p)))e^(iE_(p)x^(0)+i vec(p)* vec(x))]\phi(x)=\int \frac{d^{D-1} p}{(2 \pi)^{D-1} 2 E_{p}}\left[a(\vec{p}) e^{-i E_{p} x^{0}+i \vec{p} \cdot \vec{x}}+b(\vec{p}) e^{i E_{p} x^{0}+i \vec{p} \cdot \vec{x}}\right]ϕ(x)=dD1p(2π)D12Ep[a(p)eiEpx0+ipx+b(p)eiEpx0+ipx]
If ϕ ( x ) ϕ ( x ) phi(x)\phi(x)ϕ(x) is real, it has one propagating degree of freedom. If ϕ ( x ) ϕ ( x ) phi(x)\phi(x)ϕ(x) is complex, it has two real propagating degrees of freedom. Let's take it to be real. Taking the complex conjugate,
ϕ ( x ) = d D 1 p ( 2 π ) D 1 2 E p ( a ( p ) e i E p x 0 i p x + b ( p ) e i E p x 0 i p x ) = d D 1 p ( 2 π ) D 1 2 E p ( a ( p ) e i E p x 0 + i p x + b ( p ) e i E p x + i p x ) ϕ ( x ) = d D 1 p ( 2 π ) D 1 2 E p a ( p ) e i E p x 0 i p x + b ( p ) e i E p x 0 i p x = d D 1 p ( 2 π ) D 1 2 E p a ( p ) e i E p x 0 + i p x + b ( p ) e i E p x + i p x {:[phi^(**)(x)=int(d^(D-1)p)/((2pi)^(D-1)2E_(p))(a^(**)(( vec(p)))e^(iE_(p)x^(0)-i vec(p)* vec(x))+b^(**)(( vec(p)))e^(-iE_(p)x^(0)-i vec(p)* vec(x)))],[=int(d^(D-1)p)/((2pi)^(D-1)2E_(p))(a^(**)(-( vec(p)))e^(iE_(p)x^(0)+i vec(p)* vec(x))+b^(**)(-( vec(p)))e^(-iE_(p)x^(@)+i vec(p)* vec(x)))]:}\begin{aligned} \phi^{*}(x) & =\int \frac{d^{D-1} p}{(2 \pi)^{D-1} 2 E_{p}}\left(a^{*}(\vec{p}) e^{i E_{p} x^{0}-i \vec{p} \cdot \vec{x}}+b^{*}(\vec{p}) e^{-i E_{p} x^{0}-i \vec{p} \cdot \vec{x}}\right) \\ & =\int \frac{d^{D-1} p}{(2 \pi)^{D-1} 2 E_{p}}\left(a^{*}(-\vec{p}) e^{i E_{p} x^{0}+i \vec{p} \cdot \vec{x}}+b^{*}(-\vec{p}) e^{-i E_{p} x^{\circ}+i \vec{p} \cdot \vec{x}}\right) \end{aligned}ϕ(x)=dD1p(2π)D12Ep(a(p)eiEpx0ipx+b(p)eiEpx0ipx)=dD1p(2π)D12Ep(a(p)eiEpx0+ipx+b(p)eiEpx+ipx)
when we took p p p p vec(p)rarr- vec(p)\vec{p} \rightarrow-\vec{p}pp in the second line. From this, we see that ϕ ( x ) = ϕ ( x ) = phi(x)=\phi(x)=ϕ(x)= ϕ ( x ) b ( p ) = a ( p ) ϕ ( x ) b ( p ) = a ( p ) phi^(**)(x)longleftrightarrow b( vec(p))=a^(**)(- vec(p))\phi^{*}(x) \longleftrightarrow b(\vec{p})=a^{*}(-\vec{p})ϕ(x)b(p)=a(p). Plugging this back in finally gives
ϕ ( x ) = d D 1 p ( 2 π ) D 1 2 E p [ a ( p ) e i E p x 0 + i p x + a ( p ) e i E p x 0 i p x ] ϕ ( x ) = d D 1 p ( 2 π ) D 1 2 E p a ( p ) e i E p x 0 + i p x + a ( p ) e i E p x 0 i p x phi(x)=int(d^(D-1)p)/((2pi)^(D-1)2E_(p))[a(( vec(p)))e^(-iE_(p)x^(0)+i vec(p)* vec(x))+a^(**)(( vec(p)))e^(iE_(p)x^(0)-i vec(p)* vec(x))]\phi(x)=\int \frac{d^{D-1} p}{(2 \pi)^{D-1} 2 E_{p}}\left[a(\vec{p}) e^{-i E_{p} x^{0}+i \vec{p} \cdot \vec{x}}+a^{*}(\vec{p}) e^{i E_{p} x^{0}-i \vec{p} \cdot \vec{x}}\right]ϕ(x)=dD1p(2π)D12Ep[a(p)eiEpx0+ipx+a(p)eiEpx0ipx]
To quantize, we promote a a aaa and a a a^(**)a^{*}a to creation and annihilation operators a ( p ) , a ( p ) : a ( p ) , a ( p ) : a( vec(p)),a^(†)( vec(p)):a(\vec{p}), a^{\dagger}(\vec{p}):a(p),a(p):
[ a ( p ) , a ( p ) ] = [ a ( p ) , a ( p ) ] = 0 [ a ( p ) , a ( p ) ] = ( 2 π ) 3 2 E p δ 3 ( p p ) a ( p ) , a p = a ( p ) , a p = 0 a ( p ) , a p = ( 2 π ) 3 2 E p δ 3 p p {:[[a(( vec(p))),a( vec(p)^('))]=[a^(†)(( vec(p))),a^(†)( vec(p)^('))]=0],[{:[a(( vec(p))),a^(†)( vec(p)^('))]=(2pi)^(3)2E_(p)delta^(3)(( vec(p))- vec(p)^(')):}]:}\begin{aligned} & {\left[a(\vec{p}), a\left(\vec{p}^{\prime}\right)\right]=\left[a^{\dagger}(\vec{p}), a^{\dagger}\left(\vec{p}^{\prime}\right)\right]=0} \\ & {\left[a(\vec{p}), a^{\dagger}\left(\vec{p}^{\prime}\right)\right]=(2 \pi)^{3} 2 E_{p} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right)} \end{aligned}[a(p),a(p)]=[a(p),a(p)]=0[a(p),a(p)]=(2π)32Epδ3(pp)
This can be derived using a procedure called "canonical quantization". We wont go into the details, but physically one can think of the quatum field ϕ ( x ) ϕ ( x ) phi(x)\phi(x)ϕ(x) as an infinite set of harmonic oscillations, one for each Fourier mode. For more details, see see section 10.4 of Zwieback and chapter 3 of Srednicki.
  • vacuum state satifies a ( p ) | 0 = 0 a ( p ) | 0 = 0 a( vec(p))|0:)=0a(\vec{p})|0\rangle=0a(p)|0=0.
  • a ( p ) | 0 a ( p ) | 0 a^(†)( vec(p))|0:)a^{\dagger}(\vec{p})|0\ranglea(p)|0 is a single particle state with momentum p p vec(p)\vec{p}p and energy E p E p E_(p)E_{p}Ep.
  • a ( p 1 ) a ( p n ) | 0 a p 1 a p n | 0 a^(†)( vec(p)_(1))dotsa^(†)( vec(p)_(n))|0:)a^{\dagger}\left(\vec{p}_{1}\right) \ldots a^{\dagger}\left(\vec{p}_{n}\right)|0\ranglea(p1)a(pn)|0 is an n n nnn-particle state. The particles have momenta p 1 , , p n p 1 , , p n vec(p)_(1),dots, vec(p)_(n)\vec{p}_{1}, \ldots, \vec{p}_{n}p1,,pn and energies E p 1 , , , E p n E p 1 , , , E p n E_(p_(1),dots,),E_(p_(n))E_{p_{1}, \ldots,}, E_{p_{n}}Ep1,,,Epn.

2.2.2 Maxwell

This will be based on Zwiebach 3.1,3.3,10.5. Maxwell's equations for electromagnetism:
E = ρ × B 0 E = J B = 0 × E + 0 B = 0 E = ρ × B 0 E = J B = 0 × E + 0 B = 0 {:[ vec(grad)* vec(E)=rho],[ vec(grad)xx vec(B)-del_(0) vec(E)= vec(J)],[ vec(grad)* vec(B)=0],[ vec(grad)xx vec(E)+del_(0) vec(B)=0]:}\begin{aligned} & \vec{\nabla} \cdot \vec{E}=\rho \\ & \vec{\nabla} \times \vec{B}-\partial_{0} \vec{E}=\vec{J} \\ & \vec{\nabla} \cdot \vec{B}=0 \\ & \vec{\nabla} \times \vec{E}+\partial_{0} \vec{B}=0 \end{aligned}E=ρ×B0E=JB=0×E+0B=0
We can write this in Lorentz-covariant way by introducing field strength and 4-current:
F μ ν = ( 0 E 1 E 2 E 3 E 1 0 B 3 B 2 E 2 B 3 0 B 1 E 3 B 2 B 1 0 ) J μ = ( ρ , J ) F μ ν = 0 E 1 E 2 E 3 E 1 0 B 3 B 2 E 2 B 3 0 B 1 E 3 B 2 B 1 0 J μ = ( ρ , J ) {:[F^(mu nu)=([0,E_(1),E_(2),E_(3)],[-E_(1),0,B_(3),-B_(2)],[-E_(2),-B_(3),0,B_(1)],[-E_(3),B_(2),-B_(1),0])],[J^(mu)=(rho"," vec(J))]:}\begin{aligned} & F^{\mu \nu}=\left(\begin{array}{cccc} 0 & E_{1} & E_{2} & E_{3} \\ -E_{1} & 0 & B_{3} & -B_{2} \\ -E_{2} & -B_{3} & 0 & B_{1} \\ -E_{3} & B_{2} & -B_{1} & 0 \end{array}\right) \\ & J^{\mu}=(\rho, \vec{J}) \end{aligned}Fμν=(0E1E2E3E10B3B2E2B30B1E3B2B10)Jμ=(ρ,J)
Then Maxwell's equations reduce to
ν F μ ν = J μ μ F ν λ + ν F λ μ + λ F μ ν = 0 [ μ F ν λ ] = 0 ν F μ ν = J μ μ F ν λ + ν F λ μ + λ F μ ν = 0 [ μ F ν λ ] = 0 {:[del_(nu)F^(mu nu)=J^(mu)],[del_(mu)F_(nu lambda)+del_(nu)F_(lambda mu)+del_(lambda)F_(mu nu)=0longleftrightarrowdel_([mu)F_(nu lambda])=0]:}\begin{aligned} & \partial_{\nu} F^{\mu \nu}=J^{\mu} \\ & \partial_{\mu} F_{\nu \lambda}+\partial_{\nu} F_{\lambda \mu}+\partial_{\lambda} F_{\mu \nu}=0 \longleftrightarrow \partial_{[\mu} F_{\nu \lambda]}=0 \end{aligned}νFμν=JμμFνλ+νFλμ+λFμν=0[μFνλ]=0
Under Lorentz transformations,
F μ ν L μ α L ν β F α β , μ L μ α α , J μ L μ α J α F μ ν L μ α L ν β F α β , μ L μ α α , J μ L μ α J α F_(mu nu)rarrL_(mu)^(alpha)L_(nu)^(beta)F_(alpha beta),del_(mu)rarrL_(mu)^(alpha)del_(alpha),J_(mu)rarrL_(mu)^(alpha)J_(alpha)F_{\mu \nu} \rightarrow L_{\mu}^{\alpha} L_{\nu}{ }^{\beta} F_{\alpha \beta}, \partial_{\mu} \rightarrow L_{\mu}^{\alpha} \partial_{\alpha}, J_{\mu} \rightarrow L_{\mu}^{\alpha} J_{\alpha}FμνLμαLνβFαβ,μLμαα,JμLμαJα
so the equations have the same form in all inertial frames. Moreover, we see how E E vec(E)\vec{E}E and B B vec(B)\vec{B}B mix into eachother under Lorentz transformations.
The fields can be derived from a vector potential. To see this first note that
(1) B = 0 B = × A (1) B = 0 B = × A {:(1) vec(grad)* vec(B)=0rarr vec(B)= vec(grad)xx vec(A):}\begin{equation*} \vec{\nabla} \cdot \vec{B}=0 \rightarrow \vec{B}=\vec{\nabla} \times \vec{A} \tag{1} \end{equation*}(1)B=0B=×A
Plugging this into second homogeneous Maxwell equation gives
0 = × E + 0 B (2) = × ( E + 0 A ) E + 0 A = Φ E = 0 A Φ 0 = × E + 0 B (2) = × E + 0 A E + 0 A = Φ E = 0 A Φ {:[0= vec(grad)xx vec(E)+del_(0) vec(B)],[(2)= vec(grad)xx(( vec(E))+del_(0)( vec(A)))rarr vec(E)+del_(0) vec(A)=- vec(grad)Phi rarr vec(E)=-del_(0) vec(A)- vec(grad)Phi]:}\begin{align*} 0 & =\vec{\nabla} \times \vec{E}+\partial_{0} \vec{B} \\ & =\vec{\nabla} \times\left(\vec{E}+\partial_{0} \vec{A}\right) \rightarrow \vec{E}+\partial_{0} \vec{A}=-\vec{\nabla} \Phi \rightarrow \vec{E}=-\partial_{0} \vec{A}-\vec{\nabla} \Phi \tag{2} \end{align*}0=×E+0B(2)=×(E+0A)E+0A=ΦE=0AΦ
Defining A μ = ( Φ , A ) A μ = ( Φ , A ) A^(mu)=(Phi, vec(A))A^{\mu}=(\Phi, \vec{A})Aμ=(Φ,A), equations (1) and (2) can be written as
F μ ν = μ A ν ν A μ F μ ν = μ A ν ν A μ F_(mu nu)=del_(mu)A_(nu)-del_(nu)A_(mu)F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}Fμν=μAννAμ
Hence, we see that electromagnetism is described by a spin-1 field A μ A μ A^(mu)A^{\mu}Aμ. From this form of F μ ν F μ ν F_(mu nu)F_{\mu \nu}Fμν it automatically follows that [ μ F ν λ ] = 0 [ μ F ν λ ] = 0 del_([mu)F_(nu lambda])=0\partial_{[\mu} F_{\nu \lambda]}=0[μFνλ]=0.
Setting J μ = 0 J μ = 0 J^(mu)=0J^{\mu}=0Jμ=0, the remaining Maxwell equations can be written as
0 = μ F μ ν = μ ( μ A ν ν A μ ) = 2 A ν ν A 0 = μ F μ ν = μ μ A ν ν A μ = 2 A ν ν A {:[0=del_(mu)F^(mu nu)],[=del_(mu)(del^(mu)A^(nu)-del^(nu)A^(mu))],[=del^(2)A^(nu)-del^(nu)del*A]:}\begin{aligned} 0 & =\partial_{\mu} F^{\mu \nu} \\ & =\partial_{\mu}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right) \\ & =\partial^{2} A^{\nu}-\partial^{\nu} \partial \cdot A \end{aligned}0=μFμν=μ(μAννAμ)=2AννA
Note that Maxwell's equations have a gauge symmetry:
A μ ( x ) A μ ( x ) + μ Λ ( x ) , ie. δ A μ = μ Λ A μ ( x ) A μ ( x ) + μ Λ ( x ) ,  ie.  δ A μ = μ Λ A_(mu)(x)rarrA_(mu)(x)+del_(mu)Lambda(x)," ie. "quad deltaA_(mu)=del_(mu)LambdaA_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \Lambda(x), \text { ie. } \quad \delta A_{\mu}=\partial_{\mu} \LambdaAμ(x)Aμ(x)+μΛ(x), ie. δAμ=μΛ
where Λ ( x ) Λ ( x ) Lambda(x)\Lambda(x)Λ(x) is an arbitrary function. Under this transformation F μ ν F μ ν F_(mu nu)F_{\mu \nu}Fμν is invariant:
F μ ν μ ( A ν + ν Λ ) ν ( A μ μ Λ ) = F μ ν + μ ν Λ ν μ Λ = F μ ν F μ ν μ A ν + ν Λ ν A μ μ Λ = F μ ν + μ ν Λ ν μ Λ = F μ ν {:[F_(mu nu) rarrdel_(mu)(A_(nu)+del_(nu)Lambda)-del_(nu)(A_(mu)-del_(mu)Lambda)],[=F_(mu nu)+del_(mu)del_(nu)Lambda-del_(nu)del_(mu)Lambda],[=F_(mu nu)]:}\begin{aligned} F_{\mu \nu} & \rightarrow \partial_{\mu}\left(A_{\nu}+\partial_{\nu} \Lambda\right)-\partial_{\nu}\left(A_{\mu}-\partial_{\mu} \Lambda\right) \\ & =F_{\mu \nu}+\partial_{\mu} \partial_{\nu} \Lambda-\partial_{\nu} \partial_{\mu} \Lambda \\ & =F_{\mu \nu} \end{aligned}Fμνμ(Aν+νΛ)ν(AμμΛ)=Fμν+μνΛνμΛ=Fμν
If we Fourier transform to momentum space:
A μ ( x ) = d D p ( 2 π ) D e i p x A μ ( p ) A μ ( x ) = d D p ( 2 π ) D e i p x A μ ( p ) A^(mu)(x)=int(d^(D)p)/((2pi)^(D))e^(ip*x)A^(mu)(p)A^{\mu}(x)=\int \frac{d^{D} p}{(2 \pi)^{D}} e^{i p \cdot x} A^{\mu}(p)Aμ(x)=dDp(2π)DeipxAμ(p)
Then equations of motion are then given by
p 2 A μ ( p ) p μ p A ( p ) = 0 p 2 A μ ( p ) p μ p A ( p ) = 0 p^(2)A^(mu)(p)-p^(mu)p*A(p)=0p^{2} A^{\mu}(p)-p^{\mu} p \cdot A(p)=0p2Aμ(p)pμpA(p)=0
In momentum space the gauge transformation is
δ A μ ( p ) = i p μ Λ ( p ) δ A μ ( p ) = i p μ Λ ( p ) deltaA^(mu)(p)=ip^(mu)Lambda(p)\delta A^{\mu}(p)=i p^{\mu} \Lambda(p)δAμ(p)=ipμΛ(p)
In particular, δ A + ( p ) = i p + Λ ( p ) δ A + ( p ) = i p + Λ ( p ) deltaA^(+)(p)=ip^(+)Lambda(p)\delta A^{+}(p)=i p^{+} \Lambda(p)δA+(p)=ip+Λ(p). Choosing Λ = i A + / p + δ A + = A + Λ = i A + / p + δ A + = A + Lambda=iA^(+)//p^(+)rarr deltaA^(+)=-A^(+)\Lambda=i A^{+} / p^{+} \rightarrow \delta A^{+}=-A^{+}Λ=iA+/p+δA+=A+, which imposes light-cone gauge:
A + ( p ) = 0 A + ( p ) = 0 A^(+)(p)=0A^{+}(p)=0A+(p)=0
In this gauge, the μ = + μ = + mu=+\mu=+μ=+ component of the equaiton of motion reduces to
p + p A = 0 p A = 0 p + p A = 0 p A = 0 p^(+)p*A=0rarr p*A=0p^{+} p \cdot A=0 \rightarrow p \cdot A=0p+pA=0pA=0
Writing out components,
0 = p A = p + A p A + + p I A I A = p I A I / p ± 0 = p A = p + A p A + + p I A I A = p I A I / p ± {:[0=p*A],[=-p^(+)A^(-)-p^(-)A^(+)+p^(I)A^(I)],[ rarrA^(-)=p^(I)A^(I)//p^(+-)]:}\begin{aligned} & 0=p \cdot A \\ & =-p^{+} A^{-}-p^{-} A^{+}+p^{I} A^{I} \\ & \rightarrow A^{-}=p^{I} A^{I} / p^{ \pm} \end{aligned}0=pA=p+ApA++pIAIA=pIAI/p±
where I = 2 , , D 1 I = 2 , , D 1 I=2,dots,D-1I=2, \ldots, D-1I=2,,D1 "transverse directions." Setting μ = I μ = I mu=I\mu=Iμ=I, the equations of motion then reduce to
p 2 A I ( p ) = 0 p 2 A I ( p ) = 0 p^(2)A^(I)(p)=0p^{2} A^{I}(p)=0p2AI(p)=0
which are just the equations of motion for ( D 2 ) ( D 2 ) (D-2)(D-2)(D2) massless scalars! Hence, we that the Maxwell field has D-2 independent degrees of freedom (one for each transverse degree of freedom).
A A A^(-)A^{-}Ais not an independent degree of freedom because it can be written in terms of A I A I A^(I)A^{I}AI. We may quantize A I A I A^(I)A^{I}AI as we did the scalar field, writing them in terms of creation and annihilation operators. The quanta of A I A I A^(I)A^{I}AI are called photons. A general single photon state is given by
I = 2 D 1 ϵ I ( a I ( p ) ) | 0 I = 2 D 1 ϵ I a I ( p ) | 0 sum_(I=2)^(D-1)epsilon_(I)(a^(I)(( vec(p))))^(†)|0:)\sum_{I=2}^{D-1} \epsilon_{I}\left(a^{I}(\vec{p})\right)^{\dagger}|0\rangleI=2D1ϵI(aI(p))|0
where ϵ I ϵ I epsilon_(I)\epsilon_{I}ϵI is a polarisation vector.

2.3 General Relativity

This will mostly follow Zwiebach 3.6, 10.6. As mentioned previously, GR describes motion in general frames. Recall that if we start in an inertial frame and perform a coordinate transformation, the metric will become
g ρ λ ( x ) = x μ x ρ x ν x λ η μ ν g ρ λ x = x μ x ρ x ν x λ η μ ν g_(rho lambda)(x^('))=(delx^(mu))/(delx^('rho))(delx^(nu))/(delx^('lambda))eta_(mu nu)g_{\rho \lambda}\left(x^{\prime}\right)=\frac{\partial x^{\mu}}{\partial x^{\prime \rho}} \frac{\partial x^{\nu}}{\partial x^{\prime \lambda}} \eta_{\mu \nu}gρλ(x)=xμxρxνxλημν
where x μ x μ x^(mu)x^{\mu}xμ are the coordinates of the inertial frame and x μ x μ x^('mu)x^{\prime \mu}xμ are the coordinates of the new frame, respectively. If x μ / x ρ x μ / x ρ delx^(mu)//delx^('rho)\partial x^{\mu} / \partial x^{\prime \rho}xμ/xρ is a Lorentz transformation, then g μ ν = η μ ν g μ ν = η μ ν g_(mu nu)=eta_(mu nu)g_{\mu \nu}=\eta_{\mu \nu}gμν=ημν. For more general coordinate transformations, g μ ν g μ ν g_(mu nu)g_{\mu \nu}gμν will not be the Minkowski metric. Physically, this can arise from going to an accelerating frame.
There is another way to have a non-trivial metric: turning on gravity. In this case it will not be possible to transform the metric to Minkowski (except locally) via coordinate transformation. This is because gravity arises from the curvature of spacetime, which can't be set to zero by a coordinate transformation. Minkowski has zero curvature and is therefore a flat spacetime.
Hence, the invariant interval is generally given by
d s 2 = g μ ν ( x ) d x μ d x ν d s 2 = g μ ν ( x ) d x μ d x ν -ds^(2)=g_(mu nu)(x)dx^(mu)dx^(nu)-d s^{2}=g_{\mu \nu}(x) d x^{\mu} d x^{\nu}ds2=gμν(x)dxμdxν
Under general coordinate transformation (or diffeomorphism)
g μ ν ( x ) = x α x μ x β x ν g α β ( x ) g μ ν x = x α x μ x β x ν g α β ( x ) g_(mu nu)^(')(x^('))=(delx^(alpha))/(delx^('mu))(delx^(beta))/(delx^('nu))g_(alpha beta)(x)g_{\mu \nu}^{\prime}\left(x^{\prime}\right)=\frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial x^{\beta}}{\partial x^{\prime \nu}} g_{\alpha \beta}(x)gμν(x)=xαxμxβxνgαβ(x)
Consider an infinitesimal coordinate transformation:
x μ = x μ ξ μ ( x ) x μ = x μ ξ μ ( x ) x^(mu)=x^(mu)-xi^(mu)(x)x^{\mu}=x^{\mu}-\xi^{\mu}(x)xμ=xμξμ(x)
Under this transformation,
(3) δ g α β = ξ λ λ g α β + α ξ λ g λ β + β ξ λ g α λ (3) δ g α β = ξ λ λ g α β + α ξ λ g λ β + β ξ λ g α λ {:(3)deltag_(alpha beta)=xi^(lambda)del_(lambda)g_(alpha beta)+del_(alpha)xi^(lambda)g_(lambda beta)+del_(beta)xi^(lambda)g_(alpha lambda):}\begin{equation*} \delta g_{\alpha \beta}=\xi^{\lambda} \partial_{\lambda} g_{\alpha \beta}+\partial_{\alpha} \xi^{\lambda} g_{\lambda \beta}+\partial_{\beta} \xi^{\lambda} g_{\alpha \lambda} \tag{3} \end{equation*}(3)δgαβ=ξλλgαβ+αξλgλβ+βξλgαλ
You will show this in the homework. This is the gravitational analogue of a gauge transformation that we saw in Maxwell theory.
In the presence of gravity, the metric becomes dynamical and its equation of motion is the Einstein equation which states that the curvature of spacetime can be derived from the distribution of matter and energy. The Einstein equations are invariant under diffeomorphisms. We will not write them out in general but instead consider small fluctuations around Minkowski (i.e. weak gravity):
g μ ν ( x ) = η μ ν + h μ ν ( x ) g μ ν ( x ) = η μ ν + h μ ν ( x ) g_(mu nu)(x)=eta_(mu nu)+h_(mu nu)(x)g_{\mu \nu}(x)=\eta_{\mu \nu}+h_{\mu \nu}(x)gμν(x)=ημν+hμν(x)
In the absence of matter and energy, the linearised equations of motion for h μ ν h μ ν h_(mu nu)h_{\mu \nu}hμν are
2 h μ ν α ( μ h ν α + ν h μ α ) + μ ν h = 0 2 h μ ν α μ h ν α + ν h μ α + μ ν h = 0 del^(2)h^(mu nu)-del_(alpha)(del^(mu)h^(nu alpha)+del^(nu)h^(mu alpha))+del^(mu)del^(nu)h=0\partial^{2} h^{\mu \nu}-\partial_{\alpha}\left(\partial^{\mu} h^{\nu \alpha}+\partial^{\nu} h^{\mu \alpha}\right)+\partial^{\mu} \partial^{\nu} h=02hμνα(μhνα+νhμα)+μνh=0
where h μ ν = η μ α η ν β h α β h μ ν = η μ α η ν β h α β h^(mu nu)=eta^(mu alpha)eta^(nu beta)h_(alpha beta)h^{\mu \nu}=\eta^{\mu \alpha} \eta^{\nu \beta} h_{\alpha \beta}hμν=ημαηνβhαβ and h = η μ ν h μ ν h = η μ ν h μ ν h=eta^(mu nu)h_(mu nu)h=\eta^{\mu \nu} h_{\mu \nu}h=ημνhμν.
If we expand (3) to linear order in h μ ν h μ ν h_(mu nu)h_{\mu \nu}hμν and ξ μ ξ μ xi_(mu)\xi_{\mu}ξμ we get
δ h μ ν = μ ξ ν + ν ξ μ δ h μ ν = μ ξ ν + ν ξ μ deltah_(mu nu)=del_(mu)xi_(nu)+del_(nu)xi_(mu)\delta h_{\mu \nu}=\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}δhμν=μξν+νξμ
The equations of motion are invariant under this variation. To see this, let's Fourier transform to momentum space, which amounts to the replacement μ μ del_(mu)rarr\partial_{\mu} \rightarrowμ + i p μ + i p μ +ip_(mu)+i p_{\mu}+ipμ. The equations of motion then become
S μ ν = p 2 h μ ν p α ( p μ h ν α + p ν h μ α ) + p μ p ν h = 0 S μ ν = p 2 h μ ν p α p μ h ν α + p ν h μ α + p μ p ν h = 0 S^(mu nu)=p^(2)h^(mu nu)-p_(alpha)(p^(mu)h^(nu alpha)+p^(nu)h^(mu alpha))+p^(mu)p^(nu)h=0S^{\mu \nu}=p^{2} h^{\mu \nu}-p_{\alpha}\left(p^{\mu} h^{\nu \alpha}+p^{\nu} h^{\mu \alpha}\right)+p^{\mu} p^{\nu} h=0Sμν=p2hμνpα(pμhνα+pνhμα)+pμpνh=0
and the diffeomorphism becomes
δ h μ ν = i p μ ξ ν ( p ) + i p ν ξ μ ( p ) δ h μ ν = i p μ ξ ν ( p ) + i p ν ξ μ ( p ) deltah^(mu nu)=ip^(mu)xi^(nu)(p)+ip^(nu)xi^(mu)(p)\delta h^{\mu \nu}=i p^{\mu} \xi^{\nu}(p)+i p^{\nu} \xi^{\mu}(p)δhμν=ipμξν(p)+ipνξμ(p)
Under this, the equations of motion have the following variation:
δ S μ ν = i p 2 ( p μ ξ ν + p ν ξ μ ) i p α p μ ( p ν ξ α + p α ξ ν ) i p α p ν ( p μ ξ α + p α ξ μ ) + 2 i p μ p ν p ξ δ S μ ν = i p 2 p μ ξ ν + p ν ξ μ i p α p μ p ν ξ α + p α ξ ν i p α p ν p μ ξ α + p α ξ μ + 2 i p μ p ν p ξ {:[deltaS^(mu nu)=ip^(2)(p^(mu)xi^(nu)+p^(nu)xi^(mu))-ip_(alpha)p^(mu)(p^(nu)xi^(alpha)+p^(alpha)xi^(nu))],[-ip_(alpha)p^(nu)(p^(mu)xi^(alpha)+p^(alpha)xi^(mu))+2ip^(mu)p^(nu)p*xi]:}\begin{aligned} \delta S^{\mu \nu}=i p^{2}\left(p^{\mu} \xi^{\nu}+p^{\nu} \xi^{\mu}\right) & -i p_{\alpha} p^{\mu}\left(p^{\nu} \xi^{\alpha}+p^{\alpha} \xi^{\nu}\right) \\ & -i p_{\alpha} p^{\nu}\left(p^{\mu} \xi^{\alpha}+p^{\alpha} \xi^{\mu}\right)+2 i p^{\mu} p^{\nu} p \cdot \xi \end{aligned}δSμν=ip2(pμξν+pνξμ)ipαpμ(pνξα+pαξν)ipαpν(pμξα+pαξμ)+2ipμpνpξ
The terms cancel in pairs.
We can use this gauge symmetry to set all components of the metric with a + component to zero:
δ h + + = 2 i p + ξ + = h + + ξ + = i h + + / 2 p + δ h + = i p + ξ + i p ξ + = h + ξ = ( i h + p ξ + ) / p + δ h + I = i p + ξ I + i p I ξ + = h + I ξ I = ( i h + I p I ξ + ) / p I , I 2 , , D 1 δ h + + = 2 i p + ξ + = h + + ξ + = i h + + / 2 p + δ h + = i p + ξ + i p ξ + = h + ξ = i h + p ξ + / p + δ h + I = i p + ξ I + i p I ξ + = h + I ξ I = i h + I p I ξ + / p I , I 2 , , D 1 {:[deltah^(++)=2ip^(+)xi^(+)=-h^(++)rarrxi^(+)=ih^(++)//2p^(+)],[deltah^(+-)=ip^(+)xi^(-)+ip^(-)xi^(+)=-h^(+-)rarrxi^(-)=(ih^(+-)-p^(-)xi^(+))//p^(+)],[deltah^(+I)=ip^(+)xi^(I)+ip^(I)xi^(+)=-h^(+I)rarrxi^(I)=(ih^(+I)-p^(I)xi^(+))//p^(I)","I in2","dots","D-1]:}\begin{aligned} & \delta h^{++}=2 i p^{+} \xi^{+}=-h^{++} \rightarrow \xi^{+}=i h^{++} / 2 p^{+} \\ & \delta h^{+-}=i p^{+} \xi^{-}+i p^{-} \xi^{+}=-h^{+-} \rightarrow \xi^{-}=\left(i h^{+-}-p^{-} \xi^{+}\right) / p^{+} \\ & \delta h^{+I}=i p^{+} \xi^{I}+i p^{I} \xi^{+}=-h^{+I} \rightarrow \xi^{I}=\left(i h^{+I}-p^{I} \xi^{+}\right) / p^{I}, I \in 2, \ldots, D-1 \end{aligned}δh++=2ip+ξ+=h++ξ+=ih++/2p+δh+=ip+ξ+ipξ+=h+ξ=(ih+pξ+)/p+δh+I=ip+ξI+ipIξ+=h+IξI=(ih+IpIξ+)/pI,I2,,D1
For this choice of ξ μ ξ μ xi^(mu)\xi^{\mu}ξμ, we get light-cone gauge:
h + + = h + = h + I = 0 h + + = h + = h + I = 0 h^(++)=h^(+-)=h^(+I)=0h^{++}=h^{+-}=h^{+I}=0h++=h+=h+I=0
For this gauge choice, the equations of motion reduce to (HW)
p 2 h I J = 0 , h I I = 0 h I = 1 p + p J h I J , h = 1 p + p I h I p 2 h I J = 0 , h I I = 0 h I = 1 p + p J h I J , h = 1 p + p I h I {:[p^(2)h^(IJ)=0","h^(II)=0],[h^(I-)=(1)/(p^(+))p_(J)h^(IJ)","h^(--)=(1)/(p^(+))p_(I)h^(-I)]:}\begin{gathered} p^{2} h^{I J}=0, h^{I I}=0 \\ h^{I-}=\frac{1}{p^{+}} p_{J} h^{I J}, h^{--}=\frac{1}{p^{+}} p_{I} h^{-I} \end{gathered}p2hIJ=0,hII=0hI=1p+pJhIJ,h=1p+pIhI
Note that h I , h h I , h h^(I-),h^(--)h^{I-}, h^{--}hI,hare determined by h I J h I J h^(IJ)h^{I J}hIJ so are not independent degrees of freedom.
Hence, h I J h I J h^(IJ)h^{I J}hIJ can be treated like massless scalars, and h I h I h^(-I)h^{-I}hI and h h h^(--)h^{--}hare determined from these. Since h I J h I J h^(IJ)h^{I J}hIJ is a symmetric traceless ( D 2 ) × ( D 2 ) ( D 2 ) × ( D 2 ) (D-2)xx(D-2)(D-2) \times(D-2)(D2)×(D2) matrix, the number of degrees of freedom in the gravitational field is
( D 2 2 ) + ( D 2 ) 1 = 1 2 ( D 2 ) ( D 3 ) + D 3 = 1 2 D ( D 3 ) ( D 2 2 ) + ( D 2 ) 1 = 1 2 ( D 2 ) ( D 3 ) + D 3 = 1 2 D ( D 3 ) ((D-2)/(2))+(D-2)-1=(1)/(2)(D-2)(D-3)+D-3=(1)/(2)D(D-3)\binom{D-2}{2}+(D-2)-1=\frac{1}{2}(D-2)(D-3)+D-3=\frac{1}{2} D(D-3)(D22)+(D2)1=12(D2)(D3)+D3=12D(D3)
For D = 4 D = 4 D=4D=4D=4, we see that gravity has 2 degrees of freedom. After quantisation, we can once again write h I J h I J h^(IJ)h^{I J}hIJ in terms of creation and annihilation operators. The quanta of the gravitational field are called gravitons. One-graviton states are given by
I , J = 2 D 1 ϵ I J ( a I J ( p ) ) | 0 I , J = 2 D 1 ϵ I J a I J ( p ) | 0 sum_(I,J=2)^(D-1)epsilon_(IJ)(a^(IJ)(( vec(p))))^(†)|0:)\sum_{I, J=2}^{D-1} \epsilon_{I J}\left(a^{I J}(\vec{p})\right)^{\dagger}|0\rangleI,J=2D1ϵIJ(aIJ(p))|0
where ϵ I J ϵ I J epsilon_(IJ)\epsilon_{I J}ϵIJ is a symmetric traceless tensor.

3 Relativistic Point Particle

This will primarily follow Tong Section 1.1. In non-relativistic quantum mechanics, spatial coordinates X i X i X^(i)X^{i}Xi are operators white X 0 X 0 X^(0)X^{0}X0 is a label. On the other hand, in relativity space and time are on equal footing so we have two choices: to demote spatial coordinates to labels and introduce fields giving QFT, or to promote time to an operator. The latter approach is less convenient in practice for the study of point particles, but generalises more straightforwardly to string theory.
Alter promoting X 0 X 0 X^(0)X^{0}X0 to and operator, we must introduce a new parameter τ τ tau\tauτ to parameterize the world line. One then integrates over all paths between initial and final spacetime points. The action should be Lorentz-invariant and extremised by the classical trajectory. The natural candidate is the proper time of the particle's trajectory:
S = m d s S = m d s S=-m int dsS=-m \int d sS=mds
where
d s 2 = d X μ d X ν η μ ν = X ˙ μ X ˙ ν η μ ν d τ 2 , X ˙ μ = τ X μ d s 2 = d X μ d X ν η μ ν = X ˙ μ X ˙ ν η μ ν d τ 2 , X ˙ μ = τ X μ {:[ds^(2)=-dX^(mu)dX^(nu)eta_(mu nu)],[=-X^(˙)^(mu)X^(˙)^(nu)eta_(mu nu)dtau^(2)","quadX^(˙)^(mu)=del_(tau)X^(mu)]:}\begin{aligned} d s^{2} & =-d X^{\mu} d X^{\nu} \eta_{\mu \nu} \\ & =-\dot{X}^{\mu} \dot{X}^{\nu} \eta_{\mu \nu} d \tau^{2}, \quad \dot{X}^{\mu}=\partial_{\tau} X^{\mu} \end{aligned}ds2=dXμdXνημν=X˙μX˙νημνdτ2,X˙μ=τXμ
X μ ( τ ) X μ ( τ ) X^(mu)(tau)X^{\mu}(\tau)Xμ(τ), encodes the embedding of the world line into the "target space," which we take to be Minkowski space.
Hence the action for a relativistic point particle is
S = m d σ X ˙ μ X ˙ v η μ v S = m d σ X ˙ μ X ˙ v η μ v S=-m int d sigmasqrt(X^(˙)^(mu)X^(˙)^(v)eta_(mu v))S=-m \int d \sigma \sqrt{\dot{X}^{\mu} \dot{X}^{v} \eta_{\mu v}}S=mdσX˙μX˙vημv
This is manifestly invariant under Poincare transformations of target space:
X μ L ν μ X ν + T μ X μ L ν μ X ν + T μ X^(mu)rarrL_(nu)^(mu)X^(nu)+T^(mu)X^{\mu} \rightarrow L_{\nu}^{\mu} X^{\nu}+T^{\mu}XμLνμXν+Tμ
It also has "reparameterisation invariance":
τ τ ~ ( τ ) τ τ ~ ( τ ) tau rarr tilde(tau)(tau)\tau \rightarrow \tilde{\tau}(\tau)ττ~(τ)
Indeed, we see that
S = m d τ ~ τ ~ X μ τ ~ X ν η μ ν = m d τ τ ~ τ ( τ τ ~ τ X μ ) ( τ τ ~ τ X ν ) η μ ν = m d τ τ X μ τ X ν η μ ν S = m d τ ~ τ ~ X μ τ ~ X ν η μ ν = m d τ τ ~ τ τ τ ~ τ X μ τ τ ~ τ X ν η μ ν = m d τ τ X μ τ X ν η μ ν {:[S=-m int d tilde(tau)sqrt(-del_( tilde(tau))X^(mu)del_( tilde(tau))X^(nu)eta_(mu nu))],[=-m int d tau(del( tilde(tau)))/(del tau)sqrt(-((del tau)/(del( tilde(tau)))del_(tau)X^(mu))((del tau)/(del( tilde(tau)))del_(tau)X^(nu))eta_(mu nu))],[=-m int d tausqrt(-del_(tau)X^(mu)del_(tau)X^(nu)eta_(mu nu))]:}\begin{aligned} S & =-m \int d \tilde{\tau} \sqrt{-\partial_{\tilde{\tau}} X^{\mu} \partial_{\tilde{\tau}} X^{\nu} \eta_{\mu \nu}} \\ & =-m \int d \tau \frac{\partial \tilde{\tau}}{\partial \tau} \sqrt{-\left(\frac{\partial \tau}{\partial \tilde{\tau}} \partial_{\tau} X^{\mu}\right)\left(\frac{\partial \tau}{\partial \tilde{\tau}} \partial_{\tau} X^{\nu}\right) \eta_{\mu \nu}} \\ & =-m \int d \tau \sqrt{-\partial_{\tau} X^{\mu} \partial_{\tau} X^{\nu} \eta_{\mu \nu}} \end{aligned}S=mdτ~τ~Xμτ~Xνημν=mdττ~τ(ττ~τXμ)(ττ~τXν)ημν=mdττXμτXνημν
We can use this symmetry to set τ ~ = X 0 ( τ ) τ ~ = X 0 ( τ ) tilde(tau)=X^(0)(tau)\tilde{\tau}=X^{0}(\tau)τ~=X0(τ) (this is know as static gauge), so that
S = d τ 1 X ˙ 2 S = d τ 1 X ˙ 2 S=int d tausqrt(1- vec(X)^(˙)^(2))S=\int d \tau \sqrt{1-\dot{\vec{X}}^{2}}S=dτ1X˙2
where we relabeled τ ~ τ ~ tilde(tau)\tilde{\tau}τ~ as τ τ tau\tauτ. Lorentz-invariance is no longer manifest. Let's expand the static gauge action in the non-relativistic limit:
S = d τ 1 X ˙ 2 = m d τ ( 1 1 2 X ˙ 2 + ) S = d τ 1 X ˙ 2 = m d τ 1 1 2 X ˙ 2 + {:[S=int d tausqrt(1- vec(X)^(˙)^(2))],[=-m int d tau(1-(1)/(2) vec(X)^(˙)^(2)+dots)]:}\begin{aligned} & S=\int d \tau \sqrt{1-\dot{\vec{X}}^{2}} \\ & =-m \int d \tau\left(1-\frac{1}{2} \dot{\vec{X}}^{2}+\ldots\right) \end{aligned}S=dτ1X˙2=mdτ(112X˙2+)
where ... indicates higher order terms in X ˙ X ˙ vec(X)^(˙)\dot{\vec{X}}X˙. The first term is the rest-mass energy and the second term is the non-relativistic kinetic energy.
We will now compute the equations of motion and quantize using the manifestly Lorentz-invanaut action. Let's compute the equations of motion by extremising the action. Consider the variation X μ ( τ ) X μ ( τ ) + δ X μ ( τ ) X μ ( τ ) X μ ( τ ) + δ X μ ( τ ) X^(mu)(tau)rarrX^(mu)(tau)+deltaX^(mu)(tau)X^{\mu}(\tau) \rightarrow X^{\mu}(\tau)+\delta X^{\mu}(\tau)Xμ(τ)Xμ(τ)+δXμ(τ) :
δ S = d τ δ L ( X ˙ μ ( τ ) ) = d τ L X ˙ μ δ X ˙ μ = d τ [ τ ( L X ˙ μ δ X μ ) τ ( L X ˙ μ ) δ X μ ] = L X ˙ μ δ X μ | τ = τ i τ = τ f d τ τ ( L X ˙ μ ) δ X μ = d τ τ ( L X ˙ μ ) δ X μ δ S = d τ δ L X ˙ μ ( τ ) = d τ L X ˙ μ δ X ˙ μ = d τ τ L X ˙ μ δ X μ τ L X ˙ μ δ X μ = L X ˙ μ δ X μ τ = τ i τ = τ f d τ τ L X ˙ μ δ X μ = d τ τ L X ˙ μ δ X μ {:[delta S=int d tau deltaL(X^(˙)^(mu)(tau))],[=int d tau(delL)/(delX^(˙)^(mu))deltaX^(˙)^(mu)=int d tau[del_(tau)((delL)/(delX^(˙)^(mu))deltaX^(mu))-del_(tau)((delL)/(delX^(˙)^(mu)))deltaX^(mu)]],[=(delL)/(delX^(˙)^(mu))deltaX^(mu)|_(tau=tau_(i))^(tau=tau_(f))-int d taudel_(tau)((delL)/(delX^(˙)^(mu)))deltaX^(mu)],[=-int d taudel_(tau)((delL)/(delX^(˙)^(mu)))deltaX^(mu)]:}\begin{aligned} & \delta S=\int d \tau \delta \mathcal{L}\left(\dot{X}^{\mu}(\tau)\right) \\ & =\int d \tau \frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}} \delta \dot{X}^{\mu}=\int d \tau\left[\partial_{\tau}\left(\frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}} \delta X^{\mu}\right)-\partial_{\tau}\left(\frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}}\right) \delta X^{\mu}\right] \\ & =\left.\frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}} \delta X^{\mu}\right|_{\tau=\tau_{i}} ^{\tau=\tau_{f}}-\int d \tau \partial_{\tau}\left(\frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}}\right) \delta X^{\mu} \\ & =-\int d \tau \partial_{\tau}\left(\frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}}\right) \delta X^{\mu} \end{aligned}δS=dτδL(X˙μ(τ))=dτLX˙μδX˙μ=dτ[τ(LX˙μδXμ)τ(LX˙μ)δXμ]=LX˙μδXμ|τ=τiτ=τfdττ(LX˙μ)δXμ=dττ(LX˙μ)δXμ
where we take δ X μ ( τ i ) = δ X μ ( τ f ) = 0 δ X μ τ i = δ X μ τ f = 0 deltaX^(mu)(tau_(i))=deltaX^(mu)(tau_(f))=0\delta X^{\mu}\left(\tau_{i}\right)=\delta X^{\mu}\left(\tau_{f}\right)=0δXμ(τi)=δXμ(τf)=0. Hence, we find that
δ S = 0 τ Π μ = 0 δ S = 0 τ Π μ = 0 delta S=0rarrdel_(tau)Pi_(mu)=0\delta S=0 \rightarrow \partial_{\tau} \Pi_{\mu}=0δS=0τΠμ=0
where Π μ = L X ˙ μ Π μ = L X ˙ μ Pi_(mu)=(delL)/(delX^(˙)^(mu))\Pi_{\mu}=\frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}}Πμ=LX˙μ is the canonical momentum.
In the present case L = m X ˙ 2 , X ˙ 2 = X ˙ μ X ˙ ν η μ ν L = m X ˙ 2 , X ˙ 2 = X ˙ μ X ˙ ν η μ ν L=-msqrt(-X^(˙)^(2)),X^(˙)^(2)=X^(˙)^(mu)X^(˙)^(nu)eta_(mu nu)\mathcal{L}=-m \sqrt{-\dot{X}^{2}}, \dot{X}^{2}=\dot{X}^{\mu} \dot{X}^{\nu} \eta_{\mu \nu}L=mX˙2,X˙2=X˙μX˙νημν. Hence,
Π μ = L X ˙ μ = m 2 1 X ˙ 2 ( 2 X ˙ μ ) = + m X ˙ μ X ˙ 2 = m d X μ d s Π μ = L X ˙ μ = m 2 1 X ˙ 2 2 X ˙ μ = + m X ˙ μ X ˙ 2 = m d X μ d s Pi_(mu)=(delL)/(delX^(˙)^(mu))=-(m)/(2)(1)/(sqrt(-X^(˙)^(2)))(-2X^(˙)_(mu))=+(mX^(˙)_(mu))/(sqrt(-X^(˙)^(2)))=m(dX_(mu))/(ds)\Pi_{\mu}=\frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}}=-\frac{m}{2} \frac{1}{\sqrt{-\dot{X}^{2}}}\left(-2 \dot{X}_{\mu}\right)=+\frac{m \dot{X}_{\mu}}{\sqrt{-\dot{X}^{2}}}=m \frac{d X_{\mu}}{d s}Πμ=LX˙μ=m21X˙2(2X˙μ)=+mX˙μX˙2=mdXμds
Note the Π 2 = m 2 Π 2 = m 2 Pi^(2)=-m^(2)\Pi^{2}=-m^{2}Π2=m2. The equations of motion are
0 = τ Π μ = m d d τ ( d X μ d s ) 1 X ˙ 2 d d τ d d s ( d X μ d s ) = d 2 X μ d s 2 = 0 0 = τ Π μ = m d d τ d X μ d s 1 X ˙ 2 d d τ d d s d X μ d s = d 2 X μ d s 2 = 0 0=del_(tau)Pi_(mu)=m(d)/(d tau)((dX^(mu))/(ds))rarrubrace((1)/(sqrt(-X^(˙)^(2)))(d)/(d tau)ubrace)_((d)/(ds))((dX^(mu))/(ds))quad=(d^(2)X_(mu))/(ds^(2))=00=\partial_{\tau} \Pi_{\mu}=m \frac{d}{d \tau}\left(\frac{d X^{\mu}}{d s}\right) \rightarrow \underbrace{\frac{1}{\sqrt{-\dot{X}^{2}}} \frac{d}{d \tau}}_{\frac{d}{d s}}\left(\frac{d X^{\mu}}{d s}\right) \quad=\frac{d^{2} X_{\mu}}{d s^{2}}=00=τΠμ=mddτ(dXμds)1X˙2ddτdds(dXμds)=d2Xμds2=0
Hence, particles follow linear trajectories which satisfy the mass shell constraint, as expected.
To quantize, promote Π μ Π μ Pi_(mu)\Pi_{\mu}Πμ to the operator Π μ = i / X μ Π μ = i / X μ Pi_(mu)=-i del//delX^(mu)\Pi_{\mu}=-i \partial / \partial X^{\mu}Πμ=i/Xμ. Then we have the canonical quantisation condition
[ X μ ( τ ) , Π ν ( τ ) ] = i δ ( τ τ ) δ ν μ X μ ( τ ) , Π ν τ = i δ τ τ δ ν μ [X^(mu)(tau),Pi_(nu)(tau^('))]=i delta(tau-tau^('))delta_(nu)^(mu)\left[X^{\mu}(\tau), \Pi_{\nu}\left(\tau^{\prime}\right)\right]=i \delta\left(\tau-\tau^{\prime}\right) \delta_{\nu}^{\mu}[Xμ(τ),Πν(τ)]=iδ(ττ)δνμ
Moreover the constraint Π 2 + m 2 = 0 Π 2 + m 2 = 0 Pi^(2)+m^(2)=0\Pi^{2}+m^{2}=0Π2+m2=0 becomes
( X μ X ν η μ ν + m 2 ) Ψ ( x ) = 0 X μ X ν η μ ν + m 2 Ψ ( x ) = 0 (-(del)/(delX^(mu))(del)/(delX^(nu))eta^(mu nu)+m^(2))Psi(x)=0\left(-\frac{\partial}{\partial X^{\mu}} \frac{\partial}{\partial X^{\nu}} \eta^{\mu \nu}+m^{2}\right) \Psi(x)=0(XμXνημν+m2)Ψ(x)=0
where Ψ Ψ Psi\PsiΨ is a wavefunction. Hence we recover the Klein-Gordon equation we saw previously for scalar fields. Note that Ψ ( x ) Ψ ( x ) Psi(x)\Psi(x)Ψ(x) is not a field, however. In this formalism we can only define a single-particle state which is described by the wavefunction. In contrast, in QFT we can construct multiparticle states. Similarly, when we generalise this approach to string theory, we will only be able to construct single-panticle states. To define multi-particle states in string theory, we need string field theory, which is beyond the scope of this course.

4 Nambu - Goto Action

This will follow Tong section 1.2 and BBS section 2.2. Whereas a particle sweeps out a world line in spacetime, a string sweeps out a 2 d 2 d 2d2 \mathrm{~d}2 d surface called a world sheet. Points on the worldsheet are parameterised by two worldsheet coordinates σ α = ( σ 0 , σ 1 ) = ( τ , σ ) . X μ ( τ , σ ) σ α = σ 0 , σ 1 = ( τ , σ ) . X μ ( τ , σ ) sigma^(alpha)=(sigma^(0),sigma^(1))=(tau,sigma).X^(mu)(tau,sigma)\sigma^{\alpha}=\left(\sigma^{0}, \sigma^{1}\right)=(\tau, \sigma) . X^{\mu}(\tau, \sigma)σα=(σ0,σ1)=(τ,σ).Xμ(τ,σ) describes the embedding of the world sheet into spacetime.
  • open strings: σ [ 0 , π ] σ [ 0 , π ] sigma in[0,pi]\sigma \in[0, \pi]σ[0,π]
  • closed strings: σ [ 0 , 2 π ) σ [ 0 , 2 π ) sigma in[0,2pi)\sigma \in[0,2 \pi)σ[0,2π) (periodic)
Note that BBS takes σ [ 0 , π ) σ [ 0 , π ) sigma in[0,pi)\sigma \in[0, \pi)σ[0,π) but we will follow the conventions of Tong.
Whereas the action for a relativistic point particle is proportional to the length of the worldline, the action of a string should be proportional to the area of the worldsheet. Hence, the classical string motion extremizes the area. To compute the area of the 2 d 2 d 2d2 \mathrm{~d}2 d surface swept out by the string, first compute the induced metric on the surface:
γ α β = X μ σ α X ν σ β η μ ν γ α β = X μ σ α X ν σ β η μ ν gamma_(alpha beta)=(delX^(mu))/(delsigma^(alpha))(delX^(nu))/(delsigma^(beta))eta_(mu nu)\gamma_{\alpha \beta}=\frac{\partial X^{\mu}}{\partial \sigma^{\alpha}} \frac{\partial X^{\nu}}{\partial \sigma^{\beta}} \eta_{\mu \nu}γαβ=XμσαXνσβημν
The area of the surface is then given by
Area = d 2 σ det γ  Area  = d 2 σ det γ " Area "=intd^(2)sigmasqrt(-det gamma)\text { Area }=\int d^{2} \sigma \sqrt{-\operatorname{det} \gamma} Area =d2σdetγ
Noting that γ α β = ( x ˙ 2 X ˙ X X ˙ x X 2 ) γ α β = x ˙ 2 X ˙ X X ˙ x X 2 quadgamma_(alpha beta)=([x^(˙)^(2),X^(˙)*X^(')],[X^(˙)*x^('),X^('2)])\quad \gamma_{\alpha \beta}=\left(\begin{array}{cc}\dot{x}^{2} & \dot{X} \cdot X^{\prime} \\ \dot{X} \cdot x^{\prime} & X^{\prime 2}\end{array}\right)γαβ=(x˙2X˙XX˙xX2), where X ˙ μ = τ X μ , X μ = σ X μ X ˙ μ = τ X μ , X μ = σ X μ X^(˙)^(mu)=del_(tau)X^(mu),X^('mu)=del_(sigma)X^(mu)\dot{X}^{\mu}=\partial_{\tau} X^{\mu}, X^{\prime \mu}=\partial_{\sigma} X^{\mu}X˙μ=τXμ,Xμ=σXμ we see that
(4) Area = d σ d τ ( X ˙ X ) 2 X ˙ 2 X 2 (4)  Area  = d σ d τ X ˙ X 2 X ˙ 2 X 2 {:(4)" Area "=int d sigma d tausqrt(((X^(˙))*X^('))^(2)-X^(˙)^(2)X^('2)):}\begin{equation*} \text { Area }=\int d \sigma d \tau \sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-\dot{X}^{2} X^{\prime 2}} \tag{4} \end{equation*}(4) Area =dσdτ(X˙X)2X˙2X2
Let's verify this is the area when the target space in Euclidean ( R D ) R D (R^(D))\left(\mathbb{R}^{D}\right)(RD) rather than Minkowski space. Consider an infinitesimal region in σ , τ σ , τ sigma,tau\sigma, \tauσ,τ space and let's compute the area of the corresponding region in the target space. The vectors tangent to the boundary of the region in the target space are:
d l 1 = X σ d σ , d l 2 = X τ d τ d l 1 = X σ d σ , d l 2 = X τ d τ d vec(l)_(1)=(del( vec(X)))/(del sigma)d sigma,quad d vec(l)_(2)=(del( vec(X)))/(del tau)d taud \vec{l}_{1}=\frac{\partial \vec{X}}{\partial \sigma} d \sigma, \quad d \vec{l}_{2}=\frac{\partial \vec{X}}{\partial \tau} d \taudl1=Xσdσ,dl2=Xτdτ
If the angle between the two vectors is θ θ theta\thetaθ, then the area is
d ( Area ) = | d l 1 | | d l 2 | sin θ = d l 1 2 d l 2 2 ( 1 cos 2 θ ) = d l 1 2 d l 2 2 ( d l 1 d l 2 ) 2 = X ˙ 2 X 2 ( X ˙ X ) 2 d σ d τ d (  Area  ) = d l 1 d l 2 sin θ = d l 1 2 d l 2 2 1 cos 2 θ = d l 1 2 d l 2 2 d l 1 d l 2 2 = X ˙ 2 X 2 X ˙ X 2 d σ d τ {:[d(" Area ")=|d vec(l_(1))||d vec(l)_(2)|sin theta=sqrt(d vec(l)_(1)^(2)d vec(l)_(2)^(2)(1-cos^(2)theta))=sqrt(d vec(l)_(1)^(2)d vec(l)_(2)^(2)-(d vec(l_(1))*d vec(l)_(2))^(2))],[=sqrt(X^(˙)^(2)X^('2)-((X^(˙))*X^('))^(2))d sigma d tau]:}\begin{aligned} & d(\text { Area })=\left|d \overrightarrow{l_{1}}\right|\left|d \vec{l}_{2}\right| \sin \theta=\sqrt{d \vec{l}_{1}^{2} d \vec{l}_{2}^{2}\left(1-\cos ^{2} \theta\right)}=\sqrt{d \vec{l}_{1}^{2} d \vec{l}_{2}^{2}-\left(d \overrightarrow{l_{1}} \cdot d \vec{l}_{2}\right)^{2}} \\ & =\sqrt{\dot{X}^{2} X^{\prime 2}-\left(\dot{X} \cdot X^{\prime}\right)^{2}} d \sigma d \tau \end{aligned}d( Area )=|dl1||dl2|sinθ=dl12dl22(1cos2θ)=dl12dl22(dl1dl2)2=X˙2X2(X˙X)2dσdτ
which indeed takes the form of (4).
After this discussion we now present the Nambu-Goto action for a relativistic string:
S = T d σ d τ ( X ˙ X ) 2 X ˙ 2 X 2 S = T d σ d τ X ˙ X 2 X ˙ 2 X 2 S=-T int d sigma d tausqrt(((X^(˙))*X^('))^(2)-X^(˙)^(2)X^('2))S=-T \int d \sigma d \tau \sqrt{\left(\dot{X} \cdot X^{\prime}\right)^{2}-\dot{X}^{2} X^{\prime 2}}S=Tdσdτ(X˙X)2X˙2X2
where T T TTT is the string tension. To understand physical interpretation of T T TTT, let's take the non-relativistic limit. Using reparameteristion invariance σ α σ α sigma^(alpha)rarr\sigma^{\alpha} \rightarrowσα σ α ( τ , σ ) σ α ( τ , σ ) sigma^('alpha)(tau,sigma)\sigma^{\prime \alpha}(\tau, \sigma)σα(τ,σ) (which you will prove in HW) we may choose "static gauge":
X 0 = τ , X 1 = σ X 0 = τ , X 1 = σ X^(0)=tau,X^(1)=sigmaX^{0}=\tau, X^{1}=\sigmaX0=τ,X1=σ
Note that in this gauge 0 < σ < L 0 < σ < L 0 < sigma < L0<\sigma<L0<σ<L, where L L LLL is the spatial length of the string. Then
det γ = det ( X ˙ 2 X ˙ X X ˙ X X 2 ) = det ( 1 + ( X ˙ I ) 2 X ˙ I X I X ˙ I X I 1 + ( X I ) 2 ) = ( 1 + ( X ˙ I ) 2 ) ( 1 + ( X I ) 2 ) + = 1 + ( X ˙ I ) 2 ( X I ) 2 + det γ = det X ˙ 2 X ˙ X X ˙ X X 2 = det 1 + X ˙ I 2 X ˙ I X I X ˙ I X I 1 + X I 2 = 1 + X ˙ I 2 1 + X I 2 + = 1 + X ˙ I 2 X I 2 + {:[det gamma=det([X^(˙)^(2),X^(˙)*X^(')],[X^(˙)*X^('),X^('2)])],[=det([-1+(X^(˙)^(I))^(2),X^(˙)^(I)X^('I)],[X^(˙)^(I)X^('I),1+(X^('I))^(2)])],[=(-1+(X^(˙)^(I))^(2))(1+(X^('I))^(2))+dots],[=-1+(X^(˙)^(I))^(2)-(X^('I))^(2)+dots]:}\begin{aligned} \operatorname{det} \gamma & =\operatorname{det}\left(\begin{array}{cc} \dot{X}^{2} & \dot{X} \cdot X^{\prime} \\ \dot{X} \cdot X^{\prime} & X^{\prime 2} \end{array}\right) \\ & =\operatorname{det}\left(\begin{array}{cc} -1+\left(\dot{X}^{I}\right)^{2} & \dot{X}^{I} X^{\prime I} \\ \dot{X}^{I} X^{\prime I} & 1+\left(X^{\prime I}\right)^{2} \end{array}\right) \\ & =\left(-1+\left(\dot{X}^{I}\right)^{2}\right)\left(1+\left(X^{\prime I}\right)^{2}\right)+\ldots \\ & =-1+\left(\dot{X}^{I}\right)^{2}-\left(X^{\prime I}\right)^{2}+\ldots \end{aligned}detγ=det(X˙2X˙XX˙XX2)=det(1+(X˙I)2X˙IXIX˙IXI1+(XI)2)=(1+(X˙I)2)(1+(XI)2)+=1+(X˙I)2(XI)2+
where I { 2 , , D 1 } I { 2 , , D 1 } I in{2,dots,D-1}I \in\{2, \ldots, D-1\}I{2,,D1} labels the transverse directions and ... indicate higherorder terms in X ˙ I X ˙ I X^(˙)^(I)\dot{X}^{I}X˙I or X I X I X^('I)X^{\prime I}XI, which we neglect in non-redativistic limit. In this limit,
S = T d σ d τ det γ T d σ d τ 1 ( X ˙ I ) 2 + ( X I ) 2 T d τ d σ [ 1 + 1 2 ( X ˙ I ) 2 1 2 ( X I ) 2 ] S = T d σ d τ det γ T d σ d τ 1 X ˙ I 2 + X I 2 T d τ d σ 1 + 1 2 X ˙ I 2 1 2 X I 2 {:[S=-T int d sigma d tausqrt(-det gamma)],[∼-T int d sigma d tausqrt(1-(X^(˙)^(I))^(2)+(X^('I))^(2))],[∼T int d tau d sigma[-1+(1)/(2)(X^(˙)^(I))^(2)-(1)/(2)(X^('I))^(2)]]:}\begin{aligned} & S=-T \int d \sigma d \tau \sqrt{-\operatorname{det} \gamma} \\ & \sim-T \int d \sigma d \tau \sqrt{1-\left(\dot{X}^{I}\right)^{2}+\left(X^{\prime I}\right)^{2}} \\ & \sim T \int d \tau d \sigma\left[-1+\frac{1}{2}\left(\dot{X}^{I}\right)^{2}-\frac{1}{2}\left(X^{\prime I}\right)^{2}\right] \end{aligned}S=TdσdτdetγTdσdτ1(X˙I)2+(XI)2Tdτdσ[1+12(X˙I)212(XI)2]
Let's compute the rest energy:
S rest = T d τ d σ = m d τ , where m = L T S rest  = T d τ d σ = m d τ ,  where  m = L T S_("rest ")=-T*int d tau d sigma=-m int d tau," where "m=LTS_{\text {rest }}=-T \cdot \int d \tau d \sigma=-m \int d \tau, \text { where } m=L TSrest =Tdτdσ=mdτ, where m=LT
This is the rest mass contribution to the action of a point-particle with mass L T L T LTL TLT. Hence, T T TTT is mass per unit length and has dimensions ( length ) 2 2 ^(-2){ }^{-2}2 (in units where = c = 1 ) = c = 1 ) ℏ=c=1)\hbar=c=1)=c=1). It is conventional to define T = 1 2 π α T = 1 2 π α T=(1)/(2pialpha^('))T=\frac{1}{2 \pi \alpha^{\prime}}T=12πα, where α α alpha^(')\alpha^{\prime}α is known as "Regge slope" for reasons we will see later. It is also conventional to define α = 1 2 l s 2 α = 1 2 l s 2 alpha^(')=(1)/(2)l_(s)^(2)\alpha^{\prime}=\frac{1}{2} l_{s}^{2}α=12ls2 where l s l s l_(s)l_{s}ls is the "string length".

5 Polyakov Action

This will mainly be based on BBS pg 26 , 27 , 30 , 31 26 , 27 , 30 , 31 26,27,30,3126,27,30,3126,27,30,31. Although the Nambu-Goto action has a nice physical interpretation as the area of a string worldsheet, the
equations of motion are complicated and it is hard to quantize because of the square root. In practice, we use the Polyakov action:
S = T 2 d 2 σ h h α β α X μ β X ν η μ ν S = T 2 d 2 σ h h α β α X μ β X ν η μ ν S=-(T)/(2)intd^(2)sigmasqrt(-h)h^(alpha beta)del_(alpha)X^(mu)del_(beta)X^(nu)eta_(mu nu)S=-\frac{T}{2} \int d^{2} \sigma \sqrt{-h} h^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \eta_{\mu \nu}S=T2d2σhhαβαXμβXνημν
where α { 0 , 1 } , h α β ( τ , σ ) α { 0 , 1 } , h α β ( τ , σ ) alpha in{0,1},h_(alpha beta)(tau,sigma)\alpha \in\{0,1\}, h_{\alpha \beta}(\tau, \sigma)α{0,1},hαβ(τ,σ) is the worldsheet metric,
h = det h α β h α β = ( h 1 ) α β h = det h α β h α β = h 1 α β {:[h=det h_(alpha beta)],[h^(alpha beta)=(h^(-1))^(alpha beta)]:}\begin{aligned} & h=\operatorname{det} h_{\alpha \beta} \\ & h^{\alpha \beta}=\left(h^{-1}\right)^{\alpha \beta} \end{aligned}h=dethαβhαβ=(h1)αβ
Let us show that this is classically equivalent to the NG action. First compute the equation of motion for h α β h α β h^(alpha beta)h^{\alpha \beta}hαβ :
δ S = T 2 d 2 σ [ δ ( h ) h α β α X β X + h δ h α β α X β X ] δ S = T 2 d 2 σ δ ( h ) h α β α X β X + h δ h α β α X β X delta S=-(T)/(2)intd^(2)sigma[delta(sqrt(-h))h^(alpha beta)del_(alpha)X*del_(beta)X+sqrt(-h)deltah^(alpha beta)del_(alpha)X*del_(beta)X]\delta S=-\frac{T}{2} \int d^{2} \sigma\left[\delta(\sqrt{-h}) h^{\alpha \beta} \partial_{\alpha} X \cdot \partial_{\beta} X+\sqrt{-h} \delta h^{\alpha \beta} \partial_{\alpha} X \cdot \partial_{\beta} X\right]δS=T2d2σ[δ(h)hαβαXβX+hδhαβαXβX]
Noting the δ h = 1 2 h h α β δ h α β δ h = 1 2 h h α β δ h α β deltasqrt(-h)=-(1)/(2)sqrt(-h)h_(alpha beta)deltah^(alpha beta)\delta \sqrt{-h}=-\frac{1}{2} \sqrt{-h} h_{\alpha \beta} \delta h^{\alpha \beta}δh=12hhαβδhαβ (which you will provie on HW)
δ S = T 2 d 2 σ [ 1 2 h h α β δ h α β h γ δ γ X δ X + h δ h α β α X β X ] = T 2 d 2 σ h δ h α β [ α X β X 1 2 h α β h γ δ γ X δ X ] = T 2 d 2 σ h δ h α β T α β δ S = T 2 d 2 σ 1 2 h h α β δ h α β h γ δ γ X δ X + h δ h α β α X β X = T 2 d 2 σ h δ h α β α X β X 1 2 h α β h γ δ γ X δ X = T 2 d 2 σ h δ h α β T α β {:[delta S=-(T)/(2)intd^(2)sigma[-(1)/(2)sqrt(-h)h_(alpha beta)deltah^(alpha beta)h^(gamma delta)del_(gamma)X*del_(delta)X+sqrt(-h)deltah^(alpha beta)del_(alpha)X*del_(beta)X]],[=-(T)/(2)intd^(2)sigmasqrt(-h)deltah^(alpha beta)[del_(alpha)X*del_(beta)X-(1)/(2)h_(alpha beta)h^(gamma delta)del_(gamma)X*del_(delta)X]],[=-(T)/(2)intd^(2)sigmasqrt(-h)deltah^(alpha beta)T_(alpha beta)]:}\begin{aligned} \delta S & =-\frac{T}{2} \int d^{2} \sigma\left[-\frac{1}{2} \sqrt{-h} h_{\alpha \beta} \delta h^{\alpha \beta} h^{\gamma \delta} \partial_{\gamma} X \cdot \partial_{\delta} X+\sqrt{-h} \delta h^{\alpha \beta} \partial_{\alpha} X \cdot \partial_{\beta} X\right] \\ & =-\frac{T}{2} \int d^{2} \sigma \sqrt{-h} \delta h^{\alpha \beta}\left[\partial_{\alpha} X \cdot \partial_{\beta} X-\frac{1}{2} h_{\alpha \beta} h^{\gamma \delta} \partial_{\gamma} X \cdot \partial_{\delta} X\right] \\ & =-\frac{T}{2} \int d^{2} \sigma \sqrt{-h} \delta h^{\alpha \beta} T_{\alpha \beta} \end{aligned}δS=T2d2σ[12hhαβδhαβhγδγXδX+hδhαβαXβX]=T2d2σhδhαβ[αXβX12hαβhγδγXδX]=T2d2σhδhαβTαβ
where T α β T α β T_(alpha beta)T_{\alpha \beta}Tαβ is the "stress tensor". Hence action extremised ( δ S = 0 ) ( δ S = 0 ) (delta S=0)(\delta S=0)(δS=0) when T α β = 0 T α β = 0 T_(alpha beta)=0T_{\alpha \beta}=0Tαβ=0.
In this case, we have
α X β X = 1 2 h α β h γ δ γ X δ X α X β X = 1 2 h α β h γ δ γ X δ X del_(alpha)X*del_(beta)X=(1)/(2)h_(alpha beta)h^(gamma delta)del_(gamma)X*del_(delta)X\partial_{\alpha} X \cdot \partial_{\beta} X=\frac{1}{2} h_{\alpha \beta} h^{\gamma \delta} \partial_{\gamma} X \cdot \partial_{\delta} XαXβX=12hαβhγδγXδX
Taking determinant of both sides (recall they are 2 × 2 2 × 2 2xx22 \times 22×2 matrices):
det ( α X β X ) = h ( 1 2 h γ δ γ X δ X ) 2 det α X β X = h 1 2 h γ δ γ X δ X 2 det(del_(alpha)X*del_(beta)X)=h((1)/(2)h^(gamma delta)del_(gamma)X*del_(delta)X)^(2)\operatorname{det}\left(\partial_{\alpha} X \cdot \partial_{\beta} X\right)=h\left(\frac{1}{2} h^{\gamma \delta} \partial_{\gamma} X \cdot \partial_{\delta} X\right)^{2}det(αXβX)=h(12hγδγXδX)2
Multiplying by ( 1 ) ( 1 ) (-1)(-1)(1) and taking square rot:
det ( α X β X ) = 1 2 h h γ δ γ X δ X det α X β X = 1 2 h h γ δ γ X δ X sqrt(-det(del_(alpha)X*del_(beta)X))=(1)/(2)sqrt(-h)h^(gamma delta)del_(gamma)X*del_(delta)X\sqrt{-\operatorname{det}\left(\partial_{\alpha} X \cdot \partial_{\beta} X\right)}=\frac{1}{2} \sqrt{-h} h^{\gamma \delta} \partial_{\gamma} X \cdot \partial_{\delta} Xdet(αXβX)=12hhγδγXδX
Recalling the Nambu-Goto action, we see that
S = T d 2 σ det ( α X β X ) = T 2 d 2 σ h h γ γ X δ X S = T d 2 σ det α X β X = T 2 d 2 σ h h γ γ X δ X {:[S=-T intd^(2)sigmasqrt(-det(del_(alpha)Xdel_(beta)X))],[=-(T)/(2)intd^(2)sigmasqrt(-h)h^(gamma)del_(gamma)X*del_(delta)X]:}\begin{aligned} S & =-T \int d^{2} \sigma \sqrt{-\operatorname{det}\left(\partial_{\alpha} X \partial_{\beta} X\right)} \\ & =-\frac{T}{2} \int d^{2} \sigma \sqrt{-h} h^{\gamma} \partial_{\gamma} X \cdot \partial_{\delta} X \end{aligned}S=Td2σdet(αXβX)=T2d2σhhγγXδX
as claimed.

5.1 Symmetries and Gauge-fixing

The Polyakov action has the following symmeties:
  • Poincare transformations of target space: X μ X μ = L ν μ X ν + T μ X μ X μ = L ν μ X ν + T μ X^(mu)rarrX^(mu)=L_(nu)^(mu)X^(nu)+T^(mu)X^{\mu} \rightarrow X^{\mu}=L_{\nu}^{\mu} X^{\nu}+T^{\mu}XμXμ=LνμXν+Tμ
  • Reparameterisations:
σ α σ α ( τ , σ ) , h α β ( τ , σ ) h α β ( τ , σ ) = σ γ σ α σ δ σ β h γ δ ( τ , σ ) σ α σ α ( τ , σ ) , h α β ( τ , σ ) h α β τ , σ = σ γ σ α σ δ σ β h γ δ ( τ , σ ) sigma^(alpha)rarrsigma^('alpha)(tau,sigma),quadh_(alpha beta)(tau,sigma)rarrh_(alpha beta)^(')(tau^('),sigma^('))=(delsigma^(gamma))/(delsigma^('alpha))(delsigma^(delta))/(delsigma^('beta))h_(gamma delta)(tau,sigma)\sigma^{\alpha} \rightarrow \sigma^{\prime \alpha}(\tau, \sigma), \quad h_{\alpha \beta}(\tau, \sigma) \rightarrow h_{\alpha \beta}^{\prime}\left(\tau^{\prime}, \sigma^{\prime}\right)=\frac{\partial \sigma^{\gamma}}{\partial \sigma^{\prime \alpha}} \frac{\partial \sigma^{\delta}}{\partial \sigma^{\prime \beta}} h_{\gamma \delta}(\tau, \sigma)σασα(τ,σ),hαβ(τ,σ)hαβ(τ,σ)=σγσασδσβhγδ(τ,σ)
Check:
S = T 2 d 2 σ h h α β X μ σ α X ν σ β η μ ν = T 2 d 2 σ det ( σ α σ β ) det ( σ γ σ α σ δ σ β h γ δ ) h α β X μ σ α X ν σ β η μ ν = T 2 d 2 σ h h α β X μ σ α X ν σ β η μ ν S = T 2 d 2 σ h h α β X μ σ α X ν σ β η μ ν = T 2 d 2 σ det σ α σ β det σ γ σ α σ δ σ β h γ δ h α β X μ σ α X ν σ β η μ ν = T 2 d 2 σ h h α β X μ σ α X ν σ β η μ ν {:[S=-(T)/(2)intd^(2)sigma^(')sqrt(-h^('))h^('alpha beta)(delX^(mu))/(delsigma^('alpha))(delX^(nu))/(delsigma^('beta))eta_(mu nu)],[=-(T)/(2)intd^(2)sigma det((delsigma^('alpha))/(delsigma^(beta)))sqrt(-det((delsigma^(gamma))/(delsigma^(alpha))(delsigma^(delta))/(delsigma^('beta))h_(gamma delta)))h^(alpha beta)(delX^(mu))/(delsigma^(alpha))(delX^(nu))/(delsigma^(beta))eta_(mu nu)],[=-(T)/(2)intd^(2)sigmasqrt(-h)h^(alpha beta)(delX^(mu))/(delsigma^(alpha))(delX^(nu))/(delsigma^(beta))eta_(mu nu)]:}\begin{aligned} S & =-\frac{T}{2} \int d^{2} \sigma^{\prime} \sqrt{-h^{\prime}} h^{\prime \alpha \beta} \frac{\partial X^{\mu}}{\partial \sigma^{\prime \alpha}} \frac{\partial X^{\nu}}{\partial \sigma^{\prime \beta}} \eta_{\mu \nu} \\ & =-\frac{T}{2} \int d^{2} \sigma \operatorname{det}\left(\frac{\partial \sigma^{\prime \alpha}}{\partial \sigma^{\beta}}\right) \sqrt{-\operatorname{det}\left(\frac{\partial \sigma^{\gamma}}{\partial \sigma^{\alpha}} \frac{\partial \sigma^{\delta}}{\partial \sigma^{\prime \beta}} h_{\gamma \delta}\right)} h^{\alpha \beta} \frac{\partial X^{\mu}}{\partial \sigma^{\alpha}} \frac{\partial X^{\nu}}{\partial \sigma^{\beta}} \eta_{\mu \nu} \\ & =-\frac{T}{2} \int d^{2} \sigma \sqrt{-h} h^{\alpha \beta} \frac{\partial X^{\mu}}{\partial \sigma^{\alpha}} \frac{\partial X^{\nu}}{\partial \sigma^{\beta}} \eta_{\mu \nu} \end{aligned}S=T2d2σhhαβXμσαXνσβημν=T2d2σdet(σασβ)det(σγσασδσβhγδ)hαβXμσαXνσβημν=T2d2σhhαβXμσαXνσβημν
where we noted that det ( σ γ σ α σ δ σ β h γ δ ) = det ( σ α σ β ) h det σ γ σ α σ δ σ β h γ δ = det σ α σ β h sqrt(-det((delsigma^(gamma))/(delsigma^('alpha))(delsigma^(delta))/(delsigma^('beta))h_(gamma delta)))=det((delsigma^(alpha))/(delsigma^('beta)))sqrt(-h)\sqrt{-\operatorname{det}\left(\frac{\partial \sigma^{\gamma}}{\partial \sigma^{\prime \alpha}} \frac{\partial \sigma^{\delta}}{\partial \sigma^{\prime \beta}} h_{\gamma \delta}\right)}=\operatorname{det}\left(\frac{\partial \sigma^{\alpha}}{\partial \sigma^{\prime \beta}}\right) \sqrt{-h}det(σγσασδσβhγδ)=det(σασβ)h.
  • Weyl transformations: h α β e ϕ ( τ , σ ) h α β h α β e ϕ ( τ , σ ) h α β h_(alpha beta)rarre^(phi(tau,sigma))h_(alpha beta)h_{\alpha \beta} \rightarrow e^{\phi(\tau, \sigma)} h_{\alpha \beta}hαβeϕ(τ,σ)hαβ
Check: h h α β e 2 ϕ h e ϕ h α β = h h α β h h α β e 2 ϕ h e ϕ h α β = h h α β quadsqrt(-h)h^(alpha beta)rarrsqrt(-e^(2phi))he^(-phi)h^(alpha beta)=sqrt(-h)h^(alpha beta)\quad \sqrt{-h} h^{\alpha \beta} \rightarrow \sqrt{-e^{2 \phi}} h e^{-\phi} h^{\alpha \beta}=\sqrt{-h} h^{\alpha \beta}hhαβe2ϕheϕhαβ=hhαβ
Note that h α β h α β h_(alpha beta)h_{\alpha \beta}hαβ is a symmetric 2 × 2 2 × 2 2xx22 \times 22×2 matrix so has three independent components. Since we have two reparameterisations (one for each σ α σ α sigma^(alpha)\sigma^{\alpha}σα ) we can fix two components of the metric, laving only one unfixed. Let's choose it to be conformally fiat:
h α β = e ϕ η α β , n α β = ( 1 0 0 1 ) h α β = e ϕ η α β , n α β = 1 0 0 1 h_(alpha beta)=e^(-phi)eta_(alpha beta),quadn_(alpha beta)=([-1,0],[0,1])h_{\alpha \beta}=e^{-\phi} \eta_{\alpha \beta}, \quad n_{\alpha \beta}=\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)hαβ=eϕηαβ,nαβ=(1001)
Using Weyl invariance, we can then fix ϕ = 0 ϕ = 0 phi=0\phi=0ϕ=0 to give
h α β = η α β h α β = η α β h_(alpha beta)=eta_(alpha beta)h_{\alpha \beta}=\eta_{\alpha \beta}hαβ=ηαβ
This is called "conformal gauge." In this gauge, the Polyakov action takes a very simple form:
S = T 2 d 2 σ n α β α X β X = T 2 d 2 σ ( X ˙ 2 X 2 ) S = T 2 d 2 σ n α β α X β X = T 2 d 2 σ X ˙ 2 X 2 S=-(T)/(2)intd^(2)sigman^(alpha beta)del_(alpha)X*del_(beta)X=(T)/(2)intd^(2)sigma(X^(˙)^(2)-X^('2))S=-\frac{T}{2} \int d^{2} \sigma n^{\alpha \beta} \partial_{\alpha} X \cdot \partial_{\beta} X=\frac{T}{2} \int d^{2} \sigma\left(\dot{X}^{2}-X^{\prime 2}\right)S=T2d2σnαβαXβX=T2d2σ(X˙2X2)

5.2 Equations of motion and boundary conditions

This will be based on BBS pg 31-33. We already found the equations of motion for h α β h α β h_(alpha beta)h_{\alpha \beta}hαβ, which imply vanishing of stress tensor. In conformal gauge, this reduces to
0 = T 01 = T 10 = X ˙ X 0 = T 00 = T 11 = 1 2 ( X ˙ 2 + X 2 ) 0 = T 01 = T 10 = X ˙ X 0 = T 00 = T 11 = 1 2 X ˙ 2 + X 2 {:[0=T_(01)=T_(10)=X^(˙)*X^(')],[0=T_(00)=T_(11)=(1)/(2)(X^(˙)^(2)+X^('2))]:}\begin{aligned} & 0=T_{01}=T_{10}=\dot{X} \cdot X^{\prime} \\ & 0=T_{00}=T_{11}=\frac{1}{2}\left(\dot{X}^{2}+X^{\prime 2}\right) \end{aligned}0=T01=T10=X˙X0=T00=T11=12(X˙2+X2)
Adding and subtracting list constraint equivalently gives
( X ˙ ± X ) 2 = 0 X ˙ ± X 2 = 0 ((X^(˙))+-X^('))^(2)=0\left(\dot{X} \pm X^{\prime}\right)^{2}=0(X˙±X)2=0
These are called the "Virasoro constraints."
Next, let's compute equations of motion for X μ X μ X^(mu)X^{\mu}Xμ. Varying the action gives:
δ S = T 2 d 2 σ 2 α X μ ( β δ X μ ) η α β = T d 2 σ η α β β ( α X μ δ X μ ) + T d 2 σ ( 2 X μ ) δ X μ δ S = T 2 d 2 σ 2 α X μ β δ X μ η α β = T d 2 σ η α β β α X μ δ X μ + T d 2 σ 2 X μ δ X μ {:[delta S=-(T)/(2)intd^(2)sigma2del_(alpha)X^(mu)(del_(beta)deltaX_(mu))eta^(alpha beta)],[=-T intd^(2)sigmaeta^(alpha beta)del_(beta)(del_(alpha)X_(mu)deltaX^(mu))+T intd^(2)sigma(del^(2)X^(mu))deltaX_(mu)]:}\begin{aligned} \delta S & =-\frac{T}{2} \int d^{2} \sigma 2 \partial_{\alpha} X^{\mu}\left(\partial_{\beta} \delta X_{\mu}\right) \eta^{\alpha \beta} \\ & =-T \int d^{2} \sigma \eta^{\alpha \beta} \partial_{\beta}\left(\partial_{\alpha} X_{\mu} \delta X^{\mu}\right)+T \int d^{2} \sigma\left(\partial^{2} X^{\mu}\right) \delta X_{\mu} \end{aligned}δS=T2d2σ2αXμ(βδXμ)ηαβ=Td2σηαββ(αXμδXμ)+Td2σ(2Xμ)δXμ
Neglecting boundary terms, we find the equations motion:
2 X μ = X ¨ μ X μ = 0 2 X μ = X ¨ μ X μ = 0 del^(2)X^(mu)=X^(¨)^(mu)-X^(''mu)=0\partial^{2} X^{\mu}=\ddot{X}^{\mu}-X^{\prime \prime \mu}=02Xμ=X¨μXμ=0
Now let's look at boundary terms more carefully.
δ S b d r y = T d τ d σ [ τ ( X ˙ μ δ X μ ) + σ ( X μ δ X μ ) ] = T d τ d σ σ ( X μ δ X μ ) δ S b d r y = T d τ d σ τ X ˙ μ δ X μ + σ X μ δ X μ = T d τ d σ σ X μ δ X μ {:[deltaS_(bdry)=-T int d tau d sigma[-del_(tau)(X^(˙)_(mu)deltaX^(mu))+del_(sigma)(X_(mu)^(')deltaX^(mu))]],[=-T int d tau d sigmadel_(sigma)(X_(mu)^(')deltaX^(mu))]:}\begin{aligned} & \delta S_{b d r y}=-T \int d \tau d \sigma\left[-\partial_{\tau}\left(\dot{X}_{\mu} \delta X^{\mu}\right)+\partial_{\sigma}\left(X_{\mu}^{\prime} \delta X^{\mu}\right)\right] \\ & =-T \int d \tau d \sigma \partial_{\sigma}\left(X_{\mu}^{\prime} \delta X^{\mu}\right) \end{aligned}δSbdry=Tdτdσ[τ(X˙μδXμ)+σ(XμδXμ)]=Tdτdσσ(XμδXμ)
where we discarded boundary terms along the time direction.
  • Closed string:
δ S b d r y = T d τ [ X μ δ X μ | σ = 2 π X μ δ X μ | σ = 0 ] = 0 δ S b d r y = T d τ X μ δ X μ σ = 2 π X μ δ X μ σ = 0 = 0 deltaS_(bdry)=-T int d tau[X_(mu)^(')deltaX^(mu)|_(sigma=2pi)-X_(mu)^(')deltaX^(mu)|_(sigma=0)]=0\delta S_{b d r y}=-T \int d \tau\left[\left.X_{\mu}^{\prime} \delta X^{\mu}\right|_{\sigma=2 \pi}-\left.X_{\mu}^{\prime} \delta X^{\mu}\right|_{\sigma=0}\right]=0δSbdry=Tdτ[XμδXμ|σ=2πXμδXμ|σ=0]=0
since X μ ( τ , σ ) = X μ ( τ , σ + 2 π ) X μ ( τ , σ ) = X μ ( τ , σ + 2 π ) X^(mu)(tau,sigma)=X^(mu)(tau,sigma+2pi)X^{\mu}(\tau, \sigma)=X^{\mu}(\tau, \sigma+2 \pi)Xμ(τ,σ)=Xμ(τ,σ+2π).
  • Open string:
δ S b d r y = T d τ [ X μ δ X μ | σ = π X μ δ X μ | σ = 0 ] δ S b d r y = T d τ X μ δ X μ σ = π X μ δ X μ σ = 0 deltaS_(bdry)=-T int d tau[X_(mu)^(')deltaX^(mu)|_(sigma=pi)-X_(mu)^(')deltaX^(mu)|_(sigma=0)]\delta S_{b d r y}=-T \int d \tau\left[\left.X_{\mu}^{\prime} \delta X^{\mu}\right|_{\sigma=\pi}-\left.X_{\mu}^{\prime} \delta X^{\mu}\right|_{\sigma=0}\right]δSbdry=Tdτ[XμδXμ|σ=πXμδXμ|σ=0]
In this case, boundary terms must vanish individually. This can be achieved with Dirichlet or Neumann boundary conditions:
  • Dirichlet: δ X μ = 0 δ X μ = 0 deltaX^(mu)=0\delta X^{\mu}=0δXμ=0 at σ = 0 σ = 0 sigma=0\sigma=0σ=0 or π π pi\piπ
In other words, X μ X μ X^(mu)X^{\mu}Xμ is fixed to a constant at 0 , π 0 , π 0,pi0, \pi0,π. This breaks Poincare invariance.
  • Neumann: X μ = 0 X μ = 0 X^(mu)=0X^{\mu}=0Xμ=0 at σ = 0 σ = 0 sigma=0\sigma=0σ=0 or π π pi\piπ
This preserves Poincare invariance. We will only consider Neumann boundary conditions. Dirichlet boundary conditions will be considered next term.

5.3 Conserved Charges

This will be based on BBS pg 37,38, Srednicki Chapter 22. As shown earlier, Poincare transformations are symmetries of the string worldsheet theory:
X μ X μ = L ν μ X ν + T μ X μ X μ = L ν μ X ν + T μ X^(mu)rarrX^('mu)=L_(nu)^(mu)X^(nu)+T^(mu)X^{\mu} \rightarrow X^{\prime \mu}=L_{\nu}^{\mu} X^{\nu}+T^{\mu}XμXμ=LνμXν+Tμ
For infinitesimal Lorentz transformations L μ ν = δ ν μ + δ ω μ ν L μ ν = δ ν μ + δ ω μ ν L^(mu)_(nu)=delta_(nu)^(mu)+deltaomega^(mu)_(nu)L^{\mu}{ }_{\nu}=\delta_{\nu}^{\mu}+\delta \omega^{\mu}{ }_{\nu}Lμν=δνμ+δωμν, we have
X μ = X μ + δ ω ν μ X v + T μ δ X μ = δ ω ν μ X v + T μ X μ = X μ + δ ω ν μ X v + T μ δ X μ = δ ω ν μ X v + T μ X^('mu)=X^(mu)+deltaomega_(nu)^(mu)X^(v)+T^(mu)rarr deltaX^(mu)=deltaomega_(nu)^(mu)X^(v)+T^(mu)X^{\prime \mu}=X^{\mu}+\delta \omega_{\nu}^{\mu} X^{v}+T^{\mu} \rightarrow \delta X^{\mu}=\delta \omega_{\nu}^{\mu} X^{v}+T^{\mu}Xμ=Xμ+δωνμXv+TμδXμ=δωνμXv+Tμ
This symmetry implies that momentum and angular momentum of the string are conserved. The relation between symmetries and conserved quantities is given by Nether's theorem. Let's prove it for a general scalar field theory and then apply it to the string worldsheet theory.

Noether's theorem

Consider a set of scalar fields ϕ a ( x ) ϕ a ( x ) phi_(a)(x)\phi_{a}(x)ϕa(x), with Lagrangian L ( ϕ a , μ ϕ a ) L ϕ a , μ ϕ a L(phi_(a),del_(mu)phi_(a))\mathcal{L}\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)L(ϕa,μϕa). If L L L\mathcal{L}L is invariant under the infinitesimal change δ ϕ a ( x ) δ ϕ a ( x ) deltaphi_(a)(x)\delta \phi_{a}(x)δϕa(x), then the following current is classically conserved:
j μ = L ( μ ϕ a ) δ ϕ a j μ = L μ ϕ a δ ϕ a j^(mu)=(delL)/(del(del_(mu)phi_(a)))deltaphi_(a)j^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}jμ=L(μϕa)δϕa
This is known as the "Noether current."

Corollary

The following quantity
Q = d D 1 X j 0 ( x ) spatial intigral at fixed time Q = d D 1 X j 0 ( x ) spatial intigral at fixed time  Q=ubrace(intd^(D-1)Xj^(-0)(x)ubrace)_("spatial intigral at fixed time ")Q=\underbrace{\int d^{D-1} X j^{-0}(x)}_{\text {spatial intigral at fixed time }}Q=dD1Xj0(x)spatial intigral at fixed time 
is constant in time. This is known as the "Noether charge."

Proof

First let's compute the equations of motion. Consider an infinitesinal variation δ ϕ a δ ϕ a deltaphi_(a)\delta \phi_{a}δϕa (not necessarily a symmetry). Classical equations of motion determined by
demanding that δ S = 0 δ S = 0 delta S=0\delta S=0δS=0 :
0 = δ S = d D x δ L = d D x [ L ϕ a δ ϕ a + L ( μ ϕ a ) δ μ ϕ a ] = d D x [ L ϕ a δ ϕ a + μ ( L ( μ ϕ a ) δ ϕ a ) μ ( L ( μ ϕ a ) ) δ ϕ a ] = d D x [ L ϕ a μ ( L ( μ ϕ a ) ) ] δ ϕ a L ϕ a μ ( L ( μ ϕ a ) ) = 0 "Euler-Lagrange equations" 0 = δ S = d D x δ L = d D x L ϕ a δ ϕ a + L μ ϕ a δ μ ϕ a = d D x L ϕ a δ ϕ a + μ L μ ϕ a δ ϕ a μ L μ ϕ a δ ϕ a = d D x L ϕ a μ L μ ϕ a δ ϕ a L ϕ a μ L μ ϕ a = 0  "Euler-Lagrange equations"  {:[0=delta S=intd^(D)x deltaL],[=intd^(D)x[(delL)/(delphi_(a))deltaphi_(a)+(delL)/(del(del_(mu)phi_(a)))deltadel_(mu)phi_(a)]],[=intd^(D)x[(delL)/(delphi_(a))deltaphi_(a)+del_(mu)((delL)/(del(del_(mu)phi_(a)))deltaphi_(a))-del_(mu)((delL)/(del(del_(mu)phi_(a))))deltaphi_(a)]],[=intd^(D)x[(delL)/(delphi_(a))-del_(mu)((delL)/(del(del_(mu)phi_(a))))]deltaphi_(a)],[ rarr(delL)/(delphi_(a))-del_(mu)((delL)/(del(del_(mu)phi_(a))))=0quad" "Euler-Lagrange equations" "]:}\begin{aligned} 0 & =\delta S=\int d^{D} x \delta \mathcal{L} \\ & =\int d^{D} x\left[\frac{\partial \mathcal{L}}{\partial \phi_{a}} \delta \phi_{a}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \partial_{\mu} \phi_{a}\right] \\ & =\int d^{D} x\left[\frac{\partial \mathcal{L}}{\partial \phi_{a}} \delta \phi_{a}+\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}\right)-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right) \delta \phi_{a}\right] \\ & =\int d^{D} x\left[\frac{\partial \mathcal{L}}{\partial \phi_{a}}-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right)\right] \delta \phi_{a} \\ & \rightarrow \frac{\partial \mathcal{L}}{\partial \phi_{a}}-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right)=0 \quad \text { "Euler-Lagrange equations" } \end{aligned}0=δS=dDxδL=dDx[Lϕaδϕa+L(μϕa)δμϕa]=dDx[Lϕaδϕa+μ(L(μϕa)δϕa)μ(L(μϕa))δϕa]=dDx[Lϕaμ(L(μϕa))]δϕaLϕaμ(L(μϕa))=0 "Euler-Lagrange equations" 
where we discarded boundary terms that come from integrating total derivatives in the third line.
Now consider a symmetry variation δ ϕ a δ ϕ a deltaphi_(a)\delta \phi_{a}δϕa. By definition, this leaves L L L\mathcal{L}L invariant:
0 = δ L = L ϕ a δ ϕ a + L ( μ ϕ a ) μ δ ϕ a = μ ( L ( μ ϕ a ) ) δ ϕ a + L ( μ ϕ a ) μ δ ϕ a = μ ( L ( μ ϕ a ) δ ϕ a ) 0 = δ L = L ϕ a δ ϕ a + L μ ϕ a μ δ ϕ a = μ L μ ϕ a δ ϕ a + L μ ϕ a μ δ ϕ a = μ L μ ϕ a δ ϕ a 0=deltaL=(delL)/(delphi_(a))deltaphi_(a)+(delL)/(del(del_(mu)phi_(a)))del_(mu)deltaphi_(a)=del_(mu)((delL)/(del(del_(mu)phi_(a))))deltaphi_(a)+(delL)/(del(del_(mu)phi_(a)))del_(mu)deltaphi_(a)=del_(mu)((delL)/(del(del_(mu)phi_(a)))deltaphi_(a))0=\delta \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \phi_{a}} \delta \phi_{a}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial_{\mu} \delta \phi_{a}=\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right) \delta \phi_{a}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \partial_{\mu} \delta \phi_{a}=\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}\right)0=δL=Lϕaδϕa+L(μϕa)μδϕa=μ(L(μϕa))δϕa+L(μϕa)μδϕa=μ(L(μϕa)δϕa),
where we used the Euler Lagrange equations to obtain the third equality. Hence, μ j μ = 0 μ j μ = 0 del_(mu)j^(mu)=0\partial_{\mu} j^{\mu}=0μjμ=0. This, proves Noether's theorem.
Now integrate μ j μ μ j μ del_(mu)j^(mu)\partial_{\mu} j^{\mu}μjμ over ( D 1 ) ( D 1 ) (D-1)(D-1)(D1)-dimensional space:
0 = d D 1 μ j μ = d D 1 ( 0 j 0 + j ) 0 = d D 1 μ j μ = d D 1 ( 0 j 0 + j ) {:[0=intd^(D-1)del_(mu)j^(mu)],[=intd^(D-1)(del_(0)j^(0)+ubrace(( vec(grad))*( vec(j))ubrace))]:}\begin{aligned} 0 & =\int d^{D-1} \partial_{\mu} j^{\mu} \\ & =\int d^{D-1}(\partial_{0} j^{0}+\underbrace{\vec{\nabla} \cdot \vec{j}}) \end{aligned}0=dD1μjμ=dD1(0j0+j)
Discarding boundary terms from integrating the total derivative finally gives
0 = 0 d D 1 x j 0 ( x ) Q 0 = 0 d D 1 x j 0 ( x ) Q 0=del_(0)ubrace(intd^(D-1)xj^(0)(x)ubrace)_(Q)0=\partial_{0} \underbrace{\int d^{D-1} x j^{0}(x)}_{Q}0=0dD1xj0(x)Q
Hence, 0 Q = 0 0 Q = 0 del_(0)Q=0\partial_{0} Q=00Q=0.
Now let's apply Nether's theorem to worldsheet theory. We can think of X μ ( τ , σ ) X μ ( τ , σ ) X^(mu)(tau,sigma)X^{\mu}(\tau, \sigma)Xμ(τ,σ) as 2d scalar fields with Lagrangian
L = T 2 η α β α X μ β X ν η μ ν L = T 2 η α β α X μ β X ν η μ ν L=-(T)/(2)eta^(alpha beta)del_(alpha)X^(mu)del_(beta)X^(nu)eta_(mu nu)\mathcal{L}=-\frac{T}{2} \eta^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \eta_{\mu \nu}L=T2ηαβαXμβXνημν
For an infinitesimal traslation of the target space δ X μ = b μ δ X μ = b μ deltaX^(mu)=b^(mu)\delta X^{\mu}=b^{\mu}δXμ=bμ, the Noether current is
j α = L ( α X μ ) δ X μ b μ = T α X μ b μ j α = L α X μ δ X μ b μ = T α X μ b μ j^(alpha)=(delL)/(del(del_(alpha)X^(mu)))ubrace(deltaX^(mu)ubrace)_(b^(mu))=-Tdel^(alpha)X^(mu)b_(mu)j^{\alpha}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} X^{\mu}\right)} \underbrace{\delta X^{\mu}}_{b^{\mu}}=-T \partial^{\alpha} X^{\mu} b_{\mu}jα=L(αXμ)δXμbμ=TαXμbμ
Since b μ b μ b_(mu)b_{\mu}bμ is arbitrary, we have a conserved current for each component of b μ b μ b_(mu)b_{\mu}bμ :
j α μ = T α X μ j α μ = T α X μ j_(alpha)^(mu)=Tdel_(alpha)X^(mu)j_{\alpha}^{\mu}=T \partial_{\alpha} X^{\mu}jαμ=TαXμ
(where we have lowered α α alpha\alphaα index and inutiplied by -1 ). The corresponding Noether charges are
p μ d σ j 0 μ = T d σ X ˙ μ p μ d σ j 0 μ = T d σ X ˙ μ p^(mu)-=int d sigmaj_(0)^(mu)=T int d sigmaX^(˙)^(mu)p^{\mu} \equiv \int d \sigma j_{0}^{\mu}=T \int d \sigma \dot{X}^{\mu}pμdσj0μ=TdσX˙μ
This encodes the momentum of the string.
Similarly, for an infinitesimal Lorentz transformation δ X μ = δ ω μ ν X ν δ X μ = δ ω μ ν X ν deltaX^(mu)=deltaomega^(mu)_(nu)X^(nu)\delta X^{\mu}=\delta \omega^{\mu}{ }_{\nu} X^{\nu}δXμ=δωμνXν,
j α = L ( α X μ ) δ X μ = T α X μ δ ω ν μ X ν = T 2 ( X μ α X ν X ν α X μ ) δ ω μ ν j α = L α X μ δ X μ = T α X μ δ ω ν μ X ν = T 2 X μ α X ν X ν α X μ δ ω μ ν {:[j^(alpha)=(del L)/(del(del_(alpha)X^(mu)))deltaX^(mu)=-Tdel^(alpha)X_(mu)deltaomega_(nu)^(mu)X^(nu)],[=(T)/(2)(X^(mu)del^(alpha)X^(nu)-X^(nu)del^(alpha)X^(mu))deltaomega_(mu nu)]:}\begin{aligned} j^{\alpha} & =\frac{\partial L}{\partial\left(\partial_{\alpha} X^{\mu}\right)} \delta X^{\mu}=-T \partial^{\alpha} X_{\mu} \delta \omega_{\nu}^{\mu} X^{\nu} \\ & =\frac{T}{2}\left(X^{\mu} \partial^{\alpha} X^{\nu}-X^{\nu} \partial^{\alpha} X^{\mu}\right) \delta \omega_{\mu \nu} \end{aligned}jα=L(αXμ)δXμ=TαXμδωνμXν=T2(XμαXνXναXμ)δωμν
where we recall that δ ω μ ν = δ ω ν μ δ ω μ ν = δ ω ν μ deltaomega_(mu nu)=-deltaomega_(nu mu)\delta \omega_{\mu \nu}=-\delta \omega_{\nu \mu}δωμν=δωνμ. We have a Noether current for each independent component of δ ω μ ν δ ω μ ν deltaomega_(mu nu)\delta \omega_{\mu \nu}δωμν :
j α μ ν = T ( X μ α X ν X ν α X μ ) j α μ ν = T X μ α X ν X ν α X μ j_(alpha)^(mu nu)=T(X^(mu)del_(alpha)X^(nu)-X^(nu)del_(alpha)X^(mu))j_{\alpha}^{\mu \nu}=T\left(X^{\mu} \partial_{\alpha} X^{\nu}-X^{\nu} \partial_{\alpha} X^{\mu}\right)jαμν=T(XμαXνXναXμ)
where we multiplied by 2 . The corresponding Noether charges are
J μ ν = d σ j 0 μ ν = T d σ ( X μ X ˙ ν X ν X ˙ μ ) J μ ν = d σ j 0 μ ν = T d σ X μ X ˙ ν X ν X ˙ μ J^(mu nu)=int d sigmaj_(0)^(mu nu)=T int d sigma(X^(mu)X^(˙)^(nu)-X^(nu)X^(˙)^(mu))J^{\mu \nu}=\int d \sigma j_{0}^{\mu \nu}=T \int d \sigma\left(X^{\mu} \dot{X}^{\nu}-X^{\nu} \dot{X}^{\mu}\right)Jμν=dσj0μν=Tdσ(XμX˙νXνX˙μ)
This encodes angular momentum of string.

6 Mode expansion

This will be based on Tong section 1.4, pg 52,53, and BBS pg 33-35,37,39,40. Recall the equations of motion
α α X μ = 0 α α X μ = 0 del_(alpha)del^(alpha)X^(mu)=0\partial_{\alpha} \partial^{\alpha} X^{\mu}=0ααXμ=0
Let us introduce the lightcone cords: σ ± = τ ± σ τ = 1 2 ( σ + + σ ) , σ = σ ± = τ ± σ τ = 1 2 σ + + σ , σ = sigma^(+-)=tau+-sigma rarr tau=(1)/(2)(sigma^(+)+sigma^(-)),sigma=\sigma^{ \pm}=\tau \pm \sigma \rightarrow \tau=\frac{1}{2}\left(\sigma^{+}+\sigma^{-}\right), \sigma=σ±=τ±στ=12(σ++σ),σ= 1 2 ( σ + σ ) 1 2 σ + σ (1)/(2)(sigma^(+)-sigma^(-))\frac{1}{2}\left(\sigma^{+}-\sigma^{-}\right)12(σ+σ). We then find
+ = ( + τ ) τ + ( + σ ) σ = 1 2 ( τ + σ ) = ( τ ) τ + ( σ ) σ = 1 2 ( τ σ ) + X μ = 1 4 ( τ + σ ) ( τ σ ) = 1 4 ( X ¨ μ X ) = 0 X μ ( τ , σ ) = X L μ ( σ + ) + X R μ ( σ ) + = + τ τ + + σ σ = 1 2 τ + σ = τ τ + σ σ = 1 2 τ σ + X μ = 1 4 τ + σ τ σ = 1 4 X ¨ μ X = 0 X μ ( τ , σ ) = X L μ σ + + X R μ σ {:[del_(+)=(del_(+)tau)del_(tau)+(del_(+)sigma)del_(sigma)=(1)/(2)(del_(tau)+del_(sigma))],[del_(-)=(del_(-)tau)del_(tau)+(del_(-)sigma)del_(sigma)=(1)/(2)(del_(tau)-del_(sigma))],[ rarrdel_(+)del_(-)X^(mu)=(1)/(4)(del_(tau)+del_(sigma))(del_(tau)-del_(sigma))=(1)/(4)(X^(¨)^(mu)-X^(''))=0],[ rarrX^(mu)(tau","sigma)=X_(L)^(mu)(sigma^(+))+X_(R)^(mu)(sigma^(-))]:}\begin{aligned} & \partial_{+}=\left(\partial_{+} \tau\right) \partial_{\tau}+\left(\partial_{+} \sigma\right) \partial_{\sigma}=\frac{1}{2}\left(\partial_{\tau}+\partial_{\sigma}\right) \\ & \partial_{-}=\left(\partial_{-} \tau\right) \partial_{\tau}+\left(\partial_{-} \sigma\right) \partial_{\sigma}=\frac{1}{2}\left(\partial_{\tau}-\partial_{\sigma}\right) \\ & \rightarrow \partial_{+} \partial_{-} X^{\mu}=\frac{1}{4}\left(\partial_{\tau}+\partial_{\sigma}\right)\left(\partial_{\tau}-\partial_{\sigma}\right)=\frac{1}{4}\left(\ddot{X}^{\mu}-X^{\prime \prime}\right)=0 \\ & \rightarrow X^{\mu}(\tau, \sigma)=X_{L}^{\mu}\left(\sigma^{+}\right)+X_{R}^{\mu}\left(\sigma^{-}\right) \end{aligned}+=(+τ)τ+(+σ)σ=12(τ+σ)=(τ)τ+(σ)σ=12(τσ)+Xμ=14(τ+σ)(τσ)=14(X¨μX)=0Xμ(τ,σ)=XLμ(σ+)+XRμ(σ)
Hence, the general solution can be written as a sum of left and right-movers.
For closed strings, X μ ( τ , σ ) = X μ ( τ , σ + 2 π ) X μ ( τ , σ ) = X μ ( τ , σ + 2 π ) X^(mu)(tau,sigma)=X^(mu)(tau,sigma+2pi)X^{\mu}(\tau, \sigma)=X^{\mu}(\tau, \sigma+2 \pi)Xμ(τ,σ)=Xμ(τ,σ+2π). The most general periodic solution can be expanded in Fourier modes:
X L μ ( σ + ) = 1 2 x 0 μ + 1 2 α p μ σ + + i α 2 n 0 1 n α ~ n μ e i n σ + X R μ ( σ ) = 1 2 x 0 μ + 1 2 α p μ σ + i α 2 n 0 1 n α n μ e i n σ X L μ σ + = 1 2 x 0 μ + 1 2 α p μ σ + + i α 2 n 0 1 n α ~ n μ e i n σ + X R μ σ = 1 2 x 0 μ + 1 2 α p μ σ + i α 2 n 0 1 n α n μ e i n σ {:[X_(L)^(mu)(sigma^(+))=(1)/(2)x_(0)^(mu)+(1)/(2)alpha^(')p^(mu)sigma^(+)+isqrt((alpha^('))/(2))sum_(n!=0)(1)/(n) tilde(alpha)_(n)^(mu)e^(-insigma^(+))],[X_(R)^(mu)(sigma^(-))=(1)/(2)x_(0)^(mu)+(1)/(2)alpha^(')p^(mu)sigma^(-)+isqrt((alpha^('))/(2))sum_(n!=0)(1)/(n)alpha_(n)^(mu)e^(-insigma^(-))]:}\begin{aligned} & X_{L}^{\mu}\left(\sigma^{+}\right)=\frac{1}{2} x_{0}^{\mu}+\frac{1}{2} \alpha^{\prime} p^{\mu} \sigma^{+}+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n} \tilde{\alpha}_{n}^{\mu} e^{-i n \sigma^{+}} \\ & X_{R}^{\mu}\left(\sigma^{-}\right)=\frac{1}{2} x_{0}^{\mu}+\frac{1}{2} \alpha^{\prime} p^{\mu} \sigma^{-}+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n \sigma^{-}} \end{aligned}XLμ(σ+)=12x0μ+12αpμσ++iα2n01nα~nμeinσ+XRμ(σ)=12x0μ+12αpμσ+iα2n01nαnμeinσ
A few notes about the mode expansion:
  • Recall that α = 1 2 l s 2 α = 1 2 l s 2 alpha^(')=(1)/(2)l_(s)^(2)\alpha^{\prime}=\frac{1}{2} l_{s}^{2}α=12ls2, as required by dimensional analysis. Normalisation of 1 / n 1 / n 1//n1 / n1/n chosen for later convenience.
  • X L μ , X R μ X L μ , X R μ X_(L)^(mu),X_(R)^(mu)X_{L}^{\mu}, X_{R}^{\mu}XLμ,XRμ not periodic because of terms linear in sigma ± ± ^(+-){ }^{ \pm}±, but their sum gives 1 2 α p μ ( σ + + σ ) = α p μ τ 1 2 α p μ σ + + σ = α p μ τ (1)/(2)alpha^(')p^(mu)(sigma^(+)+sigma^(-))=alpha^(')p^(mu)tau\frac{1}{2} \alpha^{\prime} p^{\mu}\left(\sigma^{+}+\sigma^{-}\right)=\alpha^{\prime} p^{\mu} \tau12αpμ(σ++σ)=αpμτ, which is periodic.
  • p μ p μ p^(mu)p^{\mu}pμ is the momentum:
T d σ X ˙ μ ( τ , σ ) = 1 2 π α ( 2 π α p μ ) = p μ T d σ X ˙ μ ( τ , σ ) = 1 2 π α 2 π α p μ = p μ T int d sigmaX^(˙)^(mu)(tau,sigma)=(1)/(2pialpha^('))(2pialpha^(')p^(mu))=p^(mu)T \int d \sigma \dot{X}^{\mu}(\tau, \sigma)=\frac{1}{2 \pi \alpha^{\prime}}\left(2 \pi \alpha^{\prime} p^{\mu}\right)=p^{\mu}TdσX˙μ(τ,σ)=12πα(2παpμ)=pμ
where we noted that oscillatory terms integrate to zero.
  • x 0 μ + α p μ τ x 0 μ + α p μ τ x_(0)^(mu)+alpha^(')p^(mu)taux_{0}^{\mu}+\alpha^{\prime} p^{\mu} \taux0μ+αpμτ is the center of mass of the string:
X μ = 1 2 π d σ X μ ( τ , σ ) = x 0 μ + α p μ τ X μ = 1 2 π d σ X μ ( τ , σ ) = x 0 μ + α p μ τ (:X^(mu):)=(1)/(2pi)int d sigmaX^(mu)(tau,sigma)=x_(0)^(mu)+alpha^(')p^(mu)tau\left\langle X^{\mu}\right\rangle=\frac{1}{2 \pi} \int d \sigma X^{\mu}(\tau, \sigma)=x_{0}^{\mu}+\alpha^{\prime} p^{\mu} \tauXμ=12πdσXμ(τ,σ)=x0μ+αpμτ
  • Reality of X L , R X L , R X_(L,R)X_{L, R}XL,R implies
α n μ = ( α n μ ) , α ~ n μ = ( α ~ n μ ) α n μ = α n μ , α ~ n μ = α ~ n μ alpha_(-n)^(mu)=(alpha_(n)^(mu))^(**),quad tilde(alpha)_(-n)^(mu)=( tilde(alpha)_(n)^(mu))^(**)\alpha_{-n}^{\mu}=\left(\alpha_{n}^{\mu}\right)^{*}, \quad \tilde{\alpha}_{-n}^{\mu}=\left(\tilde{\alpha}_{n}^{\mu}\right)^{*}αnμ=(αnμ),α~nμ=(α~nμ)
Indeed,
X L ( σ + ) = 1 2 x 0 μ + 1 2 α p μ σ t i α 2 n 0 1 n ( α ~ n μ ) e i n σ + = 1 2 x 0 μ + 1 2 α p μ σ + + i α 2 n 0 1 n ( α ~ n μ ) e i n σ + X L σ + = 1 2 x 0 μ + 1 2 α p μ σ t i α 2 n 0 1 n α ~ n μ e i n σ + = 1 2 x 0 μ + 1 2 α p μ σ + + i α 2 n 0 1 n α ~ n μ e i n σ + {:[X_(L)^(**)(sigma^(+))=(1)/(2)x_(0)^(mu)+(1)/(2)alpha^(')p^(mu)sigma^(t)-isqrt((alpha^('))/(2))sum_(n!=0)(1)/(n)( tilde(alpha)_(n)^(mu))^(**)e^(insigma^(+))],[=(1)/(2)x_(0)^(mu)+(1)/(2)alpha^(')p^(mu)sigma^(+)+isqrt((alpha^('))/(2))sum_(n!=0)(1)/(n)( tilde(alpha)_(-n)^(mu))^(**)e^(-insigma^(+))]:}\begin{aligned} X_{L}^{*}\left(\sigma^{+}\right) & =\frac{1}{2} x_{0}^{\mu}+\frac{1}{2} \alpha^{\prime} p^{\mu} \sigma^{t}-i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n}\left(\tilde{\alpha}_{n}^{\mu}\right)^{*} e^{i n \sigma^{+}} \\ & =\frac{1}{2} x_{0}^{\mu}+\frac{1}{2} \alpha^{\prime} p^{\mu} \sigma^{+}+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n}\left(\tilde{\alpha}_{-n}^{\mu}\right)^{*} e^{-i n \sigma^{+}} \end{aligned}XL(σ+)=12x0μ+12αpμσtiα2n01n(α~nμ)einσ+=12x0μ+12αpμσ++iα2n01n(α~nμ)einσ+
where we took n n n n n rarr-nn \rightarrow-nnn in the second line. This is equal to X μ ( σ + ) X μ σ + X^(mu)(sigma^(+))X^{\mu}\left(\sigma^{+}\right)Xμ(σ+)iff ( α n μ ) = α n μ = (alpha_(-n)^(mu))^(**)=\left(\alpha_{-n}^{\mu}\right)^{*}=(αnμ)= α n μ α n μ alpha_(n)^(mu)\alpha_{n}^{\mu}αnμ. Similar story for X R X R X_(R)X_{R}XR.
The solution must also satisfy the Virasoro constraints:
( X ˙ ± X ) 2 = 0 X ˙ ± X 2 = 0 ((X^(˙))+-X^('))^(2)=0\left(\dot{X} \pm X^{\prime}\right)^{2}=0(X˙±X)2=0
Recall that these came from vanishing of the stress tensor:
T α β = α X β X 1 2 h α β h γ δ γ X δ X T α β = α X β X 1 2 h α β h γ δ γ X δ X T_(alpha beta)=del_(alpha)X*del_(beta)X-(1)/(2)h_(alpha beta)h^(gamma delta)del_(gamma)X*del_(delta)XT_{\alpha \beta}=\partial_{\alpha} X \cdot \partial_{\beta} X-\frac{1}{2} h_{\alpha \beta} h^{\gamma \delta} \partial_{\gamma} X \cdot \partial_{\delta} XTαβ=αXβX12hαβhγδγXδX
In conformal gauge with lightcone coordinates,
h α β = ( h + + h + h + h ) = 1 2 ( 0 1 1 0 ) h α β = 2 ( 0 1 1 0 ) h α β = h + + h + h + h = 1 2 0 1 1 0 h α β = 2 0 1 1 0 h_(alpha beta)=([h_(++),h_(+-)],[h_(-+),h_(--)])=-(1)/(2)([0,1],[1,0])rarrh^(alpha beta)=-2([0,1],[1,0])h_{\alpha \beta}=\left(\begin{array}{cc} h_{++} & h_{+-} \\ h_{-+} & h_{--} \end{array}\right)=-\frac{1}{2}\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \rightarrow h^{\alpha \beta}=-2\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)hαβ=(h++h+h+h)=12(0110)hαβ=2(0110)
To see this, note that
d s 2 = d τ 2 + d σ 2 = d σ + d σ = 1 2 ( d σ + d σ + d σ d σ + ) d s 2 = d τ 2 + d σ 2 = d σ + d σ = 1 2 d σ + d σ + d σ d σ + ds^(2)=-dtau^(2)+dsigma^(2)=-dsigma^(+)dsigma^(-)=-(1)/(2)(dsigma^(+)dsigma^(-)+dsigma^(-)dsigma^(+))d s^{2}=-d \tau^{2}+d \sigma^{2}=-d \sigma^{+} d \sigma^{-}=-\frac{1}{2}\left(d \sigma^{+} d \sigma^{-}+d \sigma^{-} d \sigma^{+}\right)ds2=dτ2+dσ2=dσ+dσ=12(dσ+dσ+dσdσ+)
Hence, the vanishing of the energy momentum tensor becomes
T + + = + X + X = 1 4 ( X ˙ + X ˙ ) 2 = 0 T = X X = 1 4 ( X ˙ X ) 2 = 0 T + + = + X + X = 1 4 X ˙ + X ˙ 2 = 0 T = X X = 1 4 X ˙ X 2 = 0 {:[T_(++)=del_(+)X*del_(+)X=(1)/(4)((X^(˙))+X^(˙)^('))^(2)=0],[T_(-)=del_(-)X*del_(-)X=(1)/(4)((X^(˙))-X^('))^(2)=0]:}\begin{aligned} & T_{++}=\partial_{+} X \cdot \partial_{+} X=\frac{1}{4}\left(\dot{X}+\dot{X}^{\prime}\right)^{2}=0 \\ & T_{-}=\partial_{-} X \cdot \partial_{-} X=\frac{1}{4}\left(\dot{X}-X^{\prime}\right)^{2}=0 \end{aligned}T++=+X+X=14(X˙+X˙)2=0T=XX=14(X˙X)2=0
while T + = T + = + X X 1 2 h + ( h + + h + ) + X X = 0 T + = T + = + X X 1 2 h + h + + h + + X X = 0 T_(+-)=T_(-+)=del_(+)X*del_(-)X-(1)/(2)h_(+-)(h^(+-)+h^(-+))del_(+)X*del_(-)X=0T_{+-}=T_{-+}=\partial_{+} X \cdot \partial_{-} X-\frac{1}{2} h_{+-}\left(h^{+-}+h^{-+}\right) \partial_{+} X \cdot \partial_{-} X=0T+=T+=+XX12h+(h++h+)+XX=0 so T + = T + = T_(+-)=T_{+-}=T+= T + T + T_(-+)T_{-+}T+trivially vanishes.
Let us compute Fourier expansion of T ± ± T ± ± T_(+-+-)T_{ \pm \pm}T±±. First note that
X μ = ( X L μ ( σ + ) + X R μ ( σ ) ) = X R μ ( σ ) = ( x 0 μ + α 2 p μ σ + i α 2 n 0 1 n α n μ e i n σ ) = α 2 p μ + i α 2 n 0 1 n α n μ ( i n e i n σ ) = α 2 n α n μ e i n σ , α 0 μ = α 2 p μ X μ = X L μ σ + + X R μ σ = X R μ σ = x 0 μ + α 2 p μ σ + i α 2 n 0 1 n α n μ e i n σ = α 2 p μ + i α 2 n 0 1 n α n μ i n e i n σ = α 2 n α n μ e i n σ , α 0 μ = α 2 p μ {:[del_(-)X^(mu)=del_(-)(X_(L)^(mu)(sigma^(+))+X_(R)^(mu)(sigma^(-)))],[=del_(-)X_(R)^(mu)(sigma^(-))],[=del_(-)(x_(0)^(mu)+(alpha^('))/(2)p^(mu)sigma^(-)+isqrt((alpha^('))/(2))sum_(n!=0)(1)/(n)alpha_(n)^(mu)e^(-insigma^(-)))],[=(alpha^('))/(2)p^(mu)+isqrt((alpha^('))/(2))sum_(n!=0)(1)/(n)alpha_(n)^(mu)(-ine^(-insigma^(-)))],[=sqrt((alpha^('))/(2))sum_(n)alpha_(n)^(mu)e^(-insigma^(-))","quadalpha_(0)^(mu)=sqrt((alpha^('))/(2))p^(mu)]:}\begin{aligned} \partial_{-} X^{\mu} & =\partial_{-}\left(X_{L}^{\mu}\left(\sigma^{+}\right)+X_{R}^{\mu}\left(\sigma^{-}\right)\right) \\ & =\partial_{-} X_{R}^{\mu}\left(\sigma^{-}\right) \\ & =\partial_{-}\left(x_{0}^{\mu}+\frac{\alpha^{\prime}}{2} p^{\mu} \sigma^{-}+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n \sigma^{-}}\right) \\ & =\frac{\alpha^{\prime}}{2} p^{\mu}+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu}\left(-i n e^{-i n \sigma^{-}}\right) \\ & =\sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n} \alpha_{n}^{\mu} e^{-i n \sigma^{-}}, \quad \alpha_{0}^{\mu}=\sqrt{\frac{\alpha^{\prime}}{2}} p^{\mu} \end{aligned}Xμ=(XLμ(σ+)+XRμ(σ))=XRμ(σ)=(x0μ+α2pμσ+iα2n01nαnμeinσ)=α2pμ+iα2n01nαnμ(ineinσ)=α2nαnμeinσ,α0μ=α2pμ
Hence,
T = ( X μ ) 2 = α 2 n , m α n α m e i ( n + m ) σ = α 2 n , m α n m α m e i n σ , taking n n m = α n L n e i n σ , L n = 1 2 m α n m α m T = X μ 2 = α 2 n , m α n α m e i ( n + m ) σ = α 2 n , m α n m α m e i n σ , taking  n n m = α n L n e i n σ , L n = 1 2 m α n m α m {:[T_(-)=(del_(-)X^(mu))^(2)=(alpha^('))/(2)sum_(n,m)alpha_(n)*alpha_(m)e^(-i(n+m)sigma^(-))],[=(alpha^('))/(2)sum_(n,m)alpha_(n-m)*alpha_(m)e^(-insigma^(-))",""taking "n rarr n-m],[=alpha^(')sum_(n)L_(n)e^(-insigma^(-))","quadL_(n)=(1)/(2)sum_(m)alpha_(n-m)*alpha_(m)]:}\begin{aligned} T_{-}=\left(\partial_{-} X^{\mu}\right)^{2} & =\frac{\alpha^{\prime}}{2} \sum_{n, m} \alpha_{n} \cdot \alpha_{m} e^{-i(n+m) \sigma^{-}} \\ & =\frac{\alpha^{\prime}}{2} \sum_{n, m} \alpha_{n-m} \cdot \alpha_{m} e^{-i n \sigma^{-}}, \text {taking } n \rightarrow n-m \\ & =\alpha^{\prime} \sum_{n} L_{n} e^{-i n \sigma^{-}}, \quad L_{n}=\frac{1}{2} \sum_{m} \alpha_{n-m} \cdot \alpha_{m} \end{aligned}T=(Xμ)2=α2n,mαnαmei(n+m)σ=α2n,mαnmαmeinσ,taking nnm=αnLneinσ,Ln=12mαnmαm
Similarly, T + + = α n L ~ n e i n σ ϕ T + + = α n L ~ n e i n σ ϕ T_(++)=alpha^(')sum_(n) tilde(L)_(n)e^(-insigma^(phi))T_{++}=\alpha^{\prime} \sum_{n} \tilde{L}_{n} e^{-i n \sigma^{\phi}}T++=αnL~neinσϕ where
L ~ n = 1 2 m n α ^ n m α ~ m , α ~ 0 μ = α 0 μ L ~ n = 1 2 m n α ^ n m α ~ m , α ~ 0 μ = α 0 μ tilde(L)_(n)=(1)/(2)sum_(m)^(n) hat(alpha)_(n-m)* tilde(alpha)_(m),quad tilde(alpha)_(0)^(mu)=alpha_(0)^(mu)\tilde{L}_{n}=\frac{1}{2} \sum_{m}^{n} \hat{\alpha}_{n-m} \cdot \tilde{\alpha}_{m}, \quad \tilde{\alpha}_{0}^{\mu}=\alpha_{0}^{\mu}L~n=12mnα^nmα~m,α~0μ=α0μ
The Virasoro constraints T + + = T = 0 T + + = T = 0 T_(++)=T_(--)=0T_{++}=T_{--}=0T++=T=0 then imply
L n = L ~ n = 0 L n = L ~ n = 0 L_(n)= tilde(L)_(n)=0L_{n}=\tilde{L}_{n}=0Ln=L~n=0
Let's look of the n = 0 n = 0 n=0n=0n=0 constraints more closely:
L 0 = 1 2 m α m α m = 1 2 α 0 2 + 1 2 m < 0 α m α m + 1 2 m > 0 α m α m = α 4 p 2 + 1 2 m < 0 α m α m + 1 2 m > 0 α m α m = α 4 M 2 + m > 0 α m α m L 0 = 1 2 m α m α m = 1 2 α 0 2 + 1 2 m < 0 α m α m + 1 2 m > 0 α m α m = α 4 p 2 + 1 2 m < 0 α m α m + 1 2 m > 0 α m α m = α 4 M 2 + m > 0 α m α m {:[L_(0)=(1)/(2)sum_(m)alpha_(-m)*alpha_(m)=(1)/(2)alpha_(0)^(2)+(1)/(2)sum_(m < 0)alpha_(-m)alpha_(m)+(1)/(2)sum_(m > 0)alpha_(-m)*alpha_(m)],[=(alpha^('))/(4)p^(2)+(1)/(2)sum_(m < 0)alpha_(m)*alpha_(-m)+(1)/(2)sum_(m > 0)alpha_(-m)*alpha_(m)],[=-(alpha^('))/(4)M^(2)+sum_(m > 0)alpha_(-m)*alpha_(m)]:}\begin{aligned} L_{0} & =\frac{1}{2} \sum_{m} \alpha_{-m} \cdot \alpha_{m}=\frac{1}{2} \alpha_{0}^{2}+\frac{1}{2} \sum_{m<0} \alpha_{-m} \alpha_{m}+\frac{1}{2} \sum_{m>0} \alpha_{-m} \cdot \alpha_{m} \\ & =\frac{\alpha^{\prime}}{4} p^{2}+\frac{1}{2} \sum_{m<0} \alpha_{m} \cdot \alpha_{-m}+\frac{1}{2} \sum_{m>0} \alpha_{-m} \cdot \alpha_{m} \\ & =-\frac{\alpha^{\prime}}{4} M^{2}+\sum_{m>0} \alpha_{-m} \cdot \alpha_{m} \end{aligned}L0=12mαmαm=12α02+12m<0αmαm+12m>0αmαm=α4p2+12m<0αmαm+12m>0αmαm=α4M2+m>0αmαm
where we replaced α m α m α m α m alpha_(-m)*alpha_(m)\alpha_{-m} \cdot \alpha_{m}αmαm with α m α m α m α m alpha_(m)*alpha_(-m)\alpha_{m} \cdot \alpha_{-m}αmαm in the second term of the second line. Note that this only holds classically. In quantum theory [ α m μ , α m μ ] 0 α m μ , α m μ 0 [alpha_(m)^(mu),alpha_(-m)^(mu)]!=0\left[\alpha_{m}^{\mu}, \alpha_{-m}^{\mu}\right] \neq 0[αmμ,αmμ]0 leading to an ordering ambiguity. Similarly we find
L ~ 0 = α 4 M 2 + m > 0 α ~ m α ~ m L ~ 0 = α 4 M 2 + m > 0 α ~ m α ~ m tilde(L)_(0)=-(alpha^('))/(4)M^(2)+sum_(m > 0) tilde(alpha)_(-m)* tilde(alpha)_(m)\tilde{L}_{0}=-\frac{\alpha^{\prime}}{4} M^{2}+\sum_{m>0} \tilde{\alpha}_{-m} \cdot \tilde{\alpha}_{m}L~0=α4M2+m>0α~mα~m
Hence L 0 = L ~ 0 = 0 L 0 = L ~ 0 = 0 L_(0)= tilde(L)_(0)=0rarrL_{0}=\tilde{L}_{0}=0 \rightarrowL0=L~0=0
M 2 = 4 α n > 0 α n α n = 4 α n > 0 α ~ n α ~ n = 2 α n > 0 ( α n α n + α ~ n α ~ n ) M 2 = 4 α n > 0 α n α n = 4 α n > 0 α ~ n α ~ n = 2 α n > 0 α n α n + α ~ n α ~ n {:[M^(2)=(4)/(alpha^('))sum_(n > 0)alpha_(-n)*alpha_(n)=(4)/(alpha^('))sum_(n > 0) tilde(alpha)_(-n)* tilde(alpha)_(n)],[=(2)/(alpha^('))sum_(n > 0)(alpha_(-n)*alpha_(n)+ tilde(alpha)_(-n)* tilde(alpha)_(n))]:}\begin{aligned} M^{2} & =\frac{4}{\alpha^{\prime}} \sum_{n>0} \alpha_{-n} \cdot \alpha_{n}=\frac{4}{\alpha^{\prime}} \sum_{n>0} \tilde{\alpha}_{-n} \cdot \tilde{\alpha}_{n} \\ & =\frac{2}{\alpha^{\prime}} \sum_{n>0}\left(\alpha_{-n} \cdot \alpha_{n}+\tilde{\alpha}_{-n} \cdot \tilde{\alpha}_{n}\right) \end{aligned}M2=4αn>0αnαn=4αn>0α~nα~n=2αn>0(αnαn+α~nα~n)
The first line implies the constraint
n > 0 α n α n = n > 0 n α ~ n α ~ n n > 0 α n α n = n > 0 n α ~ n α ~ n sum_(n > 0)alpha_(-n)*alpha_(n)=sum_(n > 0)^(n) tilde(alpha)_(-n)* tilde(alpha)_(n)\sum_{n>0} \alpha_{-n} \cdot \alpha_{n}=\sum_{n>0}^{n} \tilde{\alpha}_{-n} \cdot \tilde{\alpha}_{n}n>0αnαn=n>0nα~nα~n
which is known as "level matching."
We can follow a similar procedure for open strings with Neumann boundary conditions. This will be a HW exercise, so let's just summarize the results:
  • Mode expansion: X μ ( τ , σ ) = x 0 μ + 2 α p μ τ + 2 i α 2 n 0 1 n α n μ cos ( n σ ) e i n τ X μ ( τ , σ ) = x 0 μ + 2 α p μ τ + 2 i α 2 n 0 1 n α n μ cos ( n σ ) e i n τ X^(mu)(tau,sigma)=x_(0)^(mu)+2alpha^(')p^(mu)tau+2isqrt((alpha^('))/(2))sum_(n!=0)(1)/(n)alpha_(n)^(mu)cos(n sigma)e^(-in tau)X^{\mu}(\tau, \sigma)=x_{0}^{\mu}+2 \alpha^{\prime} p^{\mu} \tau+2 i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} \cos (n \sigma) e^{-i n \tau}Xμ(τ,σ)=x0μ+2αpμτ+2iα2n01nαnμcos(nσ)einτ
Note that there is only one set of oscillators. There is also a factor of 2 difference in the p μ p μ p^(mu)p^{\mu}pμ term compared to closed string.
  • Virasoro constraints:
0 = T ± t = α n L n e i n σ ± L n = 0 0 = T ± t = α n L n e i n σ ± L n = 0 0=T_(+-t)=alpha^(')sum_(n)L_(n)e^(-insigma^(+-))rarrL_(n)=00=T_{ \pm t}=\alpha^{\prime} \sum_{n} L_{n} e^{-i n \sigma^{ \pm}} \rightarrow L_{n}=00=T±t=αnLneinσ±Ln=0
where
L n = 1 2 m α n m α m , α 0 μ = 2 α p μ L n = 1 2 m α n m α m , α 0 μ = 2 α p μ L_(n)=(1)/(2)sum_(m)alpha_(n-m)*alpha_(m),quadalpha_(0)^(mu)=sqrt(2alpha^('))p^(mu)L_{n}=\frac{1}{2} \sum_{m} \alpha_{n-m} \cdot \alpha_{m}, \quad \alpha_{0}^{\mu}=\sqrt{2 \alpha^{\prime}} p^{\mu}Ln=12mαnmαm,α0μ=2αpμ
Now there is only one set of Virasoro modes.
  • Mass formula:
L 0 = 0 M 2 = 1 α n > 0 α n α n L 0 = 0 M 2 = 1 α n > 0 α n α n L_(0)=0rarrM^(2)=(1)/(alpha^('))sum_(n > 0)alpha_(-n)*alpha_(n)L_{0}=0 \rightarrow M^{2}=\frac{1}{\alpha^{\prime}} \sum_{n>0} \alpha_{-n} \cdot \alpha_{n}L0=0M2=1αn>0αnαn

7 Virasoro algebra

This will be based on BBS pg 40,41,58-62. After choosing conformal gauge h α β = n α β h α β = n α β h_(alpha beta)=n_(alpha beta)h_{\alpha \beta}=n_{\alpha \beta}hαβ=nαβ, their is still a residual reparamaterisation symmetry. Let δ σ α = ξ α δ σ α = ξ α deltasigma^(alpha)=-xi^(alpha)\delta \sigma^{\alpha}=-\xi^{\alpha}δσα=ξα be an infinitesimal reparametrisation and Λ Λ Lambda\LambdaΛ be an infinitesimal parameter for a Weyl rescaling. The residual symmetries obey
δ h α β = α ξ β + β ξ α = Λ η α β δ h α β = α ξ β + β ξ α = Λ η α β deltah^(alpha beta)=del^(alpha)xi^(beta)+del^(beta)xi^(alpha)=Lambdaeta^(alpha beta)\delta h^{\alpha \beta}=\partial^{\alpha} \xi^{\beta}+\partial^{\beta} \xi^{\alpha}=\Lambda \eta^{\alpha \beta}δhαβ=αξβ+βξα=Ληαβ
This is known as the "conformal killing equation" and the solutions are known as conformal Killing vectors. In other words, we are free to make infinitesimal diffeomorphisms that correspond to Weyl transformations. These are known as "conformal transformations." Conformal transformations change distances, but preserve angles. Theories invariant under conformal transformations are known as "conformal field theories." The string worldsheet theory is a 2d CFT.
In D > 2 D > 2 D > 2D>2D>2 spacetime dimensions, there are ( D + 2 2 ) ( D + 2 2 ) ((D+2)/(2))\binom{D+2}{2}(D+22) solutions, which generate S O ( D , 2 ) S O ( D , 2 ) SO(D,2)S O(D, 2)SO(D,2) corresponding to the "conformal group" in D D DDD-dimensional Minkowski space. In D D DDD-dimensional Euclidean space, the conformal group is S O ( D + 1 , 1 ) S O ( D + 1 , 1 ) SO(D+1,1)S O(D+1,1)SO(D+1,1). In D = 2 D = 2 D=2D=2D=2, the conformal killing equation has an infinite number of solutions, so the conformal group is infinite-dimensional.
Let's verify this. In lightone cords σ ± = σ 0 ± σ 1 , ξ ± = ξ 0 ± ξ 1 σ ± = σ 0 ± σ 1 , ξ ± = ξ 0 ± ξ 1 sigma^(+-)=sigma^(0)+-sigma^(1),xi^(+-)=xi^(0)+-xi^(1)\sigma^{ \pm}=\sigma^{0} \pm \sigma^{1}, \xi^{ \pm}=\xi^{0} \pm \xi^{1}σ±=σ0±σ1,ξ±=ξ0±ξ1 the conformal Killing equations becomes
2 + ξ + = Λ n + + = 0 + ξ + ξ + = Λ n + = Λ 2 2 ξ = Λ n = 0 2 + ξ + = Λ n + + = 0 + ξ + ξ + = Λ n + = Λ 2 2 ξ = Λ n = 0 {:[2del_(+)xi_(+)=Lambdan_(++)=0],[del_(+)xi_(-)+del_(-)xi_(+)=Lambdan_(+-)=-(Lambda)/(2)],[2del_(-)xi_(-)=Lambdan_(--)=0]:}\begin{aligned} & 2 \partial_{+} \xi_{+}=\Lambda n_{++}=0 \\ & \partial_{+} \xi_{-}+\partial_{-} \xi_{+}=\Lambda n_{+-}=-\frac{\Lambda}{2} \\ & 2 \partial_{-} \xi_{-}=\Lambda n_{--}=0 \end{aligned}2+ξ+=Λn++=0+ξ+ξ+=Λn+=Λ22ξ=Λn=0
where we recall that in light cone cords,
( η + + η + η + η ) = 1 2 ( 0 1 1 0 ) η + +      η + η +      η = 1 2 0 1 1 0 ([eta_(++),eta_(+-)],[eta_(-+),eta_(--)])=-(1)/(2)([0,1],[1,0])\left(\begin{array}{ll} \eta_{++} & \eta_{+-} \\ \eta_{-+} & \eta_{--} \end{array}\right)=-\frac{1}{2}\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)(η++η+η+η)=12(0110)
This is solved by ξ + ( τ , σ ) = f + ( σ ) , ξ ( τ , σ ) = f ( σ + ) ξ + ( τ , σ ) = f + σ , ξ ( τ , σ ) = f σ + xi_(+)(tau,sigma)=f_(+)(sigma^(-)),xi_(-)(tau,sigma)=f_(-)(sigma^(+))\xi_{+}(\tau, \sigma)=f_{+}\left(\sigma^{-}\right), \xi_{-}(\tau, \sigma)=f_{-}\left(\sigma^{+}\right)ξ+(τ,σ)=f+(σ),ξ(τ,σ)=f(σ+), where f ± f ± f_(+-)f_{ \pm}f±are arbitrary functions respecting boundary conditions of worldsheet. Raising indices, ξ ± = ξ ± = xi^(+-)=\xi^{ \pm}=ξ±= f ± ( σ ± ) f ± σ ± f^(+-)(sigma^(+-))f^{ \pm}\left(\sigma^{ \pm}\right)f±(σ±). For closed strings a complete basis of solutions is given by
f n ± = e i n σ ± , n Z f n ± = e i n σ ± , n Z f_(n)^(+-)=e^(insigma^(+-)),n inZf_{n}^{ \pm}=e^{i n \sigma^{ \pm}}, n \in \mathbb{Z}fn±=einσ±,nZ
which are periodic in σ σ + 2 π σ σ + 2 π sigma rarr sigma+2pi\sigma \rightarrow \sigma+2 \piσσ+2π. We may then define an infinite set of generators
V n ± = e i n σ ± σ ± "Virasoro generators" V n ± = e i n σ ± σ ±  "Virasoro generators"  V_(n)^(+-)=e^(insigma^(+-))(del)/(delsigma^(+-))quad" "Virasoro generators" "V_{n}^{ \pm}=e^{i n \sigma^{ \pm}} \frac{\partial}{\partial \sigma^{ \pm}} \quad \text { "Virasoro generators" }Vn±=einσ±σ± "Virasoro generators" 
which generate the diffeomorphisms δ σ ± = ϵ n ± V n ± ( σ ± ) = ϵ n ± e i n σ ± δ σ ± = ϵ n ± V n ± σ ± = ϵ n ± e i n σ ± deltasigma^(+-)=epsilon_(n)^(+-)V_(n)^(+-)(sigma^(+-))=epsilon_(n)^(+-)e^(insigma^(+-))\delta \sigma^{ \pm}=\epsilon_{n}^{ \pm} V_{n}^{ \pm}\left(\sigma^{ \pm}\right)=\epsilon_{n}^{ \pm} e^{i n \sigma^{ \pm}}δσ±=ϵn±Vn±(σ±)=ϵn±einσ±, where ϵ ± ϵ ± epsilon^(+-)\epsilon^{ \pm}ϵ± are infinitesimal parameters.
Let's Wick-rotate τ i τ τ i τ tau rarr-i tau\tau \rightarrow-i \tauτiτ so the worldsheet becomes Euclidean and then map it to complex plane:
z = e i σ = e i ( i τ σ ) = e τ i σ , z ¯ = e i σ + = e i ( i τ + σ ) = e τ + i σ z = e i σ = e i ( i τ σ ) = e τ i σ , z ¯ = e i σ + = e i ( i τ + σ ) = e τ + i σ z=e^(isigma^(-))=e^(i(-i tau-sigma))=e^(tau-i sigma),quad bar(z)=e^(isigma^(+))=e^(i(-i tau+sigma))=e^(tau+i sigma)z=e^{i \sigma^{-}}=e^{i(-i \tau-\sigma)}=e^{\tau-i \sigma}, \quad \bar{z}=e^{i \sigma^{+}}=e^{i(-i \tau+\sigma)}=e^{\tau+i \sigma}z=eiσ=ei(iτσ)=eτiσ,z¯=eiσ+=ei(iτ+σ)=eτ+iσ
Under this mapping, the cyclinder gets mapped to a plane. The infinite past on the cylinder corresponds to the origin of the plane. We also see that conformal transformations correspond to analytic functions on the complex plane:
z w ( z ) , z ¯ w ¯ ( z ¯ ) z w ( z ) , z ¯ w ¯ ( z ¯ ) z rarr w(z),quad bar(z)rarr bar(w)( bar(z))z \rightarrow w(z), \quad \bar{z} \rightarrow \bar{w}(\bar{z})zw(z),z¯w¯(z¯)
The Virasoro generators become
V n + = e i n σ + σ + = z ¯ n z ¯ σ + z ¯ = i z ¯ n + 1 z ¯ i l ¯ n V n = e i n σ σ = i z n + 1 z i l n V n + = e i n σ + σ + = z ¯ n z ¯ σ + z ¯ = i z ¯ n + 1 z ¯ i l ¯ n V n = e i n σ σ = i z n + 1 z i l n {:[V_(n)^(+)=e^(insigma^(+))(del)/(delsigma^(+))= bar(z)^(n)(del( bar(z)))/(delsigma^(+))(del)/(del( bar(z)))=i bar(z)^(n+1)del_( bar(z))-=-i bar(l)_(n)],[V_(n)^(-)=e^(insigma^(-))(del)/(delsigma^(-))=iz^(n+1)del_(z)-=-il_(n)]:}\begin{aligned} V_{n}^{+} & =e^{i n \sigma^{+}} \frac{\partial}{\partial \sigma^{+}}=\bar{z}^{n} \frac{\partial \bar{z}}{\partial \sigma^{+}} \frac{\partial}{\partial \bar{z}}=i \bar{z}^{n+1} \partial_{\bar{z}} \equiv-i \bar{l}_{n} \\ V_{n}^{-} & =e^{i n \sigma^{-}} \frac{\partial}{\partial \sigma^{-}}=i z^{n+1} \partial_{z} \equiv-i l_{n} \end{aligned}Vn+=einσ+σ+=z¯nz¯σ+z¯=iz¯n+1z¯il¯nVn=einσσ=izn+1ziln
so
l n = z n + 1 z , l ¯ n = z ¯ n + 1 ¯ z l n = z n + 1 z , l ¯ n = z ¯ n + 1 ¯ z l_(n)=-z^(n+1)del_(z), bar(l)_(n)=- bar(z)^(n+1) bar(del)_(z)l_{n}=-z^{n+1} \partial_{z}, \bar{l}_{n}=-\bar{z}^{n+1} \bar{\partial}_{z}ln=zn+1z,l¯n=z¯n+1¯z
These generate infinitesimal conformal transformations:
δ z = ϵ n l n ( z ) = ϵ n z n + 1 , δ z ¯ = ϵ ¯ n l ¯ n ( z ¯ ) = ϵ ¯ n z ¯ n + 1 δ z = ϵ n l n ( z ) = ϵ n z n + 1 , δ z ¯ = ϵ ¯ n l ¯ n ( z ¯ ) = ϵ ¯ n z ¯ n + 1 delta z=epsilon_(n)l_(n)(z)=-epsilon_(n)z^(n+1),quad delta bar(z)= bar(epsilon)_(n) bar(l)_(n)( bar(z))=- bar(epsilon)_(n) bar(z)^(n+1)\delta z=\epsilon_{n} l_{n}(z)=-\epsilon_{n} z^{n+1}, \quad \delta \bar{z}=\bar{\epsilon}_{n} \bar{l}_{n}(\bar{z})=-\bar{\epsilon}_{n} \bar{z}^{n+1}δz=ϵnln(z)=ϵnzn+1,δz¯=ϵ¯nl¯n(z¯)=ϵ¯nz¯n+1
and obey the following algebra:
[ l n , l n ] = ( m n ) l m + n , [ l ¯ m , l ¯ n ] = ( m n ) l ¯ m + n , [ l m , l ¯ n ] = 0 l n , l n = ( m n ) l m + n , l ¯ m , l ¯ n = ( m n ) l ¯ m + n , l m , l ¯ n = 0 [l_(n),l_(n)]=(m-n)l_(m+n),quad[ bar(l)_(m), bar(l)_(n)]=(m-n) bar(l)_(m+n),quad[l_(m), bar(l)_(n)]=0\left[l_{n}, l_{n}\right]=(m-n) l_{m+n}, \quad\left[\bar{l}_{m}, \bar{l}_{n}\right]=(m-n) \bar{l}_{m+n}, \quad\left[l_{m}, \bar{l}_{n}\right]=0[ln,ln]=(mn)lm+n,[l¯m,l¯n]=(mn)l¯m+n,[lm,l¯n]=0
which corresponds to two copies of the "classical Virasoro algebra." We will see later that it can get modified in quantum theory due to a "conformal anomaly." l 0 , ± 1 l 0 , ± 1 l_(0,+-1)l_{0, \pm 1}l0,±1 and l ¯ 0 , ± 1 l ¯ 0 , ± 1 bar(l)_(0,+-1)\bar{l}_{0, \pm 1}l¯0,±1 generate the finite dimensional subgroup S O ( 1 , 3 ) = S O ( 1 , 3 ) = SO(1,3)=S O(1,3)=SO(1,3)= S L ( 2 , C ) / Z 2 S L ( 2 , C ) / Z 2 SL(2,C)//Z_(2)S L(2, \mathbb{C}) / \mathbb{Z}_{2}SL(2,C)/Z2, as you will show in the HW. This is the 2 d 2 d 2d2 d2d case of S O ( D + 1 , 1 ) S O ( D + 1 , 1 ) SO(D+1,1)S O(D+1,1)SO(D+1,1)
which is the conformal group for D > 2 D > 2 D > 2D>2D>2 Euclidean dimensions. In 2 d 2 d 2d2 d2d, this is konwn as the "restricted conformal group".
For open strings with Neumann boundary conditions, the residual symmetries in conformal gauge are generated by
V n = e i n σ + σ t + e i n σ σ V n = e i n σ + σ t + e i n σ σ V_(n)=e^(insigma^(+))(del)/(delsigma^(t))+e^(insigma^(-))(del)/(delsigma^(-))V_{n}=e^{i n \sigma^{+}} \frac{\partial}{\partial \sigma^{t}}+e^{i n \sigma^{-}} \frac{\partial}{\partial \sigma^{-}}Vn=einσ+σt+einσσ
as you will show on HW. Hence, there is just one copy of Virasoro algebra. We can Wick-rotate to a Euclidean worldsheet and map to the upper half of the complex plane via z = e i σ , z ¯ = e i σ + z = e i σ , z ¯ = e i σ + z=e^(isigma^(-)), bar(z)=e^(isigma^(+))z=e^{i \sigma^{-}}, \bar{z}=e^{i \sigma^{+}}z=eiσ,z¯=eiσ+:
Note that the boundary of the string gets mapped to real axis. The Virasoro generators then become
l n = ( z n + 1 z + z ¯ n + 1 z ¯ ) l n = z n + 1 z + z ¯ n + 1 z ¯ l_(n)=-(z^(n+1)del_(z)+ bar(z)^(n+1)del_( bar(z)))l_{n}=-\left(z^{n+1} \partial_{z}+\bar{z}^{n+1} \partial_{\bar{z}}\right)ln=(zn+1z+z¯n+1z¯)

8 Light cone gauge

This is based on BBS pg 48-50, Tong pg 35,36, JLBS pg 8,9. Recall the mode expansion for a closed string in conformal gauge:
X L μ = 1 2 x 0 μ + 1 2 α p μ σ + + i α 2 n 0 1 n α ~ n μ e i n σ + X R μ = 1 2 x 0 μ + 1 2 α p μ σ + i α 2 n 0 1 n α n μ e i n σ X L μ = 1 2 x 0 μ + 1 2 α p μ σ + + i α 2 n 0 1 n α ~ n μ e i n σ + X R μ = 1 2 x 0 μ + 1 2 α p μ σ + i α 2 n 0 1 n α n μ e i n σ {:[X_(L)^(mu)=(1)/(2)x_(0)^(mu)+(1)/(2)alpha^(')p^(mu)sigma^(+)+isqrt((alpha^('))/(2))sum_(n!=0)(1)/(n) tilde(alpha)_(n)^(mu)e^(-insigma^(+))],[X_(R)^(mu)=(1)/(2)x_(0)^(mu)+(1)/(2)alpha^(')p^(mu)sigma^(-)+isqrt((alpha^('))/(2))sum_(n!=0)(1)/(n)alpha_(n)^(mu)e^(-insigma^(-))]:}\begin{aligned} & X_{L}^{\mu}=\frac{1}{2} x_{0}^{\mu}+\frac{1}{2} \alpha^{\prime} p^{\mu} \sigma^{+}+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n} \tilde{\alpha}_{n}^{\mu} e^{-i n \sigma^{+}} \\ & X_{R}^{\mu}=\frac{1}{2} x_{0}^{\mu}+\frac{1}{2} \alpha^{\prime} p^{\mu} \sigma^{-}+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n \sigma^{-}} \end{aligned}XLμ=12x0μ+12αpμσ++iα2n01nα~nμeinσ+XRμ=12x0μ+12αpμσ+iα2n01nαnμeinσ
Also recall that in conformal gauge, we have residual symmetry
δ σ ± = f ± ( σ ± ) δ σ ± = f ± σ ± deltasigma^(+-)=f^(+-)(sigma^(+-))\delta \sigma^{ \pm}=f^{ \pm}\left(\sigma^{ \pm}\right)δσ±=f±(σ±)
where f ± f ± f^(+-)f^{ \pm}f±is periodic in σ σ sigma\sigmaσ. Hence, we may choose f ± f ± f^(+-)f^{ \pm}f±such that:
X L + = 1 2 α p + σ + , X R + = 1 2 α p + σ X L + = 1 2 α p + σ + , X R + = 1 2 α p + σ X_(L)^(+)=(1)/(2)alpha^(')p^(+)sigma^(+),quadX_(R)^(+)=(1)/(2)alpha^(')p^(+)sigma^(-)X_{L}^{+}=\frac{1}{2} \alpha^{\prime} p^{+} \sigma^{+}, \quad X_{R}^{+}=\frac{1}{2} \alpha^{\prime} p^{+} \sigma^{-}XL+=12αp+σ+,XR+=12αp+σ
X + ( τ , σ ) = α p + τ X + ( τ , σ ) = α p + τ X^(+)(tau,sigma)=alpha^(')p^(+)tauX^{+}(\tau, \sigma)=\alpha^{\prime} p^{+} \tauX+(τ,σ)=αp+τ
where X ± = 1 2 ( X 0 ± X D 1 ) X ± = 1 2 X 0 ± X D 1 X^(+-)=(1)/(sqrt2)(X^(0)+-X^(D-1))X^{ \pm}=\frac{1}{\sqrt{2}}\left(X^{0} \pm X^{D-1}\right)X±=12(X0±XD1) and I { 1 , , D 2 } I { 1 , , D 2 } I in{1,dots,D-2}I \in\{1, \ldots, D-2\}I{1,,D2} labels transverse directions. Equivalently, we set x 0 + = α n + = α ~ n + = 0 , n 0 x 0 + = α n + = α ~ n + = 0 , n 0 x_(0)^(+)=alpha_(n)^(+)= tilde(alpha)_(n)^(+)=0,n!=0x_{0}^{+}=\alpha_{n}^{+}=\tilde{\alpha}_{n}^{+}=0, n \neq 0x0+=αn+=α~n+=0,n0. This is known as "lightcone gauge." Note that we can't set terms linear in σ ± σ ± sigma^(+-)\sigma^{ \pm}σ±to zero because they are not periodic in σ σ sigma\sigmaσ.
In lightcone gauge, the mass formula and level-matching condition reduce to
M 2 = 2 α n > 0 ( α n α n + α ~ n α ~ n ) M 2 = 2 α n > 0 ( α n I α n I + α ~ n I α n I ) n > 0 α n α n = n > 0 α ~ n α ~ n n > 0 α n I α n I = n > 0 α ~ n I α n I M 2 = 2 α n > 0 α n α n + α ~ n α ~ n M 2 = 2 α n > 0 α n I α n I + α ~ n I α n I n > 0 α n α n = n > 0 α ~ n α ~ n n > 0 α n I α n I = n > 0 α ~ n I α n I {:[M^(2)=(2)/(alpha^('))sum_(n > 0)(alpha_(-n)*alpha_(n)+ tilde(alpha)_(-n)* tilde(alpha)_(n))rarrM^(2)=(2)/(alpha^('))sum_(n > 0)(alpha_(-n)^(I)alpha_(n)^(I)+ tilde(alpha)_(-n)^(I)alpha_(n)^(I))],[sum_(n > 0)alpha_(-n)*alpha_(n)=sum_(n > 0) tilde(alpha)_(-n)* tilde(alpha)_(n)longrightarrowsum_(n > 0)alpha_(-n)^(I)alpha_(n)^(I)=sum_(n > 0) tilde(alpha)_(-n)^(I)alpha_(n)^(I)]:}\begin{aligned} & M^{2}=\frac{2}{\alpha^{\prime}} \sum_{n>0}\left(\alpha_{-n} \cdot \alpha_{n}+\tilde{\alpha}_{-n} \cdot \tilde{\alpha}_{n}\right) \rightarrow M^{2}=\frac{2}{\alpha^{\prime}} \sum_{n>0}\left(\alpha_{-n}^{I} \alpha_{n}^{I}+\tilde{\alpha}_{-n}^{I} \alpha_{n}^{I}\right) \\ & \sum_{n>0} \alpha_{-n} \cdot \alpha_{n}=\sum_{n>0} \tilde{\alpha}_{-n} \cdot \tilde{\alpha}_{n} \longrightarrow \sum_{n>0} \alpha_{-n}^{I} \alpha_{n}^{I}=\sum_{n>0} \tilde{\alpha}_{-n}^{I} \alpha_{n}^{I} \end{aligned}M2=2αn>0(αnαn+α~nα~n)M2=2αn>0(αnIαnI+α~nIαnI)n>0αnαn=n>0α~nα~nn>0αnIαnI=n>0α~nIαnI
where we noted that α n α n = α n + α n α n α n + + α n I α n I = α n I α n I α n α n = α n + α n α n α n + + α n I α n I = α n I α n I alpha_(-n)*alpha_(n)=-alpha_(-n)^(+)alpha_(n)^(-)-alpha_(-n)^(-)alpha_(n)^(+)+alpha_(-n)^(I)alpha_(n)^(I)=alpha_(-n)^(I)alpha_(n)^(I)\alpha_{-n} \cdot \alpha_{n}=-\alpha_{-n}^{+} \alpha_{n}^{-}-\alpha_{-n}^{-} \alpha_{n}^{+}+\alpha_{-n}^{I} \alpha_{n}^{I}=\alpha_{-n}^{I} \alpha_{n}^{I}αnαn=αn+αnαnαn++αnIαnI=αnIαnI in lightcone gauge. Hence in lightcone gauge, only transverse modes contribute to mass. Moreover, the modes of X X X^(-)X^{-}Xcan be fixed in terms of transverse modes. This follows from the Virasoro constraints:
0 = ( + X ) 2 = 2 + X + X + + ( + X I ) 2 = 2 + X 1 2 ( τ + σ ) ( α p + τ ) + ( + X I ) 2 = 2 + X 1 2 ( τ + σ ) ( α p + τ ) + ( + X I ) 2 = α p + + X + ( + X I ) 2 + X = 1 α p + ( + X I ) 2 0 = + X 2 = 2 + X + X + + + X I 2 = 2 + X 1 2 τ + σ α p + τ + + X I 2 = 2 + X 1 2 τ + σ α p + τ + + X I 2 = α p + + X + + X I 2 + X = 1 α p + + X I 2 {:[0=(del_(+)X)^(2)=-2del_(+)X^(-)del_(+)X^(+)+(del_(+)X^(I))^(2)],[=-2del_(+)X^(-)(1)/(2)(del_(tau)+del_(sigma))(alpha^(')p^(+)tau)+(del_(+)X^(I))^(2)],[=-2del_(+)X^(-)(1)/(2)(del_(tau)+del_(sigma))(alpha^(')p^(+)tau)+(del_(+)X^(I))^(2)],[=-alpha^(')p^(+)del_(+)X^(-)+(del_(+)X^(I))^(2)],[ rarrdel_(+)X^(-)=(1)/(alpha^(')p^(+))(del_(+)X^(I))^(2)]:}\begin{aligned} 0= & \left(\partial_{+} X\right)^{2}=-2 \partial_{+} X^{-} \partial_{+} X^{+}+\left(\partial_{+} X^{I}\right)^{2} \\ = & -2 \partial_{+} X^{-} \frac{1}{2}\left(\partial_{\tau}+\partial_{\sigma}\right)\left(\alpha^{\prime} p^{+} \tau\right)+\left(\partial_{+} X^{I}\right)^{2} \\ = & -2 \partial_{+} X^{-} \frac{1}{2}\left(\partial_{\tau}+\partial_{\sigma}\right)\left(\alpha^{\prime} p^{+} \tau\right)+\left(\partial_{+} X^{I}\right)^{2} \\ = & -\alpha^{\prime} p^{+} \partial_{+} X^{-}+\left(\partial_{+} X^{I}\right)^{2} \\ & \rightarrow \partial_{+} X^{-}=\frac{1}{\alpha^{\prime} p^{+}}\left(\partial_{+} X^{I}\right)^{2} \end{aligned}0=(+X)2=2+X+X++(+XI)2=2+X12(τ+σ)(αp+τ)+(+XI)2=2+X12(τ+σ)(αp+τ)+(+XI)2=αp++X+(+XI)2+X=1αp+(+XI)2
Plugging in the mode expansions then gives
α 2 n α ~ n e i n σ + = 1 α p + α 2 n , m α ~ n I α ~ m I e i ( n + m ) σ + = 1 2 p + n , m α ~ n m I α ~ m I e i n σ + α ~ n = 1 2 α 1 p + m α ~ n m I α ~ m I α 2 n α ~ n e i n σ + = 1 α p + α 2 n , m α ~ n I α ~ m I e i ( n + m ) σ + = 1 2 p + n , m α ~ n m I α ~ m I e i n σ + α ~ n = 1 2 α 1 p + m α ~ n m I α ~ m I {:[sqrt((alpha^('))/(2))sum_(n) tilde(alpha)_(n)^(-)e^(-insigma^(+))=(1)/(alpha^(')p^(+))(alpha^('))/(2)sum_(n,m) tilde(alpha)_(n)^(I) tilde(alpha)_(m)^(I)e^(-i(n+m)sigma^(+))],[=(1)/(2p^(+))sum_(n,m) tilde(alpha)_(n-m)^(I) tilde(alpha)_(m)^(I)e^(-insigma^(+))],[ rarr tilde(alpha)_(n)^(-)=(1)/(sqrt(2alpha^(')))(1)/(p^(+))sum_(m) tilde(alpha)_(n-m)^(I) tilde(alpha)_(m)^(I)]:}\begin{aligned} \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n} \tilde{\alpha}_{n}^{-} e^{-i n \sigma^{+}}= & \frac{1}{\alpha^{\prime} p^{+}} \frac{\alpha^{\prime}}{2} \sum_{n, m} \tilde{\alpha}_{n}^{I} \tilde{\alpha}_{m}^{I} e^{-i(n+m) \sigma^{+}} \\ & =\frac{1}{2 p^{+}} \sum_{n, m} \tilde{\alpha}_{n-m}^{I} \tilde{\alpha}_{m}^{I} e^{-i n \sigma^{+}} \\ & \rightarrow \tilde{\alpha}_{n}^{-}=\frac{1}{\sqrt{2 \alpha^{\prime}}} \frac{1}{p^{+}} \sum_{m} \tilde{\alpha}_{n-m}^{I} \tilde{\alpha}_{m}^{I} \end{aligned}α2nα~neinσ+=1αp+α2n,mα~nIα~mIei(n+m)σ+=12p+n,mα~nmIα~mIeinσ+α~n=12α1p+mα~nmIα~mI
Similarly, ( X ) 2 = 0 X 2 = 0 (del_(-)X)^(2)=0rarr\left(\partial_{-} X\right)^{2}=0 \rightarrow(X)2=0
α n = 1 2 α 1 p + m α n m I α m I α n = 1 2 α 1 p + m α n m I α m I alpha_(n)^(-)=(1)/(sqrt(2alpha^(')))(1)/(p^(+))sum_(m)alpha_(n-m)^(I)alpha_(m)^(I)\alpha_{n}^{-}=\frac{1}{\sqrt{2 \alpha^{\prime}}} \frac{1}{p^{+}} \sum_{m} \alpha_{n-m}^{I} \alpha_{m}^{I}αn=12α1p+mαnmIαmI
Recalling that α 0 = α ~ 0 = α 2 p α 0 = α ~ 0 = α 2 p alpha_(0)^(-)= tilde(alpha)_(0)^(-)=sqrt((alpha^('))/(2))p^(-)\alpha_{0}^{-}=\tilde{\alpha}_{0}^{-}=\sqrt{\frac{\alpha^{\prime}}{2}} p^{-}α0=α~0=α2p, for n = 0 n = 0 n=0n=0n=0 these relations imply the mass
formula:
α p = 1 p + ( α 2 ( p I ) 2 + n 0 α ~ n I α ~ n I ) = 1 p + ( α 2 ( p I ) 2 + n 0 α n I α n I ) M 2 = 2 p + p ( p I ) 2 = 4 α n > 0 α ~ n I α ~ n I = 4 α n > 0 α n I α n I α p = 1 p + α 2 p I 2 + n 0 α ~ n I α ~ n I = 1 p + α 2 p I 2 + n 0 α n I α n I M 2 = 2 p + p p I 2 = 4 α n > 0 α ~ n I α ~ n I = 4 α n > 0 α n I α n I {:[alpha^(')p^(-)=(1)/(p^(+))((alpha^('))/(2)(p^(I))^(2)+sum_(n!=0) tilde(alpha)_(-n)^(I) tilde(alpha)_(n)^(I))],[=(1)/(p^(+))((alpha^('))/(2)(p^(I))^(2)+sum_(n!=0)alpha_(-n)^(I)alpha_(n)^(I))],[ rarrM^(2)=2p^(+)p^(-)-(p^(I))^(2)=(4)/(alpha^('))sum_(n > 0) tilde(alpha)_(-n)^(I) tilde(alpha)_(n)^(I)=(4)/(alpha^('))sum_(n > 0)alpha_(-n)^(I)alpha_(n)^(I)]:}\begin{aligned} \alpha^{\prime} p^{-} & =\frac{1}{p^{+}}\left(\frac{\alpha^{\prime}}{2}\left(p^{I}\right)^{2}+\sum_{n \neq 0} \tilde{\alpha}_{-n}^{I} \tilde{\alpha}_{n}^{I}\right) \\ & =\frac{1}{p^{+}}\left(\frac{\alpha^{\prime}}{2}\left(p^{I}\right)^{2}+\sum_{n \neq 0} \alpha_{-n}^{I} \alpha_{n}^{I}\right) \\ & \rightarrow M^{2}=2 p^{+} p^{-}-\left(p^{I}\right)^{2}=\frac{4}{\alpha^{\prime}} \sum_{n>0} \tilde{\alpha}_{-n}^{I} \tilde{\alpha}_{n}^{I}=\frac{4}{\alpha^{\prime}} \sum_{n>0} \alpha_{-n}^{I} \alpha_{n}^{I} \end{aligned}αp=1p+(α2(pI)2+n0α~nIα~nI)=1p+(α2(pI)2+n0αnIαnI)M2=2p+p(pI)2=4αn>0α~nIα~nI=4αn>0αnIαnI
For an open string with Neumann boundary conditions, the story is similar except that there is only one set of oscillators and p μ 2 p μ p μ 2 p μ p^(mu)rarr2p^(mu)p^{\mu} \rightarrow 2 p^{\mu}pμ2pμ. Here is a summary for open strings:
  • Lightcone gauge: X + = 2 α p + τ x 0 + = α n + = 0 , n 0 X + = 2 α p + τ x 0 + = α n + = 0 , n 0 X^(+)=2alpha^(')p^(+)tau rarrx_(0)^(+)=alpha_(n)^(+)=0,n!=0X^{+}=2 \alpha^{\prime} p^{+} \tau \rightarrow x_{0}^{+}=\alpha_{n}^{+}=0, n \neq 0X+=2αp+τx0+=αn+=0,n0
  • α n α n alpha_(n)^(-)\alpha_{n}^{-}αnconstraint: α n = 1 2 α 1 2 p + m α n m I α m I α n = 1 2 α 1 2 p + m α n m I α m I alpha_(n)^(-)=(1)/(sqrt(2alpha^(')))(1)/(2p^(+))sum_(m)alpha_(n-m)^(I)alpha_(m)^(I)\alpha_{n}^{-}=\frac{1}{\sqrt{2 \alpha^{\prime}}} \frac{1}{2 p^{+}} \sum_{m} \alpha_{n-m}^{I} \alpha_{m}^{I}αn=12α12p+mαnmIαmI
  • Mass formula: M 2 = 1 α n > 0 α n I α n I M 2 = 1 α n > 0 α n I α n I M^(2)=(1)/(alpha^('))sum_(n > 0)alpha_(-n)^(I)alpha_(n)^(I)M^{2}=\frac{1}{\alpha^{\prime}} \sum_{n>0} \alpha_{-n}^{I} \alpha_{n}^{I}M2=1αn>0αnIαnI
Hence, in lightcone gauge we express the theory in terms of transverse modes, which encode the independent physical degrees of freedom. To quantize the theory in light cone gauge, we must therefore quantize the transverse degrees of freedom.

9 Canonical Quantisation

Based on BBS pg 35-37, Tong pg 28-30. To quantize in a covariant way, we impose the canonical commutation relations:
[ X μ ( τ , σ ) , Π ν ( τ , σ ) ] = i δ ( σ σ ) η μ ν [ X μ ( τ , σ ) , X ν ( τ , σ ) ] = [ Π μ ( τ , σ ) , Π ν ( τ , σ ) ] = 0 X μ ( τ , σ ) , Π ν τ , σ = i δ σ σ η μ ν X μ ( τ , σ ) , X ν τ , σ = Π μ ( τ , σ ) , Π ν τ , σ = 0 {:[[X^(mu)(tau,sigma),Pi^(nu)(tau,sigma^('))]=i delta(sigma-sigma^('))eta^(mu nu)],[[X^(mu)(tau,sigma),X^(nu)(tau,sigma^('))]=[Pi_(mu)(tau,sigma),Pi_(nu)(tau,sigma^('))]=0]:}\begin{aligned} & {\left[X^{\mu}(\tau, \sigma), \Pi^{\nu}\left(\tau, \sigma^{\prime}\right)\right]=i \delta\left(\sigma-\sigma^{\prime}\right) \eta^{\mu \nu}} \\ & {\left[X^{\mu}(\tau, \sigma), X^{\nu}\left(\tau, \sigma^{\prime}\right)\right]=\left[\Pi_{\mu}(\tau, \sigma), \Pi_{\nu}\left(\tau, \sigma^{\prime}\right)\right]=0} \end{aligned}[Xμ(τ,σ),Πν(τ,σ)]=iδ(σσ)ημν[Xμ(τ,σ),Xν(τ,σ)]=[Πμ(τ,σ),Πν(τ,σ)]=0
where we evaluate commutators at fixed worldsheet time and Π μ Π μ Pi^(mu)\Pi^{\mu}Πμ is the canonical momentum:
Π μ = L X ˙ μ = T X ˙ μ , L = 1 2 ( X ˙ 2 X 2 ) Π μ = L X ˙ μ = T X ˙ μ , L = 1 2 X ˙ 2 X 2 Pi_(mu)=(delL)/(delX^(˙)^(mu))=TX^(˙)_(mu),quadL=(1)/(2)(X^(˙)^(2)-X^('2))\Pi_{\mu}=\frac{\partial \mathcal{L}}{\partial \dot{X}^{\mu}}=T \dot{X}_{\mu}, \quad \mathcal{L}=\frac{1}{2}\left(\dot{X}^{2}-X^{\prime 2}\right)Πμ=LX˙μ=TX˙μ,L=12(X˙2X2)
Inserting mode expansions then implies commutation relations for the modes: For closed strings, one gets
[ x μ , p ν ] = i η μ ν , [ α m μ , α n v ] = [ α ~ m μ α ~ n ν ] = m η μ ν δ m + n , 0 , [ α m μ α ~ m ν ] = 0 x μ , p ν = i η μ ν , α m μ , α n v = α ~ m μ α ~ n ν = m η μ ν δ m + n , 0 , α m μ α ~ m ν = 0 [x^(mu),p^(nu)]=ieta^(mu nu),quad[alpha_(m)^(mu),alpha_(n)^(v)]=[ tilde(alpha)_(m)^(mu) tilde(alpha)_(n)^(nu)]=meta^(mu nu)delta_(m+n,0),quad[alpha_(m)^(mu) tilde(alpha)_(m)^(nu)]=0\left[x^{\mu}, p^{\nu}\right]=i \eta^{\mu \nu}, \quad\left[\alpha_{m}^{\mu}, \alpha_{n}^{v}\right]=\left[\tilde{\alpha}_{m}^{\mu} \tilde{\alpha}_{n}^{\nu}\right]=m \eta^{\mu \nu} \delta_{m+n, 0}, \quad\left[\alpha_{m}^{\mu} \tilde{\alpha}_{m}^{\nu}\right]=0[xμ,pν]=iημν,[αmμ,αnv]=[α~mμα~nν]=mημνδm+n,0,[αmμα~mν]=0
Lot a m μ = 1 m α m μ , a m μ = 1 m α m μ , m > 0 a m μ = 1 m α m μ , a m μ = 1 m α m μ , m > 0 a_(m)^(mu)=(1)/(sqrtm)alpha_(m)^(mu),a_(m)^(mu†)=(1)/(sqrtm)alpha_(-m)^(mu),m > 0a_{m}^{\mu}=\frac{1}{\sqrt{m}} \alpha_{m}^{\mu}, a_{m}^{\mu \dagger}=\frac{1}{\sqrt{m}} \alpha_{-m}^{\mu}, m>0amμ=1mαmμ,amμ=1mαmμ,m>0. Then
[ a m μ , a n ν ] = [ a ~ m μ , a ~ n ν + ] = η μ ν δ m , n a m μ , a n ν = a ~ m μ , a ~ n ν + = η μ ν δ m , n [a_(m)^(mu),a_(n)^(nu†)]=[ tilde(a)_(m)^(mu), tilde(a)_(n)^(nu+)]=eta^(mu nu)delta_(m,n)\left[a_{m}^{\mu}, a_{n}^{\nu \dagger}\right]=\left[\tilde{a}_{m}^{\mu}, \tilde{a}_{n}^{\nu+}\right]=\eta^{\mu \nu} \delta_{m, n}[amμ,anν]=[a~mμ,a~nν+]=ημνδm,n
which is essentially the algebra of raising and lowering operators for harmonic oscillators. For open strings, there is only one set of oscillators.
Note that [ a m 0 , a m 0 ] = 1 a m 0 , a m 0 = 1 [a_(m)^(0),a_(m)^(0†)]=-1\left[a_{m}^{0}, a_{m}^{0 \dagger}\right]=-1[am0,am0]=1. This gives negative norm states: Let | ψ = | ψ = |psi:)=|\psi\rangle=|ψ= a m 0 | 0 , m > 0 a m 0 | 0 , m > 0 a_(m)^(0†)|0:),m > 0a_{m}^{0 \dagger}|0\rangle, m>0am0|0,m>0. Then
ψ ψ = 0 | a m 0 a m 0 | 0 = 0 | a m 0 a m 0 | 0 + 0 | [ a m 0 , a m 0 ] | 0 = 1 ψ ψ = 0 a m 0 a m 0 0 = 0 a m 0 a m 0 0 + 0 a m 0 , a m 0 0 = 1 (:psi∣psi:)=(:0|a_(m)^(0)a_(m)^(0†)|0:)=(:0|a_(m)^(0†)a_(m)^(0)|0:)+(:0|[a_(m)^(0),a_(m)^(0†)]|∣0:)=-1\langle\psi \mid \psi\rangle=\left\langle 0\left|a_{m}^{0} a_{m}^{0 \dagger}\right| 0\right\rangle=\left\langle 0\left|a_{m}^{0 \dagger} a_{m}^{0}\right| 0\right\rangle+\left\langle 0\left|\left[a_{m}^{0}, a_{m}^{0 \dagger}\right]\right| \mid 0\right\rangle=-1ψψ=0|am0am0|0=0|am0am0|0+0|[am0,am0]|0=1
where the first term after the second equality vanishes and we used the commutation relations in the second term. Negative norm states can be removed by imposing additional constraints on the Hilbert space encoding which encode the Virasoro constraints (see chapter 24 of Zwiebach for more detials).
In lightcone gauge negative norm states do not appear because we eliminate oscillators of X ± X ± X^(+-)X^{ \pm}X±and the Hilbert space is then constructed using only transverse oscillators and is manifestly positive definite. We will therefore proceed with quantization in light cone gauge. Our main task will be to show that
[ x I , p J ] = i δ I J , [ α m I , α n J ] = [ α ~ m I , α ~ n J ] = m δ I J δ m + n , 0 , [ α n I , α ~ m J ] = 0 x I , p J = i δ I J , α m I , α n J = α ~ m I , α ~ n J = m δ I J δ m + n , 0 , α n I , α ~ m J = 0 [x^(I),p^(J)]=idelta^(IJ),[alpha_(m)^(I),alpha_(n)^(J)]=[ tilde(alpha)_(m)^(I), tilde(alpha)_(n)^(J)]=mdelta^(IJ)delta_(m+n,0),quad[alpha_(n)^(I), tilde(alpha)_(m)^(J)]=0\left[x^{I}, p^{J}\right]=i \delta^{I J},\left[\alpha_{m}^{I}, \alpha_{n}^{J}\right]=\left[\tilde{\alpha}_{m}^{I}, \tilde{\alpha}_{n}^{J}\right]=m \delta^{I J} \delta_{m+n, 0}, \quad\left[\alpha_{n}^{I}, \tilde{\alpha}_{m}^{J}\right]=0[xI,pJ]=iδIJ,[αmI,αnJ]=[α~mI,α~nJ]=mδIJδm+n,0,[αnI,α~mJ]=0
implies the canonical commutation relations
[ X I ( τ , 6 ) , Π J ( τ , σ ) ] = i δ I J δ ( σ σ ) X I ( τ , 6 ) , Π J τ , σ = i δ I J δ σ σ [X^(I)(tau,6),Pi^(J)(tau,sigma^('))]=idelta^(IJ)delta(sigma-sigma^('))\left[X^{I}(\tau, 6), \Pi^{J}\left(\tau, \sigma^{\prime}\right)\right]=i \delta^{I J} \delta\left(\sigma-\sigma^{\prime}\right)[XI(τ,6),ΠJ(τ,σ)]=iδIJδ(σσ)
where I 1 , , D 2 I 1 , , D 2 I in1,dots,D-2I \in 1, \ldots, D-2I1,,D2 and all other commutators vanish. In light cone gauge x 0 x 0 x_(0)^(-)x_{0}^{-}x0and p + p + p^(+)p^{+}p+are not eliminated, so we must also impose the commutation relation [ x 0 , p + ] = i x 0 , p + = i [x_(0)^(-),p^(+)]=-i\left[x_{0}^{-}, p^{+}\right]=-i[x0,p+]=i.
Let's prove the commutation relations. Recall that for closed string
X I ( τ , σ ) = x 0 I + α p I τ + i α 2 n 0 1 n ( α ~ n I e i n σ + + α n I e i n σ ) Π I = T X ˙ I = T ( α p I + α 2 n 0 ( α ~ n I e i n σ + + α n I e i n σ ) ) = T α 2 n ( α ~ n I e i n σ + + α n I e i n σ ) , α 0 I = α ~ 0 I = α 2 p I [ X I ( τ , σ ) , Π J ( τ , σ ) ] = T ( α [ x 0 , p I J ] + i α 2 n 0 , m 0 1 n A n m I J ) X I ( τ , σ ) = x 0 I + α p I τ + i α 2 n 0 1 n α ~ n I e i n σ + + α n I e i n σ Π I = T X ˙ I = T α p I + α 2 n 0 α ~ n I e i n σ + + α n I e i n σ = T α 2 n α ~ n I e i n σ + + α n I e i n σ , α 0 I = α ~ 0 I = α 2 p I X I ( τ , σ ) , Π J τ , σ = T α x 0 , p I J + i α 2 n 0 , m 0 1 n A n m I J {:[X^(I)(tau","sigma)=x_(0)^(I)+alpha^(')p^(I)tau+isqrt((alpha^('))/(2))sum_(n!=0)(1)/(n)( tilde(alpha)_(n)^(I)e^(-insigma^(+))+alpha_(n)^(I)e^(-insigma^(-)))],[rarrPi^(I)=TX^(˙)^(I)],[=T(alpha^(')p^(I)+sqrt((alpha^('))/(2))sum_(n!=0)( tilde(alpha)_(n)^(I)e^(-insigma^(+))+alpha_(n)^(I)e^(-insigma^(-))))],[=Tsqrt((alpha^('))/(2))sum_(n)( widetilde(alpha)_(n)^(I)e^(-insigma^(+))+alpha_(n)^(I)e^(-insigma^(-)))","alpha_(0)^(I)= tilde(alpha)_(0)^(I)=sqrt((alpha^('))/(2))p^(I)],[rarr[X^(I)(tau,sigma),Pi^(J)(tau,sigma^('))]=T(alpha^(')[x_(0,p^(I))^(J)]+(ialpha^('))/(2)sum_(n!=0,m!=0)(1)/(n)A_(nm)^(IJ))]:}\begin{aligned} & X^{I}(\tau, \sigma)=x_{0}^{I}+\alpha^{\prime} p^{I} \tau+i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n}\left(\tilde{\alpha}_{n}^{I} e^{-i n \sigma^{+}}+\alpha_{n}^{I} e^{-i n \sigma^{-}}\right) \\ \rightarrow \Pi^{I} & =T \dot{X}^{I} \\ & =T\left(\alpha^{\prime} p^{I}+\sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0}\left(\tilde{\alpha}_{n}^{I} e^{-i n \sigma^{+}}+\alpha_{n}^{I} e^{-i n \sigma^{-}}\right)\right) \\ & =T \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n}\left(\widetilde{\alpha}_{n}^{I} e^{-i n \sigma^{+}}+\alpha_{n}^{I} e^{-i n \sigma^{-}}\right), \alpha_{0}^{I}=\tilde{\alpha}_{0}^{I}=\sqrt{\frac{\alpha^{\prime}}{2}} p^{I} \\ \rightarrow & {\left[X^{I}(\tau, \sigma), \Pi^{J}\left(\tau, \sigma^{\prime}\right)\right]=T\left(\alpha^{\prime}\left[x_{0, p^{I}}^{J}\right]+\frac{i \alpha^{\prime}}{2} \sum_{n \neq 0, m \neq 0} \frac{1}{n} A_{n m}^{I J}\right) } \end{aligned}XI(τ,σ)=x0I+αpIτ+iα2n01n(α~nIeinσ++αnIeinσ)ΠI=TX˙I=T(αpI+α2n0(α~nIeinσ++αnIeinσ))=Tα2n(α~nIeinσ++αnIeinσ),α0I=α~0I=α2pI[XI(τ,σ),ΠJ(τ,σ)]=T(α[x0,pIJ]+iα2n0,m01nAnmIJ)
where
A n m I J = [ α ~ n I e i n ( τ + σ ) + α n I e i n ( τ σ ) , α ~ m J e i m ( τ + σ ) + α m J e i m ( τ σ ) ] = [ α ~ n I , α ~ m J ] e i ( n + m ) τ e i ( n σ + m σ ) + [ α n I , α m J ] e i ( n + m ) τ e i ( n σ + m σ ) = n δ I J δ m + n , 0 ( e i n ( σ σ ) + e i n ( σ σ ) ) A n m I J = α ~ n I e i n ( τ + σ ) + α n I e i n ( τ σ ) , α ~ m J e i m τ + σ + α m J e i m τ σ = α ~ n I , α ~ m J e i ( n + m ) τ e i n σ + m σ + α n I , α m J e i ( n + m ) τ e i n σ + m σ = n δ I J δ m + n , 0 e i n σ σ + e i n σ σ {:[A_(n*m)^(IJ)=[ tilde(alpha)_(n)^(I)e^(-in(tau+sigma))+alpha_(n)^(I)e^(-in(tau-sigma)), tilde(alpha)_(m)^(J)e^(-im(tau+sigma^(')))+alpha_(m)^(J)e^(-im(tau-sigma^(')))]],[=[ tilde(alpha)_(n)^(I), tilde(alpha)_(m)^(J)]e^(-i(n+m)tau)e^(-i(n sigma+msigma^(')))+[alpha_(n)^(I),alpha_(m)^(J)]e^(-i(n+m)tau)e^(i(n sigma+msigma^(')))],[=ndelta^(IJ)delta_(m+n,0)(e^(-in(sigma-sigma^(')))+e^(in(sigma-sigma^('))))]:}\begin{aligned} A_{n \cdot m}^{I J} & =\left[\tilde{\alpha}_{n}^{I} e^{-i n(\tau+\sigma)}+\alpha_{n}^{I} e^{-i n(\tau-\sigma)}, \tilde{\alpha}_{m}^{J} e^{-i m\left(\tau+\sigma^{\prime}\right)}+\alpha_{m}^{J} e^{-i m\left(\tau-\sigma^{\prime}\right)}\right] \\ & =\left[\tilde{\alpha}_{n}^{I}, \tilde{\alpha}_{m}^{J}\right] e^{-i(n+m) \tau} e^{-i\left(n \sigma+m \sigma^{\prime}\right)}+\left[\alpha_{n}^{I}, \alpha_{m}^{J}\right] e^{-i(n+m) \tau} e^{i\left(n \sigma+m \sigma^{\prime}\right)} \\ & =n \delta^{I J} \delta_{m+n, 0}\left(e^{-i n\left(\sigma-\sigma^{\prime}\right)}+e^{i n\left(\sigma-\sigma^{\prime}\right)}\right) \end{aligned}AnmIJ=[α~nIein(τ+σ)+αnIein(τσ),α~mJeim(τ+σ)+αmJeim(τσ)]=[α~nI,α~mJ]ei(n+m)τei(nσ+mσ)+[αnI,αmJ]ei(n+m)τei(nσ+mσ)=nδIJδm+n,0(ein(σσ)+ein(σσ))
Hence
[ X I ( τ , σ ) , Π J ( τ , σ ) ] = T ( i α δ I J + i α 2 n 0 ( e i n ( σ σ ) + e i n ( σ σ ) ) ) = i 1 2 π n e i n ( σ σ ) δ I J = i δ ( σ σ ) δ I J , as expected X I ( τ , σ ) , Π J τ , σ = T i α δ I J + i α 2 n 0 e i n σ σ + e i n σ σ = i 1 2 π n e i n σ σ δ I J = i δ σ σ δ I J ,  as expected  {:[[X^(I)(tau,sigma),Pi^(J)(tau,sigma^('))]=T(ialpha^(')delta^(IJ)+(ialpha^('))/(2)sum_(n!=0)(e^(-in(sigma-sigma^(')))+e^(in(sigma-sigma^(')))))],[=i(1)/(2pi)sum_(n)e^(in(sigma-sigma^(')))delta^(IJ)],[=i delta(sigma-sigma^('))delta^(IJ)","" as expected "]:}\begin{aligned} {\left[X^{I}(\tau, \sigma), \Pi^{J}\left(\tau, \sigma^{\prime}\right)\right] } & =T\left(i \alpha^{\prime} \delta^{I J}+\frac{i \alpha^{\prime}}{2} \sum_{n \neq 0}\left(e^{-i n\left(\sigma-\sigma^{\prime}\right)}+e^{i n\left(\sigma-\sigma^{\prime}\right)}\right)\right) \\ & =i \frac{1}{2 \pi} \sum_{n} e^{i n\left(\sigma-\sigma^{\prime}\right)} \delta^{I J} \\ & =i \delta\left(\sigma-\sigma^{\prime}\right) \delta^{I J}, \text { as expected } \end{aligned}[XI(τ,σ),ΠJ(τ,σ)]=T(iαδIJ+iα2n0(ein(σσ)+ein(σσ)))=i12πnein(σσ)δIJ=iδ(σσ)δIJ, as expected 
Let us prove that
δ ( σ σ ) = 1 2 π n e i n ( σ σ ) δ σ σ = 1 2 π n e i n σ σ delta(sigma-sigma^('))=(1)/(2pi)sum_(n)e^(in(sigma-sigma^(')))\delta\left(\sigma-\sigma^{\prime}\right)=\frac{1}{2 \pi} \sum_{n} e^{i n\left(\sigma-\sigma^{\prime}\right)}δ(σσ)=12πnein(σσ)

Proof:

Any function f ( σ ) f ( σ ) f(sigma)f(\sigma)f(σ) defined over σ [ 0 , 2 π ] σ [ 0 , 2 π ] sigma in[0,2pi]\sigma \in[0,2 \pi]σ[0,2π] can be Fourier expanded as
f ( σ ) = 1 2 π m C m e i m σ 0 2 π d σ f ( σ ) e i n σ = 1 2 π m C m 0 2 π d σ e i ( m n ) σ 2 π δ m , n = C n f ( σ ) = 1 2 π m C m e i m σ 0 2 π d σ f ( σ ) e i n σ = 1 2 π m C m 0 2 π d σ e i ( m n ) σ 2 π δ m , n = C n {:[f(sigma)=(1)/(2pi)sum_(m)C_(m)e^(im sigma)],[ rarrint_(0)^(2pi)d sigma f(sigma)e^(-in sigma)=(1)/(2pi)sum_(m)C_(m)ubrace(int_(0)^(2pi)d sigmae^(i(m-n)sigma)ubrace)_(2pidelta_(m,n))=C_(n)]:}\begin{aligned} & f(\sigma)=\frac{1}{2 \pi} \sum_{m} C_{m} e^{i m \sigma} \\ & \rightarrow \int_{0}^{2 \pi} d \sigma f(\sigma) e^{-i n \sigma}=\frac{1}{2 \pi} \sum_{m} C_{m} \underbrace{\int_{0}^{2 \pi} d \sigma e^{i(m-n) \sigma}}_{2 \pi \delta_{m, n}}=C_{n} \end{aligned}f(σ)=12πmCmeimσ02πdσf(σ)einσ=12πmCm02πdσei(mn)σ2πδm,n=Cn
For f ( σ ) = δ ( σ σ ) f ( σ ) = δ σ σ f(sigma)=delta(sigma-sigma^('))f(\sigma)=\delta\left(\sigma-\sigma^{\prime}\right)f(σ)=δ(σσ), we find
C n = 0 2 π d σ δ ( σ σ ) e i n σ = e i n σ δ ( σ σ ) = 1 2 π n e i n ( σ σ ) C n = 0 2 π d σ δ σ σ e i n σ = e i n σ δ σ σ = 1 2 π n e i n σ σ {:[C_(n)=int_(0)^(2pi)d sigma delta(sigma-sigma^('))e^(-in sigma)=e^(-insigma^('))],[ rarr delta(sigma-sigma^('))=(1)/(2pi)sum_(n)e^(in(sigma-sigma^(')))]:}\begin{aligned} & C_{n}=\int_{0}^{2 \pi} d \sigma \delta\left(\sigma-\sigma^{\prime}\right) e^{-i n \sigma}=e^{-i n \sigma^{\prime}} \\ & \rightarrow \delta\left(\sigma-\sigma^{\prime}\right)=\frac{1}{2 \pi} \sum_{n} e^{i n\left(\sigma-\sigma^{\prime}\right)} \end{aligned}Cn=02πdσδ(σσ)einσ=einσδ(σσ)=12πnein(σσ)
as expected.
Now let's look at the other commutation relations:
[ X I ( τ , σ ) , X J ( τ , σ ) ] = α τ ( [ x 0 I , p J ] + [ p I , x 0 J ] ) α 2 n , m 0 1 n m A n m I J = α 2 δ I J n 0 1 n ( e i δ I J ( σ σ ) + e i n ( σ σ ) ) X I ( τ , σ ) , X J τ , σ = α τ x 0 I , p J + p I , x 0 J α 2 n , m 0 1 n m A n m I J = α 2 δ I J n 0 1 n e i δ I J σ σ + e i n σ σ {:[[X^(I)(tau,sigma),X^(J)(tau,sigma^('))]=alpha^(')tau([x_(0)^(I),p^(J)]+[p^(I),x_(0)^(J)])-(alpha^('))/(2)sum_(n,m!=0)(1)/(nm)A_(nm)^(IJ)],[=(alpha^('))/(2)delta^(IJ)sum_(n!=0)(1)/(n)(e^(-idelta^(IJ)(sigma-sigma^(')))+e^(in(sigma-sigma^('))))]:}\begin{aligned} {\left[X^{I}(\tau, \sigma), X^{J}\left(\tau, \sigma^{\prime}\right)\right] } & =\alpha^{\prime} \tau\left(\left[x_{0}^{I}, p^{J}\right]+\left[p^{I}, x_{0}^{J}\right]\right)-\frac{\alpha^{\prime}}{2} \sum_{n, m \neq 0} \frac{1}{n m} A_{n m}^{I J} \\ & =\frac{\alpha^{\prime}}{2} \delta^{I J} \sum_{n \neq 0} \frac{1}{n}\left(e^{-i \delta^{I J}\left(\sigma-\sigma^{\prime}\right)}+e^{i n\left(\sigma-\sigma^{\prime}\right)}\right) \end{aligned}[XI(τ,σ),XJ(τ,σ)]=ατ([x0I,pJ]+[pI,x0J])α2n,m01nmAnmIJ=α2δIJn01n(eiδIJ(σσ)+ein(σσ))
which vanishes after taking n n n n n rarr-nn \rightarrow-nnn in the first term in the second line. Finally, we have
[ Π I ( τ , σ ) , Π J ( τ , σ ) ] = α 2 T 2 n , m A n m I J = α 2 T 2 δ I J n n ( e i n ( σ σ ) + e i n ( σ σ ) ) Π I ( τ , σ ) , Π J τ , σ = α 2 T 2 n , m A n m I J = α 2 T 2 δ I J n n e i n σ σ + e i n σ σ {:[[Pi^(I)(tau,sigma),Pi^(J)(tau,sigma^('))]=(alpha^('))/(2)T^(2)sum_(n,m)A_(nm)^(IJ)],[=(alpha^('))/(2)T^(2)delta^(IJ)sum_(n)n(e^(-in(sigma-sigma^(')))+e^(in(sigma-sigma^('))))]:}\begin{aligned} & {\left[\Pi^{I}(\tau, \sigma), \Pi^{J}\left(\tau, \sigma^{\prime}\right)\right]=\frac{\alpha^{\prime}}{2} T^{2} \sum_{n, m} A_{n m}^{I J}} \\ & =\frac{\alpha^{\prime}}{2} T^{2} \delta^{I J} \sum_{n} n\left(e^{-i n\left(\sigma-\sigma^{\prime}\right)}+e^{i n\left(\sigma-\sigma^{\prime}\right)}\right) \end{aligned}[ΠI(τ,σ),ΠJ(τ,σ)]=α2T2n,mAnmIJ=α2T2δIJnn(ein(σσ)+ein(σσ))
which vanishes after taking n n n n n rarr-nn \rightarrow-nnn in the first term of the second line.
This concludes the derivation of the canonic commutation relations for the closed string. For the open string there is only one set of oscillators, so we have
[ x I , p J ] = i δ I J , [ α m I , α n J ] = m δ I J δ m + n , 0 x I , p J = i δ I J , α m I , α n J = m δ I J δ m + n , 0 [x^(I),p^(J)]=idelta^(IJ),[alpha_(m)^(I),alpha_(n)^(J)]=mdelta^(IJ)delta_(m+n,0)\left[x^{I}, p^{J}\right]=i \delta^{I J},\left[\alpha_{m}^{I}, \alpha_{n}^{J}\right]=m \delta^{I J} \delta_{m+n, 0}[xI,pJ]=iδIJ,[αmI,αnJ]=mδIJδm+n,0
The prof of these commutation relations is similar to the closed string case except now we use the identity
δ ( σ σ ) = 1 π n cos ( n σ ) cos ( n σ ) δ σ σ = 1 π n cos ( n σ ) cos n σ delta(sigma-sigma^('))=(1)/(pi)sum_(n)cos(n sigma)cos(nsigma^('))\delta\left(\sigma-\sigma^{\prime}\right)=\frac{1}{\pi} \sum_{n} \cos (n \sigma) \cos \left(n \sigma^{\prime}\right)δ(σσ)=1πncos(nσ)cos(nσ)
which you will show on the HW.

10 Spectrum and Critical Dimension

This will be based on BBS pg 50,51,53, Tong sections 2.3,2.4. Recall the in lightcone gauge, states are constructed from transverse oscillators:
[ α m I , α n J ] = [ α ~ m I , α ~ n J ] = m δ I J δ m + n , 0 α m I , α n J = α ~ m I , α ~ n J = m δ I J δ m + n , 0 [alpha_(m)^(I),alpha_(n)^(J)]=[ tilde(alpha)_(m)^(I), tilde(alpha)_(n)^(J)]=mdelta^(IJ)delta_(m+n,0)\left[\alpha_{m}^{I}, \alpha_{n}^{J}\right]=\left[\tilde{\alpha}_{m}^{I}, \tilde{\alpha}_{n}^{J}\right]=m \delta^{I J} \delta_{m+n, 0}[αmI,αnJ]=[α~mI,α~nJ]=mδIJδm+n,0
where I = 1 , , D 2 I = 1 , , D 2 I=1,dots,D-2I=1, \ldots, D-2I=1,,D2 label transverse directions. For open strings, there are only one set of oscillators α m I α m I alpha_(m)^(I)\alpha_{m}^{I}αmI. Let
a m I = 1 m α m I , a m = 1 m α m I = 1 m ( α m I ) + , m > 0 a m I = 1 m α m I , a m = 1 m α m I = 1 m α m I + , m > 0 a_(m)^(I)=(1)/(sqrtm)alpha_(m)^(I),quada_(m)^(†)=(1)/(sqrtm)alpha_(-m)^(I)=(1)/(sqrtm)(alpha_(m)^(I))^(+),m > 0a_{m}^{I}=\frac{1}{\sqrt{m}} \alpha_{m}^{I}, \quad a_{m}^{\dagger}=\frac{1}{\sqrt{m}} \alpha_{-m}^{I}=\frac{1}{\sqrt{m}}\left(\alpha_{m}^{I}\right)^{+}, m>0amI=1mαmI,am=1mαmI=1m(αmI)+,m>0
and similar for α ~ m I α ~ m I tilde(alpha)_(m)^(I)\tilde{\alpha}_{m}^{I}α~mI. Then
[ a m I a m J ] = [ a ~ m I a ~ m J ] = δ I J δ m , n a m I a m J = a ~ m I a ~ m J = δ I J δ m , n [a_(m)^(I)a_(m)^(J†)]=[ tilde(a)_(m)^(I) tilde(a)_(m)^(J†)]=delta^(IJ)delta_(m,n)\left[a_{m}^{I} a_{m}^{J \dagger}\right]=\left[\tilde{a}_{m}^{I} \tilde{a}_{m}^{J \dagger}\right]=\delta^{I J} \delta_{m, n}[amIamJ]=[a~mIa~mJ]=δIJδm,n
which we recognize as raising and lowering operators of harmonic oscillators. In particular,
α m I | 0 ; k , α m I | 0 ; k = 0 , m > 0 α m I | 0 ; k , α m I | 0 ; k = 0 , m > 0 alpha_(m)^(I)|0;k:),quadalpha_(m)^(I)|0;k:)=0,quad m > 0\alpha_{m}^{I}|0 ; k\rangle, \quad \alpha_{m}^{I}|0 ; k\rangle=0, \quad m>0αmI|0;k,αmI|0;k=0,m>0
where the ground state has momentum k μ k μ k^(mu)k^{\mu}kμ :
p μ | 0 ; k μ = k μ | 0 ; k μ p μ 0 ; k μ = k μ 0 ; k μ p^(mu)|0;k^(mu):)=k^(mu)|0;k^(mu):)p^{\mu}\left|0 ; k^{\mu}\right\rangle=k^{\mu}\left|0 ; k^{\mu}\right\ranglepμ|0;kμ=kμ|0;kμ
We encountered this state when we quantised the relativistic point particle using the world line formalism, which only gives single-particle states. In string theory, we can act on this state with α m I α m I alpha_(-m)^(I)\alpha_{-m}^{I}αmI and α ~ m I , m > 0 α ~ m I , m > 0 tilde(alpha)_(-m)^(I),m > 0\tilde{\alpha}_{-m}^{I}, m>0α~mI,m>0 to give an infinite tower of massive higher-spin states. Note that these are still single-particle states.
Since all the oscillators are transverse, the Hilbert space is manifestly positive definite. Hence lightcone gauge makes all the physical degrees of freedom manifest. Let's compute the spectrum, starting from the open string with Neumann boundary conditions.

Open string spectrum

Recall that in light cone gauge, the Virasoro constraints fix p p p^(-)p^{-}pin terms of transverse oscillators implying the following mass formula:
M 2 = 1 2 α n 0 α n I α n I = 1 2 α n > 0 ( α n I α n I + α n I α n I ) = 1 2 α n > 0 ( 2 α n I α n I + [ α n I , α n I ] ) = 1 2 α n > 0 ( 2 α n I α n I + n δ I I ) = 1 α n > 0 α n I α n I classical + D 2 2 α n > 0 n quantum cosult = 1 α ( N a ) M 2 = 1 2 α n 0 α n I α n I = 1 2 α n > 0 α n I α n I + α n I α n I = 1 2 α n > 0 2 α n I α n I + α n I , α n I = 1 2 α n > 0 2 α n I α n I + n δ I I = 1 α n > 0 α n I α n I classical  + D 2 2 α n > 0 n  quantum   cosult  = 1 α ( N a ) {:[M^(2)=(1)/(2alpha^('))sum_(n!=0)alpha_(-n)^(I)alpha_(n)^(I)=(1)/(2alpha^('))sum_(n > 0)(alpha_(-n)^(I)alpha_(n)^(I)+alpha_(n)^(I)alpha_(-n)^(I))],[=(1)/(2alpha^('))sum_(n > 0)(2alpha_(-n)^(I)alpha_(n)^(I)+[alpha_(n)^(I),alpha_(-n)^(I)])],[=(1)/(2alpha^('))sum_(n > 0)(2alpha_(-n)^(I)alpha_(n)^(I)+ndelta^(II))],[=ubrace((1)/(alpha^('))sum_(n > 0)alpha_(-n)^(I)alpha_(n)^(I)ubrace)_("classical ")+ubrace((D-2)/(2alpha^('))sum_(n > 0)nubrace)_({:[" quantum "],[" cosult "]:})],[=(1)/(alpha^('))(N-a)]:}\begin{aligned} M^{2} & =\frac{1}{2 \alpha^{\prime}} \sum_{n \neq 0} \alpha_{-n}^{I} \alpha_{n}^{I}=\frac{1}{2 \alpha^{\prime}} \sum_{n>0}\left(\alpha_{-n}^{I} \alpha_{n}^{I}+\alpha_{n}^{I} \alpha_{-n}^{I}\right) \\ & =\frac{1}{2 \alpha^{\prime}} \sum_{n>0}\left(2 \alpha_{-n}^{I} \alpha_{n}^{I}+\left[\alpha_{n}^{I}, \alpha_{-n}^{I}\right]\right) \\ & =\frac{1}{2 \alpha^{\prime}} \sum_{n>0}\left(2 \alpha_{-n}^{I} \alpha_{n}^{I}+n \delta^{I I}\right) \\ & =\underbrace{\frac{1}{\alpha^{\prime}} \sum_{n>0} \alpha_{-n}^{I} \alpha_{n}^{I}}_{\text {classical }}+\underbrace{\frac{D-2}{2 \alpha^{\prime}} \sum_{n>0} n}_{\begin{array}{c} \text { quantum } \\ \text { cosult } \end{array}} \\ & =\frac{1}{\alpha^{\prime}}(N-a) \end{aligned}M2=12αn0αnIαnI=12αn>0(αnIαnI+αnIαnI)=12αn>0(2αnIαnI+[αnI,αnI])=12αn>0(2αnIαnI+nδII)=1αn>0αnIαnIclassical +D22αn>0n quantum  cosult =1α(Na)
where
N = n > 0 α n I α n I = n > 0 n a n I a n I N = n > 0 α n I α n I = n > 0 n a n I a n I N=sum_(n > 0)alpha_(-n)^(I)alpha_(n)^(I)=sum_(n > 0)na_(n)^(I†)a_(n)^(I)N=\sum_{n>0} \alpha_{-n}^{I} \alpha_{n}^{I}=\sum_{n>0} n a_{n}^{I \dagger} a_{n}^{I}N=n>0αnIαnI=n>0nanIanI
is the "number operator" which counts the number of oscillators weighted by their mode number and
a = D 2 2 n > 0 n a = D 2 2 n > 0 n a=-(D-2)/(2)sum_(n > 0)na=-\frac{D-2}{2} \sum_{n>0} na=D22n>0n
is a "normal ordering constant." We need regulate the infinite sum n > 0 n n > 0 n sum_(n > 0)n\sum_{n>0} nn>0n. Consider the general sum
ζ ( s ) = n = 1 n s "Riemann zeta function" ζ ( s ) = n = 1 n s  "Riemann zeta function"  zeta(s)=sum_(n=1)^(oo)n^(-s)quad" "Riemann zeta function" "\zeta(s)=\sum_{n=1}^{\infty} n^{-s} \quad \text { "Riemann zeta function" }ζ(s)=n=1ns "Riemann zeta function" 
where s C s C s inCs \in \mathbb{C}sC. This sum converges for Re ( s ) > 1 Re ( s ) > 1 Re(s) > 1\operatorname{Re}(s)>1Re(s)>1, and has a pole at s = 1 s = 1 s=1s=1s=1. It can be analytically continued around the pole to give ζ ( 1 ) = 1 12 ζ ( 1 ) = 1 12 zeta(-1)=-(1)/(12)\zeta(-1)=-\frac{1}{12}ζ(1)=112 as you will show in the HW. Hence, we find that
a = D 2 24 a = D 2 24 a=(D-2)/(24)a=\frac{D-2}{24}a=D224
Let us consider the first excited state: α 1 I 0 ; k > α 1 I 0 ; k > quadalpha_(-1)^(I)∣0;k >\quad \alpha_{-1}^{I} \mid 0 ; k>α1I0;k>. In this case we have N = 1 N = 1 N=1N=1N=1 so M 2 = 1 α ( 1 a ) M 2 = 1 α ( 1 a ) M^(2)=(1)/(alpha^('))(1-a)M^{2}=\frac{1}{\alpha^{\prime}}(1-a)M2=1α(1a). Note that the state is a ( D 2 ) ( D 2 ) (D-2)(D-2)(D2)-component vector and recall that Lorentz invariance implies that massive states must form represntations of S O ( D 1 ) S O ( D 1 ) SO(D-1)S O(D-1)SO(D1) and massless states must form representations of S O ( D 2 ) S O ( D 2 ) SO(D-2)S O(D-2)SO(D2). Since we cannot package the ( D 2 ) ( D 2 ) (D-2)(D-2)(D2) states into a representation of S O ( D 1 ) S O ( D 1 ) SO(D-1)S O(D-1)SO(D1), it must be a massless state. Indeed this is the structure of single
particle states that we found when quantizing Maxwell theory. Hence, we find that open strings contain massless spin- 1 particles, i.e. gauge fields, in their spectrum. It follows that
M 2 = 1 α ( 1 a ) = 0 a = 1 D = 26 "Critical dimension" M 2 = 1 α ( 1 a ) = 0 a = 1 D = 26  "Critical dimension"  M^(2)=(1)/(alpha^('))(1-a)=0rarr a=1rarr D=26" "Critical dimension" "M^{2}=\frac{1}{\alpha^{\prime}}(1-a)=0 \rightarrow a=1 \rightarrow D=26 \text { "Critical dimension" }M2=1α(1a)=0a=1D=26 "Critical dimension" 
Hence, string theory predicts the dimension of spacetime! If D 26 D 26 D!=26D \neq 26D26, the theory would not be Lorentz-invariant.
A more rigorous (but much more tedious) way to derive a = 1 , D = 26 a = 1 , D = 26 a=1,D=26a=1, D=26a=1,D=26 is to compute the commutator
[ J I , J K ] J I , J K [J^(I-),J^(K-)]\left[J^{I-}, J^{K-}\right][JI,JK]
where J μ ν J μ ν J^(mu nu)J^{\mu \nu}Jμν are Lorentz generators computed from Noether's theorem and expressed in terms of transverse oscillators after plugging in mode expansion and eliminating α n α n alpha_(n)^(-)\alpha_{n}^{-}αnoscillators in lightcone gauge. Note that generators of Lorentz group must satisfy the following algebra:
[ J μ ν , J ρ σ ] = η μ ρ J ν σ η ν σ J μ ρ + η μ σ J ν ρ + η ν ρ J μ σ J μ ν , J ρ σ = η μ ρ J ν σ η ν σ J μ ρ + η μ σ J ν ρ + η ν ρ J μ σ [J^(mu nu),J^(rho sigma)]=-eta^(mu rho)J^(nu sigma)-eta^(nu sigma)J^(mu rho)+eta^(mu sigma)J^(nu rho)+eta^(nu rho)J^(mu sigma)\left[J^{\mu \nu}, J^{\rho \sigma}\right]=-\eta^{\mu \rho} J^{\nu \sigma}-\eta^{\nu \sigma} J^{\mu \rho}+\eta^{\mu \sigma} J^{\nu \rho}+\eta^{\nu \rho} J^{\mu \sigma}[Jμν,Jρσ]=ημρJνσηνσJμρ+ημσJνρ+ηνρJμσ
Hence [ J I , J K ] = 0 J I , J K = 0 [J^(I-),J^(K-)]=0\left[J^{I-}, J^{K-}\right]=0[JI,JK]=0. After a tedious calculation one finds that this is only possible if a = 1 , D = 26 a = 1 , D = 26 a=1,D=26a=1, D=26a=1,D=26. For more details, see section 2.4 of Tong and section 2.3.1 of GSW.
Let us return to the open string spectrum. The ground state | 0 ; k | 0 ; k |0;k:)|0 ; k\rangle|0;k is a scalar with momentum k μ k μ k^(mu)k^{\mu}kμ and mass
N = 0 M 2 = a α = 1 α < 0 "tachyon" N = 0 M 2 = a α = 1 α < 0  "tachyon"  N=0rarrM^(2)=-(a)/(alpha^('))=-(1)/(alpha^(')) < 0quad" "tachyon" "N=0 \rightarrow M^{2}=-\frac{a}{\alpha^{\prime}}=-\frac{1}{\alpha^{\prime}}<0 \quad \text { "tachyon" }N=0M2=aα=1α<0 "tachyon" 
The tachyon indicates an instability of the vacuum of the bosonic string. Recall that the mass squared of a field is the quadratic term of the potential:
M 2 = ϕ 2 V ( ϕ ) | ϕ = 0 M 2 = ϕ 2 V ( ϕ ) ϕ = 0 M^(2)=del_(phi)^(2)V(phi)|_(phi=0)M^{2}=\left.\partial_{\phi}^{2} V(\phi)\right|_{\phi=0}M2=ϕ2V(ϕ)|ϕ=0
so if M 2 < 0 M 2 < 0 M^(2) < 0M^{2}<0M2<0, we are expanding around a maximum of the potential. The tachyon can be removed by introducing supersymmetry, as you will see next term.
Finally, let us consider the first states with positive mass squared, correpsonding to N = 2 N = 2 N=2N=2N=2 :
α 2 I | 0 ; k , α 1 I α 1 J | 0 ; k M 2 = ( 2 a ) / α = 1 / α α 2 I | 0 ; k , α 1 I α 1 J | 0 ; k M 2 = ( 2 a ) / α = 1 / α alpha_(-2)^(I)|0;k:),quadalpha_(-1)^(I)alpha_(-1)^(J)|0;k:)rarrM^(2)=(2-a)//alpha^(')=1//alpha^(')\alpha_{-2}^{I}|0 ; k\rangle, \quad \alpha_{-1}^{I} \alpha_{-1}^{J}|0 ; k\rangle \rightarrow M^{2}=(2-a) / \alpha^{\prime}=1 / \alpha^{\prime}α2I|0;k,α1Iα1J|0;kM2=(2a)/α=1/α
There are 24 states with a single index while the states with two indices correspond to a symmetric 24 × 24 24 × 24 24 xx2424 \times 2424×24 matrix giving ( 24 2 ) + 24 = 300 ( 24 2 ) + 24 = 300 ((24)/(2))+24=300\binom{24}{2}+24=300(242)+24=300 states. In total, there are 324 massive states at this level. Note that a symmetric traceless 25 × 25 25 × 25 25 xx2525 \times 2525×25 matrix has ( 25 2 ) + 25 1 = 324 ( 25 2 ) + 25 1 = 324 ((25)/(2))+25-1=324\binom{25}{2}+25-1=324(252)+251=324 independent components, so the states indeed form a representation of S O ( D 1 ) = S O ( 25 ) S O ( D 1 ) = S O ( 25 ) SO(D-1)=SO(25)S O(D-1)=S O(25)SO(D1)=SO(25), as expected.

Closed string spectrum

For the closed string in lightcone gauge, we construct states using two sets of transverse oscillators. Now the mass formula is
M 2 = 4 α ( N 1 ) = 4 α ( N ~ 1 ) = 2 α ( N + N ~ 2 ) M 2 = 4 α ( N 1 ) = 4 α ( N ~ 1 ) = 2 α ( N + N ~ 2 ) M^(2)=(4)/(alpha^('))(N-1)=(4)/(alpha^('))( tilde(N)-1)=(2)/(alpha^('))(N+ tilde(N)-2)M^{2}=\frac{4}{\alpha^{\prime}}(N-1)=\frac{4}{\alpha^{\prime}}(\tilde{N}-1)=\frac{2}{\alpha^{\prime}}(N+\tilde{N}-2)M2=4α(N1)=4α(N~1)=2α(N+N~2)
where N N NNN and N ~ N ~ tilde(N)\tilde{N}N~ are defined in terms of α n I α n I alpha_(-n)^(I)\alpha_{-n}^{I}αnI and α ~ n I α ~ n I tilde(alpha)_(-n)^(I)\tilde{\alpha}_{-n}^{I}α~nI, repectively, and we the normal ordering constant to a = 1 a = 1 a=1a=1a=1. We also have the level-matching constraint N = N ~ N = N ~ N= tilde(N)N=\tilde{N}N=N~.
Let's look at the first two mass levels:
  • N = 0 N = 0 N=0N=0N=0 : Ground state | 0 ; k | 0 ; k |0;k:)|0 ; k\rangle|0;k has M 2 = 4 α M 2 = 4 α M^(2)=-(4)/(alpha^('))M^{2}=-\frac{4}{\alpha^{\prime}}M2=4α, tachyon
  • N = 1 N = 1 N=1N=1N=1 : A general state takes the following form:
| Ω I J = α 1 I α ~ 1 J | 0 ; k , M 2 = 0 Ω I J = α 1 I α ~ 1 J | 0 ; k , M 2 = 0 |Omega^(IJ):)=alpha_(-1)^(I) tilde(alpha)_(-1)^(J)|0;k:),quadM^(2)=0\left|\Omega^{I J}\right\rangle=\alpha_{-1}^{I} \tilde{\alpha}_{-1}^{J}|0 ; k\rangle, \quad M^{2}=0|ΩIJ=α1Iα~1J|0;k,M2=0
This can be understood as the tensor product of two massless vectors, one left-moving and one night-moving. We can decompose this into a symmetric traceless part (graviton), an antisymmetric part (Kalb-Ramond), and the trace part (dilaton) as shown below:
| Ω I J = ( | Ω ( I J ) 1 D | Ω I I δ I J ) + | Ω [ I J ] + 1 D | Ω I I δ I J Ω I J = Ω ( I J ) 1 D Ω I I δ I J + Ω [ I J ] + 1 D Ω I I δ I J |Omega^(IJ):)=(|Omega^((IJ)):)-(1)/(D)|Omega^(II):)delta^(IJ))+|Omega^([IJ]):)+(1)/(D)|Omega^(II):)delta^(IJ)\left|\Omega^{I J}\right\rangle=\left(\left|\Omega^{(I J)}\right\rangle-\frac{1}{D}\left|\Omega^{I I}\right\rangle \delta^{I J}\right)+\left|\Omega^{[I J]}\right\rangle+\frac{1}{D}\left|\Omega^{I I}\right\rangle \delta^{I J}|ΩIJ=(|Ω(IJ)1D|ΩIIδIJ)+|Ω[IJ]+1D|ΩIIδIJ
We see that massless states indeed form reps of S O ( D 2 ) S O ( D 2 ) SO(D-2)S O(D-2)SO(D2). These massless fields will also play a rate in superstring.
Summary: String theory predicts gravity! Also unifies gravity with gauge theory since open strings give rise to gauge fields (like photons) while closed strings give rise to gravitons. String theory also predicts infinite tower of higher spin states with mass O ( 1 / α ) O 1 / α O(1//alpha^('))\mathcal{O}\left(1 / \alpha^{\prime}\right)O(1/α).

11 CFT: Virasoro from Stress Tensor

This is based on Zwiebach pg 254 , 258 , 259 254 , 258 , 259 254,258,259254,258,259254,258,259, and BBS pg 63,64 . We will now develop ad CFT techniques for doing worldsheet calculations. This will be much more efficient than working with mode expansions and the oscillator algebra. In particular, we will use it to give a more elegant and rigorous proof of the critical dimension and to compute string amplitudes. We will not impose lightcone gauge.
First let us demonstrate that the modes of the stress tensor L m , L ~ m L m , L ~ m L_(m), tilde(L)_(m)L_{m}, \tilde{L}_{m}Lm,L~m are Virasoro generators. To do that, we need the following identities (for the closed string):
[ L m , α n μ ] = n α m + n μ , [ L ~ m , α ~ n μ ] = n α ~ m + n μ [ L m , x 0 μ ] = i α 2 α m μ , [ L ~ m , x 0 μ ] = i α 2 α ~ m μ L m , α n μ = n α m + n μ , L ~ m , α ~ n μ = n α ~ m + n μ L m , x 0 μ = i α 2 α m μ , L ~ m , x 0 μ = i α 2 α ~ m μ {:[[L_(m),alpha_(n)^(mu)]=-nalpha_(m+n)^(mu)","quad[ tilde(L)_(m), tilde(alpha)_(n)^(mu)]=-n tilde(alpha)_(m+n)^(mu)],[[L_(m),x_(0)^(mu)]=-isqrt((alpha^('))/(2))alpha_(m)^(mu)","quad[ tilde(L)_(m),x_(0)^(mu)]=-isqrt((alpha)/(2)) tilde(alpha)_(m)^(mu)]:}\begin{aligned} & {\left[L_{m}, \alpha_{n}^{\mu}\right]=-n \alpha_{m+n}^{\mu}, \quad\left[\tilde{L}_{m}, \tilde{\alpha}_{n}^{\mu}\right]=-n \tilde{\alpha}_{m+n}^{\mu}} \\ & {\left[L_{m}, x_{0}^{\mu}\right]=-i \sqrt{\frac{\alpha^{\prime}}{2}} \alpha_{m}^{\mu}, \quad\left[\tilde{L}_{m}, x_{0}^{\mu}\right]=-i \sqrt{\frac{\alpha}{2}} \tilde{\alpha}_{m}^{\mu}} \end{aligned}[Lm,αnμ]=nαm+nμ,[L~m,α~nμ]=nα~m+nμ[Lm,x0μ]=iα2αmμ,[L~m,x0μ]=iα2α~mμ
Let's check the first one and leave the rest for HW. First compute
[ L m , α n μ ] = [ 1 2 p α m p α p , α n μ ] = 1 2 p ( α m p α p α n μ α n μ α m p α p ) = 1 2 p ( α m p ν [ α p ν , α n μ ] [ α m p ν , α n μ ] α p ν ) = 1 2 ( n α m + n μ + ( m ( m + n ) ) α m + n μ ) = n α m + n μ L m , α n μ = 1 2 p α m p α p , α n μ = 1 2 p α m p α p α n μ α n μ α m p α p = 1 2 p α m p ν α p ν , α n μ α m p ν , α n μ α p ν = 1 2 n α m + n μ + ( m ( m + n ) ) α m + n μ = n α m + n μ {:[[L_(m),alpha_(n)^(mu)]=[(1)/(2)sum_(p)alpha_(m-p)*alpha_(p),alpha_(n)^(mu)]],[=(1)/(2)sum_(p)(alpha_(m-p)*alpha_(p)alpha_(n)^(mu)-alpha_(n)^(mu)alpha_(m-p)*alpha_(p))],[=(1)/(2)sum_(p)(alpha_(m-p nu)[alpha_(p)^(nu),alpha_(n)^(mu)]-[alpha_(m-p)^(nu),alpha_(n)^(mu)]alpha_(p nu))],[=(1)/(2)(-nalpha_(m+n)^(mu)+(m-(m+n))alpha_(m+n)^(mu))],[=-nalpha_(m+n)^(mu)]:}\begin{aligned} {\left[L_{m}, \alpha_{n}^{\mu}\right] } & =\left[\frac{1}{2} \sum_{p} \alpha_{m-p} \cdot \alpha_{p}, \alpha_{n}^{\mu}\right] \\ & =\frac{1}{2} \sum_{p}\left(\alpha_{m-p} \cdot \alpha_{p} \alpha_{n}^{\mu}-\alpha_{n}^{\mu} \alpha_{m-p} \cdot \alpha_{p}\right) \\ & =\frac{1}{2} \sum_{p}\left(\alpha_{m-p \nu}\left[\alpha_{p}^{\nu}, \alpha_{n}^{\mu}\right]-\left[\alpha_{m-p}^{\nu}, \alpha_{n}^{\mu}\right] \alpha_{p \nu}\right) \\ & =\frac{1}{2}\left(-n \alpha_{m+n}^{\mu}+(m-(m+n)) \alpha_{m+n}^{\mu}\right) \\ & =-n \alpha_{m+n}^{\mu} \end{aligned}[Lm,αnμ]=[12pαmpαp,αnμ]=12p(αmpαpαnμαnμαmpαp)=12p(αmpν[αpν,αnμ][αmpν,αnμ]αpν)=12(nαm+nμ+(m(m+n))αm+nμ)=nαm+nμ
Now consider commutator of L m L m L_(m)L_{m}Lm with X μ X μ X^(mu)X^{\mu}Xμ :
[ L m , X μ ( τ , σ ) ] = [ L m , x 0 μ ] + [ L m , α p μ τ ] + [ L m , i α 2 n 0 1 n α n μ e i n σ ] = i α 2 n α m + n μ e i n σ = i e i m σ α 2 n α n e i n σ = i e i m σ X μ [ L m , X μ ( τ , σ ) ] = i V m ( X μ ( τ , σ ) ) , V n ± = e i n σ ± ± L m , X μ ( τ , σ ) = L m , x 0 μ + L m , α p μ τ + L m , i α 2 n 0 1 n α n μ e i n σ = i α 2 n α m + n μ e i n σ = i e i m σ α 2 n α n e i n σ = i e i m σ X μ L m , X μ ( τ , σ ) = i V m X μ ( τ , σ ) , V n ± = e i n σ ± ± {:[[L_(m),X^(mu)(tau,sigma)]=[L_(m),x_(0)^(mu)]+[L_(m),alpha^(')p^(mu)tau]+[L_(m),isqrt((alpha^('))/(2))sum_(n!=0)(1)/(n)alpha_(n)^(mu)e^(-insigma^(-))]],[=-isqrt((alpha^('))/(2))sum_(n)alpha_(m+n)^(mu)e^(-insigma^(-))],[=-ie^(imsigma^(-))sqrt((alpha)/(2))sum_(n)alpha_(n)e^(-insigma^(-))],[=-ie^(imsigma^(-))del_(-)X^(mu)],[rarr[L_(m),X^(mu)(tau,sigma)]=-iV_(m)^(-)(X^(mu)(tau,sigma))","quadV_(n)^(+-)=e^(insigma^(+-))del_(+-)]:}\begin{aligned} {\left[L_{m}, X^{\mu}(\tau, \sigma)\right] } & =\left[L_{m}, x_{0}^{\mu}\right]+\left[L_{m}, \alpha^{\prime} p^{\mu} \tau\right]+\left[L_{m}, i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n \sigma^{-}}\right] \\ & =-i \sqrt{\frac{\alpha^{\prime}}{2}} \sum_{n} \alpha_{m+n}^{\mu} e^{-i n \sigma^{-}} \\ & =-i e^{i m \sigma^{-}} \sqrt{\frac{\alpha}{2}} \sum_{n} \alpha_{n} e^{-i n \sigma^{-}} \\ & =-i e^{i m \sigma^{-}} \partial_{-} X^{\mu} \\ \rightarrow\left[L_{m}, X^{\mu}(\tau, \sigma)\right] & =-i V_{m}^{-}\left(X^{\mu}(\tau, \sigma)\right), \quad V_{n}^{ \pm}=e^{i n \sigma^{ \pm}} \partial_{ \pm} \end{aligned}[Lm,Xμ(τ,σ)]=[Lm,x0μ]+[Lm,αpμτ]+[Lm,iα2n01nαnμeinσ]=iα2nαm+nμeinσ=ieimσα2nαneinσ=ieimσXμ[Lm,Xμ(τ,σ)]=iVm(Xμ(τ,σ)),Vn±=einσ±±
Similarly, we find [ L ~ m , X μ ( τ , σ ) ] = i V m + ( X μ ( τ , σ ) ) L ~ m , X μ ( τ , σ ) = i V m + X μ ( τ , σ ) [ tilde(L)_(m),X^(mu)(tau,sigma)]=-iV_(m)^(+)(X^(mu)(tau,sigma))\left[\tilde{L}_{m}, X^{\mu}(\tau, \sigma)\right]=-i V_{m}^{+}\left(X^{\mu}(\tau, \sigma)\right)[L~m,Xμ(τ,σ)]=iVm+(Xμ(τ,σ)). Hence L m , L ~ m L m , L ~ m L_(m), tilde(L)_(m)L_{m}, \tilde{L}_{m}Lm,L~m generate Virasoro symmetry.
Let us briefly comment on the factor of i i -i-ii on appearing in these relations. Consider a scalar theory in D D DDD spacetime dimensions. For symmetry δ ϕ δ ϕ delta phi\delta \phiδϕ with Noeither charge Q Q QQQ, in the quantum theory, we have [ Q , ϕ ] = i δ ϕ [ Q , ϕ ] = i δ ϕ [Q,phi]=-i delta phi[Q, \phi]=-i \delta \phi[Q,ϕ]=iδϕ.

Proof:

From Noether's theorem we have
Q = d D 1 j 0 = d D 1 x Π ( t , x ) δ ϕ ( t , x ) , Π = L ϕ ˙ Q = d D 1 j 0 = d D 1 x Π ( t , x ) δ ϕ ( t , x ) , Π = L ϕ ˙ Q=intd^(D-1)*j^(0)=intd^(D-1)x Pi(t,x)delta phi(t,x),quad Pi=(delL)/(del(phi^(˙)))Q=\int d^{D-1} \cdot j^{0}=\int d^{D-1} x \Pi(t, x) \delta \phi(t, x), \quad \Pi=\frac{\partial \mathcal{L}}{\partial \dot{\phi}}Q=dD1j0=dD1xΠ(t,x)δϕ(t,x),Π=Lϕ˙
Hence,
[ Q , ϕ ( t , y ) ] = d D 1 x [ Π ( t , x ) δ ϕ ( t , x ) , ϕ ( t , y ) ] ] = d D 1 x δ ϕ ( t , x ) [ Π ( t , x ) , ϕ ( t , y ) ] i δ D 1 ( x y ) = i δ ϕ ( t , y ) [ Q , ϕ ( t , y ) ] = d D 1 x [ Π ( t , x ) δ ϕ ( t , x ) , ϕ ( t , y ) ] = d D 1 x δ ϕ ( t , x ) [ Π ( t , x ) , ϕ ( t , y ) ] i δ D 1 ( x y ) = i δ ϕ ( t , y ) {:[[Q","phi(t","y)]{:=intd^(D-1)x[Pi(t,x)delta phi(t,x),phi(t,y)]]],[=intd^(D-1)x delta phi(t","x)ubrace([Pi(t,x),phi(t,y)]ubrace)_(-idelta^(D-1)(x-y))=-i delta phi(t","y)]:}\begin{aligned} {[Q, \phi(t, y)] } & \left.=\int d^{D-1} x[\Pi(t, x) \delta \phi(t, x), \phi(t, y)]\right] \\ & =\int d^{D-1} x \delta \phi(t, x) \underbrace{[\Pi(t, x), \phi(t, y)]}_{-i \delta^{D-1}(x-y)}=-i \delta \phi(t, y) \end{aligned}[Q,ϕ(t,y)]=dD1x[Π(t,x)δϕ(t,x),ϕ(t,y)]]=dD1xδϕ(t,x)[Π(t,x),ϕ(t,y)]iδD1(xy)=iδϕ(t,y)
Now let's map the worldsheet to the complex plane: τ i τ τ i τ tau rarr-i tau\tau \rightarrow-i \tauτiτ so that z = z = z=z=z= e i σ = e τ i σ e i σ = e τ i σ e^(isigma^(-))=e^(tau-i sigma)e^{i \sigma^{-}}=e^{\tau-i \sigma}eiσ=eτiσ and z ¯ = e i σ + = e τ + i σ z ¯ = e i σ + = e τ + i σ bar(z)=e^(isigma^(+))=e^(tau+i sigma)\bar{z}=e^{i \sigma^{+}}=e^{\tau+i \sigma}z¯=eiσ+=eτ+iσ. In terms of z , z ¯ z , z ¯ z, bar(z)z, \bar{z}z,z¯ we then have
z X μ X μ = i α 2 n α n μ z n 1 , z ¯ X μ ¯ X μ = i α 2 n α ~ n μ z ¯ n 1 z X μ X μ = i α 2 n α n μ z n 1 , z ¯ X μ ¯ X μ = i α 2 n α ~ n μ z ¯ n 1 del_(z)X^(mu)-=delX^(mu)=-isqrt((alpha)/(2))sum_(n)alpha_(n)^(mu)z^(-n-1),quaddel_( bar(z))X^(mu)-= bar(del)X^(mu)=-isqrt((alpha)/(2))sum_(n) tilde(alpha)_(n)^(mu) bar(z)^(-n-1)\partial_{z} X^{\mu} \equiv \partial X^{\mu}=-i \sqrt{\frac{\alpha}{2}} \sum_{n} \alpha_{n}^{\mu} z^{-n-1}, \quad \partial_{\bar{z}} X^{\mu} \equiv \bar{\partial} X^{\mu}=-i \sqrt{\frac{\alpha}{2}} \sum_{n} \tilde{\alpha}_{n}^{\mu} \bar{z}^{-n-1}zXμXμ=iα2nαnμzn1,z¯Xμ¯Xμ=iα2nα~nμz¯n1
and
T 1 α ( X ) z = n L n z n 2 , T ¯ 1 α ( ¯ X ) 2 = n z ¯ n 2 T 1 α ( X ) z = n L n z n 2 , T ¯ 1 α ( ¯ X ) 2 = n z ¯ n 2 T-=-(1)/(alpha)(del X)^(z)=sum_(n)L_(n)z^(-n-2), bar(T)-=-(1)/(alpha)( bar(del)X)^(2)=sum_(n) bar(z)^(-n-2)T \equiv-\frac{1}{\alpha}(\partial X)^{z}=\sum_{n} L_{n} z^{-n-2}, \bar{T} \equiv-\frac{1}{\alpha}(\bar{\partial} X)^{2}=\sum_{n} \bar{z}^{-n-2}T1α(X)z=nLnzn2,T¯1α(¯X)2=nz¯n2
The commutators above are then written as
[ L n , X μ ] = i e i n σ X μ = i z n z i z X μ = z n + 1 X μ , [ L ~ n , X μ ] = z ¯ n + 1 ¯ X μ L n , X μ = i e i n σ X μ = i z n z i z X μ = z n + 1 X μ , L ~ n , X μ = z ¯ n + 1 ¯ X μ [L_(n),X^(mu)]=-ie^(insigma^(-))del_(-)X^(mu)=-iz^(n)ubrace(del_(-)zubrace)_(iz)delX^(mu)=z^(n+1)delX^(mu),quad[ tilde(L)_(n),X^(mu)]= bar(z)^(n+1) bar(del)X^(mu)\left[L_{n}, X^{\mu}\right]=-i e^{i n \sigma^{-}} \partial_{-} X^{\mu}=-i z^{n} \underbrace{\partial_{-} z}_{i z} \partial X^{\mu}=z^{n+1} \partial X^{\mu}, \quad\left[\tilde{L}_{n}, X^{\mu}\right]=\bar{z}^{n+1} \bar{\partial} X^{\mu}[Ln,Xμ]=ieinσXμ=iznzizXμ=zn+1Xμ,[L~n,Xμ]=z¯n+1¯Xμ
Hence for a general conformal transformation
δ z = ϵ ( z ) = n ϵ n z n + 1 , δ z ¯ = ϵ ~ ( z ¯ ) = n ϵ ~ n z ¯ n + 1 δ z = ϵ ( z ) = n ϵ n z n + 1 , δ z ¯ = ϵ ~ ( z ¯ ) = n ϵ ~ n z ¯ n + 1 delta z=epsilon(z)=sum_(n)epsilon_(n)z^(n+1),quad delta bar(z)= tilde(epsilon)( bar(z))=sum_(n) tilde(epsilon)_(n) bar(z)^(n+1)\delta z=\epsilon(z)=\sum_{n} \epsilon_{n} z^{n+1}, \quad \delta \bar{z}=\tilde{\epsilon}(\bar{z})=\sum_{n} \tilde{\epsilon}_{n} \bar{z}^{n+1}δz=ϵ(z)=nϵnzn+1,δz¯=ϵ~(z¯)=nϵ~nz¯n+1
we have
δ X μ ( w , w ¯ ) = ϵ ( w ) X ( w , w ¯ ) μ + ϵ ~ ( w ¯ ) ¯ X μ ( ω , w ¯ ) = n ϵ n w n + 1 X ( ω , w ¯ ) μ + n ϵ ~ n w ¯ n + 1 ¯ X ( w , w ¯ ) μ = n ϵ n [ L n , X ( ω , w ¯ ) μ ] + n ϵ ~ n [ L ~ n , X μ ( w , w ¯ ) ] δ X μ ( w , w ¯ ) = ϵ ( w ) X ( w , w ¯ ) μ + ϵ ~ ( w ¯ ) ¯ X μ ( ω , w ¯ ) = n ϵ n w n + 1 X ( ω , w ¯ ) μ + n ϵ ~ n w ¯ n + 1 ¯ X ( w , w ¯ ) μ = n ϵ n L n , X ( ω , w ¯ ) μ + n ϵ ~ n L ~ n , X μ ( w , w ¯ ) {:[deltaX^(mu)(w"," bar(w))=epsilon(w)del X(w"," bar(w))^(mu)+ tilde(epsilon)( bar(w)) bar(del)X^(mu)(omega"," bar(w))],[=sum_(n)epsilon_(n)w^(n+1)del X(omega"," bar(w))^(mu)+sum_(n) tilde(epsilon)_(n) bar(w)^(n+1) bar(del)X_((w, bar(w)))^(mu)],[=sum_(n)epsilon_(n)[L_(n),X(omega,( bar(w)))^(mu)]+sum_(n) tilde(epsilon)_(n)[ tilde(L)_(n),X^(mu)(w,( bar(w)))]]:}\begin{aligned} & \delta X^{\mu}(w, \bar{w})=\epsilon(w) \partial X(w, \bar{w})^{\mu}+\tilde{\epsilon}(\bar{w}) \bar{\partial} X^{\mu}(\omega, \bar{w}) \\ & =\sum_{n} \epsilon_{n} w^{n+1} \partial X(\omega, \bar{w})^{\mu}+\sum_{n} \tilde{\epsilon}_{n} \bar{w}^{n+1} \bar{\partial} X_{(w, \bar{w})}^{\mu} \\ & =\sum_{n} \epsilon_{n}\left[L_{n}, X(\omega, \bar{w})^{\mu}\right]+\sum_{n} \tilde{\epsilon}_{n}\left[\tilde{L}_{n}, X^{\mu}(w, \bar{w})\right] \end{aligned}δXμ(w,w¯)=ϵ(w)X(w,w¯)μ+ϵ~(w¯)¯Xμ(ω,w¯)=nϵnwn+1X(ω,w¯)μ+nϵ~nw¯n+1¯X(w,w¯)μ=nϵn[Ln,X(ω,w¯)μ]+nϵ~n[L~n,Xμ(w,w¯)]
Noting that
1 2 π i d z z n + 1 T ( z ) = 1 2 π i m d z z n m 1 L m = 1 2 π i m 2 π i δ m , n L m = L n 1 2 π i d z z n + 1 T ( z ) = 1 2 π i m d z z n m 1 L m = 1 2 π i m 2 π i δ m , n L m = L n (1)/(2pi i)ointdzz^(n+1)T(z)=(1)/(2pi i)sum_(m)ointdzz^(n-m-1)L_(m)=(1)/(2pi i)sum_(m)2pi idelta_(m,n)L_(m)=L_(n)\frac{1}{2 \pi i} \oint d z z^{n+1} T(z)=\frac{1}{2 \pi i} \sum_{m} \oint d z z^{n-m-1} L_{m}=\frac{1}{2 \pi i} \sum_{m} 2 \pi i \delta_{m, n} L_{m}=L_{n}12πidzzn+1T(z)=12πimdzznm1Lm=12πim2πiδm,nLm=Ln
where the contour encloses z = 0 z = 0 z=0z=0z=0 and we used Cauchy's theorem: d z 2 π i z k = d z 2 π i z k = oint(dz)/(2pi i)z^(k)=\oint \frac{d z}{2 \pi i} z^{k}=dz2πizk= δ k , 1 δ k , 1 delta_(k,-1)\delta_{k,-1}δk,1. Similarly, we find L ~ n = 1 2 π i d z ¯ z ¯ n + 1 T ~ ( z ¯ ) L ~ n = 1 2 π i d z ¯ z ¯ n + 1 T ~ ( z ¯ ) tilde(L)_(n)=(1)/(2pi i)ointd bar(z) bar(z)^(n+1) tilde(T)( bar(z))\tilde{L}_{n}=\frac{1}{2 \pi i} \oint d \bar{z} \bar{z}^{n+1} \tilde{T}(\bar{z})L~n=12πidz¯z¯n+1T~(z¯). More generally Cauchy's theorem can be stated as follows:

Cauchy's Theorem

1 2 π i Γ d z f ( z ) = i Res [ f ( z i ) ] 1 2 π i Γ d z f ( z ) = i Res f z i (1)/(2pi i)oint_(Gamma)dzf(z)=sum_(i)Res[f(z_(i))]\frac{1}{2 \pi i} \oint_{\Gamma} d z f(z)=\sum_{i} \operatorname{Res}\left[f\left(z_{i}\right)\right]12πiΓdzf(z)=iRes[f(zi)]
where the sum runs over the simple poles z i z i z_(i)z_{i}zi of f f fff inside the contour Γ Γ Gamma\GammaΓ, and near each pole
lim z z i f ( z ) = Res [ f ( z i ) ] z z i lim z z i f ( z ) = Res f z i z z i lim_(z rarrz_(i))f(z)=(Res[f(z_(i))])/(z-z_(i))\lim _{z \rightarrow z_{i}} f(z)=\frac{\operatorname{Res}\left[f\left(z_{i}\right)\right]}{z-z_{i}}limzzif(z)=Res[f(zi)]zzi
Putting everything together,
δ X μ ( w , w ¯ ) = 1 2 π i d z n ϵ n z n + 1 [ T ( z ) , X μ ( w , w ¯ ) ] + 1 2 π i d z ¯ n ϵ ~ n z ¯ n + 1 [ T ~ ( z ¯ ) , X μ ( w , w ¯ ) ] = 1 2 π i d z ϵ ( z ) [ T ( z ) , X μ ( w , w ¯ ) ] + 1 2 π i d z ϵ ~ ( z ¯ ) [ T ~ ( z ¯ ) , X μ ( w , w ¯ ) ] = [ Q ϵ , X μ ] + [ Q ϵ ~ , X μ ] δ X μ ( w , w ¯ ) = 1 2 π i d z n ϵ n z n + 1 T ( z ) , X μ ( w , w ¯ ) + 1 2 π i d z ¯ n ϵ ~ n z ¯ n + 1 T ~ ( z ¯ ) , X μ ( w , w ¯ ) = 1 2 π i d z ϵ ( z ) T ( z ) , X μ ( w , w ¯ ) + 1 2 π i d z ϵ ~ ( z ¯ ) T ~ ( z ¯ ) , X μ ( w , w ¯ ) = Q ϵ , X μ + Q ϵ ~ , X μ {:[deltaX^(mu)(w"," bar(w))=(1)/(2pi i)ointdzsum_(n)epsilon_(n)z^(n+1)[T(z),X^(mu)(w,( bar(w)))]],[+(1)/(2pi i)ointd bar(z)sum_(n) tilde(epsilon)_(n) bar(z)^(n+1)[( tilde(T))(( bar(z))),X^(mu)(w,( bar(w)))]],[=(1)/(2pi i)ointdz epsilon(z)[T(z),X^(mu)(w,( bar(w)))]],[+(1)/(2pi i)ointdz tilde(epsilon)( bar(z))[( tilde(T))(( bar(z))),X^(mu)(w,( bar(w)))]],[=[Q_(epsilon),X^(mu)]+[Q_( tilde(epsilon)),X^(mu)]]:}\begin{aligned} \delta X^{\mu}(w, \bar{w}) & =\frac{1}{2 \pi i} \oint d z \sum_{n} \epsilon_{n} z^{n+1}\left[T(z), X^{\mu}(w, \bar{w})\right] \\ & +\frac{1}{2 \pi i} \oint d \bar{z} \sum_{n} \tilde{\epsilon}_{n} \bar{z}^{n+1}\left[\tilde{T}(\bar{z}), X^{\mu}(w, \bar{w})\right] \\ & =\frac{1}{2 \pi i} \oint d z \epsilon(z)\left[T(z), X^{\mu}(w, \bar{w})\right] \\ & +\frac{1}{2 \pi i} \oint d z \tilde{\epsilon}(\bar{z})\left[\tilde{T}(\bar{z}), X^{\mu}(w, \bar{w})\right] \\ & =\left[Q_{\epsilon}, X^{\mu}\right]+\left[Q_{\tilde{\epsilon}}, X^{\mu}\right] \end{aligned}δXμ(w,w¯)=12πidznϵnzn+1[T(z),Xμ(w,w¯)]+12πidz¯nϵ~nz¯n+1[T~(z¯),Xμ(w,w¯)]=12πidzϵ(z)[T(z),Xμ(w,w¯)]+12πidzϵ~(z¯)[T~(z¯),Xμ(w,w¯)]=[Qϵ,Xμ]+[Qϵ~,Xμ]
where
Q ϵ = 1 2 π i d z T ( z ) ϵ ( z ) , Q ϵ ~ = 1 2 π i d z ¯ T ~ ( z ¯ ) ϵ ~ ( z ¯ ) Q ϵ = 1 2 π i d z T ( z ) ϵ ( z ) , Q ϵ ~ = 1 2 π i d z ¯ T ~ ( z ¯ ) ϵ ~ ( z ¯ ) Q_(epsilon)=(1)/(2pi i)ointdzT(z)epsilon(z),quadQ_( tilde(epsilon))=(1)/(2pi i)ointd bar(z) tilde(T)( bar(z)) tilde(epsilon)( bar(z))Q_{\epsilon}=\frac{1}{2 \pi i} \oint d z T(z) \epsilon(z), \quad Q_{\tilde{\epsilon}}=\frac{1}{2 \pi i} \oint d \bar{z} \tilde{T}(\bar{z}) \tilde{\epsilon}(\bar{z})Qϵ=12πidzT(z)ϵ(z),Qϵ~=12πidz¯T~(z¯)ϵ~(z¯)
are the generators of conformal transformations. More generally, for δ z = ϵ ( z ) δ z = ϵ ( z ) delta z=epsilon(z)\delta z=\epsilon(z)δz=ϵ(z) and δ z ¯ = ϵ ~ ( z ¯ ) δ z ¯ = ϵ ~ ( z ¯ ) delta bar(z)= tilde(epsilon)( bar(z))\delta \bar{z}=\tilde{\epsilon}(\bar{z})δz¯=ϵ~(z¯) an operator Φ ( w , w ¯ ) Φ ( w , w ¯ ) Phi(w, bar(w))\Phi(w, \bar{w})Φ(w,w¯) transforms as
δ ϵ Φ = [ Q ϵ , Φ ] , δ ϵ ~ Φ = [ Q ϵ ~ , Φ ] δ ϵ Φ = Q ϵ , Φ , δ ϵ ~ Φ = Q ϵ ~ , Φ delta_(epsilon)Phi=[Q_(epsilon),Phi],quaddelta_( tilde(epsilon))Phi=[Q_( tilde(epsilon)),Phi]\delta_{\epsilon} \Phi=\left[Q_{\epsilon}, \Phi\right], \quad \delta_{\tilde{\epsilon}} \Phi=\left[Q_{\tilde{\epsilon}}, \Phi\right]δϵΦ=[Qϵ,Φ],δϵ~Φ=[Qϵ~,Φ]

12 Operator Product Expansion

This is based on BBS pg 64-66 and Tong sections 4.3.1,4.3.3. Under a conformal transformation δ z = ϵ ( z ) δ z = ϵ ( z ) delta z=epsilon(z)\delta z=\epsilon(z)δz=ϵ(z), an operator Φ Φ Phi\PhiΦ transforms as
δ ϵ Φ ( w , w ¯ ) = 1 2 π i d z ϵ ( z ) [ T ( z ) , Φ ( w , w ¯ ) ] δ ϵ Φ ( w , w ¯ ) = 1 2 π i d z ϵ ( z ) [ T ( z ) , Φ ( w , w ¯ ) ] delta_(epsilon)Phi(w, bar(w))=(1)/(2pi i)ointdz epsilon(z)[T(z),Phi(w, bar(w))]\delta_{\epsilon} \Phi(w, \bar{w})=\frac{1}{2 \pi i} \oint d z \epsilon(z)[T(z), \Phi(w, \bar{w})]δϵΦ(w,w¯)=12πidzϵ(z)[T(z),Φ(w,w¯)]
The contour encluses the origin and is specified by "radial ordering": operators to the left should be located further from from the origin (recall that langer radius in the complex plane corresponds to larger τ τ tau\tauτ on the cylinder so this is essentially time ordering). Hence, the commutator gives a contour which encircles the point w w www :
In general, we can express the product of local operators as a series of local operators located at one of their positions. This is known as an "Operator
Product Expansion" (OPE). Hence, the contour integral for δ ϵ Φ δ ϵ Φ delta_(epsilon)Phi\delta_{\epsilon} \PhiδϵΦ is just the residue of the pole in the OPE of T T TTT and Φ Φ Phi\PhiΦ :
ϵ ( z ) T ( z ) Φ ( w , w ¯ ) = + Res [ ϵ ( z ) T ( z ) Φ ( w , w ¯ ) ] z w + ϵ ( z ) T ( z ) Φ ( w , w ¯ ) = + Res [ ϵ ( z ) T ( z ) Φ ( w , w ¯ ) ] z w + epsilon(z)T(z)Phi(w, bar(w))=cdots+(Res[epsilon(z)T(z)Phi(w,( bar(w)))])/(z-w)+dots\epsilon(z) T(z) \Phi(w, \bar{w})=\cdots+\frac{\operatorname{Res}[\epsilon(z) T(z) \Phi(w, \bar{w})]}{z-w}+\ldotsϵ(z)T(z)Φ(w,w¯)=+Res[ϵ(z)T(z)Φ(w,w¯)]zw+
where the ... on the left denote higher order poles in z w z w z-wz-wzw while the ... on the right are finite as z w z w z rarr wz \rightarrow wzw,
δ ϵ Φ = 1 2 π i Γ w d z Res [ ϵ ( z ) T ( z ) Φ ( w , w ¯ ) ] z w = Res [ ϵ ( z ) T ( z ) Φ ( w , w ¯ ) ] δ ϵ Φ = 1 2 π i Γ w d z Res [ ϵ ( z ) T ( z ) Φ ( w , w ¯ ) ] z w = Res [ ϵ ( z ) T ( z ) Φ ( w , w ¯ ) ] rarrdelta_(epsilon)Phi=(1)/(2pi i)oint_(Gamma_(w))dz quad(Res[epsilon(z)T(z)Phi(w,( bar(w)))])/(z-w)=Res[epsilon(z)T(z)Phi(w, bar(w))]\rightarrow \delta_{\epsilon} \Phi=\frac{1}{2 \pi i} \oint_{\Gamma_{w}} d z \quad \frac{\operatorname{Res}[\epsilon(z) T(z) \Phi(w, \bar{w})]}{z-w}=\operatorname{Res}[\epsilon(z) T(z) \Phi(w, \bar{w})]δϵΦ=12πiΓwdzRes[ϵ(z)T(z)Φ(w,w¯)]zw=Res[ϵ(z)T(z)Φ(w,w¯)]
Φ Φ Phi\PhiΦ is a "conformal primary with weight ( h , h ~ ) ( h , h ~ ) (h, tilde(h))(h, \tilde{h})(h,h~) " if
T ( z ) Φ ( w , w ¯ ) = h ( z w ) 2 Φ ( w , w ¯ ) + 1 z w Φ ( w , w ¯ ) + T ~ ( z ¯ ) Φ ( w , w ¯ ) = h ~ ( z ¯ w ¯ ) 2 Φ ( w , w ¯ ) + 1 z ¯ w ¯ ¯ Φ ( w , w ¯ ) + T ( z ) Φ ( w , w ¯ ) = h ( z w ) 2 Φ ( w , w ¯ ) + 1 z w Φ ( w , w ¯ ) + T ~ ( z ¯ ) Φ ( w , w ¯ ) = h ~ ( z ¯ w ¯ ) 2 Φ ( w , w ¯ ) + 1 z ¯ w ¯ ¯ Φ ( w , w ¯ ) + {:[T(z)Phi(w"," bar(w))=(h)/((z-w)^(2))Phi(w"," bar(w))+(1)/(z-w)del Phi(w"," bar(w))+dots],[ tilde(T)( bar(z))Phi(w"," bar(w))=(( tilde(h)))/((( bar(z))-( bar(w)))^(2))Phi(w"," bar(w))+(1)/(( bar(z))-( bar(w))) bar(del)Phi(w"," bar(w))+dots]:}\begin{aligned} & T(z) \Phi(w, \bar{w})=\frac{h}{(z-w)^{2}} \Phi(w, \bar{w})+\frac{1}{z-w} \partial \Phi(w, \bar{w})+\ldots \\ & \tilde{T}(\bar{z}) \Phi(w, \bar{w})=\frac{\tilde{h}}{(\bar{z}-\bar{w})^{2}} \Phi(w, \bar{w})+\frac{1}{\bar{z}-\bar{w}} \bar{\partial} \Phi(w, \bar{w})+\ldots \end{aligned}T(z)Φ(w,w¯)=h(zw)2Φ(w,w¯)+1zwΦ(w,w¯)+T~(z¯)Φ(w,w¯)=h~(z¯w¯)2Φ(w,w¯)+1z¯w¯¯Φ(w,w¯)+
where.. are non-singular as z w z w z rarr wz \rightarrow wzw. From this OPE, we find
δ ϵ Φ ( w , w ¯ ) = 1 2 π i Γ w d z [ h ϵ ( z ) ( z w ) 2 Φ ( w , w ¯ ) + ϵ ( z ) z w Φ ( w , w ¯ ) + ] = 1 2 π i Γ w d z [ h ( ϵ ( w ) + ( z w ) ϵ ( w ) + ) ( z w ) 2 Φ ( w , w ¯ ) + ( ϵ ( w ) + ) z w Φ ( w , w ¯ ) + ] = 1 2 π Γ w d z 1 z w ( h ϵ ( w ) Φ ( w , w ¯ ) + ϵ ( w ) Φ ( w , w ¯ ) ) = h ϵ ( w ) Φ ( w , w ¯ ) + ϵ ( w ) Φ ( w , w ¯ ) δ ϵ Φ ( w , w ¯ ) = 1 2 π i Γ w d z h ϵ ( z ) ( z w ) 2 Φ ( w , w ¯ ) + ϵ ( z ) z w Φ ( w , w ¯ ) + = 1 2 π i Γ w d z h ( ϵ ( w ) + ( z w ) ϵ ( w ) + ) ( z w ) 2 Φ ( w , w ¯ ) + ( ϵ ( w ) + ) z w Φ ( w , w ¯ ) + = 1 2 π Γ w d z 1 z w ( h ϵ ( w ) Φ ( w , w ¯ ) + ϵ ( w ) Φ ( w , w ¯ ) ) = h ϵ ( w ) Φ ( w , w ¯ ) + ϵ ( w ) Φ ( w , w ¯ ) {:[delta_(epsilon)Phi(w"," bar(w))=(1)/(2pi i)oint_(Gamma_(w))dz[(h epsilon(z))/((z-w)^(2))Phi(w,( bar(w)))+(epsilon(z))/(z-w)del Phi(w,( bar(w)))+dots]],[=(1)/(2pi i)oint_(Gamma_(w))dz[(h(epsilon(w)+(z-w)del epsilon(w)+dots))/((z-w)^(2))Phi(w,( bar(w)))+((epsilon(w)+dots))/(z-w)del Phi(w,( bar(w)))+dots]],[=(1)/(2pi)oint_(Gamma_(w))dz(1)/(z-w)(h del epsilon(w)Phi(w"," bar(w))+epsilon(w)del Phi(w"," bar(w)))],[=h del epsilon(w)Phi(w"," bar(w))+epsilon(w)del Phi(w"," bar(w))]:}\begin{aligned} \delta_{\epsilon} \Phi(w, \bar{w}) & =\frac{1}{2 \pi i} \oint_{\Gamma_{w}} d z\left[\frac{h \epsilon(z)}{(z-w)^{2}} \Phi(w, \bar{w})+\frac{\epsilon(z)}{z-w} \partial \Phi(w, \bar{w})+\ldots\right] \\ & =\frac{1}{2 \pi i} \oint_{\Gamma_{w}} d z\left[\frac{h(\epsilon(w)+(z-w) \partial \epsilon(w)+\ldots)}{(z-w)^{2}} \Phi(w, \bar{w})+\frac{(\epsilon(w)+\ldots)}{z-w} \partial \Phi(w, \bar{w})+\ldots\right] \\ & =\frac{1}{2 \pi} \oint_{\Gamma_{w}} d z \frac{1}{z-w}(h \partial \epsilon(w) \Phi(w, \bar{w})+\epsilon(w) \partial \Phi(w, \bar{w})) \\ & =h \partial \epsilon(w) \Phi(w, \bar{w})+\epsilon(w) \partial \Phi(w, \bar{w}) \end{aligned}δϵΦ(w,w¯)=12πiΓwdz[hϵ(z)(zw)2Φ(w,w¯)+ϵ(z)zwΦ(w,w¯)+]=12πiΓwdz[h(ϵ(w)+(zw)ϵ(w)+)(zw)2Φ(w,w¯)+(ϵ(w)+)zwΦ(w,w¯)+]=12πΓwdz1zw(hϵ(w)Φ(w,w¯)+ϵ(w)Φ(w,w¯))=hϵ(w)Φ(w,w¯)+ϵ(w)Φ(w,w¯)
Similarly, we find that
δ ϵ ~ Φ ( w , w ¯ ) = h ~ ¯ ϵ ~ ( w ¯ ) Φ ( w , w ¯ ) + ϵ ~ ( w ¯ ) ¯ Φ ( w , w ¯ ) δ ϵ ~ Φ ( w , w ¯ ) = h ~ ¯ ϵ ~ ( w ¯ ) Φ ( w , w ¯ ) + ϵ ~ ( w ¯ ) ¯ Φ ( w , w ¯ ) delta_( tilde(epsilon))Phi(w, bar(w))= tilde(h) bar(del) tilde(epsilon)( bar(w))Phi(w, bar(w))+ tilde(epsilon)( bar(w)) bar(del)Phi(w, bar(w))\delta_{\tilde{\epsilon}} \Phi(w, \bar{w})=\tilde{h} \bar{\partial} \tilde{\epsilon}(\bar{w}) \Phi(w, \bar{w})+\tilde{\epsilon}(\bar{w}) \bar{\partial} \Phi(w, \bar{w})δϵ~Φ(w,w¯)=h~¯ϵ~(w¯)Φ(w,w¯)+ϵ~(w¯)¯Φ(w,w¯)
Note that these are just infinitesimal versions of
Φ ( z , z ¯ ) ( z z ) h ( z ¯ z ¯ ) h ~ Φ ( z , z ¯ ) Φ ( z , z ¯ ) z z h z ¯ z ¯ h ~ Φ z , z ¯ Phi(z, bar(z))rarr((delz^('))/(del z))^(h)((del bar(z)^('))/(del( bar(z))))^( tilde(h))Phi(z^('), bar(z)^('))\Phi(z, \bar{z}) \rightarrow\left(\frac{\partial z^{\prime}}{\partial z}\right)^{h}\left(\frac{\partial \bar{z}^{\prime}}{\partial \bar{z}}\right)^{\tilde{h}} \Phi\left(z^{\prime}, \bar{z}^{\prime}\right)Φ(z,z¯)(zz)h(z¯z¯)h~Φ(z,z¯)
under ( z , z ¯ ) ( z ( z ) , z ¯ ( z ¯ ) ) ( z , z ¯ ) z ( z ) , z ¯ ( z ¯ ) (z, bar(z))rarr(z^(')(z), bar(z)^(')(( bar(z))))(z, \bar{z}) \rightarrow\left(z^{\prime}(z), \bar{z}^{\prime}(\bar{z})\right)(z,z¯)(z(z),z¯(z¯)). To see this, let z = z + ϵ ( z ) , z ¯ = z ¯ + ϵ ~ ( z ¯ ) z = z + ϵ ( z ) , z ¯ = z ¯ + ϵ ~ ( z ¯ ) z^(')=z+epsilon(z), bar(z)^(')= bar(z)+ tilde(epsilon)( bar(z))z^{\prime}=z+\epsilon(z), \bar{z}^{\prime}=\bar{z}+\tilde{\epsilon}(\bar{z})z=z+ϵ(z),z¯=z¯+ϵ~(z¯), where ϵ , ϵ ~ ϵ , ϵ ~ epsilon, tilde(epsilon)\epsilon, \tilde{\epsilon}ϵ,ϵ~ infinitesimal:
Φ ( z , z ¯ ) ( 1 + ϵ ) h ( 1 + ¯ ϵ ~ ) h ~ Φ ( z + ϵ , z ¯ + ϵ ~ ) = ( 1 + h ϵ + ) ( 1 + h ~ ¯ ϵ ~ + ) ( Φ ( z , z ¯ ) + ϵ Φ + ϵ ~ ¯ Φ + ) = Φ ( z , z ¯ ) + h ϵ Φ ¯ + ϵ Φ ¯ δ ϵ Φ + h ~ ¯ ϵ ~ Φ + ϵ ^ ¯ Φ δ ϵ ~ Φ ¯ + Φ ( z , z ¯ ) ( 1 + ϵ ) h ( 1 + ¯ ϵ ~ ) h ~ Φ ( z + ϵ , z ¯ + ϵ ~ ) = ( 1 + h ϵ + ) ( 1 + h ~ ¯ ϵ ~ + ) ( Φ ( z , z ¯ ) + ϵ Φ + ϵ ~ ¯ Φ + ) = Φ ( z , z ¯ ) + h ϵ Φ ¯ + ϵ Φ ¯ δ ϵ Φ + h ~ ¯ ϵ ~ Φ + ϵ ^ ¯ Φ δ ϵ ~ Φ ¯ + {:[Phi(z"," bar(z))rarr(1+del epsilon)^(h)(1+ bar(del) tilde(epsilon))^( tilde(h))Phi(z+epsilon"," bar(z)+ tilde(epsilon))],[=(1+h del epsilon+dots)(1+ tilde(h) bar(del) tilde(epsilon)+dots)(Phi(z"," bar(z))+epsilon del Phi+ tilde(epsilon) bar(del)Phi+dots)],[=Phi(z"," bar(z))+ubrace(h del epsilon( bar(Phi))+epsilon( bar(Phi))ubrace)_(delta_(epsilon)Phi)+ubrace(( tilde(h))( bar(del))( tilde(epsilon))Phi+( hat(epsilon))( bar(del))Phiubrace)_(delta_( tilde(epsilon)) bar(Phi))+dots]:}\begin{aligned} & \Phi(z, \bar{z}) \rightarrow(1+\partial \epsilon)^{h}(1+\bar{\partial} \tilde{\epsilon})^{\tilde{h}} \Phi(z+\epsilon, \bar{z}+\tilde{\epsilon}) \\ & =(1+h \partial \epsilon+\ldots)(1+\tilde{h} \bar{\partial} \tilde{\epsilon}+\ldots)(\Phi(z, \bar{z})+\epsilon \partial \Phi+\tilde{\epsilon} \bar{\partial} \Phi+\ldots) \\ & =\Phi(z, \bar{z})+\underbrace{h \partial \epsilon \bar{\Phi}+\epsilon \bar{\Phi}}_{\delta_{\epsilon} \Phi}+\underbrace{\tilde{h} \bar{\partial} \tilde{\epsilon} \Phi+\hat{\epsilon} \bar{\partial} \Phi}_{\delta_{\tilde{\epsilon}} \bar{\Phi}}+\ldots \end{aligned}Φ(z,z¯)(1+ϵ)h(1+¯ϵ~)h~Φ(z+ϵ,z¯+ϵ~)=(1+hϵ+)(1+h~¯ϵ~+)(Φ(z,z¯)+ϵΦ+ϵ~¯Φ+)=Φ(z,z¯)+hϵΦ¯+ϵΦ¯δϵΦ+h~¯ϵ~Φ+ϵ^¯Φδϵ~Φ¯+
where... are higher order terms in ϵ ϵ epsilon\epsilonϵ and ϵ ~ ϵ ~ tilde(epsilon)\tilde{\epsilon}ϵ~. Hence, δ Φ = δ ϵ Φ + δ ϵ Φ δ Φ = δ ϵ Φ + δ ϵ Φ delta Phi=delta_(epsilon)Phi+delta_(epsilon)Phi\delta \Phi=\delta_{\epsilon} \Phi+\delta_{\epsilon} \PhiδΦ=δϵΦ+δϵΦ found via the OPE is indeed an infinitesimal conformal transformation.
All of the OPE's we need in practice can be derived from the following OPE:
X μ ( z ) X ν ( w ) = α 2 n μ ν ln ( z w ) + X μ ( z ) X ν ( w ) = α 2 n μ ν ln ( z w ) + X^(mu)(z)X^(nu)(w)=-(alpha^('))/(2)n^(mu nu)ln(z-w)+dotsX^{\mu}(z) X^{\nu}(w)=-\frac{\alpha^{\prime}}{2} n^{\mu \nu} \ln (z-w)+\ldotsXμ(z)Xν(w)=α2nμνln(zw)+
where we write X ( z , z ¯ ) = X ( z ) + X ( z ¯ ) X ( z , z ¯ ) = X ( z ) + X ( z ¯ ) X(z, bar(z))=X(z)+X( bar(z))X(z, \bar{z})=X(z)+X(\bar{z})X(z,z¯)=X(z)+X(z¯) and dots\ldots are non-singular as z w z w z rarr wz \rightarrow wzw. The singular part of the OPE can be read of from the correlation function X μ ( z ¯ , z ¯ ) X ν ( z , z ¯ ) X μ ( z ¯ , z ¯ ) X ν z , z ¯ (:X^(mu)(( bar(z)),( bar(z)))X^(nu)(z^('), bar(z)^(')):)\left\langle X^{\mu}(\bar{z}, \bar{z}) X^{\nu}\left(z^{\prime}, \bar{z}^{\prime}\right)\right\rangleXμ(z¯,z¯)Xν(z,z¯), which can in turn be deduced from a path integral:
0 = D X δ δ X μ ( z , z ¯ ) [ e S X ν ( z , z ¯ ) ] 0 = D X δ δ X μ ( z , z ¯ ) e S X ν z , z ¯ 0=intDX(delta)/(deltaX_(mu)(z,( bar(z))))[e^(-S)X^(nu)(z^('), bar(z)^('))]0=\int \mathcal{D} X \frac{\delta}{\delta X_{\mu}(z, \bar{z})}\left[e^{-S} X^{\nu}\left(z^{\prime}, \bar{z}^{\prime}\right)\right]0=DXδδXμ(z,z¯)[eSXν(z,z¯)]
where the integral is over all field configurations and the integral vanishes because the integrand contains a total functional derviative. The action is given by
S = T 2 d 2 σ ( X ˙ 2 + X 2 ) , τ i τ = 1 2 π α d 2 z X ¯ X , d 2 z = d z d z ¯ = 1 2 π α d 2 z X ¯ X S = T 2 d 2 σ X ˙ 2 + X 2 , τ i τ = 1 2 π α d 2 z X ¯ X , d 2 z = d z d z ¯ = 1 2 π α d 2 z X ¯ X {:[S=(T)/(2)intd^(2)sigma(X^(˙)^(2)+X^('2))","quad tau rarr-i tau],[=(1)/(2pialpha^('))intd^(2)z quad del X* bar(del)X","quadd^(2)z=dzd bar(z)],[=-(1)/(2pialpha^('))intd^(2)zX*del bar(del)X]:}\begin{aligned} S & =\frac{T}{2} \int d^{2} \sigma\left(\dot{X}^{2}+X^{\prime 2}\right), \quad \tau \rightarrow-i \tau \\ & =\frac{1}{2 \pi \alpha^{\prime}} \int d^{2} z \quad \partial X \cdot \bar{\partial} X, \quad d^{2} z=d z d \bar{z} \\ & =-\frac{1}{2 \pi \alpha^{\prime}} \int d^{2} z X \cdot \partial \bar{\partial} X \end{aligned}S=T2d2σ(X˙2+X2),τiτ=12παd2zX¯X,d2z=dzdz¯=12παd2zX¯X
We then find
0 = D X [ δ S δ X μ ( z , z ¯ ) X ν ( z , z ¯ ) + δ X ν ( z , z ¯ ) δ X μ ( z , z ¯ ) ] e S = D X [ 1 π α ¯ X μ ( z , z ¯ ) X ν ( z , z ¯ ) + δ ( z z , z ¯ z ¯ ) η μ ν ] e S ¯ X μ ( z , z ¯ ) X ν ( z , z ¯ ) = π α δ ( z z , z ¯ z ¯ ) η μ ν 0 = D X δ S δ X μ ( z , z ¯ ) X ν z , z ¯ + δ X ν z , z ¯ δ X μ ( z , z ¯ ) e S = D X 1 π α ¯ X μ ( z , z ¯ ) X ν z , z ¯ + δ z z , z ¯ z ¯ η μ ν e S ¯ X μ ( z , z ¯ ) X ν z , z ¯ = π α δ z z , z ¯ z ¯ η μ ν {:[0=intDX[-(delta S)/(deltaX_(mu)(z,( bar(z))))X^(nu)(z^('), bar(z)^('))+(deltaX^(nu)(z^('), bar(z)^(')))/(deltaX_(mu)(z,( bar(z))))]e^(-S)],[=intDX[-(1)/(pialpha^('))del( bar(del))X^(mu)(z,( bar(z)))X^(nu)(z^('), bar(z)^('))+delta(z-z^('),( bar(z))- bar(z)^('))eta^(mu nu)]e^(-S)],[ rarr del bar(del)(:X^(mu)(z,( bar(z)))X^(nu)(z^('), bar(z)^(')):)=-pialpha^(')delta(z-z^('),( bar(z))- bar(z)^('))eta^(mu nu)]:}\begin{aligned} 0 & =\int \mathcal{D} X\left[-\frac{\delta S}{\delta X_{\mu}(z, \bar{z})} X^{\nu}\left(z^{\prime}, \bar{z}^{\prime}\right)+\frac{\delta X^{\nu}\left(z^{\prime}, \bar{z}^{\prime}\right)}{\delta X_{\mu}(z, \bar{z})}\right] e^{-S} \\ & =\int \mathcal{D} X\left[-\frac{1}{\pi \alpha^{\prime}} \partial \bar{\partial} X^{\mu}(z, \bar{z}) X^{\nu}\left(z^{\prime}, \bar{z}^{\prime}\right)+\delta\left(z-z^{\prime}, \bar{z}-\bar{z}^{\prime}\right) \eta^{\mu \nu}\right] e^{-S} \\ & \rightarrow \partial \bar{\partial}\left\langle X^{\mu}(z, \bar{z}) X^{\nu}\left(z^{\prime}, \bar{z}^{\prime}\right)\right\rangle=-\pi \alpha^{\prime} \delta\left(z-z^{\prime}, \bar{z}-\bar{z}^{\prime}\right) \eta^{\mu \nu} \end{aligned}0=DX[δSδXμ(z,z¯)Xν(z,z¯)+δXν(z,z¯)δXμ(z,z¯)]eS=DX[1πα¯Xμ(z,z¯)Xν(z,z¯)+δ(zz,z¯z¯)ημν]eS¯Xμ(z,z¯)Xν(z,z¯)=παδ(zz,z¯z¯)ημν
In the HW you will show that
¯ ln | z z | 2 = 2 π δ ( z z , z ¯ z ¯ ) ¯ ln z z 2 = 2 π δ z z , z ¯ z ¯ del bar(del)ln |z-z^(')|^(2)=2pi delta(z-z^('),( bar(z))- bar(z)^('))\partial \bar{\partial} \ln \left|z-z^{\prime}\right|^{2}=2 \pi \delta\left(z-z^{\prime}, \bar{z}-\bar{z}^{\prime}\right)¯ln|zz|2=2πδ(zz,z¯z¯)
Hence, the 2-point function (or "propagator") is given by
X μ ( z , z ¯ ) X ν ( z , z ¯ ) = α 2 ln | z z | 2 η μ ν X μ ( z , z ¯ ) X ν z , z ¯ = α 2 ln z z 2 η μ ν (:X^(mu)(z,( bar(z)))X^(nu)(z^('), bar(z)^(')):)=-(alpha^('))/(2)ln |z-z^(')|^(2)eta^(mu nu)\left\langle X^{\mu}(z, \bar{z}) X^{\nu}\left(z^{\prime}, \bar{z}^{\prime}\right)\right\rangle=-\frac{\alpha^{\prime}}{2} \ln \left|z-z^{\prime}\right|^{2} \eta^{\mu \nu}Xμ(z,z¯)Xν(z,z¯)=α2ln|zz|2ημν
Writing this in terms of holomorphic and antiholomorphic parts,
X μ ( z ) X ν ( z ) = α 2 ln ( z z ) η μ ν , X μ ( z ¯ ) X ν ( z ¯ ) = α 2 ln ( z ¯ z ¯ ) η μ ν X μ ( z ) X ν z = α 2 ln z z η μ ν , X μ ( z ¯ ) X ν z ¯ = α 2 ln z ¯ z ¯ η μ ν (:X^(mu)(z)X^(nu)(z^(')):)=-(alpha^('))/(2)ln(z-z^('))eta^(mu nu),(:X^(mu)(( bar(z)))X^(nu)( bar(z)^(')):)=-(alpha^('))/(2)ln(( bar(z))- bar(z)^('))eta^(mu nu)\left\langle X^{\mu}(z) X^{\nu}\left(z^{\prime}\right)\right\rangle=-\frac{\alpha^{\prime}}{2} \ln \left(z-z^{\prime}\right) \eta^{\mu \nu},\left\langle X^{\mu}(\bar{z}) X^{\nu}\left(\bar{z}^{\prime}\right)\right\rangle=-\frac{\alpha^{\prime}}{2} \ln \left(\bar{z}-\bar{z}^{\prime}\right) \eta^{\mu \nu}Xμ(z)Xν(z)=α2ln(zz)ημν,Xμ(z¯)Xν(z¯)=α2ln(z¯z¯)ημν
from which we see that
X ( z ) μ X ( w ) ν = α 2 ln ( z w ) η μ ν + X ( z ) μ X ( w ) ν = α 2 ln ( z w ) η μ ν + X(z)^(mu)X(w)^(nu)=-(alpha^('))/(2)ln(z-w)eta^(mu nu)+dotsX(z)^{\mu} X(w)^{\nu}=-\frac{\alpha^{\prime}}{2} \ln (z-w) \eta^{\mu \nu}+\ldotsX(z)μX(w)ν=α2ln(zw)ημν+
as claimed. From this, we see that
X μ ( z ) X ν ( w ) = z w ( X μ ( z ) X ν ( w ) ) = z w ( α 2 ln ( z w ) η μ ν + ) = α 2 η μ ν ( z w ) 2 + X μ ( z ) X ν ( w ) = z w X μ ( z ) X ν ( w ) = z w α 2 ln ( z w ) η μ ν + = α 2 η μ ν ( z w ) 2 + {:[delX^(mu)(z)delX^(nu)(w)=del_(z)del_(w)(X^(mu)(z)X^(nu)(w))],[=del_(z)del_(w)(-(alpha^('))/(2)ln(z-w)eta^(mu nu)+dots)],[=-(alpha^('))/(2)(eta^(mu nu))/((z-w)^(2))+dots]:}\begin{aligned} \partial X^{\mu}(z) \partial X^{\nu}(w) & =\partial_{z} \partial_{w}\left(X^{\mu}(z) X^{\nu}(w)\right) \\ & =\partial_{z} \partial_{w}\left(-\frac{\alpha^{\prime}}{2} \ln (z-w) \eta^{\mu \nu}+\ldots\right) \\ & =-\frac{\alpha^{\prime}}{2} \frac{\eta^{\mu \nu}}{(z-w)^{2}}+\ldots \end{aligned}Xμ(z)Xν(w)=zw(Xμ(z)Xν(w))=zw(α2ln(zw)ημν+)=α2ημν(zw)2+
Let us denote X μ ( z ) X ν ( w ) = X μ ( z ) X ν ( w ) X μ ( z ) X ν ( w ) = X μ ( z ) X ν ( w ) (:X^(mu)(z)X^(nu)(w):)=X^(mu)(z)X^(nu)^(⏜)(w)\left\langle X^{\mu}(z) X^{\nu}(w)\right\rangle=\overparen{X^{\mu}(z) X^{\nu}}(w)Xμ(z)Xν(w)=Xμ(z)Xν(w), which is known as a "Wick contraction." We can then compute OPE of more general operators by summing over all possible contractions. We also define "normal ordering":
: O ( z 1 ) O ( z n ) := O ( z 1 ) O ( z n ) all contractions : O z 1 O z n := O z 1 O z n  all contractions  :O(z_(1))dotsO(z_(n)):=O(z_(1))dotsO(z_(n))-" all contractions ": \mathcal{O}\left(z_{1}\right) \ldots \mathcal{O}\left(z_{n}\right):=\mathcal{O}\left(z_{1}\right) \ldots \mathcal{O}\left(z_{n}\right)-\text { all contractions }:O(z1)O(zn):=O(z1)O(zn) all contractions 
Hence, these operator have no singular terms in their OPE. We an then define composite operators like T T TTT and T ~ T ~ tilde(T)\tilde{T}T~ more precisely as
T 1 α : X μ ( z ) X ν ( z ) : η μ ν T 1 α : X μ ( z ) X ν ( z ) : η μ ν T-=-(1)/(alpha^(')):delX^(mu)(z)delX^(nu)(z):eta_(mu nu)T \equiv-\frac{1}{\alpha^{\prime}}: \partial X^{\mu}(z) \partial X^{\nu}(z): \eta_{\mu \nu}T1α:Xμ(z)Xν(z):ημν
where
: X μ ( z ) X ν ( z ) := lim z w ( X μ ( z ) X ν ( w ) X μ ( z ) X ν ( w ) ) = lim z w ( X μ ( z ) X ν ( w ) + α 2 n μ ν ( z w ) 2 ) : X μ ( z ) X ν ( z ) := lim z w X μ ( z ) X ν ( w ) X μ ( z ) X ν ( w ) = lim z w X μ ( z ) X ν ( w ) + α 2 n μ ν ( z w ) 2 {:[:delX^(mu)(z)delX^(nu)(z):=lim_(z rarr w)(delX^(mu)(z)delX^(nu)(w)-delX^(mu)(z)delX^(nu)(w))],[=lim_(z rarr w)(delX^(mu)(z)delX^(nu)(w)+(alpha^('))/(2)(n^(mu nu))/((z-w)^(2)))]:}\begin{aligned} : \partial X^{\mu}(z) \partial X^{\nu}(z) & :=\lim _{z \rightarrow w}\left(\partial X^{\mu}(z) \partial X^{\nu}(w)-\partial X^{\mu}(z) \partial X^{\nu}(w)\right) \\ & =\lim _{z \rightarrow w}\left(\partial X^{\mu}(z) \partial X^{\nu}(w)+\frac{\alpha^{\prime}}{2} \frac{n^{\mu \nu}}{(z-w)^{2}}\right) \end{aligned}:Xμ(z)Xν(z):=limzw(Xμ(z)Xν(w)Xμ(z)Xν(w))=limzw(Xμ(z)Xν(w)+α2nμν(zw)2)
In summary, when computing OPEs we never contract two operators inside of the same normal ordering symbol : :, but we sum over all other contractions.

Examples

  • X μ ( w ) X μ ( w ) delX^(mu)(w)\partial X^{\mu}(w)Xμ(w) is a primary operator with ( h , h ~ ) = ( 1 , 0 ) ( h , h ~ ) = ( 1 , 0 ) (h, tilde(h))=(1,0)(h, \tilde{h})=(1,0)(h,h~)=(1,0).
T ( z ) X μ ( w ) = 1 α : X ( z ) X ( z ) : X μ ( w ) 1 α : X ( z ) X ( z ) : X μ ( w ) + = 2 α : X ( z ) X ( z ) : X μ ( w ) + = 2 α X μ ( z ) z w ( α 2 ln ( z w ) ) + = X μ ( z ) ( z w ) 2 + = ( X μ ( w ) + ( z w ) 2 X μ ( w ) + ) ( z w ) 2 + = X μ ( w ) ( z w ) 2 + 2 X μ ( w ) z w + T ( z ) X μ ( w ) = 1 α : X ( z ) X ( z ) : X μ ( w ) 1 α : X ( z ) X ( z ) : X μ ( w ) + = 2 α : X ( z ) X ( z ) : X μ ( w ) + = 2 α X μ ( z ) z w α 2 ln ( z w ) + = X μ ( z ) ( z w ) 2 + = X μ ( w ) + ( z w ) 2 X μ ( w ) + ( z w ) 2 + = X μ ( w ) ( z w ) 2 + 2 X μ ( w ) z w + {:[T(z)delX^(mu)(w)=-(1)/(alpha^(')):del X(z)*del X(z):delX^(mu)(w)-(1)/(alpha^(')):del X(z)*del X(z):delX^(mu)(w)+dots],[=-(2)/(alpha^(')):del X(z)*del X(z):delX^(mu)(w)+dots],[=-(2)/(alpha^('))delX^(mu)(z)del_(z)del_(w)(-(alpha^('))/(2)ln(z-w))+dots],[=(delX^(mu)(z))/((z-w)^(2))+dots=((delX^(mu)(w)+(z-w)del^(2)X^(mu)(w)+dots))/((z-w)^(2))+dots],[=(delX^(mu)(w))/((z-w)^(2))+(del^(2)X^(mu)(w))/(z-w)+dots]:}\begin{aligned} & T(z) \partial X^{\mu}(w)=-\frac{1}{\alpha^{\prime}}: \partial X(z) \cdot \partial X(z): \partial X^{\mu}(w)-\frac{1}{\alpha^{\prime}}: \partial X(z) \cdot \partial X(z): \partial X^{\mu}(w)+\ldots \\ & =-\frac{2}{\alpha^{\prime}}: \partial X(z) \cdot \partial X(z): \partial X^{\mu}(w)+\ldots \\ & =-\frac{2}{\alpha^{\prime}} \partial X^{\mu}(z) \partial_{z} \partial_{w}\left(-\frac{\alpha^{\prime}}{2} \ln (z-w)\right)+\ldots \\ & =\frac{\partial X^{\mu}(z)}{(z-w)^{2}}+\ldots=\frac{\left(\partial X^{\mu}(w)+(z-w) \partial^{2} X^{\mu}(w)+\ldots\right)}{(z-w)^{2}}+\ldots \\ & =\frac{\partial X^{\mu}(w)}{(z-w)^{2}}+\frac{\partial^{2} X^{\mu}(w)}{z-w}+\ldots \end{aligned}T(z)Xμ(w)=1α:X(z)X(z):Xμ(w)1α:X(z)X(z):Xμ(w)+=2α:X(z)X(z):Xμ(w)+=2αXμ(z)zw(α2ln(zw))+=Xμ(z)(zw)2+=(Xμ(w)+(zw)2Xμ(w)+)(zw)2+=Xμ(w)(zw)2+2Xμ(w)zw+
Note that T ~ ( z ¯ ) X μ ( w ) = T ~ ( z ¯ ) X μ ( w ) = tilde(T)( bar(z))delX^(mu)(w)=dots\tilde{T}(\bar{z}) \partial X^{\mu}(w)=\ldotsT~(z¯)Xμ(w)= since X μ ( z ) X ν ( w ) = 0 X μ ( z ) X ν ( w ) = 0 (:X^(mu)(z)X^(nu)(w):)=0\left\langle X^{\mu}(z) X^{\nu}(w)\right\rangle=0Xμ(z)Xν(w)=0.
  • : e i k X ( ω , w ¯ ) e i k X ( ω , w ¯ ) e^(ik*X(omega, bar(w)))e^{i k \cdot X(\omega, \bar{w})}eikX(ω,w¯) is a primary operator with h = h ~ = α k 2 / 4 h = h ~ = α k 2 / 4 h= tilde(h)=alpha^(')k^(2)//4h=\tilde{h}=\alpha^{\prime} k^{2} / 4h=h~=αk2/4.
First compute the following OPE (suppressing Lorentz indices for simplicity)
X ( z ) : e i k X ( w ) : = n = 0 ( i k ) n n ! X ( z ) : X ( w ) n : = n = 0 ( i k ) n n ! n X ( z ) : X ( w ) X ( w ) n 1 : + = n = 0 ( i k ) n ( n 1 ) ! z ( α 2 ln ( z w ) ) : X ( w ) n 1 : + = α 2 1 z w n = 1 ( i k ) n ( n 1 ) ! : X ( w ) n 1 : + = i α k 2 ( z w ) : e i k X ( w ) : + X ( z ) : e i k X ( w ) : = n = 0 ( i k ) n n ! X ( z ) : X ( w ) n : = n = 0 ( i k ) n n ! n X ( z ) : X ( w ) X ( w ) n 1 : + = n = 0 ( i k ) n ( n 1 ) ! z α 2 ln ( z w ) : X ( w ) n 1 : + = α 2 1 z w n = 1 ( i k ) n ( n 1 ) ! : X ( w ) n 1 : + = i α k 2 ( z w ) : e i k X ( w ) : + {:[del X(z):e^(ikX(w)):=sum_(n=0)^(oo)((ik)^(n))/(n!)del X(z):X(w)^(n):],[=sum_(n=0)^(oo)((ik)^(n))/(n!)n del X(z):X(w)X(w)^(n-1):+dots],[=sum_(n=0)^(oo)((ik)^(n))/((n-1)!)del_(z)(-(alpha^('))/(2)ln(z-w)):X(w)^(n-1):+dots],[=-(alpha^('))/(2)(1)/(z-w)sum_(n=1)^(oo)((ik)^(n))/((n-1)!):X(w)^(n-1):+dots],[=-(ialpha^(')k)/(2(z-w)):e^(ikX(w)):+dots]:}\begin{aligned} \partial X(z): e^{i k X(w)}: & =\sum_{n=0}^{\infty} \frac{(i k)^{n}}{n!} \partial X(z): X(w)^{n}: \\ & =\sum_{n=0}^{\infty} \frac{(i k)^{n}}{n!} n \partial X(z): X(w) X(w)^{n-1}:+\ldots \\ & =\sum_{n=0}^{\infty} \frac{(i k)^{n}}{(n-1)!} \partial_{z}\left(-\frac{\alpha^{\prime}}{2} \ln (z-w)\right): X(w)^{n-1}:+\ldots \\ & =-\frac{\alpha^{\prime}}{2} \frac{1}{z-w} \sum_{n=1}^{\infty} \frac{(i k)^{n}}{(n-1)!}: X(w)^{n-1}:+\ldots \\ & =-\frac{i \alpha^{\prime} k}{2(z-w)}: e^{i k X(w)}:+\ldots \end{aligned}X(z):eikX(w):=n=0(ik)nn!X(z):X(w)n:=n=0(ik)nn!nX(z):X(w)X(w)n1:+=n=0(ik)n(n1)!z(α2ln(zw)):X(w)n1:+=α21zwn=1(ik)n(n1)!:X(w)n1:+=iαk2(zw):eikX(w):+
From this, we find
T ( z ) : e i k X ( w ) : = 1 α : X ( z ) X ( z ) :: e i k X ( w ) : = 1 α [ ( i α k 2 ( z w ) ) 2 : e i k X ( w ) : + 2 ( i α k 2 ( z w ) ) : X ( z ) e i k X ( w ) : ] T ( z ) : e i k X ( w ) : = 1 α : X ( z ) X ( z ) :: e i k X ( w ) : = 1 α i α k 2 ( z w ) 2 : e i k X ( w ) : + 2 i α k 2 ( z w ) : X ( z ) e i k X ( w ) : {:[T(z):e^(ikX(w)):=-(1)/(alpha^(')):del X(z)del X(z)::e^(ikX(w)):],[=-(1)/(alpha^('))[(-(ialpha^(')k)/(2(z-w)))^(2):e^(ikX(w)):+2((-ialpha^(')k)/(2(z-w))):del X(z)e^(ikX(w)):]]:}\begin{aligned} T(z): e^{i k X(w)}: & =-\frac{1}{\alpha^{\prime}}: \partial X(z) \partial X(z):: e^{i k X(w)}: \\ & =-\frac{1}{\alpha^{\prime}}\left[\left(-\frac{i \alpha^{\prime} k}{2(z-w)}\right)^{2}: e^{i k X(w)}:+2\left(\frac{-i \alpha^{\prime} k}{2(z-w)}\right): \partial X(z) e^{i k X(w)}:\right] \end{aligned}T(z):eikX(w):=1α:X(z)X(z)::eikX(w):=1α[(iαk2(zw))2:eikX(w):+2(iαk2(zw)):X(z)eikX(w):]
where the first term came from contracting both X X delX^(')\partial X^{\prime}X 's in the stress tensor with the exponential and the second term came from contracting only one X X del X\partial XX. This gives a factor of two since there are two possible ways to perform this contraction. We then obtain
T ( z ) : e i k X ( w ) : = α k 2 / 4 ( z w ) 2 : e i k X ( w ) : + i k : X ( z ) e i k X ( w ) : z w + = α k 2 / 4 ( z w ) 2 : e i k X ( w ) : + i k : ( X ( w ) + ) e i k x ( w ) : z w + = α k 2 / 4 ( z w ) 2 : e i k X ( w ) : + w : e i k X ( w ) : z w + T ( z ) : e i k X ( w ) : = α k 2 / 4 ( z w ) 2 : e i k X ( w ) : + i k : X ( z ) e i k X ( w ) : z w + = α k 2 / 4 ( z w ) 2 : e i k X ( w ) : + i k : ( X ( w ) + ) e i k x ( w ) : z w + = α k 2 / 4 ( z w ) 2 : e i k X ( w ) : + w : e i k X ( w ) : z w + {:[T(z):e^(ikX(w)):=(alpha^(')k^(2)//4)/((z-w)^(2)):e^(ikX(w)):+(ik:del X(z)e^(ikX(w)):)/(z-w)+dots],[=(alpha^(')k^(2)//4)/((z-w)^(2)):e^(ikX(w)):+(ik:(del X(w)+dots)e^(ikx(w)):)/(z-w)+dots],[=(alpha^(')k^(2)//4)/((z-w)^(2)):e^(ikX(w)):+(del_(w):e^(ikX(w)):)/(z-w)+dots]:}\begin{aligned} T(z): e^{i k X(w)}: & =\frac{\alpha^{\prime} k^{2} / 4}{(z-w)^{2}}: e^{i k X(w)}:+\frac{i k: \partial X(z) e^{i k X(w)}:}{z-w}+\ldots \\ & =\frac{\alpha^{\prime} k^{2} / 4}{(z-w)^{2}}: e^{i k X(w)}:+\frac{i k:(\partial X(w)+\ldots) e^{i k x(w)}:}{z-w}+\ldots \\ & =\frac{\alpha^{\prime} k^{2} / 4}{(z-w)^{2}}: e^{i k X(w)}:+\frac{\partial_{w}: e^{i k X(w)}:}{z-w}+\ldots \end{aligned}T(z):eikX(w):=αk2/4(zw)2:eikX(w):+ik:X(z)eikX(w):zw+=αk2/4(zw)2:eikX(w):+ik:(X(w)+)eikx(w):zw+=αk2/4(zw)2:eikX(w):+w:eikX(w):zw+
Similarly
T ~ ( z ¯ ) : e i k X ( w ¯ ) := α k 2 / 4 ( z ¯ w ¯ ) 2 : e i k X ( w ¯ ) : + w ¯ : e i k X ( w ¯ ) : z ¯ w ¯ + T ~ ( z ¯ ) : e i k X ( w ¯ ) := α k 2 / 4 ( z ¯ w ¯ ) 2 : e i k X ( w ¯ ) : + w ¯ : e i k X ( w ¯ ) : z ¯ w ¯ + tilde(T)( bar(z)):e^(ikX( bar(w))):=(alpha^(')k^(2)//4)/((( bar(z))-( bar(w)))^(2)):e^(ikX( bar(w))):+(del_( bar(w)):e^(ikX( bar(w))):)/(( bar(z))-( bar(w)))+dots\tilde{T}(\bar{z}): e^{i k X(\bar{w})}:=\frac{\alpha^{\prime} k^{2} / 4}{(\bar{z}-\bar{w})^{2}}: e^{i k X(\bar{w})}:+\frac{\partial_{\bar{w}}: e^{i k X(\bar{w})}:}{\bar{z}-\bar{w}}+\ldotsT~(z¯):eikX(w¯):=αk2/4(z¯w¯)2:eikX(w¯):+w¯:eikX(w¯):z¯w¯+

13 Critical Dimension from CFT

This is based on Tong pg 82, sections 5.1, 5.2, BBS pg 73-76, GSW pg 121-127. We will revisit the calculation of critical dimension using 2d CFT. In lightcone
gauge, we found that Lorentz invariance was amalous unless D = 26 D = 26 D=26D=26D=26. Now we will work covariantly and show that conformal symmetry is anomalous unless D = 26 D = 26 D=26D=26D=26. The conformal anomaly shows up in central extension of the Virasoro algebra which can be derived from the OPE of the stress tensor with itself:
T ( z ) T ( w ) = 1 ( α ) 2 : X ( z ) X ( z ) :: X ( w ) x ( w ) : = 1 ( α ) 2 ( 2 : X X : X X : + 4 : X X :: X X : + ) T ( z ) T ( w ) = 1 α 2 : X ( z ) X ( z ) :: X ( w ) x ( w ) : = 1 α 2 ( 2 : X X : X X : + 4 : X X :: X X : + ) {:[T(z)T(w)=(1)/((alpha^('))^(2)):del X(z)*del X(z)::del X(w)*del x(w):],[=(1)/((alpha^('))^(2))(2:del X*del X:del X*del X:+4:del X*del X::del X*del X:+dots)]:}\begin{aligned} T(z) T(w) & =\frac{1}{\left(\alpha^{\prime}\right)^{2}}: \partial X(z) \cdot \partial X(z):: \partial X(w) \cdot \partial x(w): \\ & =\frac{1}{\left(\alpha^{\prime}\right)^{2}}(2: \partial X \cdot \partial X: \partial X \cdot \partial X:+4: \partial X \cdot \partial X:: \partial X \cdot \partial X:+\ldots) \end{aligned}T(z)T(w)=1(α)2:X(z)X(z)::X(w)x(w):=1(α)2(2:XX:XX:+4:XX::XX:+)
where the numerical coefficients in front of each term encode the number of ways of performing the contracitons. Recalling that
X μ ( z ) X ν ( w ) = η μ ν z w ( α 2 ln ( z w ) ) = α 2 η μ ν ( z w ) 2 X μ ( z ) X ν ( w ) = η μ ν z w α 2 ln ( z w ) = α 2 η μ ν ( z w ) 2 delX^(mu)(z)delX^(nu)^(⏜)(w)=eta^(mu nu)del_(z)del_(w)(-(alpha^('))/(2)ln(z-w))=-(alpha^('))/(2)(eta^(mu nu))/((z-w)^(2))\partial \overparen{X^{\mu}(z) \partial X^{\nu}}(w)=\eta^{\mu \nu} \partial_{z} \partial_{w}\left(-\frac{\alpha^{\prime}}{2} \ln (z-w)\right)=-\frac{\alpha^{\prime}}{2} \frac{\eta^{\mu \nu}}{(z-w)^{2}}Xμ(z)Xν(w)=ημνzw(α2ln(zw))=α2ημν(zw)2
we obtain
T ( z ) T ( z ) = 1 ( α ) 2 ( 2 D ( α 2 1 ( z w ) 2 ) 2 + 4 ( α 2 1 ( z w ) 2 ) : X ( z ) X ( w ) : + ) = D / 2 ( z w ) 4 2 α : X ( w ) X ( w ) : ( z w ) 2 2 α 2 X ( w ) X ( w ) : ( z w ) + = D / 2 ( z w ) 4 + 2 T ( w ) ( z w ) 2 + T ( w ) z w + T ( z ) T ( z ) = 1 α 2 2 D α 2 1 ( z w ) 2 2 + 4 α 2 1 ( z w ) 2 : X ( z ) X ( w ) : + = D / 2 ( z w ) 4 2 α : X ( w ) X ( w ) : ( z w ) 2 2 α 2 X ( w ) X ( w ) : ( z w ) + = D / 2 ( z w ) 4 + 2 T ( w ) ( z w ) 2 + T ( w ) z w + {:[T(z)T(z)=(1)/((alpha^('))^(2))(2D(-(alpha^('))/(2)(1)/((z-w)^(2)))^(2)+4(-(alpha^('))/(2)(1)/((z-w)^(2))):del X(z)*del X(w):+dots)],[=(D//2)/((z-w)^(4))-(2)/(alpha^('))(:del X(w)*del X(w):)/((z-w)^(2))-(2)/(alpha^('))(del^(2)X(w)*del X(w):)/((z-w))+dots],[=(D//2)/((z-w)^(4))+(2T(w))/((z-w)^(2))+(del T(w))/(z-w)+dots]:}\begin{aligned} T(z) T(z) & =\frac{1}{\left(\alpha^{\prime}\right)^{2}}\left(2 D\left(-\frac{\alpha^{\prime}}{2} \frac{1}{(z-w)^{2}}\right)^{2}+4\left(-\frac{\alpha^{\prime}}{2} \frac{1}{(z-w)^{2}}\right): \partial X(z) \cdot \partial X(w):+\ldots\right) \\ & =\frac{D / 2}{(z-w)^{4}}-\frac{2}{\alpha^{\prime}} \frac{: \partial X(w) \cdot \partial X(w):}{(z-w)^{2}}-\frac{2}{\alpha^{\prime}} \frac{\partial^{2} X(w) \cdot \partial X(w):}{(z-w)}+\ldots \\ & =\frac{D / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{z-w}+\ldots \end{aligned}T(z)T(z)=1(α)2(2D(α21(zw)2)2+4(α21(zw)2):X(z)X(w):+)=D/2(zw)42α:X(w)X(w):(zw)22α2X(w)X(w):(zw)+=D/2(zw)4+2T(w)(zw)2+T(w)zw+
To obtain the second line, we wrote X ( z ) = X ( w ) + ( z w ) 2 X ( w ) + X ( z ) = X ( w ) + ( z w ) 2 X ( w ) + del X(z)=del X(w)+(z-w)del^(2)X(w)+dots\partial X(z)=\partial X(w)+(z-w) \partial^{2} X(w)+\ldotsX(z)=X(w)+(zw)2X(w)+ in the first line. Hence, we see that T T TTT is not a primary operator because of the 1 / ( z w ) 4 1 / ( z w ) 4 1//(z-w)^(4)1 /(z-w)^{4}1/(zw)4 term.
More generally,
T ( z ) T ( w ) = c / 2 ( z w ) 4 + 2 ( z w ) 2 T ( w ) + 1 z w T ( w ) + T ( z ) T ( w ) = c / 2 ( z w ) 4 + 2 ( z w ) 2 T ( w ) + 1 z w T ( w ) + T(z)T(w)=(c//2)/((z-w)^(4))+(2)/((z-w)^(2))T(w)+(1)/(z-w)del T(w)+dotsT(z) T(w)=\frac{c / 2}{(z-w)^{4}}+\frac{2}{(z-w)^{2}} T(w)+\frac{1}{z-w} \partial T(w)+\ldotsT(z)T(w)=c/2(zw)4+2(zw)2T(w)+1zwT(w)+
where c c ccc is the "conformal anomaly" or "central change". For the bosonic string c = D c = D c=Dc=Dc=D, ie. each X μ ( z ) X μ ( z ) X^(mu)(z)X^{\mu}(z)Xμ(z) contributes 1 to the central charge. More generally, c counts the number of riigt-moving degrees of freddom. T T TTT is only a primary it c = 0 c = 0 c=0c=0c=0, in which case it has weight ( 2 , 0 ) ( 2 , 0 ) (2,0)(2,0)(2,0). Similarly, if the left-moving central charge c ~ = 0 c ~ = 0 tilde(c)=0\tilde{c}=0c~=0, then T ~ ( z ¯ ) T ~ ( z ¯ ) tilde(T)( bar(z))\tilde{T}(\bar{z})T~(z¯) is a primary with weight ( 0 , 2 ) ( 0 , 2 ) (0,2)(0,2)(0,2).
Let's verify that c c ccc corresponds to central extension of Virasoro algebra. First recall that
L m = d z 2 π i z m + 1 T ( z ) T ( z ) = n L n z n 2 L m = d z 2 π i z m + 1 T ( z ) T ( z ) = n L n z n 2 L_(m)=oint(dz)/(2pi i)z^(m+1)T(z)harr T(z)=sum_(n)L_(n)z^(-n-2)L_{m}=\oint \frac{d z}{2 \pi i} z^{m+1} T(z) \leftrightarrow T(z)=\sum_{n} L_{n} z^{-n-2}Lm=dz2πizm+1T(z)T(z)=nLnzn2
Hence,
[ L m , L n ] = d z 2 π i z m + 1 d w 2 π i w n + 1 [ T ( z ) , T ( w ) ] L m , L n = d z 2 π i z m + 1 d w 2 π i w n + 1 [ T ( z ) , T ( w ) ] [L_(m),L_(n)]=oint(dz)/(2pi i)z^(m+1)oint(dw)/(2pi i)w^(n+1)[T(z),T(w)]\left[L_{m}, L_{n}\right]=\oint \frac{d z}{2 \pi i} z^{m+1} \oint \frac{d w}{2 \pi i} w^{n+1}[T(z), T(w)][Lm,Ln]=dz2πizm+1dw2πiwn+1[T(z),T(w)]
Let us do the z z zzz integral first, holding w w www fixed. Using radial ordering, the commutator is computed by considering the z z zzz integral along a small path encircling w w www (which we will refer to as Γ w Γ w Gamma_(w)\Gamma_{w}Γw ) so we can compute it from the OPE of T ( z ) T ( w ) T ( z ) T ( w ) T(z)T(w)T(z) T(w)T(z)T(w) :
[ L m , L n ] = d w 2 π i w n + 1 Γ w d z 2 π i z m + 1 [ c / 2 ( z w ) 4 + 2 ( z w ) 2 T ( w ) + 1 z w T ( w ) + ] L m , L n = d w 2 π i w n + 1 Γ w d z 2 π i z m + 1 c / 2 ( z w ) 4 + 2 ( z w ) 2 T ( w ) + 1 z w T ( w ) + [L_(m),L_(n)]=oint(dw)/(2pi i)w^(n+1)oint_(Gamma_(w))(dz)/(2pi i)z^(m+1)[(c//2)/((z-w)^(4))+(2)/((z-w)^(2))T(w)+(1)/(z-w)del T(w)+dots]\left[L_{m}, L_{n}\right]=\oint \frac{d w}{2 \pi i} w^{n+1} \oint_{\Gamma_{w}} \frac{d z}{2 \pi i} z^{m+1}\left[\frac{c / 2}{(z-w)^{4}}+\frac{2}{(z-w)^{2}} T(w)+\frac{1}{z-w} \partial T(w)+\ldots\right][Lm,Ln]=dw2πiwn+1Γwdz2πizm+1[c/2(zw)4+2(zw)2T(w)+1zwT(w)+]
Compute the residues by Taylor expanding z m + 1 z m + 1 z^(m+1)z^{m+1}zm+1 around z = w z = w z=wz=wz=w :
[ L m , L n ] = d w 2 π i w n + 1 Γ w d z 2 π i [ c / 2 ( z w ) 4 ( + 1 3 ! z ( z m + 1 ) | z = w ( z w ) 3 + ) + 2 ( z w ) 2 ( + ( z w ) z ( z m + 1 ) | z = w + ) T ( w ) + 1 z w ( w m + 1 + ) T ( w ) ] = d w 2 π i [ c 12 ( m 3 m ) w n + m 1 + 2 ( m + 1 ) w n + m + 1 T ( w ) + w n + m + 2 T ( w ) ] L m , L n = d w 2 π i w n + 1 Γ w d z 2 π i c / 2 ( z w ) 4 + 1 3 ! z z m + 1 z = w ( z w ) 3 + + 2 ( z w ) 2 + ( z w ) z z m + 1 z = w + T ( w ) + 1 z w w m + 1 + T ( w ) = d w 2 π i c 12 m 3 m w n + m 1 + 2 ( m + 1 ) w n + m + 1 T ( w ) + w n + m + 2 T ( w ) {:[[L_(m),L_(n)]=oint(dw)/(2pi i)w^(n+1)oint_(Gamma_(w))(dz)/(2pi i)[(c//2)/((z-w)^(4))(dots+(1)/(3!)del_(z)(z^(m+1))|_(z=w)(z-w)^(3)+dots):}],[{:+(2)/((z-w)^(2))(cdots+(z-w)del_(z)(z^(m+1))|_(z=w)+dots)T(w)+(1)/(z-w)(w^(m+1)+dots)del T(w)]],[=oint(dw)/(2pi i)[(c)/( 12)(m^(3)-m)w^(n+m-1)+2(m+1)w^(n+m+1)T(w)+w^(n+m+2)del T(w)]]:}\begin{aligned} {\left[L_{m}, L_{n}\right] } & =\oint \frac{d w}{2 \pi i} w^{n+1} \oint_{\Gamma_{w}} \frac{d z}{2 \pi i}\left[\frac{c / 2}{(z-w)^{4}}\left(\ldots+\left.\frac{1}{3!} \partial_{z}\left(z^{m+1}\right)\right|_{z=w}(z-w)^{3}+\ldots\right)\right. \\ & \left.+\frac{2}{(z-w)^{2}}\left(\cdots+\left.(z-w) \partial_{z}\left(z^{m+1}\right)\right|_{z=w}+\ldots\right) T(w)+\frac{1}{z-w}\left(w^{m+1}+\ldots\right) \partial T(w)\right] \\ & =\oint \frac{d w}{2 \pi i}\left[\frac{c}{12}\left(m^{3}-m\right) w^{n+m-1}+2(m+1) w^{n+m+1} T(w)+w^{n+m+2} \partial T(w)\right] \end{aligned}[Lm,Ln]=dw2πiwn+1Γwdz2πi[c/2(zw)4(+13!z(zm+1)|z=w(zw)3+)+2(zw)2(+(zw)z(zm+1)|z=w+)T(w)+1zw(wm+1+)T(w)]=dw2πi[c12(m3m)wn+m1+2(m+1)wn+m+1T(w)+wn+m+2T(w)]
Recalling that the contour encircles w = 0 w = 0 w=0w=0w=0 and using (13) we obtain
[ L m , L n ] = d w 2 π i [ c 12 ( m 3 m ) w n + m + 1 + 2 ( m + 1 ) l w n + m l 1 L l l ( l + 2 ) w n + m l 1 L l ] = c 12 ( m 3 m ) δ m + n , 0 + 2 ( m + 1 ) l δ m + n l , 0 L l l ( l + 2 ) δ m + n l , 0 L l = c 12 ( m 3 m ) δ m + n , 0 + 2 ( m + 1 ) L n + m ( n + m + 2 ) L n + m = ( m n ) L m + n + c 12 ( m 3 m ) δ m + n , 0 L m , L n = d w 2 π i c 12 m 3 m w n + m + 1 + 2 ( m + 1 ) l w n + m l 1 L l l ( l + 2 ) w n + m l 1 L l = c 12 m 3 m δ m + n , 0 + 2 ( m + 1 ) l δ m + n l , 0 L l l ( l + 2 ) δ m + n l , 0 L l = c 12 m 3 m δ m + n , 0 + 2 ( m + 1 ) L n + m ( n + m + 2 ) L n + m = ( m n ) L m + n + c 12 m 3 m δ m + n , 0 {:[[L_(m),L_(n)]=oint(dw)/(2pi i)[(c)/( 12)(m^(3)-m)w^(n+m+1)+2(m+1)sum_(l)w^(n+m-l-1)L_(l)-sum_(l)(l+2)w^(n+m-l-1)L_(l)]],[=(c)/( 12)(m^(3)-m)delta_(m+n,0)+2(m+1)sum_(l)delta_(m+n-l,0)L_(l)-sum_(l)(l+2)delta_(m+n-l,0)L_(l)],[=(c)/( 12)(m^(3)-m)delta_(m+n,0)+2(m+1)L_(n+m)-(n+m+2)L_(n+m)],[=(m-n)L_(m+n)+(c)/( 12)(m^(3)-m)delta_(m+n,0)]:}\begin{aligned} {\left[L_{m}, L_{n}\right] } & =\oint \frac{d w}{2 \pi i}\left[\frac{c}{12}\left(m^{3}-m\right) w^{n+m+1}+2(m+1) \sum_{l} w^{n+m-l-1} L_{l}-\sum_{l}(l+2) w^{n+m-l-1} L_{l}\right] \\ & =\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}+2(m+1) \sum_{l} \delta_{m+n-l, 0} L_{l}-\sum_{l}(l+2) \delta_{m+n-l, 0} L_{l} \\ & =\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}+2(m+1) L_{n+m}-(n+m+2) L_{n+m} \\ & =(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0} \end{aligned}[Lm,Ln]=dw2πi[c12(m3m)wn+m+1+2(m+1)lwn+ml1Lll(l+2)wn+ml1Ll]=c12(m3m)δm+n,0+2(m+1)lδm+nl,0Lll(l+2)δm+nl,0Ll=c12(m3m)δm+n,0+2(m+1)Ln+m(n+m+2)Ln+m=(mn)Lm+n+c12(m3m)δm+n,0
Hence, we the Virasaro algebra recieves quantum correction proportional to the central charge c c ccc.

Ghost fields

In order to have zero central charge, we need to add worldsheet fields with negative central charge. These violate spin statistics theorem and are known as "ghosts." In fact ghosts arise when gauge-fixing path integrals using the "Fadeev-Popov procedure." Let's sketch how this works for bosonic string. For details see GSW pg 121-127 and Tong sections 5.1 and 5.2. Recall that in light cone gauge the worldsheet metric is
h α β = η α β h + + = h = 0 h α β = η α β h + + = h = 0 h_(alpha beta)=eta_(alpha beta)rarrh_(++)=h_(--)=0h_{\alpha \beta}=\eta_{\alpha \beta} \rightarrow h_{++}=h_{--}=0hαβ=ηαβh++=h=0
We also have a residual gauge symmetry:
δ h α β = α ξ β + β ξ α δ h ± ± = 2 ± ξ ± δ h α β = α ξ β + β ξ α δ h ± ± = 2 ± ξ ± deltah_(alpha beta)=del_(alpha)xi_(beta)+del_(beta)xi_(alpha)rarrquad deltah_(+-+-)=2del_(+-)xi_(+-)\delta h_{\alpha \beta}=\partial_{\alpha} \xi_{\beta}+\partial_{\beta} \xi_{\alpha} \rightarrow \quad \delta h_{ \pm \pm}=2 \partial_{ \pm} \xi_{ \pm}δhαβ=αξβ+βξαδh±±=2±ξ±
Due to this gauge symmetry, path integral contains and infinite redundancy coming over the sum over physically equivalent field configurations related by a
gauge transformations. We can remove this redundancy by inserting
1 = D ξ ± δ ( h + + ) δ ( h ) det ( δ h + + δ ξ + ) det ( δ h δ ξ ) 1 = D ξ ± δ h + + δ h det δ h + + δ ξ + det δ h δ ξ 1=intDxi_(+-)delta(h_(++)^('))delta(h_(--)^('))det((deltah_(++)^('))/(deltaxi_(+)))det((deltah_(--)^('))/(deltaxi_(-)))1=\int \mathcal{D} \xi_{ \pm} \delta\left(h_{++}^{\prime}\right) \delta\left(h_{--}^{\prime}\right) \operatorname{det}\left(\frac{\delta h_{++}^{\prime}}{\delta \xi_{+}}\right) \operatorname{det}\left(\frac{\delta h_{--}^{\prime}}{\delta \xi_{-}}\right)1=Dξ±δ(h++)δ(h)det(δh++δξ+)det(δhδξ)
where
h + + = h + + + 2 + ξ + , h = h + 2 ξ h + + = h + + + 2 + ξ + , h = h + 2 ξ h_(++)^(')=h_(++)+2del_(+)xi_(+),quadh_(--)^(')=h_(--)+2del_(-)xi_(-)h_{++}^{\prime}=h_{++}+2 \partial_{+} \xi_{+}, \quad h_{--}^{\prime}=h_{--}+2 \partial_{-} \xi_{-}h++=h+++2+ξ+,h=h+2ξ
This is the infinite-dimensional analogue of
1 = d x δ ( f ( x ) ) | f ( x ) | , since d x δ ( f ( x ) ) = 1 | f ( x i ) | , where f ( x i ) = 0 1 = d x δ ( f ( x ) ) f ( x ) ,  since  d x δ ( f ( x ) ) = 1 f x i ,  where  f x i = 0 1=int dx delta(f(x))|f^(')(x)|," since "int dx delta(f(x))=(1)/(|f^(')(x_(i))|)," where "f(x_(i))=01=\int d x \delta(f(x))\left|f^{\prime}(x)\right|, \text { since } \int d x \delta(f(x))=\frac{1}{\left|f^{\prime}\left(x_{i}\right)\right|}, \text { where } f\left(x_{i}\right)=01=dxδ(f(x))|f(x)|, since dxδ(f(x))=1|f(xi)|, where f(xi)=0
The other key fact we need is that determinants can be represented by path integrals over anticommuting scalar fields (ghosts), as you will show in the HW:
det ( δ h + + / δ ξ + ) = D c D b exp ( 1 π d 2 σ b + c ) det ( δ h / δ ξ ) = D c ~ D b ~ exp ( 1 π d 2 σ b ~ c ~ ) det δ h + + / δ ξ + = D c D b exp 1 π d 2 σ b + c det δ h / δ ξ = D c ~ D b ~ exp 1 π d 2 σ b ~ c ~ {:[det(deltah_(++)^(')//deltaxi_(+))=intDcDb exp(-(1)/(pi)intd^(2)sigma bdel_(+)c)],[det(deltah_(--)^(')//deltaxi_(-))=int D tilde(c)D tilde(b)exp(-(1)/(pi)intd^(2)sigma( tilde(b))del_(-)( tilde(c)))]:}\begin{aligned} & \operatorname{det}\left(\delta h_{++}^{\prime} / \delta \xi_{+}\right)=\int \mathcal{D} c \mathcal{D} b \exp \left(-\frac{1}{\pi} \int d^{2} \sigma b \partial_{+} c\right) \\ & \operatorname{det}\left(\delta h_{--}^{\prime} / \delta \xi_{-}\right)=\int D \tilde{c} D \tilde{b} \exp \left(-\frac{1}{\pi} \int d^{2} \sigma \tilde{b} \partial_{-} \tilde{c}\right) \end{aligned}det(δh++/δξ+)=DcDbexp(1πd2σb+c)det(δh/δξ)=Dc~Db~exp(1πd2σb~c~)
After converting to z , z ¯ z , z ¯ z, bar(z)z, \bar{z}z,z¯ coordinates the get
S ghost = 1 2 π d 2 z ( b ¯ c + b ~ c ~ ) S ghost  = 1 2 π d 2 z ( b ¯ c + b ~ c ~ ) S_("ghost ")=(1)/(2pi)intd^(2)z(b bar(del)c+ tilde(b)del tilde(c))S_{\text {ghost }}=\frac{1}{2 \pi} \int d^{2} z(b \bar{\partial} c+\tilde{b} \partial \tilde{c})Sghost =12πd2z(b¯c+b~c~)
The equations of motion imply that the fields ( b , c ) ( b , c ) (b,c)(b, c)(b,c) are holomorphic while ( b ~ , c ~ ) ( b ~ , c ~ ) ( tilde(b), tilde(c))(\tilde{b}, \tilde{c})(b~,c~) are antiholomprhic. Moreover, one can show that they have the following stress tensor:
T = 2 : b c : + : c b : , T ~ = 2 : b ~ ¯ c ~ : + : c ~ ¯ b ~ : T = 2 : b c : + : c b : , T ~ = 2 : b ~ ¯ c ~ : + : c ~ ¯ b ~ : T=-2:b del c:+:c del b:, tilde(T)=-2: tilde(b) bar(del) tilde(c):+: tilde(c) bar(del) tilde(b):T=-2: b \partial c:+: c \partial b:, \tilde{T}=-2: \tilde{b} \bar{\partial} \tilde{c}:+: \tilde{c} \bar{\partial} \tilde{b}:T=2:bc:+:cb:,T~=2:b~¯c~:+:c~¯b~:
The ghost fields have the following OPE:
b ( z ) c ( w ) = c ( w ) b ( z ) = 1 z w + b ( z ) c ( w ) = c ( w ) b ( z ) = 1 z w + b(z)c(w)=-c(w)b(z)=(1)/(z-w)+dotsb(z) c(w)=-c(w) b(z)=\frac{1}{z-w}+\ldotsb(z)c(w)=c(w)b(z)=1zw+
As you will show in the HW,
T ( z ) c ( z ) = c ( w ) ( z w ) 2 + c ( w ) z w + , T ( z ) b ( w ) = 2 b ( w ) ( z w ) 2 + b ( w ) z w + T ( z ) T ( w ) = 13 ( z w ) 4 + 2 T ( w ) ( z w ) 2 + T ( w ) z w + T ( z ) c ( z ) = c ( w ) ( z w ) 2 + c ( w ) z w + , T ( z ) b ( w ) = 2 b ( w ) ( z w ) 2 + b ( w ) z w + T ( z ) T ( w ) = 13 ( z w ) 4 + 2 T ( w ) ( z w ) 2 + T ( w ) z w + {:[T(z)c(z)=-(c(w))/((z-w)^(2))+(del c(w))/(z-w)+dots","T(z)b(w)=(2b(w))/((z-w)^(2))+(del b(w))/(z-w)+dots],[T(z)T(w)=(-13)/((z-w)^(4))+(2T(w))/((z-w)^(2))+(del T(w))/(z-w)+dots]:}\begin{aligned} T(z) c(z) & =-\frac{c(w)}{(z-w)^{2}}+\frac{\partial c(w)}{z-w}+\ldots, T(z) b(w)=\frac{2 b(w)}{(z-w)^{2}}+\frac{\partial b(w)}{z-w}+\ldots \\ T(z) T(w) & =\frac{-13}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{z-w}+\ldots \end{aligned}T(z)c(z)=c(w)(zw)2+c(w)zw+,T(z)b(w)=2b(w)(zw)2+b(w)zw+T(z)T(w)=13(zw)4+2T(w)(zw)2+T(w)zw+
Hence c ghost = 26 c ghost  = 26 c_("ghost ")=-26c_{\text {ghost }}=-26cghost =26. It follows that c ghost + c matter = 0 c ghost  + c matter  = 0 c_("ghost ")+c_("matter ")=0c_{\text {ghost }}+c_{\text {matter }}=0cghost +cmatter =0 if D = 26 D = 26 D=26D=26D=26 since c matter = D c matter  = D c_("matter ")=Dc_{\text {matter }}=Dcmatter =D.

14 Vertex operators

This will be based on Tong pg 121-123 and BBS pg 85-88. Recall that a primary operator of weight ( h , h ~ ) ( h , h ~ ) (h, tilde(h))(h, \tilde{h})(h,h~) transforms as
Φ ( z , z ¯ ) ( w z ) h ( w ¯ z ¯ ) h ^ Φ ( w , w ¯ ) Φ ( z , z ¯ ) w z h w ¯ z ¯ h ^ Φ ( w , w ¯ ) Phi(z, bar(z))rarr((del w)/(del z))^(h)((del( bar(w)))/(del( bar(z))))^( hat(h))Phi(w, bar(w))\Phi(z, \bar{z}) \rightarrow\left(\frac{\partial w}{\partial z}\right)^{h}\left(\frac{\partial \bar{w}}{\partial \bar{z}}\right)^{\hat{h}} \Phi(w, \bar{w})Φ(z,z¯)(wz)h(w¯z¯)h^Φ(w,w¯)
under ( z , w ) ( w ( z ) , w ¯ ( z ¯ ) ) ( z , w ) ( w ( z ) , w ¯ ( z ¯ ) ) (z,w)rarr(w(z), bar(w)( bar(z)))(z, w) \rightarrow(w(z), \bar{w}(\bar{z}))(z,w)(w(z),w¯(z¯)). Note that
d z d z ¯ z w z ¯ w ¯ d w d w ¯ d z d z ¯ z w z ¯ w ¯ d w d w ¯ dzd bar(z)rarr(del z)/(del w)(del( bar(z)))/(del( bar(w)))dwd bar(w)d z d \bar{z} \rightarrow \frac{\partial z}{\partial w} \frac{\partial \bar{z}}{\partial \bar{w}} d w d \bar{w}dzdz¯zwz¯w¯dwdw¯
so d z d z ¯ d z d z ¯ dzd bar(z)d z d \bar{z}dzdz¯ has weight ( 1 , 1 ) ( 1 , 1 ) (-1,-1)(-1,-1)(1,1) under a conformal rescaling. Hence
V = d 2 z V ^ V = d 2 z V ^ V=intd^(2)z hat(V)V=\int d^{2} z \hat{V}V=d2zV^
will be conformal invariant if V ^ V ^ hat(V)\hat{V}V^ is a primary of weight ( + 1 , + 1 ) ( + 1 , + 1 ) (+1,+1)(+1,+1)(+1,+1). In that case, V V VVV is "vertex operator." Vertex ops correspond to the physical states.

Examples

  • Tachyon
V tachyon = d 2 z : e i p X ( z ¯ , z ¯ ) : V tachyon  = d 2 z : e i p X ( z ¯ , z ¯ ) : V_("tachyon ")=intd^(2)z:e^(ip*X( bar(z), bar(z))):V_{\text {tachyon }}=\int d^{2} z: e^{i p \cdot X(\bar{z}, \bar{z})}:Vtachyon =d2z:eipX(z¯,z¯):
First note that the operator has no Lorentz indices, so it describes a scalar particle. In chapter 12 we showed that = e i p X = e i p X =e^(ip-X)=e^{i p-X}=eipX : is a primary with weight h = h ~ = α p 2 / 4 h = h ~ = α p 2 / 4 h= tilde(h)=alpha^(')p^(2)//4h=\tilde{h}=\alpha^{\prime} p^{2} / 4h=h~=αp2/4. If h = h ~ = + 1 h = h ~ = + 1 h= tilde(h)=+1h=\tilde{h}=+1h=h~=+1, then M 2 = p 2 = 4 α M 2 = p 2 = 4 α M^(2)=-p^(2)=-(4)/(alpha^('))M^{2}=-p^{2}=-\frac{4}{\alpha^{\prime}}M2=p2=4α, which is indeed the tachyon mass found in chapter 10.
  • Massless states
Now consider
V massless = d 2 z : e i p X X μ ¯ X ν : ϵ μ ν V massless  = d 2 z : e i p X X μ ¯ X ν : ϵ μ ν V_("massless ")=intd^(2)z:e^(ip*X)delX^(mu) bar(del)X^(nu):epsilon_(mu nu)V_{\text {massless }}=\int d^{2} z: e^{i p \cdot X} \partial X^{\mu} \bar{\partial} X^{\nu}: \epsilon_{\mu \nu}Vmassless =d2z:eipXXμ¯Xν:ϵμν
Let's compute the OPE of V ^ =: e i p X X μ ¯ X ν : ϵ μ ν V ^ =: e i p X X μ ¯ X ν : ϵ μ ν hat(V)=:e^(ip*X)delX^(mu) bar(del)X^(nu):epsilon_(mu nu)\hat{V}=: e^{i p \cdot X} \partial X^{\mu} \bar{\partial} X^{\nu}: \epsilon_{\mu \nu}V^=:eipXXμ¯Xν:ϵμν with T T TTT :
1 α : X ( z ) X ( z ) A : e i p X ( w , w ¯ ) B X μ ( w ) C ¯ X ν ( w ¯ ) : ϵ μ ν 1 α : X ( z ) X ( z ) A : e i p X ( w , w ¯ ) B X μ ( w ) C ¯ X ν ( w ¯ ) : ϵ μ ν -(1)/(alpha^(')):ubrace(del X(z)*del X(z)ubrace)_(A):ubrace(e^(ip*X(w, bar(w)))ubrace)_(B)ubrace(delX^(mu)(w)ubrace)_(C) bar(del)X^(nu)( bar(w)):epsilon_(mu nu)-\frac{1}{\alpha^{\prime}}: \underbrace{\partial X(z) \cdot \partial X(z)}_{A}: \underbrace{e^{i p \cdot X(w, \bar{w})}}_{B} \underbrace{\partial X^{\mu}(w)}_{C} \bar{\partial} X^{\nu}(\bar{w}): \epsilon_{\mu \nu}1α:X(z)X(z)A:eipX(w,w¯)BXμ(w)C¯Xν(w¯):ϵμν
We have previously computed contractions of A A AAA with B B BBB and A A AAA with C C CCC so we can recycle those results. Contracting of A A AAA with B B BBB gives
α p 2 / 4 ( z w ) 2 e i p X + α p 2 / 4 ( z w ) 2 e i p X + (alpha^(')p^(2)//4)/((z-w)^(2))e^(ip*X)+dots\frac{\alpha^{\prime} p^{2} / 4}{(z-w)^{2}} e^{i p \cdot X}+\ldotsαp2/4(zw)2eipX+
while contracting A A AAA with C C CCC gives
+ 1 ( z w ) 2 X + + 1 ( z w ) 2 X + (+1)/((z-w)^(2))del X+dots\frac{+1}{(z-w)^{2}} \partial X+\ldots+1(zw)2X+
Hence, the operator has conformal weight h = 1 + α p 2 / 4 h = 1 + α p 2 / 4 h=1+alpha^(')p^(2)//4h=1+\alpha^{\prime} p^{2} / 4h=1+αp2/4. Similarly, h ~ = h ~ = tilde(h)=\tilde{h}=h~= 1 + α p 2 / 4 1 + α p 2 / 4 1+alpha^(')p^(2)//41+\alpha^{\prime} p^{2} / 41+αp2/4. Hence h = h ~ = 1 p 2 = 0 h = h ~ = 1 p 2 = 0 h= tilde(h)=1rarrp^(2)=0h=\tilde{h}=1 \rightarrow p^{2}=0h=h~=1p2=0.
We still need to check that V ^ V ^ hat(V)\hat{V}V^ is primary. In fact, there is a contribution to OPE which we haven't previously computed which can spoil this property. It comes from contracting one X X del X\partial XX in A A AAA with B B BBB and the other X X del X\partial XX in A A AAA with C C CCC :
2 α η ρ λ X ρ ( z ) X λ ( z ) exp [ i p X ( w , w ¯ ) ] X μ ( w ) ϵ μ ν = 2 α n ρ λ ( α 2 1 ( z w ) 2 η ρ μ ) ( i α p λ 2 ( z w ) e i p X ) ϵ μ ν = i α 2 p μ ϵ μ ν ( z ω ) 3 e i p X 2 α η ρ λ X ρ ( z ) X λ ( z ) exp [ i p X ( w , w ¯ ) ] X μ ( w ) ϵ μ ν = 2 α n ρ λ α 2 1 ( z w ) 2 η ρ μ i α p λ 2 ( z w ) e i p X ϵ μ ν = i α 2 p μ ϵ μ ν ( z ω ) 3 e i p X {:[-(2)/(alpha^('))eta_(rho lambda)delX^(rho)(z)delX^(lambda)(z)exp[ip*X(w,( bar(w)))]delX^(mu)^(⏜)(w)epsilon_(mu nu)],[=-(2)/(alpha)n_(rho lambda)(-(alpha^('))/(2)(1)/((z-w)^(2))eta^(rho mu))(-(ialpha^(')p^(lambda))/(2(z-w))e^(ip*X))epsilon_(mu nu)],[=-(ialpha^('))/(2)(p^(mu)epsilon_(mu nu))/((z-omega)^(3))e^(ip*X)]:}\begin{aligned} & -\frac{2}{\alpha^{\prime}} \eta_{\rho \lambda} \partial \overparen{X^{\rho}(z) \partial X^{\lambda}(z) \exp [i p \cdot X(w, \bar{w})] \partial X^{\mu}}(w) \epsilon_{\mu \nu} \\ & =-\frac{2}{\alpha} n_{\rho \lambda}\left(-\frac{\alpha^{\prime}}{2} \frac{1}{(z-w)^{2}} \eta^{\rho \mu}\right)\left(-\frac{i \alpha^{\prime} p^{\lambda}}{2(z-w)} e^{i p \cdot X}\right) \epsilon_{\mu \nu} \\ & =-\frac{i \alpha^{\prime}}{2} \frac{p^{\mu} \epsilon_{\mu \nu}}{(z-\omega)^{3}} e^{i p \cdot X} \end{aligned}2αηρλXρ(z)Xλ(z)exp[ipX(w,w¯)]Xμ(w)ϵμν=2αnρλ(α21(zw)2ηρμ)(iαpλ2(zw)eipX)ϵμν=iα2pμϵμν(zω)3eipX
where the factor of 2 in the first line comes from performing two equivalent contractions. Similarly, when we compute OPE T ~ T ~ tilde(T)\tilde{T}T~ we find a cubic pole
i α 2 p ν ϵ μ ν ( z ¯ w ¯ ) 3 e i p x i α 2 p ν ϵ μ ν ( z ¯ w ¯ ) 3 e i p x -(ialpha^('))/(2)(p^(nu)epsilon_(mu nu))/((( bar(z))-( bar(w)))^(3))e^(ip*x)-\frac{i \alpha^{\prime}}{2} \frac{p^{\nu} \epsilon_{\mu \nu}}{(\bar{z}-\bar{w})^{3}} e^{i p \cdot x}iα2pνϵμν(z¯w¯)3eipx
In order tor V ^ V ^ hat(V)\hat{V}V^ to be primary, the polarisation tensor must be transverse to momentum:
p μ ϵ μ ν = p μ ϵ ν μ = 0 p μ ϵ μ ν = p μ ϵ ν μ = 0 p^(mu)epsilon_(mu nu)=p^(mu)epsilon_(nu mu)=0p^{\mu} \epsilon_{\mu \nu}=p^{\mu} \epsilon_{\nu \mu}=0pμϵμν=pμϵνμ=0
as expected for massless spinning fields. Finally, we can decompose ϵ μ ν ϵ μ ν epsilon_(mu nu)\epsilon_{\mu \nu}ϵμν into symmetric traceless, antisymmetric, and a trace piece, corresponding to tje graviton, Kalb-Ramond, and dilation fields respectively. Hence, we recover the massless states of the closed bosonic string.
  • General states
In general, a state of the form
| ϕ = i α m i μ i j α ~ m j ν j | 0 ; k | ϕ = i α m i μ i j α ~ m j ν j | 0 ; k |phi:)=prod_(i)alpha_(-m_(i))^(mu_(i))prod_(j) tilde(alpha)_(-m_(j))^(nu_(j))|0;k:)|\phi\rangle=\prod_{i} \alpha_{-m_{i}}^{\mu_{i}} \prod_{j} \tilde{\alpha}_{-m_{j}}^{\nu_{j}}|0 ; k\rangle|ϕ=iαmiμijα~mjνj|0;k
corresponds to a vertex operator of the form
V ^ ϕ = d 2 z : i m i X μ i ( z ) j ¯ n j X v j ( z ¯ ) e i k X ( z , z ¯ ) V ^ ϕ = d 2 z : i m i X μ i ( z ) j ¯ n j X v j ( z ¯ ) e i k X ( z , z ¯ ) hat(V)_(phi)=intd^(2)z:prod_(i)del^(m_(i))X^(mu_(i))(z)prod_(j) bar(del)^(n_(j))X^(v_(j))( bar(z))e^(ik*X(z, bar(z)))\hat{V}_{\phi}=\int d^{2} z: \prod_{i} \partial^{m_{i}} X^{\mu_{i}}(z) \prod_{j} \bar{\partial}^{n_{j}} X^{v_{j}}(\bar{z}) e^{i k \cdot X(z, \bar{z})}V^ϕ=d2z:imiXμi(z)j¯njXvj(z¯)eikX(z,z¯)

15 String interactions

This will be based on Tong sections 6.1, 6.2, and GSW section 1.1. Scattering amplitudes describe the probability for states to interact in a certain way. In QFT, they can be computed perturbatively by summing over Feynman diagrams. In string theory, one sums over all worldsheet topologies. For closed strings (which we will focus on) the number of loops corresponds to the number of handles or genus of the worlsheet. Note that many different Feynman diagrams can arise from a single string diagram at low energies because they correspond to different degenerations of the worldsheet. To compute string amplitudes in practice, we use conformal symmetry of the worldsheet to map infinite tubes corresponding to external legs to punctures:
At each puncture, we then place a vertex operator corresponding to an external state.
Let's consider the tree-level n n nnn-point scattering of tachyons. This is given by the correlation function of n n nnn tachyon vertex operators on sphere:
A n ( p 1 , , p n ) = Π i = 1 n d 2 z i Vol ( S L ( 2 , C ) ) V ^ ( z 1 , p 1 ) V ^ ( z n , p n ) A n p 1 , , p n = Π i = 1 n d 2 z i Vol ( S L ( 2 , C ) ) V ^ z 1 , p 1 V ^ z n , p n A_(n)(p_(1),dots,p_(n))=int(Pi_(i=1)^(n)d^(2)z_(i))/(Vol(SL(2,C)))(:( hat(V))(z_(1),p_(1))dots( hat(V))(z_(n),p_(n)):)\mathcal{A}_{n}\left(p_{1}, \ldots, p_{n}\right)=\int \frac{\Pi_{i=1}^{n} d^{2} z_{i}}{\operatorname{Vol}(S L(2, \mathbb{C}))}\left\langle\hat{V}\left(z_{1}, p_{1}\right) \ldots \hat{V}\left(z_{n}, p_{n}\right)\right\rangleAn(p1,,pn)=Πi=1nd2ziVol(SL(2,C))V^(z1,p1)V^(zn,pn)
where p i μ p i μ p_(i)^(mu)p_{i}^{\mu}piμ is the momentum of particle i i iii and we can use the global conformal group S L ( 2 , C ) S L ( 2 , C ) SL(2,C)S L(2, \mathbb{C})SL(2,C) to fix the location of three punctures. More explicitly, the correlator is given by
V ^ ( z 1 , p 1 ) V ^ ( z n , p n ) = D X exp ( 1 2 π α d 2 z X ¯ X ) exp ( i i = 1 n p i X ( z i , z ¯ i ) ) = D X exp [ d 2 z ( X D ^ X + i J X ) ] V ^ z 1 , p 1 V ^ z n , p n = D X exp 1 2 π α d 2 z X ¯ X exp i i = 1 n p i X z i , z ¯ i = D X exp d 2 z ( X D ^ X + i J X ) {:[(:( hat(V))(z_(1),p_(1))dots( hat(V))(z_(n),p_(n)):)=intDX exp(-(1)/(2pialpha^('))intd^(2)z del X*( bar(del))X)exp(isum_(i=1)^(n)p_(i)*X(z_(i), bar(z)_(i)))],[=intDX exp[intd^(2)z(X*( hat(D))X+iJ*X)]]:}\begin{aligned} \left\langle\hat{V}\left(z_{1}, p_{1}\right) \ldots \hat{V}\left(z_{n}, p_{n}\right)\right\rangle & =\int \mathcal{D} X \exp \left(-\frac{1}{2 \pi \alpha^{\prime}} \int d^{2} z \partial X \cdot \bar{\partial} X\right) \exp \left(i \sum_{i=1}^{n} p_{i} \cdot X\left(z_{i}, \bar{z}_{i}\right)\right) \\ & =\int \mathcal{D} X \exp \left[\int d^{2} z(X \cdot \hat{D} X+i J \cdot X)\right] \end{aligned}V^(z1,p1)V^(zn,pn)=DXexp(12παd2zX¯X)exp(ii=1npiX(zi,z¯i))=DXexp[d2z(XD^X+iJX)]
where J μ ( z , z ¯ ) = i = 1 n p i μ δ 2 ( z z i ) J μ ( z , z ¯ ) = i = 1 n p i μ δ 2 z z i J^(mu)(z, bar(z))=sum_(i=1)^(n)p_(i)^(mu)delta^(2)(z-z_(i))J^{\mu}(z, \bar{z})=\sum_{i=1}^{n} p_{i}^{\mu} \delta^{2}\left(z-z_{i}\right)Jμ(z,z¯)=i=1npiμδ2(zzi) and D ^ = 1 2 π α ¯ D ^ = 1 2 π α ¯ hat(D)=(1)/(2pialpha^('))del bar(del)\hat{D}=\frac{1}{2 \pi \alpha^{\prime}} \partial \bar{\partial}D^=12πα¯. This is a Gaussian integral. You worked out a finite-dimensional version of this in HW:
d x e a x 2 + i J x e J 2 / 4 a d x e a x 2 + i J x e J 2 / 4 a int_(-oo)^(oo)dxe^(ax^(2)+iJx)prope^(J^(2)//4a)\int_{-\infty}^{\infty} d x e^{a x^{2}+i J x} \propto e^{J^{2} / 4 a}dxeax2+iJxeJ2/4a
Similar manipulations of the functional integral give (see chapter 8 of Srednicki)
V ^ ( z , z ¯ z ¯ , p 1 ) V ^ ( z n n , z ¯ n , p n ) exp [ 1 4 d 2 z d 2 z J ( z , z ¯ ) μ D ^ 1 ( z , z ¯ ; z , z ¯ ) G ( z , z ¯ ; z , z ¯ ) J μ ( z , z ¯ ) ] V ^ z , z ¯ z ¯ , p 1 V ^ z n n , z ¯ n , p n exp [ 1 4 d 2 z d 2 z J ( z , z ¯ ) μ D ^ 1 z , z ¯ ; z , z ¯ G z , z ¯ ; z , z ¯ J μ z , z ¯ ] (:( hat(V))(z, bar(z)^( bar(z)),p_(1))dots( hat(V))(z_(n_(n)), bar(z)_(n),p_(n)):)prop exp[(1)/(4)intd^(2)zd^(2)z^(')J(z, bar(z))^(mu)ubrace( hat(D)^(-1)(z,( bar(z));z^('), bar(z)^('))ubrace)_(G(z,( bar(z));z^('), bar(z)^(')))J_(mu)(z^('), bar(z)^('))]\left\langle\hat{V}\left(z, \bar{z}^{\bar{z}}, p_{1}\right) \ldots \hat{V}\left(z_{n_{n}}, \bar{z}_{n}, p_{n}\right)\right\rangle \propto \exp [\frac{1}{4} \int d^{2} z d^{2} z^{\prime} J(z, \bar{z})^{\mu} \underbrace{\hat{D}^{-1}\left(z, \bar{z} ; z^{\prime}, \bar{z}^{\prime}\right)}_{G\left(z, \bar{z} ; z^{\prime}, \bar{z}^{\prime}\right)} J_{\mu}\left(z^{\prime}, \bar{z}^{\prime}\right)]V^(z,z¯z¯,p1)V^(znn,z¯n,pn)exp[14d2zd2zJ(z,z¯)μD^1(z,z¯;z,z¯)G(z,z¯;z,z¯)Jμ(z,z¯)]
where G G GGG satisfies
D ^ G ( z , z ¯ ; z , z ¯ ) = δ 2 ( z z ) ¯ G ( z , z ¯ ; z , z ¯ ) = 2 π α δ 2 ( z z ) G ( z , z ¯ ; z , z ¯ ) = α ln | z z | 2 D ^ G z , z ¯ ; z , z ¯ = δ 2 z z ¯ G z , z ¯ ; z , z ¯ = 2 π α δ 2 z z G z , z ¯ ; z , z ¯ = α ln z z 2 {:[ hat(D)G(z,( bar(z));z^('), bar(z)^('))=delta^(2)(z-z^('))],[ rarr del bar(del)G(z,( bar(z));z^('), bar(z)^('))=2pialpha^(')delta^(2)(z-z^('))],[ rarr G(z,( bar(z));z^('), bar(z)^('))=alpha^(')ln |z-z^(')|^(2)]:}\begin{aligned} & \hat{D} G\left(z, \bar{z} ; z^{\prime}, \bar{z}^{\prime}\right)=\delta^{2}\left(z-z^{\prime}\right) \\ & \rightarrow \partial \bar{\partial} G\left(z, \bar{z} ; z^{\prime}, \bar{z}^{\prime}\right)=2 \pi \alpha^{\prime} \delta^{2}\left(z-z^{\prime}\right) \\ & \rightarrow G\left(z, \bar{z} ; z^{\prime}, \bar{z}^{\prime}\right)=\alpha^{\prime} \ln \left|z-z^{\prime}\right|^{2} \end{aligned}D^G(z,z¯;z,z¯)=δ2(zz)¯G(z,z¯;z,z¯)=2παδ2(zz)G(z,z¯;z,z¯)=αln|zz|2
It follows that
V ^ ( z 1 , z ¯ 1 , p 1 ) V ^ ( z n , z ¯ n , p n ) exp [ α 4 d 2 z 2 d 2 z J μ ( z , z ¯ ) ln | z z | 2 J μ ( z , z ¯ ) ] = exp [ α 4 i , j p i p j ln | z i z j | 2 ] exp [ α i < j p i p j ln | z i z j | ] = i < j | z i z j | α p i p j V ^ z 1 , z ¯ 1 , p 1 V ^ z n , z ¯ n , p n exp α 4 d 2 z 2 d 2 z J μ ( z , z ¯ ) ln z z 2 J μ z , z ¯ = exp α 4 i , j p i p j ln z i z j 2 exp α i < j p i p j ln z i z j = i < j z i z j α p i p j {:[(:( hat(V))(z_(1), bar(z)_(1),p_(1))dots( hat(V))(z_(n), bar(z)_(n),p_(n)):) prop exp[(alpha^('))/(4)intd^(2)z^(2)d^(2)z^(')J^(mu)(z,( bar(z)))ln |z-z^(')|^(2)J_(mu)(z^('), bar(z)^('))]],[=exp[(alpha^('))/(4)sum_(i,j)p_(i)*p_(j)ln |z_(i)-z_(j)|^(2)]],[ rarr exp[alpha^(')sum_(i < j)p_(i)*p_(j)ln|z_(i)-z_(j)|]],[=prod_(i < j)|z_(i)-z_(j)|^(alpha^(')p_(i)*p_(j))]:}\begin{aligned} \left\langle\hat{V}\left(z_{1}, \bar{z}_{1}, p_{1}\right) \ldots \hat{V}\left(z_{n}, \bar{z}_{n}, p_{n}\right)\right\rangle & \propto \exp \left[\frac{\alpha^{\prime}}{4} \int d^{2} z^{2} d^{2} z^{\prime} J^{\mu}(z, \bar{z}) \ln \left|z-z^{\prime}\right|^{2} J_{\mu}\left(z^{\prime}, \bar{z}^{\prime}\right)\right] \\ = & \exp \left[\frac{\alpha^{\prime}}{4} \sum_{i, j} p_{i} \cdot p_{j} \ln \left|z_{i}-z_{j}\right|^{2}\right] \\ & \rightarrow \exp \left[\alpha^{\prime} \sum_{i<j} p_{i} \cdot p_{j} \ln \left|z_{i}-z_{j}\right|\right] \\ = & \prod_{i<j}\left|z_{i}-z_{j}\right|^{\alpha^{\prime} p_{i} \cdot p_{j}} \end{aligned}V^(z1,z¯1,p1)V^(zn,z¯n,pn)exp[α4d2z2d2zJμ(z,z¯)ln|zz|2Jμ(z,z¯)]=exp[α4i,jpipjln|zizj|2]exp[αi<jpipjln|zizj|]=i<j|zizj|αpipj
where we dropped the i = j i = j i=ji=ji=j terms in the third line since they are divergent and can be removed by normal ordering. Hence, we obtain
A n i = 1 n d 2 z i Vol ( S L ( 2 , C ) ) i < j | z i z j | α p i p j A n i = 1 n d 2 z i Vol ( S L ( 2 , C ) ) i < j z i z j α p i p j A_(n)prop int(prod_(i=1)^(n)d^(2)z_(i))/(Vol(SL(2,C)))prod_(i < j)|z_(i)-z_(j)|^(alpha^(')p_(i)*p_(j))\mathcal{A}_{n} \propto \int \frac{\prod_{i=1}^{n} d^{2} z_{i}}{\operatorname{Vol}(S L(2, \mathbb{C}))} \prod_{i<j}\left|z_{i}-z_{j}\right|^{\alpha^{\prime} p_{i} \cdot p_{j}}Ani=1nd2ziVol(SL(2,C))i<j|zizj|αpipj
Now let's specialise to n = 4 n = 4 n=4n=4n=4 and use S L ( 2 , C ) S L ( 2 , C ) SL(2,C)S L(2, \mathbb{C})SL(2,C) to set
z 1 = , z 2 = 0 , z 4 = 1 z 1 = , z 2 = 0 , z 4 = 1 z_(1)=oo,z_(2)=0,z_(4)=1z_{1}=\infty, z_{2}=0, z_{4}=1z1=,z2=0,z4=1
Calling z 3 = z z 3 = z z_(3)=zz_{3}=zz3=z, we get
(5) A 4 d 2 z | z | α p 2 p 3 | 1 z | α p 3 p 4 (5) A 4 d 2 z | z | α p 2 p 3 | 1 z | α p 3 p 4 {:(5)A_(4)prop intd^(2)z|z|^(alpha^(')p_(2)*p_(3))|1-z|^(alpha^(')p_(3)*p_(4)):}\begin{equation*} \mathcal{A}_{4} \propto \int d^{2} z|z|^{\alpha^{\prime} p_{2} \cdot p_{3}}|1-z|^{\alpha^{\prime} p_{3} \cdot p_{4}} \tag{5} \end{equation*}(5)A4d2z|z|αp2p3|1z|αp3p4
where we have dropped | z 1 z j | = z 1 z j = |z_(1)-z_(j)|=oo\left|z_{1}-z_{j}\right|=\infty|z1zj|= terms. In general, we have
(6) d 2 z | z | 2 a 2 | 1 z | 2 b 2 = 2 π Γ ( a ) Γ ( b ) Γ ( c ) Γ ( 1 a ) Γ ( 1 b ) Γ ( 1 c ) (6) d 2 z | z | 2 a 2 | 1 z | 2 b 2 = 2 π Γ ( a ) Γ ( b ) Γ ( c ) Γ ( 1 a ) Γ ( 1 b ) Γ ( 1 c ) {:(6)intd^(2)z|z|^(2a-2)|1-z|^(2b-2)=(2pi Gamma(a)Gamma(b)Gamma(c))/(Gamma(1-a)Gamma(1-b)Gamma(1-c)):}\begin{equation*} \int d^{2} z|z|^{2 a-2}|1-z|^{2 b-2}=\frac{2 \pi \Gamma(a) \Gamma(b) \Gamma(c)}{\Gamma(1-a) \Gamma(1-b) \Gamma(1-c)} \tag{6} \end{equation*}(6)d2z|z|2a2|1z|2b2=2πΓ(a)Γ(b)Γ(c)Γ(1a)Γ(1b)Γ(1c)
where c = 1 a b c = 1 a b c=1-a-bc=1-a-bc=1ab (see see Tong section 6.5 for a derivation). Hence,
A 4 Γ ( 1 α s / 4 ) Γ ( 1 α t / 4 ) Γ ( 1 α u / 4 ) Γ ( 2 + α s / 4 ) Γ ( 2 + α t / 4 ) Γ ( 2 + α u / 4 ) A 4 Γ 1 α s / 4 Γ 1 α t / 4 Γ 1 α u / 4 Γ 2 + α s / 4 Γ 2 + α t / 4 Γ 2 + α u / 4 A_(4)prop(Gamma(-1-alpha^(')s//4)Gamma(-1-alpha^(')t//4)Gamma(-1-alpha^(')u//4))/(Gamma(2+alpha^(')s//4)Gamma(2+alpha^(')t//4)Gamma(2+alpha^(')u//4))\mathcal{A}_{4} \propto \frac{\Gamma\left(-1-\alpha^{\prime} s / 4\right) \Gamma\left(-1-\alpha^{\prime} t / 4\right) \Gamma\left(-1-\alpha^{\prime} u / 4\right)}{\Gamma\left(2+\alpha^{\prime} s / 4\right) \Gamma\left(2+\alpha^{\prime} t / 4\right) \Gamma\left(2+\alpha^{\prime} u / 4\right)}A4Γ(1αs/4)Γ(1αt/4)Γ(1αu/4)Γ(2+αs/4)Γ(2+αt/4)Γ(2+αu/4)
This is known as the "Virasoro-Shapiro" amplitude. It is expressed in terms of the Mandelstam variables
s = ( p 1 + p 2 ) 2 , t = ( p 1 + p 4 ) 2 , u = ( p 1 + p 3 ) 2 s = p 1 + p 2 2 , t = p 1 + p 4 2 , u = p 1 + p 3 2 s=-(p_(1)+p_(2))^(2),quad t=-(p_(1)+p_(4))^(2),quad u=-(p_(1)+p_(3))^(2)s=-\left(p_{1}+p_{2}\right)^{2}, \quad t=-\left(p_{1}+p_{4}\right)^{2}, \quad u=-\left(p_{1}+p_{3}\right)^{2}s=(p1+p2)2,t=(p1+p4)2,u=(p1+p3)2
To see how the arguments of the Gamma functions arise note that
s = p 1 2 p 2 2 2 p 1 p 2 = + 2 M 2 2 p 1 p 2 = 8 / α 2 p 1 p 2 α 2 p 1 p 2 = 2 α s / 4 s = p 1 2 p 2 2 2 p 1 p 2 = + 2 M 2 2 p 1 p 2 = 8 / α 2 p 1 p 2 α 2 p 1 p 2 = 2 α s / 4 {:[s=-p_(1)^(2)-p_(2)^(2)-2p_(1)*p_(2)=+2M^(2)-2p_(1)*p_(2)=-8//alpha^(')-2p_(1)*p_(2)],[],[ rarr(alpha^('))/(2)p_(1)*p_(2)=-2-alpha^(')s//4]:}\begin{aligned} & s=-p_{1}^{2}-p_{2}^{2}-2 p_{1} \cdot p_{2}=+2 M^{2}-2 p_{1} \cdot p_{2}=-8 / \alpha^{\prime}-2 p_{1} \cdot p_{2} \\ & \\ & \rightarrow \frac{\alpha^{\prime}}{2} p_{1} \cdot p_{2}=-2-\alpha^{\prime} s / 4 \end{aligned}s=p12p222p1p2=+2M22p1p2=8/α2p1p2α2p1p2=2αs/4
Similarly, α 2 p 1 p 4 = 2 α t / 4 α 2 p 1 p 4 = 2 α t / 4 (alpha^('))/(2)p_(1)*p_(4)=-2-alpha^(')t//4\frac{\alpha^{\prime}}{2} p_{1} \cdot p_{4}=-2-\alpha^{\prime} t / 4α2p1p4=2αt/4 and α 2 p 1 p 3 = 2 α u / 4 α 2 p 1 p 3 = 2 α u / 4 (alpha^('))/(2)p_(1)*p_(3)=-2-alpha^(')u//4\frac{\alpha^{\prime}}{2} p_{1} \cdot p_{3}=-2-\alpha^{\prime} u / 4α2p1p3=2αu/4 Another useful identity is
s + t + u = ( p 1 + p 2 ) 2 ( p 1 + p 4 ) 2 ( p 1 + p 3 ) 2 = 6 M 2 2 p 1 ( p 2 + p 2 + p 3 ) = 4 M 2 = 16 / α s + t + u = 16 / α s + t + u = p 1 + p 2 2 p 1 + p 4 2 p 1 + p 3 2 = 6 M 2 2 p 1 p 2 + p 2 + p 3 = 4 M 2 = 16 / α s + t + u = 16 / α {:[s+t+u=-(p_(1)+p_(2))^(2)-(p_(1)+p_(4))^(2)-(p_(1)+p_(3))^(2)],[=6M^(2)-2p_(1)*(p_(2)+p_(2)+p_(3))],[=4M^(2)=-16//alpha^(')],[ rarr s+t+u=-16//alpha^(')]:}\begin{aligned} s+t+u & =-\left(p_{1}+p_{2}\right)^{2}-\left(p_{1}+p_{4}\right)^{2}-\left(p_{1}+p_{3}\right)^{2} \\ & =6 M^{2}-2 p_{1} \cdot\left(p_{2}+p_{2}+p_{3}\right) \\ & =4 M^{2}=-16 / \alpha^{\prime} \\ & \rightarrow s+t+u=-16 / \alpha^{\prime} \end{aligned}s+t+u=(p1+p2)2(p1+p4)2(p1+p3)2=6M22p1(p2+p2+p3)=4M2=16/αs+t+u=16/α
where we used p i 2 = M 2 p i 2 = M 2 p_(i)^(2)=-M^(2)p_{i}^{2}=-M^{2}pi2=M2 and momentum conservation i = 1 n p i μ = 0 i = 1 n p i μ = 0 sum_(i=1)^(n)p_(i)^(mu)=0\sum_{i=1}^{n} p_{i}^{\mu}=0i=1npiμ=0. Also note that
( p 2 + p 3 ) 2 = ( p 1 + p 4 ) 2 p 2 2 + p 3 2 2 M 2 + 2 p 2 p 3 = p 1 2 + p 4 2 2 M 2 + 2 p 1 p 4 p 2 p 3 = p 1 p 4 p 2 + p 3 2 = p 1 + p 4 2 p 2 2 + p 3 2 2 M 2 + 2 p 2 p 3 = p 1 2 + p 4 2 2 M 2 + 2 p 1 p 4 p 2 p 3 = p 1 p 4 (p_(2)+p_(3))^(2)=(p_(1)+p_(4))^(2)rarrubrace(p_(2)^(2)+p_(3)^(2)ubrace)_(-2M^(2))+2p_(2)*p_(3)=ubrace(p_(1)^(2)+p_(4)^(2)ubrace)_(-2M^(2))+2p_(1)*p_(4)rarrp_(2)*p_(3)=p_(1)*p_(4)\left(p_{2}+p_{3}\right)^{2}=\left(p_{1}+p_{4}\right)^{2} \rightarrow \underbrace{p_{2}^{2}+p_{3}^{2}}_{-2 M^{2}}+2 p_{2} \cdot p_{3}=\underbrace{p_{1}^{2}+p_{4}^{2}}_{-2 M^{2}}+2 p_{1} \cdot p_{4} \rightarrow p_{2} \cdot p_{3}=p_{1} \cdot p_{4}(p2+p3)2=(p1+p4)2p22+p322M2+2p2p3=p12+p422M2+2p1p4p2p3=p1p4
and similarly, p 3 p 4 = p 1 p 2 p 3 p 4 = p 1 p 2 p_(3)*p_(4)=p_(1)*p_(2)p_{3} \cdot p_{4}=p_{1} \cdot p_{2}p3p4=p1p2. Applying (6) to (5) and using the above identities, we see that the arguments of the Gamma functions are
a = α 2 p 2 p 3 + 1 = α 2 p 1 p 4 + 1 = ( 2 α t / 4 ) + 1 = 1 α t / 4 b = α 2 p 3 p 4 + 1 = 1 α s / 4 c = 1 a b = 1 + ( 1 + α t / 4 ) + ( 1 + α s / 4 ) = 3 + α 4 ( s + t ) = 1 α u / 4 a = α 2 p 2 p 3 + 1 = α 2 p 1 p 4 + 1 = 2 α t / 4 + 1 = 1 α t / 4 b = α 2 p 3 p 4 + 1 = 1 α s / 4 c = 1 a b = 1 + 1 + α t / 4 + 1 + α s / 4 = 3 + α 4 ( s + t ) = 1 α u / 4 {:[a=(alpha^('))/(2)p_(2)*p_(3)+1=(alpha^('))/(2)p_(1)*p_(4)+1=(-2-alpha^(')t//4)+1=-1-alpha^(')t//4],[b=(alpha^('))/(2)p_(3)*p_(4)+1=-1-alpha^(')s//4],[c=1-a-b=1+(1+alpha^(')t//4)+(1+alpha^(')s//4)],[=3+(alpha^('))/(4)(s+t)=-1-alpha^(')u//4]:}\begin{aligned} & a=\frac{\alpha^{\prime}}{2} p_{2} \cdot p_{3}+1=\frac{\alpha^{\prime}}{2} p_{1} \cdot p_{4}+1=\left(-2-\alpha^{\prime} t / 4\right)+1=-1-\alpha^{\prime} t / 4 \\ & b=\frac{\alpha^{\prime}}{2} p_{3} \cdot p_{4}+1=-1-\alpha^{\prime} s / 4 \\ & c=1-a-b=1+\left(1+\alpha^{\prime} t / 4\right)+\left(1+\alpha^{\prime} s / 4\right) \\ & =3+\frac{\alpha^{\prime}}{4}(s+t)=-1-\alpha^{\prime} u / 4 \end{aligned}a=α2p2p3+1=α2p1p4+1=(2αt/4)+1=1αt/4b=α2p3p4+1=1αs/4c=1ab=1+(1+αt/4)+(1+αs/4)=3+α4(s+t)=1αu/4
Hence we obtain VS amplitude which describes the scattering of four tachyons in bosonic string theory. Let's analyse some of it's properties.

Poles and Residues

Recall that Γ ( z ) Γ ( z ) Gamma(z)\Gamma(z)Γ(z) has poles at z = 0 , 1 , 2 , z = 0 , 1 , 2 , z=0,-1,-2,dotsz=0,-1,-2, \ldotsz=0,1,2, If we fix t t ttt and vary s s sss, we see that Γ ( 1 α s / 4 ) Γ 1 α s / 4 Gamma(-1-alpha^(')s//4)\Gamma\left(-1-\alpha^{\prime} s / 4\right)Γ(1αs/4) has poles when
s = 4 α ( n 1 ) n = 0 , 1 , 2 , s = 4 α ( n 1 ) n = 0 , 1 , 2 , s=(4)/(alpha^('))(n-1)quad n=0,1,2,dotss=\frac{4}{\alpha^{\prime}}(n-1) \quad n=0,1,2, \ldotss=4α(n1)n=0,1,2,
Recall that the spectrum of the closed string is given by
M 2 = 4 α ( N 1 ) = 4 α ( N ~ 1 ) M 2 = 4 α ( N 1 ) = 4 α ( N ~ 1 ) M^(2)=(4)/(alpha^('))(N-1)=(4)/(alpha^('))( tilde(N)-1)M^{2}=\frac{4}{\alpha^{\prime}}(N-1)=\frac{4}{\alpha^{\prime}}(\tilde{N}-1)M2=4α(N1)=4α(N~1)
Hence, poles correspond to masses af exchanged particles. We can read off the spin of the exchanged particles from the residue of the pole. Near s = 4 α ( n 1 ) s = 4 α ( n 1 ) s=(4)/(alpha)(n-1)s=\frac{4}{\alpha}(n-1)s=4α(n1),
u = 16 α s t = 16 α 4 α ( n 1 ) t = 4 α ( n + 3 ) t u = 16 α s t = 16 α 4 α ( n 1 ) t = 4 α ( n + 3 ) t u=-(16)/(alpha^('))-s-t=-(16)/(alpha^('))-(4)/(alpha^('))(n-1)-t=-(4)/(alpha^('))(n+3)-tu=-\frac{16}{\alpha^{\prime}}-s-t=-\frac{16}{\alpha^{\prime}}-\frac{4}{\alpha^{\prime}}(n-1)-t=-\frac{4}{\alpha^{\prime}}(n+3)-tu=16αst=16α4α(n1)t=4α(n+3)t
so the amplitude is approximately
A 4 1 s M n 2 Γ ( 1 α t / 4 ) Γ ( 1 α u / 4 ) Γ ( 2 + α t / 4 ) Γ ( 2 + α u / 4 ) = 1 s M n 2 Γ ( 1 α t / 4 ) Γ ( n + 2 + α t / 4 ) Γ ( n 1 α t / 4 ) Γ ( 2 + α t / 4 ) A 4 1 s M n 2 Γ 1 α t / 4 Γ 1 α u / 4 Γ 2 + α t / 4 Γ 2 + α u / 4 = 1 s M n 2 Γ 1 α t / 4 Γ n + 2 + α t / 4 Γ n 1 α t / 4 Γ 2 + α t / 4 {:[A_(4) prop(1)/(s-M_(n)^(2))(Gamma(-1-alpha^(')t//4)Gamma(-1-alpha^(')u//4))/(Gamma(2+alpha^(')t//4)Gamma(2+alpha^(')u//4))],[=(1)/(s-M_(n)^(2))(Gamma(-1-alpha^(')t//4)Gamma(n+2+alpha^(')t//4))/(Gamma(-n-1-alpha^(')t//4)Gamma(2+alpha^(')t//4))]:}\begin{aligned} \mathcal{A}_{4} & \propto \frac{1}{s-M_{n}^{2}} \frac{\Gamma\left(-1-\alpha^{\prime} t / 4\right) \Gamma\left(-1-\alpha^{\prime} u / 4\right)}{\Gamma\left(2+\alpha^{\prime} t / 4\right) \Gamma\left(2+\alpha^{\prime} u / 4\right)} \\ & =\frac{1}{s-M_{n}^{2}} \frac{\Gamma\left(-1-\alpha^{\prime} t / 4\right) \Gamma\left(n+2+\alpha^{\prime} t / 4\right)}{\Gamma\left(-n-1-\alpha^{\prime} t / 4\right) \Gamma\left(2+\alpha^{\prime} t / 4\right)} \end{aligned}A41sMn2Γ(1αt/4)Γ(1αu/4)Γ(2+αt/4)Γ(2+αu/4)=1sMn2Γ(1αt/4)Γ(n+2+αt/4)Γ(n1αt/4)Γ(2+αt/4)
where M n 2 = 4 α ( n 1 ) M n 2 = 4 α ( n 1 ) M_(n)^(2)=(4)/(alpha^('))(n-1)M_{n}^{2}=\frac{4}{\alpha^{\prime}}(n-1)Mn2=4α(n1). Noting that
Γ ( n + 2 + α t / 4 ) Γ ( 2 + α t / 4 ) = ( n + 2 + α t / 4 ) ( n + 1 + α t / 4 ) ( 3 + α t / 4 ) = ( α t / 4 ) n + Γ ( 1 α t / 4 ) Γ ( n 1 α t / 4 ) = ( 1 α t / 4 ) ( 2 α t / 4 ) ( n α t / 4 ) = ( α t / 4 ) n + Γ n + 2 + α t / 4 Γ 2 + α t / 4 = n + 2 + α t / 4 n + 1 + α t / 4 3 + α t / 4 = α t / 4 n + Γ 1 α t / 4 Γ n 1 α t / 4 = 1 α t / 4 2 α t / 4 n α t / 4 = α t / 4 n + {:[(Gamma(n+2+alpha^(')t//4))/(Gamma(2+alpha^(')t//4))=(n+2+alpha^(')t//4)(n+1+alpha^(')t//4)dots(3+alpha^(')t//4)],[=(alpha^(')t//4)^(n)+dots],[(Gamma(-1-alpha^(')t//4))/(Gamma(-n-1-alpha^(')t//4))=(-1-alpha^(')t//4)(-2-alpha^(')t//4)dots(-n-alpha^(')t//4)],[=(-alpha^(')t//4)^(n)+dots]:}\begin{aligned} \frac{\Gamma\left(n+2+\alpha^{\prime} t / 4\right)}{\Gamma\left(2+\alpha^{\prime} t / 4\right)} & =\left(n+2+\alpha^{\prime} t / 4\right)\left(n+1+\alpha^{\prime} t / 4\right) \ldots\left(3+\alpha^{\prime} t / 4\right) \\ & =\left(\alpha^{\prime} t / 4\right)^{n}+\ldots \\ \frac{\Gamma\left(-1-\alpha^{\prime} t / 4\right)}{\Gamma\left(-n-1-\alpha^{\prime} t / 4\right)} & =\left(-1-\alpha^{\prime} t / 4\right)\left(-2-\alpha^{\prime} t / 4\right) \ldots\left(-n-\alpha^{\prime} t / 4\right) \\ & =\left(-\alpha^{\prime} t / 4\right)^{n}+\ldots \end{aligned}Γ(n+2+αt/4)Γ(2+αt/4)=(n+2+αt/4)(n+1+αt/4)(3+αt/4)=(αt/4)n+Γ(1αt/4)Γ(n1αt/4)=(1αt/4)(2αt/4)(nαt/4)=(αt/4)n+
where ... indicates lower order terms in t t ttt, we see that near s = 4 α ( n 1 ) s = 4 α ( n 1 ) s=(4)/(alpha)(n-1)s=\frac{4}{\alpha}(n-1)s=4α(n1) the amplitude is
(7) A 4 t 2 n s M n 2 (7) A 4 t 2 n s M n 2 {:(7)A_(4)∼(t^(2n))/(s-M_(n)^(2)):}\begin{equation*} \mathcal{A}_{4} \sim \frac{t^{2 n}}{s-M_{n}^{2}} \tag{7} \end{equation*}(7)A4t2nsMn2
This indicates that the highest spin of a particle with mass M n M n M_(n)M_{n}Mn is J = 2 n J = 2 n J=2nJ=2 nJ=2n. To see this, note that coupling of a scalar field ϕ ϕ phi\phiϕ to a spin- J J JJJ field χ μ 1 μ J χ μ 1 μ J chi^(mu_(1)dotsmu_(J))\chi^{\mu_{1} \ldots \mu_{J}}χμ1μJ is of the form
ϕ μ 1 μ J ϕ χ μ 1 μ J ϕ μ 1 μ J ϕ χ μ 1 μ J phidel_(mu_(1))dotsdel_(mu_(J))phichi^(mu_(1)dotsmu_(J))\phi \partial_{\mu_{1}} \ldots \partial_{\mu_{J}} \phi \chi^{\mu_{1} \ldots \mu_{J}}ϕμ1μJϕχμ1μJ
From this, we see that an s-channel Feynman diagram with four external scalars exchanging spin- J J JJJ particle scales like t J t J t^(J)t^{J}tJ. It follows from (7) that the maximum spin being exchanged is 2 n 2 n 2n2 n2n, which is precisely what we expect from the closed string spectrum. Indeed, recall that the spectrum is given by
M 2 = 4 α ( N 1 ) = 4 α ( N ~ 1 ) M 2 = 4 α ( N 1 ) = 4 α ( N ~ 1 ) M^(2)=(4)/(alpha^('))(N-1)=(4)/(alpha^('))( tilde(N)-1)M^{2}=\frac{4}{\alpha^{\prime}}(N-1)=\frac{4}{\alpha^{\prime}}(\tilde{N}-1)M2=4α(N1)=4α(N~1)
and J max = N + N ~ = 2 N J max = N + N ~ = 2 N J_(max)=N+ tilde(N)=2NJ_{\max }=N+\tilde{N}=2 NJmax=N+N~=2N, so for example
N = 0 : M 2 = 4 / α , J max = 0 N = 1 : M 2 = 0 , J max = 2 N = 0 :      M 2 = 4 / α , J max = 0 N = 1 :      M 2 = 0 , J max = 2 {:[N=0:,M^(2)=-4//alpha^(')","J_(max)=0],[N=1:,M^(2)=0","J_(max)=2]:}\begin{array}{ll} N=0: & M^{2}=-4 / \alpha^{\prime}, J_{\max }=0 \\ N=1: & M^{2}=0, J_{\max }=2 \end{array}N=0:M2=4/α,Jmax=0N=1:M2=0,Jmax=2
Hence, all states in the spectrum get exchanged and the amplitude has the schematic form
(8) A 4 n = 0 t 2 n s M n 2 (8) A 4 n = 0 t 2 n s M n 2 {:(8)A_(4)∼sum_(n=0)^(oo)(t^(2n))/(s-M_(n)^(2)):}\begin{equation*} \mathcal{A}_{4} \sim \sum_{n=0}^{\infty} \frac{t^{2 n}}{s-M_{n}^{2}} \tag{8} \end{equation*}(8)A4n=0t2nsMn2

High energy limit

Let's take α s , α t α s , α t alpha^(')s,alpha^(')t rarr oo\alpha^{\prime} s, \alpha^{\prime} t \rightarrow \inftyαs,αt holding s / t s / t s//ts / ts/t fixed. In this limit, each term in (8) separately diverges for n > 0 n > 0 n > 0n>0n>0. Hence exchange of spin-2 particle (gravity) diverges
like E 2 E 2 E^(2)E^{2}E2 as large energy E E EEE and the exchange of higher-spin particles gives rise to even worse divergences. Hence, if we truncate the sum in (8) the amplitude is ill-behaved at high energies. Remarkably, including all states in the sum yields a result that is well-behaved at high energies.
In the high energy limit, we can neglect the masses of the external particles and take the external momenta to be
p 1 = s 2 ( 1 , 1 , 0 , ) p 2 = s 2 ( 1 , 1 , 0 , ) p 3 = s 2 ( 1 , cos θ , sin θ 1 ) p 4 = s 2 ( 1 , cos θ , sin θ , ) p 1 = s 2 ( 1 , 1 , 0 , ) p 2 = s 2 ( 1 , 1 , 0 , ) p 3 = s 2 1 , cos θ , sin θ 1 p 4 = s 2 ( 1 , cos θ , sin θ , ) {:[p_(1)=(sqrts)/(2)(1","1","0","dots)],[p_(2)=(sqrts)/(2)(1","-1","0","dots)],[p_(3)=(sqrts)/(2)(-1,cos theta,sin theta_(1)dots)],[p_(4)=(sqrts)/(2)(-1","-cos theta","-sin theta","dots)]:}\begin{aligned} & p_{1}=\frac{\sqrt{s}}{2}(1,1,0, \ldots) \\ & p_{2}=\frac{\sqrt{s}}{2}(1,-1,0, \ldots) \\ & p_{3}=\frac{\sqrt{s}}{2}\left(-1, \cos \theta, \sin \theta_{1} \ldots\right) \\ & p_{4}=\frac{\sqrt{s}}{2}(-1,-\cos \theta,-\sin \theta, \ldots) \end{aligned}p1=s2(1,1,0,)p2=s2(1,1,0,)p3=s2(1,cosθ,sinθ1)p4=s2(1,cosθ,sinθ,)
where θ θ theta\thetaθ is the scattering angle and we take all the momenta to be outgoing so i = 1 4 p i μ = 0 i = 1 4 p i μ = 0 sum_(i=1)^(4)p_(i)^(mu)=0\sum_{i=1}^{4} p_{i}^{\mu}=0i=14piμ=0. Then
( p 1 + p 2 ) 2 = s 4 ( 2 , 0 , 0 ) 2 = s t = ( p 1 + p 4 ) 2 = s 4 ( 0 , 1 cos θ , sin θ ) 2 = s 4 ( ( 1 cos θ ) 2 + sin 2 θ ) = s 2 ( 1 cos θ ) u = 16 α s t = 16 α s 2 ( 1 + cos θ ) s 2 ( 1 + cos θ ) p 1 + p 2 2 = s 4 ( 2 , 0 , 0 ) 2 = s t = p 1 + p 4 2 = s 4 ( 0 , 1 cos θ , sin θ ) 2 = s 4 ( 1 cos θ ) 2 + sin 2 θ = s 2 ( 1 cos θ ) u = 16 α s t = 16 α s 2 ( 1 + cos θ ) s 2 ( 1 + cos θ ) {:[(p_(1)+p_(2))^(2)=-(s)/(4)(2","0","0)^(2)=-s],[t=-(p_(1)+p_(4))^(2)=-(s)/(4)(0","1-cos theta","-sin theta)^(2)],[=-(s)/(4)((1-cos theta)^(2)+sin^(2)theta)],[=-(s)/(2)(1-cos theta)],[u=-(16)/(alpha^('))-s-t=-(16)/(alpha^('))-(s)/(2)(1+cos theta)quad∼-(s)/(2)(1+cos theta)]:}\begin{aligned} \left(p_{1}+p_{2}\right)^{2} & =-\frac{s}{4}(2,0,0)^{2}=-s \\ t & =-\left(p_{1}+p_{4}\right)^{2}=-\frac{s}{4}(0,1-\cos \theta,-\sin \theta)^{2} \\ & =-\frac{s}{4}\left((1-\cos \theta)^{2}+\sin ^{2} \theta\right) \\ & =-\frac{s}{2}(1-\cos \theta) \\ u & =-\frac{16}{\alpha^{\prime}}-s-t=-\frac{16}{\alpha^{\prime}}-\frac{s}{2}(1+\cos \theta) \quad \sim-\frac{s}{2}(1+\cos \theta) \end{aligned}(p1+p2)2=s4(2,0,0)2=st=(p1+p4)2=s4(0,1cosθ,sinθ)2=s4((1cosθ)2+sin2θ)=s2(1cosθ)u=16αst=16αs2(1+cosθ)s2(1+cosθ)
Plugging this into the VS amplitude then gives a function of s s sss and θ θ theta\thetaθ. Taking s s s rarr oos \rightarrow \inftys holding θ θ theta\thetaθ fixed and using Stirling's approximation Γ ( x ) 2 π x ( x / e ) x Γ ( x ) 2 π x ( x / e ) x Gamma(x)∼sqrt(2pi x)(x//e)^(x)\Gamma(x) \sim \sqrt{2 \pi x}(x / e)^{x}Γ(x)2πx(x/e)x, I find that lim s ln A 4 = α s F ( θ ) lim s ln A 4 = α s F ( θ ) lim_(s rarr oo)ln A_(4)=-alpha^(')sF(theta)\lim _{s \rightarrow \infty} \ln \mathcal{A}_{4}=-\alpha^{\prime} s F(\theta)limslnA4=αsF(θ) where
F ( θ ) = 1 8 [ ln 16 ( 1 cos θ ) ln ( 1 cos θ ) 2 ( 1 + cos θ ) ln ( 1 + cos θ ) 2 ] F ( θ ) = 1 8 ln 16 ( 1 cos θ ) ln ( 1 cos θ ) 2 ( 1 + cos θ ) ln ( 1 + cos θ ) 2 F(theta)=(1)/(8)[ln 16-(1-cos theta)ln(1-cos theta)^(2)-(1+cos theta)ln(1+cos theta)^(2)]F(\theta)=\frac{1}{8}\left[\ln 16-(1-\cos \theta) \ln (1-\cos \theta)^{2}-(1+\cos \theta) \ln (1+\cos \theta)^{2}\right]F(θ)=18[ln16(1cosθ)ln(1cosθ)2(1+cosθ)ln(1+cosθ)2]
see Mathematica for more details. Since F ( θ ) 0 F ( θ ) 0 F(theta) >= 0F(\theta) \geqslant 0F(θ)0 we see that the amplitude is exponentially suppressed at high energies:
lim s A 4 = e α s F ( θ ) lim s A 4 = e α s F ( θ ) lim_(s rarr oo)A_(4)=e^(-alpha^(')sF(theta))\lim _{s \rightarrow \infty} \mathcal{A}_{4}=e^{-\alpha^{\prime} s F(\theta)}limsA4=eαsF(θ)
Hence, string theory cures the UV divergences of Einstein gravity!