AQT Term 2

Lecturer: Arthur Lipstein

Contents

1 Introduction ..... 2
2 Path Integral in QM ..... 2
3 Path integral for free QFT ..... 5
4 Path integral for interacting QFT ..... 7
5 LSZ reduction ..... 12
6 Scattering Amplitudes and Feynman Rules ..... 14
7 Loops and Renormalisation ..... 17
8 Classical Maxwell Theory ..... 22
9 LSZ and Path Integral For Photons ..... 25
10 Dirac Equation ..... 28
11 Classical Solutions of the Dirac Equation ..... 32
12 Quantizing the Dirac field ..... 35
13 LSZ for spin half ..... 39
14 Fermionic Propagator ..... 41
15 Quantum Electrodynamics ..... 44
16 Scattering in QED ..... 47
17 Renormalisation of QED ..... 50

1 Introduction

References

  • Srednicki, QFT
  • Tong, lecture notes on QFT
  • Peskin and Schroeder, Intro to QFT
  • Kabat, Lecture notes on Particle Physics

Overview

  • Path integrals
  • Loops and Renormalization
  • Spin 1 (Maxwell)
  • Spin 1 / 2 1 / 2 1//21 / 21/2 (Dirac)
  • QED

2 Path Integral in QM

Based on Srednicki Chap 6. In the first term you quantised scalar field theory by expanding the field in Fourier modes and promoting the coefficients to creation/annihilation operators. You also learned how to compute correlation functions using Wick's theorem in the interaction picture.
In this term, we will describe a more fundamental approach based on path integrds. This is useful for a number of reasons:
  • provides a non-perturbative definition of QFT
  • simplest way to quantise gauge theory
  • naturally generalises QM
Indeed, from the point of view of path integrals, QM can be thought of as 1d QFT (where d d ddd-dimensional QFT refers to a QFT living in d d ddd space-time dimensions). Let us therefore review path integrals in QM.
Consider the following Hamiltonian for a non-relativistic particle:
H ( P , Q ) = 1 2 m P 2 + V ( Q ) H ( P , Q ) = 1 2 m P 2 + V ( Q ) H(P,Q)=(1)/(2m)P^(2)+V(Q)H(P, Q)=\frac{1}{2 m} P^{2}+V(Q)H(P,Q)=12mP2+V(Q)
where [ Q , P ] = [ Q , P ] = [Q,P]=ℏ[Q, P]=\hbar[Q,P]= (set = 1 = 1 ℏ=1\hbar=1=1 from now on). Let us compute the probability amplitude for the particle to start at position q q q^(')q^{\prime}q at time t t t^(')t^{\prime}t and end at position q q q^('')q^{\prime \prime}q at time t t t^('')t^{\prime \prime}t :
q | e i H ( t t ) | q q e i H t t q (:q^('')|e^(-iH(t^('')-t^(')))|q^('):)\left\langle q^{\prime \prime}\right| e^{-i H\left(t^{\prime \prime}-t^{\prime}\right)}\left|q^{\prime}\right\rangleq|eiH(tt)|q
where Q | q = q | q Q q = q q Q|q^('):)=q^(')|q^('):)Q\left|q^{\prime}\right\rangle=q^{\prime}\left|q^{\prime}\right\rangleQ|q=q|q, etc. To do so, let's divide the time interval into N + 1 N + 1 N+1N+1N+1 pieces of duration
δ t = t t N + 1 δ t = t t N + 1 delta t=(t^('')-t^('))/(N+1)\delta t=\frac{t^{\prime \prime}-t^{\prime}}{N+1}δt=ttN+1
Then introduce N N NNN complete sets af position eigenstates:
(1) q | e i H ( t t ) | q = j = 1 N d q j q | e i H δ t | q N q N | e i H δ t | q N 1 q 1 | e i H δ t | q (1) q e i H t t q = j = 1 N d q j q e i H δ t q N q N e i H δ t q N 1 q 1 e i H δ t q {:(1)(:q^('')|e^(-iH(t^('')-t^(')))|q^('):)=intprod_(j=1)^(N)dq_(j)(:q^('')|e^(-iH delta t)|q_(N):)(:q_(N)|e^(-iH delta t)|q_(N-1):)dots(:q_(1)|e^(-iH delta t)|q^('):):}\begin{equation*} \left\langle q^{\prime \prime}\right| e^{-i H\left(t^{\prime \prime}-t^{\prime}\right)}\left|q^{\prime}\right\rangle=\int \prod_{j=1}^{N} d q_{j}\left\langle q^{\prime \prime}\right| e^{-i H \delta t}\left|q_{N}\right\rangle\left\langle q_{N}\right| e^{-i H \delta t}\left|q_{N-1}\right\rangle \ldots\left\langle q_{1}\right| e^{-i H \delta t}\left|q^{\prime}\right\rangle \tag{1} \end{equation*}(1)q|eiH(tt)|q=j=1Ndqjq|eiHδt|qNqN|eiHδt|qN1q1|eiHδt|q
Note thati in the limit δ t 0 δ t 0 delta t rarr0\delta t \rightarrow 0δt0
e i H δ t = e i δ t ( P 2 / 2 m ) e i δ t V ( Q ) + θ ( δ t 2 ) e i H δ t = e i δ t P 2 / 2 m e i δ t V ( Q ) + θ δ t 2 e^(-iH delta t)=e^(-i delta t(P^(2)//2m))e^(-i delta tV(Q))+theta(deltat^(2))e^{-i H \delta t}=e^{-i \delta t\left(P^{2} / 2 m\right)} e^{-i \delta t V(Q)}+\theta\left(\delta t^{2}\right)eiHδt=eiδt(P2/2m)eiδtV(Q)+θ(δt2)
where we used exp ( A + B ) = exp ( A ) exp ( B ) exp ( 1 2 [ A , B ] ) exp ( A + B ) = exp ( A ) exp ( B ) exp 1 2 [ A , B ] exp(A+B)=exp(A)exp(B)exp(-(1)/(2)[A,B]dots)\exp (A+B)=\exp (A) \exp (B) \exp \left(-\frac{1}{2}[A, B] \ldots\right)exp(A+B)=exp(A)exp(B)exp(12[A,B])
(Baker-Campbell-Hausdorf formula).
Now focus on one term in (1):
(2) q 2 | e i H δ t | q 1 = d p 1 q 2 | e i δ t ( P 2 / 2 m ) | p 1 p 1 | e i δ t V ( Q ) | q 1 (3) = d p 1 e i δ t ( p 1 2 / 2 m + V ( q 1 ) ) q 2 p 1 p 1 q 1 (4) = e i δ t V ( q 1 ) d p 1 2 π exp [ i δ t 2 m p 1 2 + i p 1 ( q 2 q 1 ) ] (5) = ( m 2 π i δ t ) 1 / 2 exp [ i δ t ( m 2 ( q 2 q 1 δ t ) 2 V ( q 1 ) ) ] (2) q 2 e i H δ t q 1 = d p 1 q 2 e i δ t P 2 / 2 m p 1 p 1 e i δ t V ( Q ) q 1 (3) = d p 1 e i δ t p 1 2 / 2 m + V q 1 q 2 p 1 p 1 q 1 (4) = e i δ t V q 1 d p 1 2 π exp i δ t 2 m p 1 2 + i p 1 q 2 q 1 (5) = m 2 π i δ t 1 / 2 exp i δ t m 2 q 2 q 1 δ t 2 V q 1 {:[(2)(:q_(2)|e^(-iH delta t)|q_(1):)=int dp_(1)(:q_(2)|e^(-i delta t(P^(2)//2m))|p_(1):)(:p_(1)|e^(-i delta tV(Q))|q_(1):)],[(3)=int dp_(1)e^(-i delta t(p_(1)^(2)//2m+V(q_(1))))(:q_(2)∣p_(1):)(:p_(1)∣q_(1):)],[(4)=e^(-i delta tV(q_(1)))int(dp_(1))/(2pi)exp[-i(delta t)/(2m)p_(1)^(2)+ip_(1)(q_(2)-q_(1))]],[(5)=((m)/(2pi i delta t))^(1//2)exp[i delta t((m)/(2)((q_(2)-q_(1))/(delta t))^(2)-V(q_(1)))]]:}\begin{align*} \left\langle q_{2}\right| e^{-i H \delta t}\left|q_{1}\right\rangle & =\int d p_{1}\left\langle q_{2}\right| e^{-i \delta t\left(P^{2} / 2 m\right)}\left|p_{1}\right\rangle\left\langle p_{1}\right| e^{-i \delta t V(Q)}\left|q_{1}\right\rangle \tag{2}\\ & =\int d p_{1} e^{-i \delta t\left(p_{1}^{2} / 2 m+V\left(q_{1}\right)\right)}\left\langle q_{2} \mid p_{1}\right\rangle\left\langle p_{1} \mid q_{1}\right\rangle \tag{3}\\ & =e^{-i \delta t V\left(q_{1}\right)} \int \frac{d p_{1}}{2 \pi} \exp \left[-i \frac{\delta t}{2 m} p_{1}^{2}+i p_{1}\left(q_{2}-q_{1}\right)\right] \tag{4}\\ & =\left(\frac{m}{2 \pi i \delta t}\right)^{1 / 2} \exp \left[i \delta t\left(\frac{m}{2}\left(\frac{q_{2}-q_{1}}{\delta t}\right)^{2}-V\left(q_{1}\right)\right)\right] \tag{5} \end{align*}(2)q2|eiHδt|q1=dp1q2|eiδt(P2/2m)|p1p1|eiδtV(Q)|q1(3)=dp1eiδt(p12/2m+V(q1))q2p1p1q1(4)=eiδtV(q1)dp12πexp[iδt2mp12+ip1(q2q1)](5)=(m2πiδt)1/2exp[iδt(m2(q2q1δt)2V(q1))]
where we inserted a complete set of momentum eigenstates in the first line and performed the integral over p 1 p 1 p_(1)p_{1}p1 by completing the square and using
(6) d x e a x 2 = π / a (6) d x e a x 2 = π / a {:(6)int_(-oo)^(oo)dxe^(-ax^(2))=sqrt(pi//a):}\begin{equation*} \int_{-\infty}^{\infty} d x e^{-a x^{2}}=\sqrt{\pi / a} \tag{6} \end{equation*}(6)dxeax2=π/a
Repeating this for all the factors in (1),
q | e i H ( t t ) | q = ( m 2 π i δ t ) N + 1 2 k = 1 N d q k exp ( j = 0 N i [ m 2 ( q j + 1 q j δ t ) 2 V ( q j ) ] δ t ) q e i H t t q = m 2 π i δ t N + 1 2 k = 1 N d q k exp j = 0 N i m 2 q j + 1 q j δ t 2 V q j δ t (:q^('')|e^(-iH(t^('')t^(')))|q^('):)=((m)/(2pi i delta t))^((N+1)/(2))intprod_(k=1)^(N)dq_(k)exp(sum_(j=0)^(N)i[(m)/(2)((q_(j+1)-q_(j))/(delta t))^(2)-V(q_(j))]delta t)\left\langle q^{\prime \prime}\right| e^{-i H\left(t^{\prime \prime} t^{\prime}\right)}\left|q^{\prime}\right\rangle=\left(\frac{m}{2 \pi i \delta t}\right)^{\frac{N+1}{2}} \int \prod_{k=1}^{N} d q_{k} \exp \left(\sum_{j=0}^{N} i\left[\frac{m}{2}\left(\frac{q_{j+1}-q_{j}}{\delta t}\right)^{2}-V\left(q_{j}\right)\right] \delta t\right)q|eiH(tt)|q=(m2πiδt)N+12k=1Ndqkexp(j=0Ni[m2(qj+1qjδt)2V(qj)]δt)
In the continuum limit N N N rarr ooN \rightarrow \inftyN, this gives
q | e i H ( t t ) | q = D q exp [ i t t d t L ( q ˙ ( t ) , q ( t ) ) ] q e i H t t q = D q exp i t t d t L ( q ˙ ( t ) , q ( t ) ) (:q^('')|e^(-iH(t^('')t^(')))|q^('):)=intDq exp[iint_(t^('))^(t^(''))dtL((q^(˙))(t),q(t))]\left\langle q^{\prime \prime}\right| e^{-i H\left(t^{\prime \prime} t^{\prime}\right)}\left|q^{\prime}\right\rangle=\int \mathcal{D} q \exp \left[i \int_{t^{\prime}}^{t^{\prime \prime}} d t \mathcal{L}(\dot{q}(t), q(t))\right]q|eiH(tt)|q=Dqexp[ittdtL(q˙(t),q(t))]
where L = 1 2 m q ˙ 2 V ( q ) L = 1 2 m q ˙ 2 V ( q ) L=(1)/(2)mq^(˙)^(2)-V(q)\mathcal{L}=\frac{1}{2} m \dot{q}^{2}-V(q)L=12mq˙2V(q) is the Lagrangian and
D q = ( m 2 π i s t ) N + 1 2 k = 1 N d q k D q = m 2 π i s t N + 1 2 k = 1 N d q k Dq=((m)/(2pi ist))^((N+1)/(2))prod_(k=1)^(N)dq_(k)\mathcal{D} q=\left(\frac{m}{2 \pi i s t}\right)^{\frac{N+1}{2}} \prod_{k=1}^{N} d q_{k}Dq=(m2πist)N+12k=1Ndqk
Summary: the amplitude can be computed by integrating over al paths with fixed endpoints, weighted by e i S e i S e^(iS)e^{i S}eiS, where S S SSS is the action of the path!
Now let us consider inserting the operator Q Q QQQ time t 1 t 1 t_(1)t_{1}t1 :
q | e i H ( t t 1 ) Q e i H ( t 1 t ) | q = q , t | Q ( t 1 ) | q , t q e i H t t 1 Q e i H t 1 t q = q , t Q t 1 q , t (:q^('')|e^(-iH(t^('')-t_(1)))Qe^(-iH(t_(1)-t^(')))|q^('):)=(:q^(''),t^('')|Q(t_(1))|q^('),t^('):)\left\langle q^{\prime \prime}\right| e^{-i H\left(t^{\prime \prime}-t_{1}\right)} Q e^{-i H\left(t_{1}-t^{\prime}\right)}\left|q^{\prime}\right\rangle=\left\langle q^{\prime \prime}, t^{\prime \prime}\right| Q\left(t_{1}\right)\left|q^{\prime}, t^{\prime}\right\rangleq|eiH(tt1)QeiH(t1t)|q=q,t|Q(t1)|q,t
where | q , t = e i H t | q q , t = e i H t q |q^('),t^('):)=e^(iHt^('))|q^('):)\left|q^{\prime}, t^{\prime}\right\rangle=e^{i H t^{\prime}}\left|q^{\prime}\right\rangle|q,t=eiHt|q and Q ( t 1 ) = e i H t 1 Q e i H t 1 Q t 1 = e i H t 1 Q e i H t 1 Q(t_(1))=e^(iHt_(1))Qe^(-iHt_(1))Q\left(t_{1}\right)=e^{i H t_{1}} Q e^{-i H t_{1}}Q(t1)=eiHt1QeiHt1 in the Heisenberg picture. Using similar manipulations as before, this will result in a path integral with an insertion of q ( t 1 ) q t 1 q(t_(1))q\left(t_{1}\right)q(t1) (the location of the particle at time t 1 t 1 t_(1)t_{1}t1 for each given path):
q , t | Q ( t 1 ) | q , t = D q q ( t 1 ) e i S q , t Q t 1 q , t = D q q t 1 e i S (:q^(''),t^(')|Q(t_(1))|q^('),t^('):)=intDqq(t_(1))e^(iS)\left\langle q^{\prime \prime}, t^{\prime}\right| Q\left(t_{1}\right)\left|q^{\prime}, t^{\prime}\right\rangle=\int \mathcal{D} q q\left(t_{1}\right) e^{i S}q,t|Q(t1)|q,t=Dqq(t1)eiS
Reversing this logic shows that
D q q ( t 1 ) q ( t 2 ) e i S = q , t | T Q ( t 1 ) Q ( t 2 ) | q , t D q q t 1 q t 2 e i S = q , t T Q t 1 Q t 2 q , t intDqq(t_(1))q(t_(2))e^(iS)=(:q^(''),t^('')|TQ(t_(1))Q(t_(2))|q^('),t^('):)\int \mathcal{D} q q\left(t_{1}\right) q\left(t_{2}\right) e^{i S}=\left\langle q^{\prime \prime}, t^{\prime \prime}\right| T Q\left(t_{1}\right) Q\left(t_{2}\right)\left|q^{\prime}, t^{\prime}\right\rangleDqq(t1)q(t2)eiS=q,t|TQ(t1)Q(t2)|q,t
where T T TTT is "time-ordering symbol": operators at later times placed to left of operators at earlier times.
Amplitudes with an arbitrary number of time-ordered insertions can then be generated from the following object:
q , t q , t f = D q exp ( i t t d t [ L ( q ; q ) + f ( t ) q ( t ) ] ) q , t q , t f = D q exp i t t d t [ L ( q ; q ) + f ( t ) q ( t ) ] (:q^(''),t^('')∣q^('),t^('):)_(f)=intDq exp(iint_(t^('))^(t^(''))dt[L(q;q)+f(t)q(t)])\left\langle q^{\prime \prime}, t^{\prime \prime} \mid q^{\prime}, t^{\prime}\right\rangle_{f}=\int \mathcal{D} q \exp \left(i \int_{t^{\prime}}^{t^{\prime \prime}} d t[\mathcal{L}(q ; q)+f(t) q(t)]\right)q,tq,tf=Dqexp(ittdt[L(q;q)+f(t)q(t)])
using "functional derivatives":
δ δ f ( t 2 ) f ( t 1 ) = δ ( t 1 t 2 ) δ δ f t 2 f t 1 = δ t 1 t 2 (delta)/(delta f(t_(2)))f(t_(1))=delta(t_(1)-t_(2))\frac{\delta}{\delta f\left(t_{2}\right)} f\left(t_{1}\right)=\delta\left(t_{1}-t_{2}\right)δδf(t2)f(t1)=δ(t1t2)
In particular,
q , t | T Q ( t 1 ) Q ( t n ) | q , t = D q e i S q ( t 1 ) q ( t n ) = 1 i δ δ f ( t 1 ) 1 i δ δ f ( t n ) q , t q , t | f = 0 q , t T Q t 1 Q t n q , t = D q e i S q t 1 q t n = 1 i δ δ f t 1 1 i δ δ f t n q , t q , t f = 0 {:[(:q^(''),t^(''):}{:|TQ(t_(1))dots Q(t_(n))|q^('),t^('):)],[=intDqe^(iS)q(t_(1))dots q(t_(n))],[=(1)/(i)(delta)/(delta f(t_(1)))cdots(1)/(i)(delta)/(delta f(t_(n)))(:q^(''),t^(')∣q^('),t^('):)|_(f=0)]:}\begin{aligned} \left\langle q^{\prime \prime}, t^{\prime \prime}\right. & \left.\left|T Q\left(t_{1}\right) \ldots Q\left(t_{n}\right)\right| q^{\prime}, t^{\prime}\right\rangle \\ & =\int \mathcal{D} q e^{i S} q\left(t_{1}\right) \ldots q\left(t_{n}\right) \\ & =\left.\frac{1}{i} \frac{\delta}{\delta f\left(t_{1}\right)} \cdots \frac{1}{i} \frac{\delta}{\delta f\left(t_{n}\right)}\left\langle q^{\prime \prime}, t^{\prime} \mid q^{\prime}, t^{\prime}\right\rangle\right|_{f=0} \end{aligned}q,t|TQ(t1)Q(tn)|q,t=DqeiSq(t1)q(tn)=1iδδf(t1)1iδδf(tn)q,tq,t|f=0
Finally, note that if we take t , t t , t t^('')rarr oo,t^(')rarr-oot^{\prime \prime} \rightarrow \infty, t^{\prime} \rightarrow-\inftyt,t, this will generically project the external states onto the ground state. To see this, note that
| q , t = e i H t | q = lim ϵ 0 + e i ( 1 i ϵ ) H t | q = lim ϵ 0 + n = 0 e i ( 1 i ϵ ) H t | n n q = lim ϵ 0 + n = 0 e i E n t e i E n t n q | n q , t = e i H t q = lim ϵ 0 + e i ( 1 i ϵ ) H t q = lim ϵ 0 + n = 0 e i ( 1 i ϵ ) H t | n n q = lim ϵ 0 + n = 0 e i E n t e i E n t n q | n {:[|q^('),t^('):)=e^(iHt^('))|q^('):)],[=lim_(epsilon rarr0^(+))e^(i(1-i epsilon)Ht^('))|q^('):)],[=lim_(epsilon rarr0^(+))sum_(n=0)^(oo)e^(i(1-i epsilon)Ht^('))|n:)(:n∣q^('):)],[=lim_(epsilon rarr0^(+))sum_(n=0)^(oo)e^(iE_(n)t^('))e^(iE_(n)t^('))(:n∣q^('):)|n:)]:}\begin{aligned} \left|q^{\prime}, t^{\prime}\right\rangle & =e^{i H t^{\prime}}\left|q^{\prime}\right\rangle \\ & =\lim _{\epsilon \rightarrow 0^{+}} e^{i(1-i \epsilon) H t^{\prime}}\left|q^{\prime}\right\rangle \\ & =\lim _{\epsilon \rightarrow 0^{+}} \sum_{n=0}^{\infty} e^{i(1-i \epsilon) H t^{\prime}}|n\rangle\left\langle n \mid q^{\prime}\right\rangle \\ & =\lim _{\epsilon \rightarrow 0^{+}} \sum_{n=0}^{\infty} e^{i E_{n} t^{\prime}} e^{i E_{n} t^{\prime}}\left\langle n \mid q^{\prime}\right\rangle|n\rangle \end{aligned}|q,t=eiHt|q=limϵ0+ei(1iϵ)Ht|q=limϵ0+n=0ei(1iϵ)Ht|nnq=limϵ0+n=0eiEnteiEntnq|n
Hence, if t t t^(')rarr-oot^{\prime} \rightarrow-\inftyt, the ground state will dominate (assuming n q 0 n q 0 (:n∣q^('):)!=0\left\langle n \mid q^{\prime}\right\rangle \neq 0nq0 ).
Hence the following object generates correlators with initial and final states given by the ground state:
Z ( f ) = D q exp [ i d t ( L + f q ) ] Z ( f ) = D q exp i d t ( L + f q ) Z(f)=intDq exp[iint_(-oo)^(oo)dt(L+fq)]Z(f)=\int \mathcal{D} q \exp \left[i \int_{-\infty}^{\infty} d t(\mathcal{L}+f q)\right]Z(f)=Dqexp[idt(L+fq)]
In particular, an n n nnn-point correlator is given by
0 | T Q ( t 1 ) Q ( t n ) | 0 = 1 i δ δ f ( t 1 ) 1 i δ δ f ( t n ) Z ( f ) Z ( f ) | f = 0 0 | T Q t 1 Q t n | 0 = 1 i δ δ f t 1 1 i δ δ f t n Z ( f ) Z ( f ) f = 0 (:0|TQ(t_(1))dots Q(t_(n))|0:)=((1)/(i)(delta)/(delta f(t_(1)))cdots(1)/(i)(delta)/(delta f(t_(n)))Z(f))/(Z(f))|_(f=0)\langle 0| T Q\left(t_{1}\right) \ldots Q\left(t_{n}\right)|0\rangle=\left.\frac{\frac{1}{i} \frac{\delta}{\delta f\left(t_{1}\right)} \cdots \frac{1}{i} \frac{\delta}{\delta f\left(t_{n}\right)} Z(f)}{Z(f)}\right|_{f=0}0|TQ(t1)Q(tn)|0=1iδδf(t1)1iδδf(tn)Z(f)Z(f)|f=0
The above two formae naturally generalise to QFT.

3 Path integral for free QFT

This is based on Srednicki Chapter 8. There is a simple generalisation from QM to QFT:
Q ( t ) ϕ ^ ( t , x ) ( field operator ) q ( t ) ϕ ( t , x ) ( field configuration ) f ( t ) J ( t , x ) ( source ) Q ( t ) ϕ ^ ( t , x )       ( field operator )  q ( t ) ϕ ( t , x )       ( field configuration )  f ( t ) J ( t , x )       ( source )  {:[Q(t)rarr hat(phi)(t"," vec(x))," ( field operator ) "],[q(t)rarr phi(t"," vec(x))," ( field configuration ) "],[f(t)rarr J(t"," vec(x))," ( source ) "]:}\begin{array}{ll} Q(t) \rightarrow \hat{\phi}(t, \vec{x}) & \text { ( field operator ) } \\ q(t) \rightarrow \phi(t, \vec{x}) & \text { ( field configuration ) } \\ f(t) \rightarrow J(t, \vec{x}) & \text { ( source ) } \end{array}Q(t)ϕ^(t,x) ( field operator ) q(t)ϕ(t,x) ( field configuration ) f(t)J(t,x) ( source ) 
Now the path integral is over all feld configurations on spacetime (which we take to be 4 d ):
Z ( J ) = D ϕ exp i d 4 x [ L ( μ ϕ , ϕ ) + J ( x ) ϕ ( x ) ] Z ( J ) = D ϕ exp i d 4 x L μ ϕ , ϕ + J ( x ) ϕ ( x ) Z(J)=intDphi exp i intd^(4)x[L(del_(mu)phi,phi)+J(x)phi(x)]Z(J)=\int \mathcal{D} \phi \exp i \int d^{4} x\left[\mathcal{L}\left(\partial_{\mu} \phi, \phi\right)+J(x) \phi(x)\right]Z(J)=Dϕexpid4x[L(μϕ,ϕ)+J(x)ϕ(x)]
where x x xxx is shorthand for x μ = ( t , x ) , L x μ = ( t , x ) , L x^(mu)=(t, vec(x)),Lx^{\mu}=(t, \vec{x}), \mathcal{L}xμ=(t,x),L is the Lagrangian, D ϕ x d ϕ ( x ) D ϕ x d ϕ ( x ) Dphi propprod_(x)d phi(x)\mathcal{D} \phi \propto \prod_{x} d \phi(x)Dϕxdϕ(x).
Let us first consider free theory:
L 0 = 1 2 μ ϕ μ ϕ 1 2 m 2 ϕ 2 L 0 = 1 2 μ ϕ μ ϕ 1 2 m 2 ϕ 2 L_(0)=-(1)/(2)del^(mu)phidel_(mu)phi-(1)/(2)m^(2)phi^(2)\mathcal{L}_{0}=-\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}L0=12μϕμϕ12m2ϕ2
In this case, we denote the path integral as Z 0 ( J ) Z 0 ( J ) Z_(0)(J)Z_{0}(J)Z0(J). To proceed, it is convenient to work in momentum space:
ϕ ( x ) = d 4 k ( 2 π ) 4 e i k x ϕ ( k ) ϕ ( k ) = d 4 x e i k x ϕ ( x ) ϕ ( x ) = d 4 k ( 2 π ) 4 e i k x ϕ ( k ) ϕ ( k ) = d 4 x e i k x ϕ ( x ) phi(x)=int(d^(4)k)/((2pi)^(4))e^(ik*x)phi(k)quad Longleftrightarrowquad phi(k)=intd^(4)xe^(-ik*x)phi(x)\phi(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{i k \cdot x} \phi(k) \quad \Longleftrightarrow \quad \phi(k)=\int d^{4} x e^{-i k \cdot x} \phi(x)ϕ(x)=d4k(2π)4eikxϕ(k)ϕ(k)=d4xeikxϕ(x)
where k x = k 0 t + k x k x = k 0 t + k x k*x=-k^(0)t+ vec(k)* vec(x)k \cdot x=-k^{0} t+\vec{k} \cdot \vec{x}kx=k0t+kx. One then finds that
S 0 = 1 2 d 4 x [ μ ϕ ( x ) n ϕ ( x ) m 2 ϕ ( x ) 2 + 2 J ( x ) ϕ ( x ) ] = 1 2 d 4 x d 4 k ( 2 π ) 4 d 4 k ( 2 π ) 4 ( k k ) ϕ ( k ) ϕ ( k ) m 2 ϕ ( k ) ϕ ( k ) + 2 J ( k ) ϕ ( k ) ] e i x ( k + k ) = 1 2 d 4 k ( 2 π ) 4 d 4 k ( 2 π ) 4 ( 2 π ) 4 δ ( k + k ) [ k k ϕ ( k ) ϕ ( k ) m 2 ϕ ( k ) ϕ ( k ) + 2 J ( k ) ϕ ( k ) ] = 1 2 d 4 k ( 2 π ) 4 [ ϕ ( k ) ( k 2 + m 2 ) ϕ ( k ) + J ( k ) ϕ ( k ) + J ( k ) ϕ ( k ) ] S 0 = 1 2 d 4 x μ ϕ ( x ) n ϕ ( x ) m 2 ϕ ( x ) 2 + 2 J ( x ) ϕ ( x ) = 1 2 d 4 x d 4 k ( 2 π ) 4 d 4 k ( 2 π ) 4 k k ϕ ( k ) ϕ k m 2 ϕ ( k ) ϕ ( k ) + 2 J ( k ) ϕ k e i x k + k = 1 2 d 4 k ( 2 π ) 4 d 4 k ( 2 π ) 4 ( 2 π ) 4 δ k + k k k ϕ ( k ) ϕ k m 2 ϕ ( k ) ϕ k + 2 J ( k ) ϕ k = 1 2 d 4 k ( 2 π ) 4 ϕ ( k ) k 2 + m 2 ϕ ( k ) + J ( k ) ϕ ( k ) + J ( k ) ϕ ( k ) {:[S_(0)=(1)/(2)intd^(4)x[-del_(mu)phi(x)del^(n)phi(x)-m^(2)phi(x)^(2)+2J(x)phi(x)]],[{:=(1)/(2)intd^(4)x(d^(4)k)/((2pi)^(4))(d^(4)k^('))/((2pi)^(4))int-(-k*k^('))phi(k)phi(k^('))-m^(2)phi(k)phi(k)+2J(k)phi(k^('))]e^(ix*(k+k^(')))],[=(1)/(2)int(d^(4)k)/((2pi)^(4))(d^(4)k^('))/((2pi)^(4))(2pi)^(4)delta(k+k^('))[-k^(')*k^(')phi(k)phi(k^('))-m^(2)phi(k)phi(k^('))+2J(k)phi(k^('))]],[=(1)/(2)int(d^(4k))/((2pi)^(4))[-phi(k)(k^(2)+m^(2))phi(-k)+J(k)phi(-k)+J(-k)phi(k)]]:}\begin{aligned} & S_{0}=\frac{1}{2} \int d^{4} x\left[-\partial_{\mu} \phi(x) \partial^{n} \phi(x)-m^{2} \phi(x)^{2}+2 J(x) \phi(x)\right] \\ & \left.=\frac{1}{2} \int d^{4} x \frac{d^{4} k}{(2 \pi)^{4}} \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} \int-\left(-k \cdot k^{\prime}\right) \phi(k) \phi\left(k^{\prime}\right)-m^{2} \phi(k) \phi(k)+2 J(k) \phi\left(k^{\prime}\right)\right] e^{i x \cdot\left(k+k^{\prime}\right)} \\ & =\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{d^{4} k^{\prime}}{(2 \pi)^{4}}(2 \pi)^{4} \delta\left(k+k^{\prime}\right)\left[-k^{\prime} \cdot k^{\prime} \phi(k) \phi\left(k^{\prime}\right)-m^{2} \phi(k) \phi\left(k^{\prime}\right)+2 J(k) \phi\left(k^{\prime}\right)\right] \\ & =\frac{1}{2} \int \frac{d^{4 k}}{(2 \pi)^{4}}\left[-\phi(k)\left(k^{2}+m^{2}\right) \phi(-k)+J(k) \phi(-k)+J(-k) \phi(k)\right] \end{aligned}S0=12d4x[μϕ(x)nϕ(x)m2ϕ(x)2+2J(x)ϕ(x)]=12d4xd4k(2π)4d4k(2π)4(kk)ϕ(k)ϕ(k)m2ϕ(k)ϕ(k)+2J(k)ϕ(k)]eix(k+k)=12d4k(2π)4d4k(2π)4(2π)4δ(k+k)[kkϕ(k)ϕ(k)m2ϕ(k)ϕ(k)+2J(k)ϕ(k)]=12d4k(2π)4[ϕ(k)(k2+m2)ϕ(k)+J(k)ϕ(k)+J(k)ϕ(k)]
Now change path integration variables:
ϕ ~ ( k ) = ϕ ( k ) J ( k ) k 2 + m 2 , D ϕ ~ = D ϕ ϕ ~ ( k ) = ϕ ( k ) J ( k ) k 2 + m 2 , D ϕ ~ = D ϕ tilde(phi)(k)=phi(k)-(J(k))/(k^(2)+m^(2)),quadD tilde(phi)=Dphi\tilde{\phi}(k)=\phi(k)-\frac{J(k)}{k^{2}+m^{2}}, \quad \mathcal{D} \tilde{\phi}=\mathcal{D} \phiϕ~(k)=ϕ(k)J(k)k2+m2,Dϕ~=Dϕ
We then obtain a path integral with action
S 0 = 1 2 d 4 k ( 2 π ) 4 [ J ( k ) J ( k ) k 2 + m 2 ϕ ~ ( k ) ( k ~ + m 2 ) ϕ ~ ( k ) ] S 0 = 1 2 d 4 k ( 2 π ) 4 J ( k ) J ( k ) k 2 + m 2 ϕ ~ ( k ) k ~ + m 2 ϕ ~ ( k ) rarrS_(0)=(1)/(2)int(d^(4)k)/((2pi)^(4))[(J(k)J(-k))/(k^(2)+m^(2))-( tilde(phi))(k)(( tilde(k))+m^(2))( tilde(phi))(-k)]\rightarrow S_{0}=\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}}\left[\frac{J(k) J(-k)}{k^{2}+m^{2}}-\tilde{\phi}(k)\left(\tilde{k}+m^{2}\right) \tilde{\phi}(-k)\right]S0=12d4k(2π)4[J(k)J(k)k2+m2ϕ~(k)(k~+m2)ϕ~(k)]
The Integral over ϕ ~ ϕ ~ tilde(phi)\tilde{\phi}ϕ~ just gives overall normalisation Z 0 ( 0 ) Z 0 ( 0 ) Z_(0)(0)Z_{0}(0)Z0(0), so
Z ( J ) Z ( 0 ) = exp ( i 2 d 4 k ( 2 π ) 4 J ( k ) J ( k ) k 2 + m 2 ) Z ( J ) Z ( 0 ) = exp i 2 d 4 k ( 2 π ) 4 J ( k ) J ( k ) k 2 + m 2 (Z(J))/(Z(0))=exp((i)/(2)int(d^(4)k)/((2pi)^(4))(J(k)J(-k))/(k^(2)+m^(2)))\frac{Z(J)}{Z(0)}=\exp \left(\frac{i}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{J(k) J(-k)}{k^{2}+m^{2}}\right)Z(J)Z(0)=exp(i2d4k(2π)4J(k)J(k)k2+m2)
Plugging in J ( k ) = d 4 x e i k x J ( x ) J ( k ) = d 4 x e i k x J ( x ) J(k)=intd^(4)xe^(-ik-x)J(x)J(k)=\int d^{4} x e^{-i k-x} J(x)J(k)=d4xeikxJ(x) :
Z ( J ) Z ( 0 ) = exp [ 1 2 d 4 x d 4 x J ( x ) Δ ( x x ) J ( x ) ] Z ( J ) Z ( 0 ) = exp 1 2 d 4 x d 4 x J ( x ) Δ x x J x (Z(J))/(Z(0))=exp[(1)/(2)intd^(4)xd^(4)x^(')J(x)Delta(x-x^('))J(x^('))]\frac{Z(J)}{Z(0)}=\exp \left[\frac{1}{2} \int d^{4} x d^{4} x^{\prime} J(x) \Delta\left(x-x^{\prime}\right) J\left(x^{\prime}\right)\right]Z(J)Z(0)=exp[12d4xd4xJ(x)Δ(xx)J(x)]
where
Δ ( x x ) = d 4 k ( 2 π ) 4 e i k ( x x ) k 2 + m 2 Δ x x = d 4 k ( 2 π ) 4 e i k x x k 2 + m 2 Delta(x-x^('))=int(d^(4)k)/((2pi)^(4))(e^(ik*(x-x^('))))/(k^(2)+m^(2))\Delta\left(x-x^{\prime}\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i k \cdot\left(x-x^{\prime}\right)}}{k^{2}+m^{2}}Δ(xx)=d4k(2π)4eik(xx)k2+m2
is the propagator.
Note that this is Green's function of Klein-Gordon eqaution:
( x 2 + m 2 ) Δ ( x x ) = δ 4 ( x x ) x 2 + m 2 Δ x x = δ 4 x x (-del_(x)^(2)+m^(2))Delta(x-x^('))=delta^(4)(x-x^('))\left(-\partial_{x}^{2}+m^{2}\right) \Delta\left(x-x^{\prime}\right)=\delta^{4}\left(x-x^{\prime}\right)(x2+m2)Δ(xx)=δ4(xx)
Actually Δ ( x x ) Δ x x Delta(x-x^('))\Delta\left(x-x^{\prime}\right)Δ(xx) is ill-defined because there is a pole in the denominator when k 2 = m 2 k 2 = m 2 k^(2)=-m^(2)k^{2}=-m^{2}k2=m2. Need to specify a prescription for avoiding this pole:
Δ ( x x ) = d 4 k ( 2 π ) 4 e i k ( x x ) k 2 + m 2 i ϵ Δ x x = d 4 k ( 2 π ) 4 e i k x x k 2 + m 2 i ϵ Delta(x-x^('))=int(d^(4)k)/((2pi)^(4))(e^(ik(x-x^('))))/(k^(2)+m^(2)-i epsilon)\Delta\left(x-x^{\prime}\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i k\left(x-x^{\prime}\right)}}{k^{2}+m^{2}-i \epsilon}Δ(xx)=d4k(2π)4eik(xx)k2+m2iϵ
where ϵ > 0 ϵ > 0 epsilon > 0\epsilon>0ϵ>0. This is known as the Feynman propagator. Other prescriptions are possible, but this gives rise to time ordered propagation, so this is the one we will use (since we are interested in time-ordered path integrals). To see this, perform k 0 k 0 k^(0)k^{0}k0 integral:
Δ ( x x ) = d 3 k ( 2 π ) 3 e i k ( x x ) d k 0 2 π e i k 0 ( t t ) ( k 0 ) 2 ( ω k 2 i ϵ ) , ω k = k 2 + m 2 Δ x x = d 3 k ( 2 π ) 3 e i k x x d k 0 2 π e i k 0 t t k 0 2 ω k 2 i ϵ , ω k = k 2 + m 2 Delta(x-x^('))=-int(d^(3)k)/((2pi)^(3))e^(i vec(k)*(( vec(x))- vec(x)^(')))int(dk^(0))/(2pi)(e^(-ik^(0)*(t-t^('))))/((k^(0))^(2)-(omega_(k)^(2)-i epsilon)),omega_(k)=sqrt( vec(k)^(2)+m^(2))\Delta\left(x-x^{\prime}\right)=-\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \vec{k} \cdot\left(\vec{x}-\vec{x}^{\prime}\right)} \int \frac{d k^{0}}{2 \pi} \frac{e^{-i k^{0} \cdot\left(t-t^{\prime}\right)}}{\left(k^{0}\right)^{2}-\left(\omega_{k}^{2}-i \epsilon\right)}, \omega_{k}=\sqrt{\vec{k}^{2}+m^{2}}Δ(xx)=d3k(2π)3eik(xx)dk02πeik0(tt)(k0)2(ωk2iϵ),ωk=k2+m2
The denominator can be written as
( k 0 ( ω k i ϵ ) ) ( k 0 + ω k i ϵ ) k 0 ω k i ϵ k 0 + ω k i ϵ (k^(0)-(omega_(k)-i epsilon))(k^(0)+omega_(k)-i epsilon)\left(k^{0}-\left(\omega_{k}-i \epsilon\right)\right)\left(k^{0}+\omega_{k}-i \epsilon\right)(k0(ωkiϵ))(k0+ωkiϵ)
where we have expnded in ϵ ϵ epsilon\epsilonϵ and rescaled it by positive numbers. If t > t t > t t > t^(')t>t^{\prime}t>t, then close in lower hall plane so that numentor decays as | k 0 | k 0 |k^(0)|rarr oo\left|k^{0}\right| \rightarrow \infty|k0|. This picks up
the residue at k 0 = ω k i ϵ k 0 = ω k i ϵ k^(0)=omega_(k)-i epsilonk^{0}=\omega_{k}-i \epsilonk0=ωkiϵ. Similarly if t < t t < t t < t^(')t<t^{\prime}t<t, then close the contour in upper hall plane and pick up residue at k 0 = ω k + i ϵ k 0 = ω k + i ϵ k^(0)=-omega_(k)+i epsilonk^{0}=-\omega_{k}+i \epsilonk0=ωk+iϵ. In the end, we obtain
Δ ( x x ) = i θ ( t t ) d k ~ e i k ( x x ) + i θ ( t t ) d k ~ e i k ( x x ) Δ x x = i θ t t d k ~ e i k ( x x ) + i θ t t d k ~ e i k x x Delta(x-x^('))=i theta(t-t^('))int widetilde(dk)e^(ik*(x-x))+i theta(t^(')-t)int widetilde(dk)e^(-ik*(x-x^(')))\Delta\left(x-x^{\prime}\right)=i \theta\left(t-t^{\prime}\right) \int \widetilde{d k} e^{i k \cdot(x-x)}+i \theta\left(t^{\prime}-t\right) \int \widetilde{d k} e^{-i k \cdot\left(x-x^{\prime}\right)}Δ(xx)=iθ(tt)dk~eik(xx)+iθ(tt)dk~eik(xx)
where d k ~ = d 3 k ( 2 π ) 3 2 ω k d k ~ = d 3 k ( 2 π ) 3 2 ω k widetilde(dk)=(d^(3)k)/((2pi)^(3)2omega_(k))\widetilde{d k}=\frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}}dk~=d3k(2π)32ωk and k μ = ( ω k , k ) k μ = ω k , k k^(mu)=(omega_(k),( vec(k)))k^{\mu}=\left(\omega_{k}, \vec{k}\right)kμ=(ωk,k). Hence, propagation is indeed time ordered.
Now let's compute time-ordered correlators:
0 | T ϕ ( x 1 ) ϕ ( x n ) | 0 = 1 i δ δ J ( x 1 ) 1 i δ δ J ( x n ) Z 0 ( J ) Z 0 ) | J = 0 0 | T ϕ x 1 ϕ x n | 0 = 1 i δ δ J x 1 1 i δ δ J x n Z 0 ( J ) Z 0 J = 0 (:0|T phi(x_(1))dots phi(x_(n))|0:)=((1)/(i)(delta)/(delta J(x_(1)))cdots(1)/(i)(delta)/(delta J(x_(n)))Z_(0)(J))/(Z_(0)))|_(J=0)\langle 0| T \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)|0\rangle=\left.\frac{\frac{1}{i} \frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{1}{i} \frac{\delta}{\delta J\left(x_{n}\right)} Z_{0}(J)}{\left.Z_{0}\right)}\right|_{J=0}0|Tϕ(x1)ϕ(xn)|0=1iδδJ(x1)1iδδJ(xn)Z0(J)Z0)|J=0
As an example, consider the 2-point:
0 | T ϕ ( x 1 ) ϕ ( x 2 ) | 0 = 1 i δ δ J ( x 1 ) 1 i δ δ J ( x 2 ) exp [ i 2 d 4 x d 4 x J ( x ) Δ ( x x ) J ( x ) ] | J = 0 = 1 i δ δ J ( x 1 ) ( d 4 x Δ ( x 2 x ) J ( x ) ) exp [ ] | J = 0 = ( 1 i Δ ( x 2 x 1 ) + terms with J ) exp [ ] | J = 0 = 1 i Δ ( x 2 x 1 ) ϕ ( x 1 ) ϕ ( x 2 ) 0 | T ϕ x 1 ϕ x 2 | 0 = 1 i δ δ J x 1 1 i δ δ J x 2 exp i 2 d 4 x d 4 x J ( x ) Δ x x J x J = 0 = 1 i δ δ J x 1 d 4 x Δ x 2 x J x exp [ ] J = 0 = 1 i Δ x 2 x 1 +  terms with  J exp [ ] J = 0 = 1 i Δ x 2 x 1 ϕ x 1 ϕ x 2 {:[(:0|T phi(x_(1))phi(x_(2))|0:)=(1)/(i)(delta)/(delta J(x_(1)))(1)/(i)(delta)/(delta J(x_(2)))exp[(i)/(2)intd^(4)xd^(4)xJ(x)Delta(x-x^('))J(x^('))]|_(J=0)],[=(1)/(i)(delta)/(delta J(x_(1)))(intd^(4)x^(')Delta(x_(2)-x^('))J(x^(')))exp[cdots]|_(J=0)],[=((1)/(i)Delta(x_(2)-x_(1))+" terms with "J)exp[cdots]|_(J=0)],[=(1)/(i)Delta(x_(2)-x_(1))-=phi(x_(1))phi^(larr)(x_(2))]:}\begin{aligned} \langle 0| T \phi\left(x_{1}\right) \phi\left(x_{2}\right)|0\rangle & =\left.\frac{1}{i} \frac{\delta}{\delta J\left(x_{1}\right)} \frac{1}{i} \frac{\delta}{\delta J\left(x_{2}\right)} \exp \left[\frac{i}{2} \int d^{4} x d^{4} x J(x) \Delta\left(x-x^{\prime}\right) J\left(x^{\prime}\right)\right]\right|_{J=0} \\ & =\left.\frac{1}{i} \frac{\delta}{\delta J\left(x_{1}\right)}\left(\int d^{4} x^{\prime} \Delta\left(x_{2}-x^{\prime}\right) J\left(x^{\prime}\right)\right) \exp [\cdots]\right|_{J=0} \\ & =\left.\left(\frac{1}{i} \Delta\left(x_{2}-x_{1}\right)+\text { terms with } J\right) \exp [\cdots]\right|_{J=0} \\ & =\frac{1}{i} \Delta\left(x_{2}-x_{1}\right) \equiv \overleftarrow{\phi\left(x_{1}\right) \phi}\left(x_{2}\right) \end{aligned}0|Tϕ(x1)ϕ(x2)|0=1iδδJ(x1)1iδδJ(x2)exp[i2d4xd4xJ(x)Δ(xx)J(x)]|J=0=1iδδJ(x1)(d4xΔ(x2x)J(x))exp[]|J=0=(1iΔ(x2x1)+ terms with J)exp[]|J=0=1iΔ(x2x1)ϕ(x1)ϕ(x2)
where the brakcet is a Wick contraction. More generally odd-point correlators will vanish since there will always be a left-over J J JJJ in the prefator after taking an odd number of functional derivatives, and even-point correlators will be given by sum over all Wick contractions. This is Wick's theorem, which you proved last term using oscillators. As another example, consider the 4-point correlator:
0 | T ϕ ( x 1 ) ϕ ( x 2 ) ϕ ( x 3 ) ϕ ( x 4 ) | 0 = ϕ ( x 1 ) ϕ ~ ( x 2 ) ϕ ( x 3 ) ϕ ( x 4 ) + ϕ ( x 1 ) ϕ ( x 2 ) ϕ ( x 3 ) ϕ ( x 4 ) + ( x 1 ) ϕ ( x 2 ) ϕ ( x 3 ) ϕ ( x 4 ) 0 | T ϕ x 1 ϕ x 2 ϕ x 3 ϕ x 4 | 0 = ϕ x 1 ϕ ~ x 2 ϕ x 3 ϕ x 4 + ϕ x 1 ϕ x 2 ϕ x 3 ϕ x 4 + x 1 ϕ x 2 ϕ x 3 ϕ x 4 {:[(:0|T phi(x_(1))phi(x_(2))phi(x_(3))phi(x_(4))|0:)= widetilde(phi(x_(1))phi)(x_(2))phi(x_(3))phi(x_(4))],[+^(phi(x_(1))phi(x_(2))phi)(x_(3))phi(x_(4))],[+O/(x_(1))phi(x_(2))phi(x_(3))phi(x_(4))]:}\begin{aligned} & \langle 0| T \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)|0\rangle=\widetilde{\phi\left(x_{1}\right) \phi}\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right) \\ & +\stackrel{\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi}{ }\left(x_{3}\right) \phi\left(x_{4}\right) \\ & +\varnothing\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right) \end{aligned}0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)|0=ϕ(x1)ϕ~(x2)ϕ(x3)ϕ(x4)+ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)+(x1)ϕ(x2)ϕ(x3)ϕ(x4)

4 Path integral for interacting QFT

This will be based on Srednicki Chapter 9. Let us now consider an interacting QFT:
L = 1 2 μ ϕ μ ϕ 1 2 m 2 ϕ 2 L 0 1 4 ! g ϕ 4 L 1 L = 1 2 μ ϕ μ ϕ 1 2 m 2 ϕ 2 L 0 1 4 ! g ϕ 4 L 1 L=ubrace(-(1)/(2)del_(mu)phidel^(mu)phi-(1)/(2)m^(2)phi^(2)ubrace)_(L_(0))ubrace(-(1)/(4!)gphi^(4)ubrace)_(L_(1))\mathcal{L}=\underbrace{-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}}_{\mathcal{L}_{0}} \underbrace{-\frac{1}{4!} g \phi^{4}}_{\mathcal{L}_{1}}L=12μϕμϕ12m2ϕ2L014!gϕ4L1
We would like to evaluate the path integral
Z ( J ) = D ϕ exp [ i d 4 x ( L 0 + L 1 + J ϕ ) ] = exp [ i d 4 x L 1 ( 1 i δ δ J ( x ) ) ] Z 0 ( J ) Z ( J ) = D ϕ exp i d 4 x L 0 + L 1 + J ϕ = exp i d 4 x L 1 1 i δ δ J ( x ) Z 0 ( J ) {:[Z(J)=int D phi exp[i intd^(4)x(L_(0)+L_(1)+J phi)]],[=exp[i intd^(4)xL_(1)((1)/(i)(delta)/(delta J(x)))]Z_(0)(J)]:}\begin{aligned} Z(J) & =\int D \phi \exp \left[i \int d^{4} x\left(\mathcal{L}_{0}+\mathcal{L}_{1}+J \phi\right)\right] \\ & =\exp \left[i \int d^{4} x \mathcal{L}_{1}\left(\frac{1}{i} \frac{\delta}{\delta J(x)}\right)\right] Z_{0}(J) \end{aligned}Z(J)=Dϕexp[id4x(L0+L1+Jϕ)]=exp[id4xL1(1iδδJ(x))]Z0(J)
where
Z 0 ( J ) = Z 0 ( 0 ) exp ( i 2 d 4 x d 4 x J ( x ) Δ ( x x ) J ( x ) ) . Z 0 ( J ) = Z 0 ( 0 ) exp i 2 d 4 x d 4 x J ( x ) Δ x x J x . Z_(0)(J)=Z_(0)(0)exp((i)/(2)intd^(4)xd^(4)x^(')J(x)Delta(x-x^('))J(x^('))).Z_{0}(J)=Z_{0}(0) \exp \left(\frac{i}{2} \int d^{4} x d^{4} x^{\prime} J(x) \Delta\left(x-x^{\prime}\right) J\left(x^{\prime}\right)\right) .Z0(J)=Z0(0)exp(i2d4xd4xJ(x)Δ(xx)J(x)).
Taylor expanding exponentials:
(7) Z ( J ) V = 0 1 V ! [ i g 4 ! d 4 x ( 1 i δ δ J ( x ) ) 4 ] V (8) × P = 0 1 P ! [ i 2 d y y 4 z J ( y ) Δ ( y z ) J ( z ) ] P (7) Z ( J ) V = 0 1 V ! i g 4 ! d 4 x 1 i δ δ J ( x ) 4 V (8) × P = 0 1 P ! i 2 d y y 4 z J ( y ) Δ ( y z ) J ( z ) P {:[(7)Z(J)propsum_(V=0)^(oo)(1)/(V!)[-(ig)/(4!)intd^(4)x((1)/(i)(delta)/(delta J(x)))^(4)]^(V)],[(8) xxsum_(P=0)^(oo)(1)/(P!)[(i)/(2)intd^(y)y^(4)zJ(y)Delta(y-z)J(z)]^(P)]:}\begin{align*} Z(J) \propto & \sum_{V=0}^{\infty} \frac{1}{V!}\left[-\frac{i g}{4!} \int d^{4} x\left(\frac{1}{i} \frac{\delta}{\delta J(x)}\right)^{4}\right]^{V} \tag{7}\\ & \times \sum_{P=0}^{\infty} \frac{1}{P!}\left[\frac{i}{2} \int d^{y} y^{4} z J(y) \Delta(y-z) J(z)\right]^{P} \tag{8} \end{align*}(7)Z(J)V=01V![ig4!d4x(1iδδJ(x))4]V(8)×P=01P![i2dyy4zJ(y)Δ(yz)J(z)]P
where we will not worry about normalisation for now.
We can visualise the terms in this sum using Feynman diagrams:
A term in the sum with a particular value of V V VVV and P P PPP corresponds to a diagram with V V VVV vertices and P P PPP propagators. The number of surviving sources after taking all the functional derivatives is
E = 2 P 4 V E = 2 P 4 V E=2P-4VE=2 P-4 VE=2P4V
Diagrams with E = 0 E = 0 E=0E=0E=0 are known as vacuum bubbles:
E = 0 , V = 1 E = 0 , V = 2 E = 0 , V = 1 E = 0 , V = 2 E=0,V=1quad E=0,V=2E=0, V=1 \quad E=0, V=2E=0,V=1E=0,V=2
There are no diagrams with an odd number of external sources. Here are some examples for E = 2 E = 2 E=2E=2E=2 :
E = 2 , V = 0 E = 2 , V = 0 E=2,V=0E=2, V=0E=2,V=0
E = 2 , V = 1 E = 2 , V = 1 E=2,V=1E=2, V=1E=2,V=1
And some examples for E = 4 E = 4 E=4E=4E=4 :

+ + +++
E = 4 , V = 1 E = 4 , V = 1 E=4,V=1E=4, V=1E=4,V=1

E = 4 , V = 1 E = 4 , V = 1 E=4,V=1E=4, V=1E=4,V=1


E = 4 , V = 0 E = 4 , V = 0 E=4,V=0E=4, V=0E=4,V=0
Hence, the sum in (8) can be expressed as a sum over Feynman diagrams. The examples given above are connected diagrams, but the sum also contains disconnected diagrams, which can be expressed as products of connected ones:

E = 4 , V = 0 E = 4 , V = 0 E=4,V=0E=4, V=0E=4,V=0

E = 4 , V = 1 E = 4 , V = 1 E=4,V=1E=4, V=1E=4,V=1
We will soon see that Z ( J ) Z ( J ) Z(J)Z(J)Z(J) can be expressed in terms of the exponential of the sum of connected diagrams, so let's focus on those for now.
Question: What is the coefficient of a given connected diagram appearing in the sum in (8)? First note that
Z ( J ) V = 0 1 V ! [ i g 4 ! d 4 x ( 1 i δ δ J ( x ) ) 4 ] V exp ( 1 2 . ) Z ( J ) V = 0 1 V ! i g 4 ! d 4 x 1 i δ δ J ( x ) 4 V exp 1 2 . Z(J)propsum_(V=0)^(oo)(1)/(V!)[-(ig)/(4!)intd^(4)x((1)/(i)(delta)/(delta J(x)))^(4)]^(V)exp((1)/(2)*.)Z(J) \propto \sum_{V=0}^{\infty} \frac{1}{V!}\left[-\frac{i g}{4!} \int d^{4} x\left(\frac{1}{i} \frac{\delta}{\delta J(x)}\right)^{4}\right]^{V} \exp \left(\frac{1}{2} \cdot .\right)Z(J)V=01V![ig4!d4x(1iδδJ(x))4]Vexp(12.)
Now look at some examples:
V = 0 , P = 1 : 1 2 V = 0 , P = 2 : i g 4 ! d 4 x ( 1 i δ δ J ( x ) ) 4 1 2 ( 1 2 ) 2 = ( i g ) 1 4 ! ( 1 2 ) 3 d 4 x ( 1 i δ δ J ( x ) ) 3 4 ( x ) + 2 ( 1 x ) 2 ) = ( i g ) 1 4 ! ( 1 2 ) 3 4 d 4 x ( 1 i δ δ J ( x ) ) 2 ( 2 ) = ( i g ) 1 4 ! ( 1 2 ) 3 4 d 4 x 1 i δ δ J ( x ) ( 2 ) = 1 8 V = 0 , P = 1 : 1 2 V = 0 , P = 2 : i g 4 ! d 4 x 1 i δ δ J ( x ) 4 1 2 1 2 2 = ( i g ) 1 4 ! 1 2 3 d 4 x 1 i δ δ J ( x ) 3 4 ( x ) + 2 1 x 2 = ( i g ) 1 4 ! 1 2 3 4 d 4 x 1 i δ δ J ( x ) 2 ( 2 ) = ( i g ) 1 4 ! 1 2 3 4 d 4 x 1 i δ δ J ( x ) ( 2 ) = 1 8 {:[V=0","P=1:(1)/(2)],[V=0","P=2:quad(-ig)/(4!)intd^(4)x((1)/(i)(delta)/(delta J(x)))^(4)(1)/(2)((1)/(2)cdots)^(2)],[{:=(-ig)(1)/(4!)((1)/(2))^(3)intd^(4)x((1)/(i)(delta)/(delta J(x)))^(3)4(sqrtx)+2((1)/(x))^(2))],[=(-ig)(1)/(4!)((1)/(2))^(3)4intd^(4)x((1)/(i)(delta)/(delta J(x)))^(2)(2)],[=(-ig)(1)/(4!)((1)/(2))^(3)4intd^(4)x(1)/(i)(delta)/(delta J(x))(2)],[=(1)/(8)]:}\begin{aligned} & V=0, P=1: \frac{1}{2} \\ & V=0, P=2: \quad \frac{-i g}{4!} \int d^{4} x\left(\frac{1}{i} \frac{\delta}{\delta J(x)}\right)^{4} \frac{1}{2}\left(\frac{1}{2} \cdots\right)^{2} \\ & \left.=(-i g) \frac{1}{4!}\left(\frac{1}{2}\right)^{3} \int d^{4} x\left(\frac{1}{i} \frac{\delta}{\delta J(x)}\right)^{3} 4(\sqrt{x})+2\left(\frac{1}{x}\right)^{2}\right) \\ & =(-i g) \frac{1}{4!}\left(\frac{1}{2}\right)^{3} 4 \int d^{4} x\left(\frac{1}{i} \frac{\delta}{\delta J(x)}\right)^{2}(2) \\ & =(-i g) \frac{1}{4!}\left(\frac{1}{2}\right)^{3} 4 \int d^{4} x \frac{1}{i} \frac{\delta}{\delta J(x)}(2) \\ & =\frac{1}{8} \end{aligned}V=0,P=1:12V=0,P=2:ig4!d4x(1iδδJ(x))412(12)2=(ig)14!(12)3d4x(1iδδJ(x))34(x)+2(1x)2)=(ig)14!(12)34d4x(1iδδJ(x))2(2)=(ig)14!(12)34d4x1iδδJ(x)(2)=18
In general, the ceofficient of a connected diagram corresponds to 1 / S 1 / S 1//S1 / S1/S, where S S SSS is the symmetry factor of the diagram. The two-point diagram

has symmetry factor S = 2 S = 2 S=2S=2S=2 because it is invariant under exchange of the two sources. Moreover, the vacuum diagram

has a symmetry factor 2 coming from the reflection symmetry of each bubble and another factor of 2 coming the freedom to exchange the two bubbles, giving a total symmetry factor of S = 2 3 = 8 S = 2 3 = 8 S=2^(3)=8S=2^{3}=8S=23=8.
Using similar reasoning you can read of the following symmetry factors:
s = 2 2 = 4 s = 2 2 = 4 s=2^(2)=4s=2^{2}=4s=22=4

S = 4 ! = 24 S = 4 ! = 24 S=4!=24S=4!=24S=4!=24

S = 2 4 = 16 S = 2 4 = 16 S=2^(4)=16S=2^{4}=16S=24=16

S = 2 × 3 ! = 12 S = 2 × 3 ! = 12 S=2xx3!=12S=2 \times 3!=12S=2×3!=12
If in doubt, you can always compute S 1 S 1 S^(-1)S^{-1}S1 by brute force by computing functional derivatives.
Let us return to the sum over all diaghams in Z ( J ) Z ( J ) Z(J)Z(J)Z(J). Let C I C I C_(I)C_{I}CI stand for a particular connected diagram I I III, including its inverse symmetry factor. A general diagram D D DDD can then be expressed as
D = 1 S D Π I ( C I ) n I D = 1 S D Π I C I n I D=(1)/(S_(D))Pi_(I)(C_(I))^(n_(I))D=\frac{1}{S_{D}} \Pi_{I}\left(C_{I}\right)^{n_{I}}D=1SDΠI(CI)nI
where I / S D I / S D I//S_(D)I / S_{D}I/SD is an additional symmetry factor and the product is over distinct connected diagrams . If there are n I n I n_(I)n_{I}nI copies of diagram I I III, then there is a symmerry factor of n I n I n_(I)n_{I}nI ! associated with exchanging all the copies. Hence
S D = Π I n I ! S D = Π I n I ! S_(D)=Pi_(I)n_(I)!S_{D}=\Pi_{I} n_{I}!SD=ΠInI!
Now we have
Z ( J ) { n I } D = { n I } I 1 n I ! ( C I ) n I = I n I = 0 1 n I ! ( C I ) n I = I exp ( C I ) = exp ( I C I ) Z ( J ) n I D = n I I 1 n I ! C I n I = I n I = 0 1 n I ! C I n I = I exp C I = exp I C I {:[Z(J) propsum_({n_(I)})D],[=sum_({n_(I)})prod_(I)(1)/(n_(I)!)(C_(I))^(n_(I))],[=prod_(I)sum_(n_(I)=0)^(oo)(1)/(n_(I)!)(C_(I))^(n_(I))],[=prod_(I)exp(C_(I))],[=exp(sum_(I)C_(I))]:}\begin{aligned} Z(J) & \propto \sum_{\left\{n_{I}\right\}} D \\ & =\sum_{\left\{n_{I}\right\}} \prod_{I} \frac{1}{n_{I}!}\left(C_{I}\right)^{n_{I}} \\ & =\prod_{I} \sum_{n_{I}=0}^{\infty} \frac{1}{n_{I}!}\left(C_{I}\right)^{n_{I}} \\ & =\prod_{I} \exp \left(C_{I}\right) \\ & =\exp \left(\sum_{I} C_{I}\right) \end{aligned}Z(J){nI}D={nI}I1nI!(CI)nI=InI=01nI!(CI)nI=Iexp(CI)=exp(ICI)
where the sum over { n I } n I {n_(I)}\left\{n_{I}\right\}{nI} denotes the sum over sets of diagrams with n I n I n_(I)n_{I}nI copies of each distinct connected diagram I I III.
In summary, Z ( J ) Z ( J ) Z(J)Z(J)Z(J) is proportional to the sum of connected diagrams. It follows that Z ( 0 ) Z ( 0 ) Z(0)Z(0)Z(0) is proportional to the sum of connected vacuum diagrams (those with no sources). Hence,
Z ( J ) Z ( 0 ) = exp [ i W ( J ) ] Z ( J ) Z ( 0 ) = exp [ i W ( J ) ] (Z(J))/(Z(0))=exp[iW(J)]\frac{Z(J)}{Z(0)}=\exp [i W(J)]Z(J)Z(0)=exp[iW(J)]
where i W ( J ) i W ( J ) iW(J)i W(J)iW(J) is the sum of connected non-vacuum diagrams including inverse symmetry factors. In practice, i W ( J ) i W ( J ) iW(J)i W(J)iW(J) is the object of interest for computing scattering amplitudes. Before we explain how to compute scattering amplitudes using Feynman diagrams, let's review how to extract them from correlators.

5 LSZ reduction

This is based on Srednick Chapter 5). Let us review how to extract scattering amplitudes from correlation functions. First recall that
ϕ ( x ) = d k ~ ( a ( k ) e i k x + a ( k ) e i k x ) ϕ ( x ) = d k ~ a ( k ) e i k x + a ( k ) e i k x phi(x)=int widetilde(dk)(a(( vec(k)))e^(ik*x)+a^(†)(( vec(k)))e^(-ik*x))\phi(x)=\int \widetilde{d k}\left(a(\vec{k}) e^{i k \cdot x}+a^{\dagger}(\vec{k}) e^{-i k \cdot x}\right)ϕ(x)=dk~(a(k)eikx+a(k)eikx)
where k x = ω k t + k x , ω k = k 2 + m 2 k x = ω k t + k x , ω k = k 2 + m 2 k*x=-omega_(k)t+ vec(k)* vec(x),omega_(k)=sqrt( vec(k)^(2)+m^(2))k \cdot x=-\omega_{k} t+\vec{k} \cdot \vec{x}, \omega_{k}=\sqrt{\vec{k}^{2}+m^{2}}kx=ωkt+kx,ωk=k2+m2, and d k ~ = d 3 k ( 2 π ) 3 2 ω k d k ~ = d 3 k ( 2 π ) 3 2 ω k widetilde(dk)=(d^(3)k)/((2pi)^(3)2omega_(k))\widetilde{d k}=\frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}}dk~=d3k(2π)32ωk. It follows that
d 3 x e i k x ϕ ( x ) = d k ~ d 3 x [ e i t ( ω k ω k ) e i ( k k ) x a ( k ) + e i t ( ω k + ω k ) e i ( k + k ) x a ( k ) ] = d k ~ [ ( 2 π ) 3 δ 3 ( k k ) e i t ( ω k ω k ) a ( k ) + ( 2 π ) 3 δ 3 ( k + k ) e i t ( ω k + ω k ) a ( k ) ] = 1 2 ω k ( a ( k ) + e 2 i ω k t a ( k ) ) d 3 x e i k x ϕ ( x ) = d k ~ d 3 x e i t ω k ω k e i k k x a k + e i t ω k + ω k e i k + k x a k = d k ~ ( 2 π ) 3 δ 3 k k e i t ω k ω k a k + ( 2 π ) 3 δ 3 k + k e i t ω k + ω k a k = 1 2 ω k a ( k ) + e 2 i ω k t a ( k ) {:[intd^(3)xe^(-ik*x)phi(x)=int widetilde(dk)^(')d^(3)x[e^(it(omega_(k)-omega_(k^('))))e^(i( vec(k)^(')-( vec(k)))* vec(x))a( vec(k)^('))+e^(it(omega_(k)+omega_(k^('))))e^(-i( vec(k)^(')+( vec(k)))* vec(x))a^(†)( vec(k)^('))]],[=int widetilde(dk)^(')[(2pi)^(3)delta^(3)(( vec(k))- vec(k)^('))e^(it(omega_(k)-omega_(k^('))))a( vec(k)^('))+(2pi)^(3)delta^(3)(( vec(k))+ vec(k)^('))e^(it(omega_(k)+omega_(k^('))))a^(†)( vec(k)^('))]],[=(1)/(2omega_(k))(a(( vec(k)))+e^(2iomega_(k)t)a^(†)(-( vec(k))))]:}\begin{aligned} \int d^{3} x e^{-i k \cdot x} \phi(x) & =\int \widetilde{d k}^{\prime} d^{3} x\left[e^{i t\left(\omega_{k}-\omega_{k^{\prime}}\right)} e^{i\left(\vec{k}^{\prime}-\vec{k}\right) \cdot \vec{x}} a\left(\vec{k}^{\prime}\right)+e^{i t\left(\omega_{k}+\omega_{k^{\prime}}\right)} e^{-i\left(\vec{k}^{\prime}+\vec{k}\right) \cdot \vec{x}} a^{\dagger}\left(\vec{k}^{\prime}\right)\right] \\ & =\int \widetilde{d k}^{\prime}\left[(2 \pi)^{3} \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right) e^{i t\left(\omega_{k}-\omega_{k^{\prime}}\right)} a\left(\vec{k}^{\prime}\right)+(2 \pi)^{3} \delta^{3}\left(\vec{k}+\vec{k}^{\prime}\right) e^{i t\left(\omega_{k}+\omega_{k^{\prime}}\right)} a^{\dagger}\left(\vec{k}^{\prime}\right)\right] \\ & =\frac{1}{2 \omega_{k}}\left(a(\vec{k})+e^{2 i \omega_{k} t} a^{\dagger}(-\vec{k})\right) \end{aligned}d3xeikxϕ(x)=dk~d3x[eit(ωkωk)ei(kk)xa(k)+eit(ωk+ωk)ei(k+k)xa(k)]=dk~[(2π)3δ3(kk)eit(ωkωk)a(k)+(2π)3δ3(k+k)eit(ωk+ωk)a(k)]=12ωk(a(k)+e2iωkta(k))
Similarly,
d 3 x e i k x t ϕ ( x ) = 1 2 ω k ( ( i ω k ) a ( k ) + ( i ω k ) e 2 i ω k t a ( k ) ) = i 2 a ( k ) + i 2 e 2 i ω k t a ( k ) d 3 x e i k x t ϕ ( x ) = 1 2 ω k i ω k a ( k ) + i ω k e 2 i ω k t a ( k ) = i 2 a ( k ) + i 2 e 2 i ω k t a ( k ) {:[ intd^(3)xe^(-ik*x)del_(t)phi(x)=(1)/(2omega_(k))((-iomega_(k))a(( vec(k)))+(iomega_(k))e^(2iomega_(k)t)a^(†)(-( vec(k))))],[=-(i)/(2)a( vec(k))+(i)/(2)e^(2iomega_(k)t)a^(†)(- vec(k))]:}\begin{aligned} & \int d^{3} x e^{-i k \cdot x} \partial_{t} \phi(x)=\frac{1}{2 \omega_{k}}\left(\left(-i \omega_{k}\right) a(\vec{k})+\left(i \omega_{k}\right) e^{2 i \omega_{k} t} a^{\dagger}(-\vec{k})\right) \\ & =-\frac{i}{2} a(\vec{k})+\frac{i}{2} e^{2 i \omega_{k} t} a^{\dagger}(-\vec{k}) \end{aligned}d3xeikxtϕ(x)=12ωk((iωk)a(k)+(iωk)e2iωkta(k))=i2a(k)+i2e2iωkta(k)
Hence,
a ( k ) = d 3 x e i k x ( i t ϕ ( x ) + ω k ϕ ( x ) ) = i d 3 x e i k x t ϕ ( x ) , f μ g = f μ g μ f g a ( k ) = i d 3 x e i k x t ϕ ( x ) a ( k ) = d 3 x e i k x i t ϕ ( x ) + ω k ϕ ( x ) = i d 3 x e i k x t ϕ ( x ) , f μ g = f μ g μ f g a ( k ) = i d 3 x e i k x t ϕ ( x ) {:[a( vec(k))=intd^(3)xe^(-ikx)(idel_(t)phi(x)+omega_(k)phi(x))],[=i intd^(3)xe^(-ik*x)del^(harr)_(t)phi(x)","quad fdel^(harr)_(mu)g=fdel_(mu)g-del_(mu)fg],[ rarra^(†)( vec(k))=-i intd^(3)xe^(ik*x)del^(harr)_(t)phi(x)]:}\begin{aligned} a(\vec{k}) & =\int d^{3} x e^{-i k x}\left(i \partial_{t} \phi(x)+\omega_{k} \phi(x)\right) \\ & =i \int d^{3} x e^{-i k \cdot x} \stackrel{\leftrightarrow}{\partial}_{t} \phi(x), \quad f \stackrel{\leftrightarrow}{\partial}_{\mu} g=f \partial_{\mu} g-\partial_{\mu} f g \\ & \rightarrow a^{\dagger}(\vec{k})=-i \int d^{3} x e^{i k \cdot x} \stackrel{\leftrightarrow}{\partial}_{t} \phi(x) \end{aligned}a(k)=d3xeikx(itϕ(x)+ωkϕ(x))=id3xeikxtϕ(x),fμg=fμgμfga(k)=id3xeikxtϕ(x)
In the interacting theory, ( a , a ) a , a (a,a^(†))\left(a, a^{\dagger}\right)(a,a) become time-dependent. Assume that particles are non-interacting at t = ± t = ± t=+-oot= \pm \inftyt=±. Suppose we have two incoming and two outgoing particles:
Incoming state: | i = lim t a ( k 1 , t ) a ( k 2 , t ) | 0 | i = lim t a k 1 , t a k 2 , t | 0 |i:)=lim_(t rarr-oo)a^(†)( vec(k)_(1),t)a^(†)( vec(k)_(2),t)|0:)|i\rangle=\lim _{t \rightarrow-\infty} a^{\dagger}\left(\vec{k}_{1}, t\right) a^{\dagger}\left(\vec{k}_{2}, t\right)|0\rangle|i=limta(k1,t)a(k2,t)|0
Final state: | f = lim t + a ( k 3 , t ) a ( k 4 , t ) | 0 | f = lim t + a k 3 , t a k 4 , t | 0 |f:)=lim_(t rarr+oo)a^(†)( vec(k)_(3),t)a^(†)( vec(k)_(4),t)|0:)|f\rangle=\lim _{t \rightarrow+\infty} a^{\dagger}\left(\vec{k}_{3}, t\right) a^{\dagger}\left(\vec{k}_{4}, t\right)|0\rangle|f=limt+a(k3,t)a(k4,t)|0
The scattering amplitude is then given by:
f i = 0 | a ( k 4 , ) a ( k 3 , ) a ( k 2 , ) a ( k 1 , ) | 0 = 0 | T a ( k 4 , ) a ( k 1 , ) | 0 f i = 0 | a k 4 , a k 3 , a k 2 , a k 1 , | 0 = 0 | T a k 4 , a k 1 , | 0 {:[(:f∣i:)=(:0|a( vec(k)_(4),oo)a( vec(k)_(3),oo)a^(†)( vec(k)_(2),-oo)a^(†)( vec(k)_(1),-oo)|0:)],[=(:0|Ta( vec(k)_(4),oo)dotsa^(†)( vec(k)_(1),-oo)|0:)]:}\begin{aligned} \langle f \mid i\rangle & =\langle 0| a\left(\vec{k}_{4}, \infty\right) a\left(\vec{k}_{3}, \infty\right) a^{\dagger}\left(\vec{k}_{2},-\infty\right) a^{\dagger}\left(\vec{k}_{1},-\infty\right)|0\rangle \\ & =\langle 0| T a\left(\vec{k}_{4}, \infty\right) \ldots a^{\dagger}\left(\vec{k}_{1},-\infty\right)|0\rangle \end{aligned}fi=0|a(k4,)a(k3,)a(k2,)a(k1,)|0=0|Ta(k4,)a(k1,)|0
where we trivially inserted T T TTT. Now compute
a ( k , ) a ( k , ) = d t t a ( k , t ) = i d 4 x t ( e i k x t ϕ ( x ) ) = i d 4 x e i k x ( t 2 + w k 2 ) ϕ ( x ) = i d 4 x e i k x ( t 2 2 + m 2 ) ϕ ( x ) = i d 4 x c i k x ( 2 + m 2 ) ϕ ( x ) , 2 = t 2 + 2 a ( k , ) = a ( k , + ) + i d 4 x e i k x ( 2 + m 2 ) ϕ ( x ) a ( k , + ) = a ( k , ) + i d 4 x e i k x ( 2 + m 2 ) ϕ ( x ) a ( k , ) a ( k , ) = d t t a ( k , t ) = i d 4 x t e i k x t ϕ ( x ) = i d 4 x e i k x t 2 + w k 2 ϕ ( x ) = i d 4 x e i k x t 2 2 + m 2 ϕ ( x ) = i d 4 x c i k x 2 + m 2 ϕ ( x ) , 2 = t 2 + 2 a ( k , ) = a ( k , + ) + i d 4 x e i k x 2 + m 2 ϕ ( x ) a ( k , + ) = a ( k , ) + i d 4 x e i k x 2 + m 2 ϕ ( x ) {:[a^(†)( vec(k)","oo)-a^(†)( vec(k)","-oo)=int_(-oo)^(oo)dtdel_(t)a^(†)( vec(k)","t)],[=-i intd^(4)xdel_(t)(e^(ik*x)del^(harr)_(t)phi(x))],[=-i intd^(4)xe^(ik*x)(del_(t)^(2)+w_(k)^(2))phi(x)],[=-i intd^(4)xe^(ik*x)(del_(t)^(2)-grad ^(larr)^(2)+m^(2))phi(x)],[=-i intd^(4)xc^(ik*x)(-del^(2)+m^(2))phi(x)","quaddel^(2)=-del_(t)^(2)+ vec(grad)^(2)],[:.quada^(†)( vec(k)","-oo)=a^(†)( vec(k)","+oo)+i intd^(4)xe^(ik*x)(-del^(2)+m^(2))phi(x)],[a( vec(k)","+oo)=a( vec(k)","-oo)+i intd^(4)xe^(-ik*x)(-del^(2)+m^(2))phi(x)]:}\begin{aligned} & a^{\dagger}(\vec{k}, \infty)-a^{\dagger}(\vec{k},-\infty)=\int_{-\infty}^{\infty} d t \partial_{t} a^{\dagger}(\vec{k}, t) \\ & =-i \int d^{4} x \partial_{t}\left(e^{i k \cdot x} \stackrel{\leftrightarrow}{\partial}_{t} \phi(x)\right) \\ & =-i \int d^{4} x e^{i k \cdot x}\left(\partial_{t}^{2}+w_{k}^{2}\right) \phi(x) \\ & =-i \int d^{4} x e^{i k \cdot x}\left(\partial_{t}^{2}-\overleftarrow{\nabla}^{2}+m^{2}\right) \phi(x) \\ & =-i \int d^{4} x c^{i k \cdot x}\left(-\partial^{2}+m^{2}\right) \phi(x), \quad \partial^{2}=-\partial_{t}^{2}+\vec{\nabla}^{2} \\ & \therefore \quad a^{\dagger}(\vec{k},-\infty)=a^{\dagger}(\vec{k},+\infty)+i \int d^{4} x e^{i k \cdot x}\left(-\partial^{2}+m^{2}\right) \phi(x) \\ & a(\vec{k},+\infty)=a(\vec{k},-\infty)+i \int d^{4} x e^{-i k \cdot x}\left(-\partial^{2}+m^{2}\right) \phi(x) \end{aligned}a(k,)a(k,)=dtta(k,t)=id4xt(eikxtϕ(x))=id4xeikx(t2+wk2)ϕ(x)=id4xeikx(t22+m2)ϕ(x)=id4xcikx(2+m2)ϕ(x),2=t2+2a(k,)=a(k,+)+id4xeikx(2+m2)ϕ(x)a(k,+)=a(k,)+id4xeikx(2+m2)ϕ(x)
If we now plug these formulae into scattering amplitude, we see that time ordering moves a ( k , + ) a ( k , + ) a^(†)(k,+oo)a^{\dagger}(k,+\infty)a(k,+) to the left annihilating 0 | 0 | (:0|\langle 0|0| and a ( k , ) a ( k , ) a( vec(k),-oo)a(\vec{k},-\infty)a(k,) to the right
annihilating | 0 | 0 |0:)|0\rangle|0. Hence we obtain
f i = ( i ) 4 d 4 x 1 e i k 1 x 1 ( 1 2 + m 2 ) d 4 x 2 e i k 1 x 1 ( 2 2 + m 2 ) d 4 x 3 e i k 1 x 1 ( 3 2 + m 2 ) d 4 x 4 e i k 4 x 4 ( 4 2 + m 2 ) 0 | T ϕ ( x 1 ) ϕ ( x 4 ) | 0 f i = ( i ) 4 d 4 x 1 e i k 1 x 1 1 2 + m 2 d 4 x 2 e i k 1 x 1 2 2 + m 2 d 4 x 3 e i k 1 x 1 3 2 + m 2 d 4 x 4 e i k 4 x 4 4 2 + m 2 0 | T ϕ x 1 ϕ x 4 | 0 {:[(:f∣i:)=(i)^(4)intd^(4)x_(1)e^(ik_(1)*x_(1))(-del_(1)^(2)+m^(2))d^(4)x_(2)e^(ik_(1)*x_(1))(-del_(2)^(2)+m^(2))],[d^(4)x_(3)e^(-ik_(1)*x_(1))(-del_(3)^(2)+m^(2))d^(4)x_(4)e^(-ik_(4)*x_(4))(-del_(4)^(2)+m^(2))(:0|T phi(x_(1))dots phi(x_(4))|0:)]:}\begin{aligned} \langle f \mid i\rangle=(i)^{4} \int & d^{4} x_{1} e^{i k_{1} \cdot x_{1}}\left(-\partial_{1}^{2}+m^{2}\right) d^{4} x_{2} e^{i k_{1} \cdot x_{1}}\left(-\partial_{2}^{2}+m^{2}\right) \\ & d^{4} x_{3} e^{-i k_{1} \cdot x_{1}}\left(-\partial_{3}^{2}+m^{2}\right) d^{4} x_{4} e^{-i k_{4} \cdot x_{4}}\left(-\partial_{4}^{2}+m^{2}\right)\langle 0| T \phi\left(x_{1}\right) \ldots \phi\left(x_{4}\right)|0\rangle \end{aligned}fi=(i)4d4x1eik1x1(12+m2)d4x2eik1x1(22+m2)d4x3eik1x1(32+m2)d4x4eik4x4(42+m2)0|Tϕ(x1)ϕ(x4)|0
This is the LSZ reduction formula. Recalling that
( x 2 + m 2 ) Δ ( x y ) = δ 4 ( x y ) x 2 + m 2 Δ ( x y ) = δ 4 ( x y ) (-del_(x)^(2)+m^(2))Delta(x-y)=delta^(4)(x-y)\left(-\partial_{x}^{2}+m^{2}\right) \Delta(x-y)=\delta^{4}(x-y)(x2+m2)Δ(xy)=δ4(xy)
the diff ops trivialise or "amputate" the external props of the Feynman diagrams which contribute to the amplitude. Moreover, the integrals Fourier transform the corrdator to momentum space, where external momenta are on-shell, i.e. k 2 = m 2 k 2 = m 2 k^(2)=-m^(2)k^{2}=-m^{2}k2=m2.
Summary: Compute scattering amplitudes by Fourier transforming correlator to momentum space, amputating external legs, and putting them on-shell. In practice, one can also allow the legs to be off-shell (tor example when renormalising). We will refer to such quantities as amputated correlators.

6 Scattering Amplitudes and Feynman Rules

This is based on Srednicki Chapter 10 and Peskin section 4.6. Let us apply the formalism developed so far to compute some scattering amplitudes. The first step is to compute a correlation function by taking functional derivatives of the generating functional. In general, this will give connected diagrams as well as disconnected diagrams (i.e. products of connected ones), but we only want to consider connected diagrams. To isolate the connected diagrams recall that
Z ( J ) Z ( 0 ) = exp ( i W ( J ) ) Z ( J ) Z ( 0 ) = exp ( i W ( J ) ) (Z(J))/(Z(0))=exp(iW(J))\frac{Z(J)}{Z(0)}=\exp (i W(J))Z(J)Z(0)=exp(iW(J))
where i W ( J ) i W ( J ) iW(J)i W(J)iW(J) is the sum of al connected diagrams with external sources (no vacuum bubbles). Hence, we will focus on connected correlators:
0 | T ϕ ( x 1 ) ϕ ( x n ) | 0 c = 1 i δ δ J ( x 1 ) 1 i δ δ J ( x n ) i W ( J ) | J = 0 0 | T ϕ x 1 ϕ x n | 0 c = 1 i δ δ J x 1 1 i δ δ J x n i W ( J ) J = 0 (:0|T phi(x_(1))dots phi(x_(n))|0:)_(c)=(1)/(i)(delta)/(delta J(x_(1)))cdots(1)/(i)(delta)/(delta J(x_(n)))iW(J)|_(J=0)\langle 0| T \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)|0\rangle_{c}=\left.\frac{1}{i} \frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{1}{i} \frac{\delta}{\delta J\left(x_{n}\right)} i W(J)\right|_{J=0}0|Tϕ(x1)ϕ(xn)|0c=1iδδJ(x1)1iδδJ(xn)iW(J)|J=0
We then apply the LSZ reduction formula to extract the amplitude.
As an example, let's compute a 3 -point scattering amplitude in ϕ 3 ϕ 3 phi^(3)\phi^{3}ϕ3 theory:
L = 1 2 μ ϕ μ ϕ 1 2 m 2 ϕ 2 1 3 ! ϕ 3 L = 1 2 μ ϕ μ ϕ 1 2 m 2 ϕ 2 1 3 ! ϕ 3 L=-(1)/(2)del^(mu)phidel_(mu)phi-(1)/(2)m^(2)phi^(2)-(1)/(3!)delphi^(3)\mathcal{L}=-\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{1}{3!} \partial \phi^{3}L=12μϕμϕ12m2ϕ213!ϕ3
At 3 points, the following diagram contributes to i W ( J ) i W ( J ) iW(J)i W(J)iW(J) at leading order in order in g g ggg
We then have
0 | T ϕ ( x 1 ) ϕ ( x 2 ) ϕ ( x 3 ) | 0 c = 1 i 1 δ J ( x 1 ) 1 i δ δ J ( x 2 ) 1 i δ δ J ( x 3 ) i W ( J ) | J = 0 = 3 ! 1 3 ! ( i g ) d 4 y ( 1 i ) 3 Δ ( x 1 y ) Δ ( x 2 y ) Δ ( x 3 y ) = i g i 3 d 4 y Δ ( x 1 y ) Δ ( x 2 y ) Δ ( x 3 y ) 0 | T ϕ x 1 ϕ x 2 ϕ x 3 | 0 c = 1 i 1 δ J x 1 1 i δ δ J x 2 1 i δ δ J x 3 i W ( J ) J = 0 = 3 ! 1 3 ! ( i g ) d 4 y 1 i 3 Δ x 1 y Δ x 2 y Δ x 3 y = i g i 3 d 4 y Δ x 1 y Δ x 2 y Δ x 3 y {:[(:0|T phi(x_(1))phi(x_(2))phi(x_(3))|0:)_(c)=(1)/(i)(1)/(delta J(x_(1)))(1)/(i)(delta)/(delta J(x_(2)))(1)/(i)(delta)/(delta J(x_(3)))iW(J)|_(J=0)],[=3!(1)/(3!)(-ig)intd^(4)y((1)/(i))^(3)Delta(x_(1)-y)Delta(x_(2)-y)Delta(x_(3)-y)],[=(-ig)/(i^(3))intd^(4)y Delta(x_(1)-y)Delta(x_(2)-y)Delta(x_(3)-y)]:}\begin{aligned} & \langle 0| T \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right)|0\rangle_{c}=\left.\frac{1}{i} \frac{1}{\delta J\left(x_{1}\right)} \frac{1}{i} \frac{\delta}{\delta J\left(x_{2}\right)} \frac{1}{i} \frac{\delta}{\delta J\left(x_{3}\right)} i W(J)\right|_{J=0} \\ & =3!\frac{1}{3!}(-i g) \int d^{4} y\left(\frac{1}{i}\right)^{3} \Delta\left(x_{1}-y\right) \Delta\left(x_{2}-y\right) \Delta\left(x_{3}-y\right) \\ & =\frac{-i g}{i^{3}} \int d^{4} y \Delta\left(x_{1}-y\right) \Delta\left(x_{2}-y\right) \Delta\left(x_{3}-y\right) \end{aligned}0|Tϕ(x1)ϕ(x2)ϕ(x3)|0c=1i1δJ(x1)1iδδJ(x2)1iδδJ(x3)iW(J)|J=0=3!13!(ig)d4y(1i)3Δ(x1y)Δ(x2y)Δ(x3y)=igi3d4yΔ(x1y)Δ(x2y)Δ(x3y)
where the factor of 3 ! arises from the functional derivatives.
Now suppose that legs 1 and 2 are incoming and leg 3 is outgoing. LSZ then gives
3 1 , 2 = 3 1 , 2 = (:3∣1,2:)=\langle 3 \mid 1,2\rangle=31,2=
i 3 d 4 x 1 d 4 x 2 d 4 x 3 e i ( k 1 x 1 + k 2 x 2 k 3 x 3 ) × ( 1 2 + m 2 ) ( 2 2 + m 2 ) ( 3 2 + m 2 ) 0 | T ϕ ( x 1 ) ϕ ( x 2 ) ϕ ( x 3 ) | 0 c = i g d 4 x 1 d 4 x 2 d 4 x 3 d 4 y δ 4 ( x 1 y ) δ 4 ( x 2 y ) δ 4 ( x 3 y ) e i ( k 1 x 1 + k 2 x 2 k 3 x 3 ) = i g d 4 y e i ( k 1 + k 2 k 3 ) y = i g ( 2 π ) 4 δ 4 ( k 1 + k 2 k 3 ) i 3 d 4 x 1 d 4 x 2 d 4 x 3 e i k 1 x 1 + k 2 x 2 k 3 x 3 × 1 2 + m 2 2 2 + m 2 3 2 + m 2 0 | T ϕ x 1 ϕ x 2 ϕ x 3 | 0 c = i g d 4 x 1 d 4 x 2 d 4 x 3 d 4 y δ 4 x 1 y δ 4 x 2 y δ 4 x 3 y e i k 1 x 1 + k 2 x 2 k 3 x 3 = i g d 4 y e i k 1 + k 2 k 3 y = i g ( 2 π ) 4 δ 4 k 1 + k 2 k 3 {:[i^(3)intd^(4)x_(1)d^(4)x_(2)d^(4)x_(3)e^(i(k_(1)*x_(1)+k_(2)*x_(2)-k_(3)*x_(3)))],[ xx(-del_(1)^(2)+m^(2))(-del_(2)^(2)+m^(2))(-del_(3)^(2)+m^(2))(:0|T phi(x_(1))phi(x_(2))phi(x_(3))|0:)_(c)],[=-ig intd^(4)x_(1)d^(4)x_(2)d^(4)x_(3)d^(4)ydelta^(4)(x_(1)-y)delta^(4)(x_(2)-y)delta^(4)(x_(3)-y)e^(i(k_(1)*x_(1)+k_(2)*x_(2)-k_(3)*x_(3)))],[=-ig intd^(4)ye^(i(k_(1)+k_(2)-k_(3))*y)],[=-ig(2pi)^(4)delta^(4)(k_(1)+k_(2)-k_(3))]:}\begin{aligned} & i^{3} \int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} e^{i\left(k_{1} \cdot x_{1}+k_{2} \cdot x_{2}-k_{3} \cdot x_{3}\right)} \\ & \times\left(-\partial_{1}^{2}+m^{2}\right)\left(-\partial_{2}^{2}+m^{2}\right)\left(-\partial_{3}^{2}+m^{2}\right)\langle 0| T \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right)|0\rangle_{c} \\ & =-i g \int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} d^{4} y \delta^{4}\left(x_{1}-y\right) \delta^{4}\left(x_{2}-y\right) \delta^{4}\left(x_{3}-y\right) e^{i\left(k_{1} \cdot x_{1}+k_{2} \cdot x_{2}-k_{3} \cdot x_{3}\right)} \\ & =-i g \int d^{4} y e^{i\left(k_{1}+k_{2}-k_{3}\right) \cdot y} \\ & =-i g(2 \pi)^{4} \delta^{4}\left(k_{1}+k_{2}-k_{3}\right) \end{aligned}i3d4x1d4x2d4x3ei(k1x1+k2x2k3x3)×(12+m2)(22+m2)(32+m2)0|Tϕ(x1)ϕ(x2)ϕ(x3)|0c=igd4x1d4x2d4x3d4yδ4(x1y)δ4(x2y)δ4(x3y)ei(k1x1+k2x2k3x3)=igd4yei(k1+k2k3)y=ig(2π)4δ4(k1+k2k3)
In general we will always get a delta function imposing momentum conservation so we will drop it:
f i = ( 2 π ) 4 g 4 ( k in k out ) i M i M 3 = i g f i = ( 2 π ) 4 g 4 k in  k out  i M i M 3 = i g {:[quad(:f∣i:)=(2pi)^(4)g^(4)(k_("in ")-k_("out "))iM],[ rarr iM_(3)=-ig]:}\begin{aligned} & \quad\langle f \mid i\rangle=(2 \pi)^{4} g^{4}\left(k_{\text {in }}-k_{\text {out }}\right) i \mathcal{M} \\ & \rightarrow i \mathcal{M}_{3}=-i g \end{aligned}fi=(2π)4g4(kin kout )iMiM3=ig
Note that this can be obtained from the following Feynman rule:
Now consider a 4-point amplitude. First we must compute
0 | T ϕ ( x 1 ) ϕ ( x 4 ) | 0 c = 1 i δ δ J ( x 1 ) 1 i δ δ J ( x 4 ) i W ( J ) | J = 0 0 | T ϕ x 1 ϕ x 4 | 0 c = 1 i δ δ J x 1 1 i δ δ J x 4 i W ( J ) J = 0 (:0|T phi(x_(1))dots phi(x_(4))|0:)_(c)=(1)/(i)(delta)/(delta J(x_(1)))cdots(1)/(i)(delta)/(delta J(x_(4)))iW(J)|_(J=0)\langle 0| T \phi\left(x_{1}\right) \ldots \phi\left(x_{4}\right)|0\rangle_{c}=\left.\frac{1}{i} \frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{1}{i} \frac{\delta}{\delta J\left(x_{4}\right)} i W(J)\right|_{J=0}0|Tϕ(x1)ϕ(x4)|0c=1iδδJ(x1)1iδδJ(x4)iW(J)|J=0
At leading order, this will come from acting with functional derivatives on the following connected diagram with four external sources:
i W ( J ) = 1 8 i W ( J ) = 1 8 iW(J)=(1)/(8)i W(J)=\frac{1}{8}iW(J)=18
There are 4 ! ways to act with the 4 δ / δ J 4 δ / δ J 4delta//delta J4 \delta / \delta J4δ/δJ on the 4 sources. These 24 diagrams can be collected into 3 groups of 8 identical diagrams.
This factor of 8 cancels the symmetry factor. We then obtain
0 | T ϕ ( x 1 ) ϕ ( x 4 ) | 0 c = ( i g ) 2 ( 1 i ) 5 d 4 y d 4 z Δ ( y z ) Δ ( x 1 y ) Δ ( x 2 y ) Δ ( x 3 z ) Δ ( x 4 z ) Δ ( x 1 y ) Δ ( x 2 z ) Δ ( x 3 z ) Δ ( x 4 y ) Δ ( x 1 y ) Δ ( x 2 z ) Δ ( x 3 y ) Δ ( x 4 z ) 0 | T ϕ x 1 ϕ x 4 | 0 c = ( i g ) 2 1 i 5 d 4 y d 4 z Δ ( y z ) Δ x 1 y Δ x 2 y Δ x 3 z Δ x 4 z Δ x 1 y Δ x 2 z Δ x 3 z Δ x 4 y Δ x 1 y Δ x 2 z Δ x 3 y Δ x 4 z {:[(:0|T phi(x_(1))dots phi(x_(4))|0:)_(c)=(-ig)^(2)((1)/(i))^(5)intd^(4)yd^(4)z Delta(y-z)],[Delta(x_(1)-y)Delta(x_(2)-y)Delta(x_(3)-z)Delta(x_(4)-z)],[Delta(x_(1)-y)Delta(x_(2)-z)Delta(x_(3)-z)Delta(x_(4)-y)],[Delta(x_(1)-y)Delta(x_(2)-z)Delta(x_(3)-y)Delta(x_(4)-z)]:}\begin{aligned} & \langle 0| T \phi\left(x_{1}\right) \ldots \phi\left(x_{4}\right)|0\rangle_{c}=(-i g)^{2}\left(\frac{1}{i}\right)^{5} \int d^{4} y d^{4} z \Delta(y-z) \\ & \Delta\left(x_{1}-y\right) \Delta\left(x_{2}-y\right) \Delta\left(x_{3}-z\right) \Delta\left(x_{4}-z\right) \\ & \Delta\left(x_{1}-y\right) \Delta\left(x_{2}-z\right) \Delta\left(x_{3}-z\right) \Delta\left(x_{4}-y\right) \\ & \Delta\left(x_{1}-y\right) \Delta\left(x_{2}-z\right) \Delta\left(x_{3}-y\right) \Delta\left(x_{4}-z\right) \end{aligned}0|Tϕ(x1)ϕ(x4)|0c=(ig)2(1i)5d4yd4zΔ(yz)Δ(x1y)Δ(x2y)Δ(x3z)Δ(x4z)Δ(x1y)Δ(x2z)Δ(x3z)Δ(x4y)Δ(x1y)Δ(x2z)Δ(x3y)Δ(x4z)
Take legs 1,2 incoming and 3,4 outgoing and apply LSZ:
f i = i 4 1 i 5 ( i g ) 2 d 4 y d 4 z Δ ( y z ) [ exp ( i ( k 1 + k 2 ) y i ( k 3 + k 4 ) z ) + exp ( i ( k 1 k 4 ) y + i ( k 2 k 3 ) z ) + exp ( i ( k 1 k 3 ) y + i ( k 2 k 4 ) z ) ] f i = i 4 1 i 5 ( i g ) 2 d 4 y d 4 z Δ ( y z ) exp i k 1 + k 2 y i k 3 + k 4 z + exp i k 1 k 4 y + i k 2 k 3 z + exp i k 1 k 3 y + i k 2 k 4 z {:[(:f∣i:)=i^(4)(1)/(i^(5))(-ig)^(2)intd^(4)yd^(4)z Delta(y-z)],[[exp(i(k_(1)+k_(2))*y-i(k_(3)+k_(4))*z):}],[+exp(i(k_(1)-k_(4))*y+i(k_(2)-k_(3))*z)],[{:+exp(i(k_(1)-k_(3))*y+i(k_(2)-k_(4))*z)]]:}\begin{aligned} \langle f \mid i\rangle= & i^{4} \frac{1}{i^{5}}(-i g)^{2} \int d^{4} y d^{4} z \Delta(y-z) \\ & {\left[\exp \left(i\left(k_{1}+k_{2}\right) \cdot y-i\left(k_{3}+k_{4}\right) \cdot z\right)\right.} \\ & +\exp \left(i\left(k_{1}-k_{4}\right) \cdot y+i\left(k_{2}-k_{3}\right) \cdot z\right) \\ & \left.+\exp \left(i\left(k_{1}-k_{3}\right) \cdot y+i\left(k_{2}-k_{4}\right) \cdot z\right)\right] \end{aligned}fi=i41i5(ig)2d4yd4zΔ(yz)[exp(i(k1+k2)yi(k3+k4)z)+exp(i(k1k4)y+i(k2k3)z)+exp(i(k1k3)y+i(k2k4)z)]
Now plug in Δ ( y z ) = d 4 k ( 2 ) 4 e i k ( y z ) k 2 + m 2 Δ ( y z ) = d 4 k ( 2 ) 4 e i k ( y z ) k 2 + m 2 Delta(y-z)=int(d^(4)k)/((2)^(4))(e^(ik*(y-z)))/(k^(2)+m^(2))\Delta(y-z)=\int \frac{d^{4} k}{(2)^{4}} \frac{e^{i k \cdot(y-z)}}{k^{2}+m^{2}}Δ(yz)=d4k(2)4eik(yz)k2+m2. Then we obtain
f i = ( i g ) 2 ( 2 π ) 4 δ 4 ( k 1 + k 2 k 3 k 4 ) [ i ( k 1 + k 2 ) 2 + m 2 + i ( k 1 k 4 ) 2 + m 2 + i ( k 1 k 3 ) 2 + m 2 ] i M 4 = ( i g ) 2 [ i ( k 1 + k 2 ) 2 + m 2 + i ( k 1 k 4 ) 2 + m 2 + i ( k 1 k 3 ) 2 + m 2 ] f i = ( i g ) 2 ( 2 π ) 4 δ 4 k 1 + k 2 k 3 k 4 i k 1 + k 2 2 + m 2 + i k 1 k 4 2 + m 2 + i k 1 k 3 2 + m 2 i M 4 = ( i g ) 2 i k 1 + k 2 2 + m 2 + i k 1 k 4 2 + m 2 + i k 1 k 3 2 + m 2 {:[(:f∣i:)=(-ig)^(2)(2pi)^(4)delta^(4)(k_(1)+k_(2)-k_(3)-k_(4))[(-i)/((k_(1)+k_(2))^(2)+m^(2))+(-i)/((k_(1)-k_(4))^(2)+m^(2))+(-i)/((k_(1)-k_(3))^(2)+m^(2))]],[ rarr iM_(4)=(-ig)^(2)[(-i)/((k_(1)+k_(2))^(2)+m^(2))+(-i)/((k_(1)-k_(4))^(2)+m^(2))+(-i)/((k_(1)-k_(3))^(2)+m^(2))]]:}\begin{aligned} & \langle f \mid i\rangle=(-i g)^{2}(2 \pi)^{4} \delta^{4}\left(k_{1}+k_{2}-k_{3}-k_{4}\right)\left[\frac{-i}{\left(k_{1}+k_{2}\right)^{2}+m^{2}}+\frac{-i}{\left(k_{1}-k_{4}\right)^{2}+m^{2}}+\frac{-i}{\left(k_{1}-k_{3}\right)^{2}+m^{2}}\right] \\ & \rightarrow i \mathcal{M}_{4}=(-i g)^{2}\left[\frac{-i}{\left(k_{1}+k_{2}\right)^{2}+m^{2}}+\frac{-i}{\left(k_{1}-k_{4}\right)^{2}+m^{2}}+\frac{-i}{\left(k_{1}-k_{3}\right)^{2}+m^{2}}\right] \end{aligned}fi=(ig)2(2π)4δ4(k1+k2k3k4)[i(k1+k2)2+m2+i(k1k4)2+m2+i(k1k3)2+m2]iM4=(ig)2[i(k1+k2)2+m2+i(k1k4)2+m2+i(k1k3)2+m2]
This could have been directly calculated from the following Feynman diagrams in momentum space:

where arrows indicate momentum flow, we associate i g i g -ig-i gig to each vertex, and use the following Feynman rule for internal lines:
For external lines, we simply have a factor of 1 because of LSZ. We also impose momentum conservation at every vertex.
In general, we can compute any scattering amplitude by drawing all connected Fexnman diagrams contributing up to a given order in the coupling and evaluating each diagram using the rules above. In practice we can deduce the Feynman rules more directly using Wick's theorem in the interaction picture:

where we expanded e i H int e i H int  e^(-iH_("int "))e^{-i H_{\text {int }}}eiHint  to O ( g ) O ( g ) O(g)\mathcal{O}(g)O(g) and ignore spacetime location of the fields. We also introduced the rule
ϕ ^ | p ¯ = 1 ϕ ^ | p ¯ = 1 widehat(phi)| bar(p):)=1\widehat{\phi}|\bar{p}\rangle=1ϕ^|p¯=1
which follows from LSZ. This corresponds to an external line of a Feynman diagram. Contractions of ϕ ϕ phi\phiϕ 's give internal lines. We first contracted 3 | 3 | (:3|\langle 3|3| with one of the three ϕ ϕ phi\phiϕ 's giving a factor of 3 , then contracted | 2 | 2 |2:)|2\rangle|2 with one of the 2 ramaining ϕ ϕ phi\phiϕ 's giving a factor of 2 , and then contracted | 1 | 1 |1:)|1\rangle|1 with the last remaing ϕ ϕ phi\phiϕ. For derivative interactions, take μ ± i k μ μ ± i k μ del_(mu)rarr+-ik_(mu)\partial_{\mu} \rightarrow \pm i k_{\mu}μ±ikμ when acting on an incoming/outgoing leg with momertun k μ k μ k_(mu)k_{\mu}kμ. Contractions giving internal lines are replaced by the momentum space propagator given above.

7 Loops and Renormalisation

This is based on Srednicki chapters 14, 29 and Kabat section 7.2.1. So far we have only talked about tree-level Feynman diagrams. Now let's discuss looplevel diagrams, ie. diagrams with closed loops. Tree-level diagrams encode classical physics, while loop-level diagrams encode quantum corrections (this
can be seen by restoring \hbar ).
To compute loop-level diagrams, we can use the Feynman rues described before, along with two more rules:
  • for each closed loop, there will be an unfixed internal momentum l μ l μ l^(mu)l^{\mu}lμ flowing through the loop. Integrate each loop momatum with measure d 4 l / ( 2 π ) 4 d 4 l / ( 2 π ) 4 d^(4)l//(2pi)^(4)d^{4} l /(2 \pi)^{4}d4l/(2π)4.
  • Divide by the symmetry factor associated with exchanging only internal lines.
Let's illustrate how this works at 1-loop 4-point in ϕ 4 ϕ 4 phi^(4)\phi^{4}ϕ4 theory:
L = 1 2 μ ϕ u ϕ 1 2 m 2 ϕ 2 1 4 ! g ϕ 4 L = 1 2 μ ϕ u ϕ 1 2 m 2 ϕ 2 1 4 ! g ϕ 4 L=-(1)/(2)del_(mu)phidel^(u)phi-(1)/(2)m^(2)phi^(2)-(1)/(4!)gphi^(4)\mathcal{L}=-\frac{1}{2} \partial_{\mu} \phi \partial^{u} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{1}{4!} g \phi^{4}L=12μϕuϕ12m2ϕ214!gϕ4
Take legs 1,2 incoming and legs 3,4 outgoing:
We will refer to the the three diagrams on the right-hand-side as the s , t , and u channels, respectively. Let's compute the first diagram using Wick contractions:
i M ( s ) 1 loop = 3 , 4 | 1 2 ( i g 4 ! ϕ x 4 ) ( i g 4 ! ϕ y 4 ) | 1 , 2 i M ( s ) 1  loop  = 3 , 4 | 1 2 i g 4 ! ϕ x 4 i g 4 ! ϕ y 4 | 1 , 2 iM_((s))^(1-" loop ")=(:3,4|(1)/(2)((-ig)/(4!)phi_(x)^(4))((-ig)/(4!)phi_(y)^(4))|1,2:)i M_{(s)}^{1-\text { loop }}=\langle 3,4| \frac{1}{2}\left(\frac{-i g}{4!} \phi_{x}^{4}\right)\left(\frac{-i g}{4!} \phi_{y}^{4}\right)|1,2\rangleiM(s)1 loop =3,4|12(ig4!ϕx4)(ig4!ϕy4)|1,2
where we've expanded exp ( i H int ) exp i H int  exp(-iH_("int "))\exp \left(-i H_{\text {int }}\right)exp(iHint ) to O ( g 2 ) O g 2 O(g^(2))\mathcal{O}\left(g^{2}\right)O(g2) and the subscripts x , y x , y x,yx, yx,y simply remind us that the vertices are at different locations. Performing the Wick contractions gives

where we first contracted leg 1 with one the four ϕ y ϕ y phi_(y)\phi_{y}ϕy 's, giving a factor of 4 as well as a factor of 2 because we could have also contracted it onto one of the ϕ x ϕ x phi_(x)\phi_{x}ϕx 's. Then we contracted leg 2 with one of the three remaining ϕ y ϕ y phi_(y)\phi_{y}ϕy 's giving a factor of 3 (if we contracted leg 2 onto a different vertex than leg 1 , this would give the second or third diagram). Then we contracted leg 4 with one of the four ϕ x ϕ x phi_(x)\phi_{x}ϕx 's giving a factor of 4 , and leg 3 with one of the remaining 3 ϕ x 3 ϕ x 3phi_(x)3 \phi_{x}3ϕx 's giving a factor of 3 . Finally, we contracted a ϕ x ϕ x phi_(x)\phi_{x}ϕx with one of the two remaining ϕ y ϕ y phi_(y)\phi_{y}ϕy 's giving
a factor of 2 , and contracted the remaining ϕ x ϕ x phi_(x)\phi_{x}ϕx with the remaing ϕ y ϕ y phi_(y)\phi_{y}ϕy. The two internal contractions give two internal propagators which form a closed loop.
Now assign loop momenta to the diagram:
We then find that
M ( s ) 1 loop = 1 2 ( i g ) 2 d 4 l ( 2 π ) 4 i l 2 + m 2 i ϵ i ( l + k 1 + k 2 ) 2 + m 2 i ϵ M ( s ) 1  loop  = 1 2 ( i g ) 2 d 4 l ( 2 π ) 4 i l 2 + m 2 i ϵ i l + k 1 + k 2 2 + m 2 i ϵ M_((s))^(1-" loop ")=(1)/(2)(-ig)^(2)int(d^(4)l)/((2pi)^(4))(-i)/(l^(2)+m^(2)-i epsilon)(-i)/((l+k_(1)+k_(2))^(2)+m^(2)-i epsilon)\mathcal{M}_{(s)}^{1-\text { loop }}=\frac{1}{2}(-i g)^{2} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{-i}{l^{2}+m^{2}-i \epsilon} \frac{-i}{\left(l+k_{1}+k_{2}\right)^{2}+m^{2}-i \epsilon}M(s)1 loop =12(ig)2d4l(2π)4il2+m2iϵi(l+k1+k2)2+m2iϵ
where the factor of 1 2 1 2 (1)/(2)\frac{1}{2}12 is a symmetry factor associated with exchanging internal lines. Note that the integral is divergent. This can be seen by taking the l l l rarr ool \rightarrow \inftyl limit of the integrand. In general if a loop integral goes like
d 4 l l D 4 d 4 l l D 4 intd^(4)ll^(D-4)\int d^{4} l l^{D-4}d4llD4
and D 0 D 0 D >= 0D \geq 0D0, then the "superficial degree of divergence" is D D DDD. For example, if D = 2 D = 2 D=2D=2D=2 then the integral will be quadratically divergent. In the present example D = 0 D = 0 D=0D=0D=0, which corresponds to a logarithmic divergence. These divergences must be regulated. A standard regulator is dimensional regularisation where we take spacetime dimension d d ddd to be d = 4 ϵ d = 4 ϵ d=4-epsilond=4-\epsilond=4ϵ. In this course, we will use a cut-off on the loop momentum for pedagogical reasons. Let's see how this works.
First introduce "Feynman parameters":
1 A B = 0 1 d x 1 ( x A + ( 1 x ) B ) 2 1 A B = 0 1 d x 1 ( x A + ( 1 x ) B ) 2 (1)/(AB)=int_(0)^(1)dx(1)/((xA+(1-x)B)^(2))\frac{1}{A B}=\int_{0}^{1} d x \frac{1}{(x A+(1-x) B)^{2}}1AB=01dx1(xA+(1x)B)2
This can be used to write the loop integral as follows:
d 4 l ( l 2 + m 2 ) ( ( l + k 1 + k 2 ) 2 + m 2 ) = d 4 l 0 1 d x [ x ( ( l + k 1 + k 2 ) 2 + m 2 ) + ( 1 x ) ( l 2 + m 2 ) ] 2 = 0 1 d x d 4 q ( q 2 + M 2 ) 2 d 4 l l 2 + m 2 l + k 1 + k 2 2 + m 2 = d 4 l 0 1 d x x l + k 1 + k 2 2 + m 2 + ( 1 x ) l 2 + m 2 2 = 0 1 d x d 4 q q 2 + M 2 2 {:[int(d^(4)l)/((l^(2)+m^(2))((l+k_(1)+k_(2))^(2)+m^(2)))=intd^(4)lint_(0)^(1)dx[x((l+k_(1)+k_(2))^(2)+m^(2))+(1-x)(l^(2)+m^(2))]^(-2)],[=int_(0)^(1)dx intd^(4)q(q^(2)+M^(2))^(-2)]:}\begin{aligned} \int \frac{d^{4} l}{\left(l^{2}+m^{2}\right)\left(\left(l+k_{1}+k_{2}\right)^{2}+m^{2}\right)} & =\int d^{4} l \int_{0}^{1} d x\left[x\left(\left(l+k_{1}+k_{2}\right)^{2}+m^{2}\right)+(1-x)\left(l^{2}+m^{2}\right)\right]^{-2} \\ & =\int_{0}^{1} d x \int d^{4} q\left(q^{2}+M^{2}\right)^{-2} \end{aligned}d4l(l2+m2)((l+k1+k2)2+m2)=d4l01dx[x((l+k1+k2)2+m2)+(1x)(l2+m2)]2=01dxd4q(q2+M2)2
where q = l + x ( k 1 + k 2 ) q = l + x k 1 + k 2 q=l+x(k_(1)+k_(2))q=l+x\left(k_{1}+k_{2}\right)q=l+x(k1+k2) and M 2 = x ( 1 x ) ( k 1 + k 2 ) 2 + m 2 M 2 = x ( 1 x ) k 1 + k 2 2 + m 2 M^(2)=x(1-x)(k_(1)+k_(2))^(2)+m^(2)M^{2}=x(1-x)\left(k_{1}+k_{2}\right)^{2}+m^{2}M2=x(1x)(k1+k2)2+m2. Next, Wick rotate to Euclidean signature. Let q μ = ( i q ¯ 0 , q ¯ 1 , q ¯ 2 , q ¯ 3 ) q 2 = ( q ¯ 0 ) 2 + ( q ¯ ) 2 + ( q ¯ 2 ) 2 + q μ = i q ¯ 0 , q ¯ 1 , q ¯ 2 , q ¯ 3 q 2 = q ¯ 0 2 + ( q ¯ ) 2 + q ¯ 2 2 + q^(mu)=(i bar(q)^(0), bar(q)^(1), bar(q)^(2), bar(q)^(3))rarrq^(2)=( bar(q)^(0))^(2)+( bar(q))^(2)+( bar(q)^(2))^(2)+q^{\mu}=\left(i \bar{q}^{0}, \bar{q}^{1}, \bar{q}^{2}, \bar{q}^{3}\right) \rightarrow q^{2}=\left(\bar{q}^{0}\right)^{2}+(\bar{q})^{2}+\left(\bar{q}^{2}\right)^{2}+qμ=(iq¯0,q¯1,q¯2,q¯3)q2=(q¯0)2+(q¯)2+(q¯2)2+ ( q ¯ 3 ) 2 q ¯ 3 2 ( bar(q)^(3))^(2)\left(\bar{q}^{3}\right)^{2}(q¯3)2. The the loop integral can be written as
i 0 1 d x d 4 q ¯ ( q ¯ 2 + M 2 ) 2 i 0 1 d x d 4 q ¯ q ¯ 2 + M 2 2 iint_(0)^(1)dx intd^(4) bar(q)( bar(q)^(2)+M^(2))^(-2)i \int_{0}^{1} d x \int d^{4} \bar{q}\left(\bar{q}^{2}+M^{2}\right)^{-2}i01dxd4q¯(q¯2+M2)2
We can then foliate R 4 R 4 R^(4)\mathbb{R}^{4}R4 with 3 -spheres and write d 4 q ¯ = 2 π 2 q ¯ 3 d q ¯ d 4 q ¯ = 2 π 2 q ¯ 3 d q ¯ d^(4) bar(q)=2pi^(2) bar(q)^(3)d bar(q)d^{4} \bar{q}=2 \pi^{2} \bar{q}^{3} d \bar{q}d4q¯=2π2q¯3dq¯, where 2 π 2 2 π 2 2pi^(2)2 \pi^{2}2π2 is the area of a unit 3 -sphere and q ¯ q ¯ bar(q)\bar{q}q¯ is the radius. In summary, we find that
d 4 l ( l 2 + m 2 ) ( ( l + k 1 + k 2 ) 2 + m 2 ) = 2 π 2 i 0 1 d x 0 Λ d q ¯ q ¯ 3 ( q ¯ 2 + M 2 ) 2 d 4 l l 2 + m 2 l + k 1 + k 2 2 + m 2 = 2 π 2 i 0 1 d x 0 Λ d q ¯ q ¯ 3 q ¯ 2 + M 2 2 int(d^(4)l)/((l^(2)+m^(2))((l+k_(1)+k_(2))^(2)+m^(2)))=2pi^(2)iint_(0)^(1)dxint_(0)^(Lambda)d bar(q) bar(q)^(3)( bar(q)^(2)+M^(2))^(-2)\int \frac{d^{4} l}{\left(l^{2}+m^{2}\right)\left(\left(l+k_{1}+k_{2}\right)^{2}+m^{2}\right)}=2 \pi^{2} i \int_{0}^{1} d x \int_{0}^{\Lambda} d \bar{q} \bar{q}^{3}\left(\bar{q}^{2}+M^{2}\right)^{-2}d4l(l2+m2)((l+k1+k2)2+m2)=2π2i01dx0Λdq¯q¯3(q¯2+M2)2
where we have introduced a cutoff Λ Λ Lambda\LambdaΛ. The integral over q ¯ q ¯ bar(q)\bar{q}q¯ is given by
0 Λ d q ¯ q ¯ 3 ( q ¯ 2 + M 2 ) 2 = 1 2 [ ln ( Λ 2 + M 2 M 2 ) Λ 2 Λ 2 + M 2 ] 1 2 ( ln ( Λ 2 M 2 ) 1 ) 0 Λ d q ¯ q ¯ 3 q ¯ 2 + M 2 2 = 1 2 ln Λ 2 + M 2 M 2 Λ 2 Λ 2 + M 2 1 2 ln Λ 2 M 2 1 int_(0)^(Lambda)d bar(q) bar(q)^(3)( bar(q)^(2)+M^(2))^(-2)=(1)/(2)[ln((Lambda^(2)+M^(2))/(M^(2)))-(Lambda^(2))/(Lambda^(2)+M^(2))]∼(1)/(2)(ln((Lambda^(2))/(M^(2)))-1)\int_{0}^{\Lambda} d \bar{q} \bar{q}^{3}\left(\bar{q}^{2}+M^{2}\right)^{-2}=\frac{1}{2}\left[\ln \left(\frac{\Lambda^{2}+M^{2}}{M^{2}}\right)-\frac{\Lambda^{2}}{\Lambda^{2}+M^{2}}\right] \sim \frac{1}{2}\left(\ln \left(\frac{\Lambda^{2}}{M^{2}}\right)-1\right)0Λdq¯q¯3(q¯2+M2)2=12[ln(Λ2+M2M2)Λ2Λ2+M2]12(ln(Λ2M2)1), for Λ 2 M 2 Λ 2 M 2 Lambda^(2)≫M^(2)\Lambda^{2} \gg M^{2}Λ2M2
Including the tree-level contribution, the total 4-point amplitude is depicted below

and is given by
i M 4 = i g + i 32 π 2 0 1 d x [ ln ( Λ 2 M 2 ( s ) ) + ln ( Λ 2 M 2 ( t ) ) + ln ( Λ 2 M 2 ( u ) ) ] i M 4 = i g + i 32 π 2 0 1 d x ln Λ 2 M 2 ( s ) + ln Λ 2 M 2 ( t ) + ln Λ 2 M 2 ( u ) iM_(4)=-ig+(iℏ)/(32pi^(2))int_(0)^(1)dx[ln((Lambda^(2))/(M^(2)(s)))+ln((Lambda^(2))/(M^(2)(t)))+ln((Lambda^(2))/(M^(2)(u)))]i \mathcal{M}_{4}=-i g+\frac{i \hbar}{32 \pi^{2}} \int_{0}^{1} d x\left[\ln \left(\frac{\Lambda^{2}}{M^{2}(s)}\right)+\ln \left(\frac{\Lambda^{2}}{M^{2}(t)}\right)+\ln \left(\frac{\Lambda^{2}}{M^{2}(u)}\right)\right]iM4=ig+i32π201dx[ln(Λ2M2(s))+ln(Λ2M2(t))+ln(Λ2M2(u))]
where we have restored \hbar, and
M 2 ( s ) = x ( 1 x ) s + m 2 s = ( k 1 + k 2 ) 2 , t = ( k 1 k 4 ) 2 , u = ( k 1 k 3 ) 2 M 2 ( s ) = x ( 1 x ) s + m 2 s = k 1 + k 2 2 , t = k 1 k 4 2 , u = k 1 k 3 2 {:[M^(2)(s)=x(1-x)s+m^(2)],[s=(k_(1)+k_(2))^(2)","t=(k_(1)-k_(4))^(2)","u=(k_(1)-k_(3))^(2)]:}\begin{aligned} & M^{2}(s)=x(1-x) s+m^{2} \\ & s=\left(k_{1}+k_{2}\right)^{2}, t=\left(k_{1}-k_{4}\right)^{2}, u=\left(k_{1}-k_{3}\right)^{2} \end{aligned}M2(s)=x(1x)s+m2s=(k1+k2)2,t=(k1k4)2,u=(k1k3)2
where s , t , u s , t , u s,t,us, t, us,t,u are known as Mandelstam variables.
From the point of view of the path integral, we can think of Λ Λ Lambda\LambdaΛ as a cutoff above which we integrate out all the higher energy modes of the field (you will explore this in the HW). Hence, we should think of this as describing an effective field theory of modes with energy below the cut-off. For low energy observers, the amplitude must be independent of the cutoff. If we allow g g ggg to depend on Λ Λ Lambda\LambdaΛ, we then have
0 = d d ln Λ ( i M 4 ) = i d g d ln Λ + d d ln Λ ( i g 2 16 π 2 3 ln Λ + ) + O ( 2 ) = i d g d ln Λ + 3 i g 2 16 π 2 + O ( 2 ) 0 = d d ln Λ i M 4 = i d g d ln Λ + d d ln Λ i g 2 16 π 2 3 ln Λ + + O 2 = i d g d ln Λ + 3 i g 2 16 π 2 + O 2 {:[0=(d)/(d ln Lambda)(iM_(4))],[=-i(dg)/(d ln Lambda)+(d)/(d ln Lambda)((iℏg^(2))/(16pi^(2))3ln Lambda+dots)+O(ℏ^(2))],[=-i(dg)/(d ln Lambda)+(3iℏg^(2))/(16pi^(2))+O(ℏ^(2))]:}\begin{aligned} 0 & =\frac{d}{d \ln \Lambda}\left(i \mathcal{M}_{4}\right) \\ & =-i \frac{d g}{d \ln \Lambda}+\frac{d}{d \ln \Lambda}\left(\frac{i \hbar g^{2}}{16 \pi^{2}} 3 \ln \Lambda+\ldots\right)+\mathcal{O}\left(\hbar^{2}\right) \\ & =-i \frac{d g}{d \ln \Lambda}+\frac{3 i \hbar g^{2}}{16 \pi^{2}}+\mathcal{O}\left(\hbar^{2}\right) \end{aligned}0=ddlnΛ(iM4)=idgdlnΛ+ddlnΛ(ig216π23lnΛ+)+O(2)=idgdlnΛ+3ig216π2+O(2)
where we neglect d g / d ln Λ O ( ) = O ( 2 ) d g / d ln Λ O ( ) = O 2 ℏubrace(dg//d ln Lambdaubrace)_(O(ℏ))=O(ℏ^(2))\hbar \underbrace{d g / d \ln \Lambda}_{\mathcal{O}(\hbar)}=\mathcal{O}\left(\hbar^{2}\right)dg/dlnΛO()=O(2). From this we compute the beta function
β ( g ) d g d ln Λ = 3 g 2 16 π 2 β ( g ) d g d ln Λ = 3 g 2 16 π 2 beta(g)-=(dg)/(d ln Lambda)=(3g^(2))/(16pi^(2))\beta(g) \equiv \frac{d g}{d \ln \Lambda}=\frac{3 g^{2}}{16 \pi^{2}}β(g)dgdlnΛ=3g216π2
where we set = 1 = 1 ℏ=1\hbar=1=1.
The solution to this differential equation is given by
1 g ( Λ ) = 1 g ( μ ) 3 16 π 2 ln ( Λ μ ) 1 g ( Λ ) = 1 g ( μ ) 3 16 π 2 ln Λ μ (1)/(g(Lambda))=(1)/(g(mu))-(3)/(16pi^(2))ln((Lambda )/(mu))\frac{1}{g(\Lambda)}=\frac{1}{g(\mu)}-\frac{3}{16 \pi^{2}} \ln \left(\frac{\Lambda}{\mu}\right)1g(Λ)=1g(μ)316π2ln(Λμ)
where 1 / g ( μ ) 1 / g ( μ ) 1//g(mu)1 / g(\mu)1/g(μ) is an integration constant, g ( Λ ) g ( Λ ) g(Lambda)g(\Lambda)g(Λ) is the bare coupling, g ( μ ) g ( μ ) g(mu)g(\mu)g(μ) is the renormalised coupling (measured by an experiment), and μ μ mu\muμ is the renormalisation scale (in practice, this is the energy scale of the experiment). This formula tells us how the coupling g ( Λ ) g ( Λ ) g(Lambda)g(\Lambda)g(Λ) has to change in order to compensate for a change in Λ Λ Lambda\LambdaΛ. For each value of g ( μ ) g ( μ ) g(mu)g(\mu)g(μ), there is a family of EFT's related by "renormalisation group flow" whose physical consequences are the same:
Note that g ( Λ ) g ( Λ ) g(Lambda)g(\Lambda)g(Λ) diverges at Λ max = μ exp ( 16 π 2 / 3 g ( μ ) ) Λ max = μ exp 16 π 2 / 3 g ( μ ) Lambda_(max)=mu exp(16pi^(2)//3g(mu))\Lambda_{\max }=\mu \exp \left(16 \pi^{2} / 3 g(\mu)\right)Λmax=μexp(16π2/3g(μ)). This is known as a "Landau pole". Some new physics has to kick in before the scale Λ max Λ max Lambda_(max)\Lambda_{\max }Λmax. Equivalently, it we hold Λ Λ Lambda\LambdaΛ and g ( Λ ) g ( Λ ) g(Lambda)g(\Lambda)g(Λ) fixed, then we see that renormalised coupling g ( μ ) g ( μ ) g(mu)g(\mu)g(μ) must change as we vary renormalisation scale μ μ mu\muμ. This is referred to as a "running coupling." At high energy, the theory becomes strongly coupled so perturbation theory not reliable.
Let us express the amplitude in terms of g ( μ ) g ( μ ) g(mu)g(\mu)g(μ). First note that
g ( Λ ) = ( 1 g ( μ ) 3 16 π 2 ln ( Λ μ ) ) 1 = g ( μ ) ( 1 3 g ( μ ) 16 π 2 ln ( Λ μ ) ) 1 = g ( μ ) + 3 g ( μ ) 2 16 π 2 ln ( Λ μ ) + O ( 2 ) g ( Λ ) = 1 g ( μ ) 3 16 π 2 ln Λ μ 1 = g ( μ ) 1 3 g ( μ ) 16 π 2 ln Λ μ 1 = g ( μ ) + 3 g ( μ ) 2 16 π 2 ln Λ μ + O 2 {:[g(Lambda)=((1)/(g(mu))-(3ℏ)/(16pi^(2))ln((Lambda )/(mu)))^(-1)],[=g(mu)(1-(3ℏg(mu))/(16pi^(2))ln((Lambda )/(mu)))^(-1)],[=g(mu)+(3ℏg(mu)^(2))/(16pi^(2))ln((Lambda )/(mu))+O(ℏ^(2))]:}\begin{aligned} g(\Lambda) & =\left(\frac{1}{g(\mu)}-\frac{3 \hbar}{16 \pi^{2}} \ln \left(\frac{\Lambda}{\mu}\right)\right)^{-1} \\ & =g(\mu)\left(1-\frac{3 \hbar g(\mu)}{16 \pi^{2}} \ln \left(\frac{\Lambda}{\mu}\right)\right)^{-1} \\ & =g(\mu)+\frac{3 \hbar g(\mu)^{2}}{16 \pi^{2}} \ln \left(\frac{\Lambda}{\mu}\right)+\mathcal{O}\left(\hbar^{2}\right) \end{aligned}g(Λ)=(1g(μ)316π2ln(Λμ))1=g(μ)(13g(μ)16π2ln(Λμ))1=g(μ)+3g(μ)216π2ln(Λμ)+O(2)
Plugging this back into amplitude and dropping terms of O ( 2 ) O 2 O(ℏ^(2))\mathcal{O}\left(\hbar^{2}\right)O(2) then gives
i M 4 = i g ( μ ) + i g ( μ ) 2 32 π 2 0 1 d x [ ln ( μ 2 M 2 ( s ) ) + ln ( μ 2 M 2 ( t ) ) + ln ( μ 2 M 2 ( μ ) ) 3 ] i M 4 = i g ( μ ) + i g ( μ ) 2 32 π 2 0 1 d x ln μ 2 M 2 ( s ) + ln μ 2 M 2 ( t ) + ln μ 2 M 2 ( μ ) 3 iM_(4)=-ig(mu)+(iℏg(mu)^(2))/(32pi^(2))int_(0)^(1)dx[ln((mu^(2))/(M^(2)(s)))+ln((mu^(2))/(M^(2)(t)))+ln((mu^(2))/(M^(2)(mu)))-3]i \mathcal{M}_{4}=-i g(\mu)+\frac{i \hbar g(\mu)^{2}}{32 \pi^{2}} \int_{0}^{1} d x\left[\ln \left(\frac{\mu^{2}}{M^{2}(s)}\right)+\ln \left(\frac{\mu^{2}}{M^{2}(t)}\right)+\ln \left(\frac{\mu^{2}}{M^{2}(\mu)}\right)-3\right]iM4=ig(μ)+ig(μ)232π201dx[ln(μ2M2(s))+ln(μ2M2(t))+ln(μ2M2(μ))3]
Hence, the Λ Λ Lambda\LambdaΛ-dependence cancels out and the amplitude is explicitly finite. It has been "renormalised."
Let us now consider more general β β beta\betaβ function:
d g d ln λ = β ( g ) d g d ln λ = β ( g ) (dg)/(d ln lambda)=beta(g)\frac{d g}{d \ln \lambda}=\beta(g)dgdlnλ=β(g)
Suppose that β ( g ) = c g 2 β ( g ) = c g 2 beta(g)=-cg^(2)\beta(g)=-c g^{2}β(g)=cg2, where c > 0 c > 0 c > 0c>0c>0. Then
1 g ( Λ ) = 1 g ( μ ) + c ln ( Λ μ ) 1 g ( Λ ) = 1 g ( μ ) + c ln Λ μ (1)/(g(Lambda))=(1)/(g(mu))+c ln((Lambda )/(mu))\frac{1}{g(\Lambda)}=\frac{1}{g(\mu)}+c \ln \left(\frac{\Lambda}{\mu}\right)1g(Λ)=1g(μ)+cln(Λμ)
We plot the solution below:
Hence, coupling goes to zero at high energies and becomes strong at low energies. This is known as "asymptotic freedom."
Now suppose that β ( g ) = 0 β g = 0 beta(g_(**))=0\beta\left(g_{*}\right)=0β(g)=0 for some particular value g g g_(**)g_{*}g. Then g g g_(**)g_{*}g is a "fixed point" because if the coupling starts at g g g_(**)g_{*}g, it will stay there as we vary Λ Λ Lambda\LambdaΛ since
d g d Λ | g = g = 1 Λ d g d ln Λ | g = g = 1 Λ β ( g ) = 0 d g d Λ g = g = 1 Λ d g d ln Λ g = g = 1 Λ β g = 0 (dg)/(d Lambda)|_(g=g_(**))=(1)/(Lambda)(dg)/(d ln Lambda)|_(g=g_(**))=(1)/(Lambda)beta(g_(**))=0\left.\frac{d g}{d \Lambda}\right|_{g=g_{*}}=\left.\frac{1}{\Lambda} \frac{d g}{d \ln \Lambda}\right|_{g=g_{*}}=\frac{1}{\Lambda} \beta\left(g_{*}\right)=0dgdΛ|g=g=1ΛdgdlnΛ|g=g=1Λβ(g)=0
If β ( g ) < 0 β g < 0 beta^(')(g_(**)) < 0\beta^{\prime}\left(g_{*}\right)<0β(g)<0, then g g ggg is driven to g g g_(**)g_{*}g as Λ Λ Lambda\LambdaΛ increases, correspponding to "ultraviolet (UV) fixed point." If β ( g ) > 0 β g > 0 beta^(')(g_(**)) > 0\beta^{\prime}\left(g_{*}\right)>0β(g)>0, then g g ggg is driven away from g g g_(**)g_{*}g as Λ Λ Lambda\LambdaΛ increases, corresponding to an "infrared (IR) fixed point" (see HW). Such fixed points can describe phase transitions and quantum gravity via AdS/CFT.

8 Classical Maxwell Theory

This is based on Srednicki Chapters 54, 55. Let us recall Maxwell's equations:
E = ρ , × B t E = J B = 0 , × E + t B = 0 E = ρ , × B t E = J B = 0 , × E + t B = 0 {:[ vec(grad)* vec(E)=rho","quad vec(grad)xx vec(B)-del_(t) vec(E)= vec(J)],[ vec(grad)* vec(B)=0","quad vec(grad)xx vec(E)+del_(t) vec(B)=0]:}\begin{aligned} & \vec{\nabla} \cdot \vec{E}=\rho, \quad \vec{\nabla} \times \vec{B}-\partial_{t} \vec{E}=\vec{J} \\ & \vec{\nabla} \cdot \vec{B}=0, \quad \vec{\nabla} \times \vec{E}+\partial_{t} \vec{B}=0 \end{aligned}E=ρ,×BtE=JB=0,×E+tB=0
where ρ ρ rho\rhoρ is the charge density and J J vec(J)\vec{J}J is the current density. Note that
B = 0 B = × A B = 0 B = × A vec(grad)* vec(B)=0rarr vec(B)= vec(grad)xx vec(A)\vec{\nabla} \cdot \vec{B}=0 \rightarrow \vec{B}=\vec{\nabla} \times \vec{A}B=0B=×A
where A A vec(A)\vec{A}A is some vector potential. Plugging this into the other homogeneous equation gives
0 = × E + t B = × ( E + t A ) E + t A = ϕ E = t A ϕ 0 = × E + t B = × E + t A E + t A = ϕ E = t A ϕ {:[0= vec(grad)xx vec(E)+del_(t) vec(B)],[= vec(grad)xx(( vec(E))+del_(t)( vec(A)))rarr vec(E)+del_(t) vec(A)=- vec(grad)phi rarr vec(E)=-del_(t) vec(A)- vec(grad)phi]:}\begin{aligned} 0 & =\vec{\nabla} \times \vec{E}+\partial_{t} \vec{B} \\ & =\vec{\nabla} \times\left(\vec{E}+\partial_{t} \vec{A}\right) \rightarrow \vec{E}+\partial_{t} \vec{A}=-\vec{\nabla} \phi \rightarrow \vec{E}=-\partial_{t} \vec{A}-\vec{\nabla} \phi \end{aligned}0=×E+tB=×(E+tA)E+tA=ϕE=tAϕ
where ϕ ϕ phi\phiϕ is some scalar potential.
The scalar and vector potential can be combined into a 4 -vector called a gauge field:
A μ ( x ) = ( ϕ ( x ) , A ( x ) ) A μ ( x ) = ( ϕ ( x ) , A ( x ) ) A^(mu)(x)=(phi(x), vec(A)(x))A^{\mu}(x)=(\phi(x), \vec{A}(x))Aμ(x)=(ϕ(x),A(x))
Maxwell's equations can be expressed in a Lorentz-covariant way in terms of A μ A μ A^(mu)A^{\mu}Aμ. First define the field strength:
F μ ν = μ A ν ν A μ F μ ν = μ A ν ν A μ F^(mu nu)=del^(mu)A^(nu)-del^(nu)A^(mu)F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}Fμν=μAννAμ
Note that F μ ν = F ν μ F μ ν = F ν μ F^(mu nu)=-F^(nu mu)F^{\mu \nu}=-F^{\nu \mu}Fμν=Fνμ. Using the above definitions, we find that
F t i = E i , F i j = ϵ i j k B k F t i = E i , F i j = ϵ i j k B k F^(ti)=E^(i),quadF^(ij)=epsilon^(ijk)B_(k)F^{t i}=E^{i}, \quad F^{i j}=\epsilon^{i j k} B_{k}Fti=Ei,Fij=ϵijkBk
where ϵ i j k = ϵ j k = ϵ i k j , ϵ 123 = 1 ϵ i j k = ϵ j k = ϵ i k j , ϵ 123 = 1 epsilon^(ijk)=-epsilon^(jk)=-epsilon^(ikj),epsilon^(123)=1\epsilon^{i j k}=-\epsilon^{j k}=-\epsilon^{i k j}, \epsilon^{123}=1ϵijk=ϵjk=ϵikj,ϵ123=1 and indices are raised and lowered using η μ ν = diag { 1 , 1 , 1 , 1 } η μ ν = diag { 1 , 1 , 1 , 1 } eta_(mu nu)=diag{-1,1,1,1}\eta_{\mu \nu}=\operatorname{diag}\{-1,1,1,1\}ημν=diag{1,1,1,1}. Now Maxwell's equations take the following form:
ν F μ ν = J μ , J μ = ( ρ , J ) μ F ρ λ + cyclic = 0 ν F μ ν = J μ , J μ = ( ρ , J ) μ F ρ λ +  cyclic  = 0 {:[del_(nu)F^(mu nu)=J^(mu)","quadJ^(mu)=(rho"," vec(J))],[del^(mu)F^(rho lambda)+" cyclic "=0]:}\begin{aligned} & \partial_{\nu} F^{\mu \nu}=J^{\mu}, \quad J^{\mu}=(\rho, \vec{J}) \\ & \partial^{\mu} F^{\rho \lambda}+\text { cyclic }=0 \end{aligned}νFμν=Jμ,Jμ=(ρ,J)μFρλ+ cyclic =0
Note that the first equation implies current conservation:
μ J μ = μ ν F μ ν = 0 μ J μ = μ ν F μ ν = 0 del_(mu)J^(mu)=del_(mu)del_(nu)F^(mu nu)=0\partial_{\mu} J^{\mu}=\partial_{\mu} \partial_{\nu} F^{\mu \nu}=0μJμ=μνFμν=0

Gauge symmetry:

Maxwell's equations are invariant under A μ A μ μ Γ A μ A μ μ Γ A_(mu)rarrA_(mu)-del_(mu)GammaquadA_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \Gamma \quadAμAμμΓ (gauge transformations). Indeed, under this transformation
F μ ν μ ( A ν μ Γ ) ν ( A μ μ Γ ) = F μ ν μ ν Γ + ν μ Γ 0 = F μ ν F μ ν μ A ν μ Γ ν A μ μ Γ = F μ ν μ ν Γ + ν μ Γ 0 = F μ ν F_(mu nu)rarrdel_(mu)(A_(nu)-del_(mu)Gamma)-del_(nu)(A_(mu)-del_(mu)Gamma)=F_(mu nu)ubrace(-del_(mu)del_(nu)Gamma+del_(nu)del_(mu)Gammaubrace)_(0)=F_(mu nu)F_{\mu \nu} \rightarrow \partial_{\mu}\left(A_{\nu}-\partial_{\mu} \Gamma\right)-\partial_{\nu}\left(A_{\mu}-\partial_{\mu} \Gamma\right)=F_{\mu \nu} \underbrace{-\partial_{\mu} \partial_{\nu} \Gamma+\partial_{\nu} \partial_{\mu} \Gamma}_{0}=F_{\mu \nu}Fμνμ(AνμΓ)ν(AμμΓ)=FμνμνΓ+νμΓ0=Fμν

Action:

S = d 4 x ( 1 4 F μ ν F μ v + J μ A μ ) S = d 4 x 1 4 F μ ν F μ v + J μ A μ S=intd^(4)x(-(1)/(4)F_(mu nu)F^(mu v)+J^(mu)A_(mu))S=\int d^{4} x\left(-\frac{1}{4} F_{\mu \nu} F^{\mu v}+J^{\mu} A_{\mu}\right)S=d4x(14FμνFμv+JμAμ)
Let's check gauge invariance. Under δ A μ = μ Γ δ A μ = μ Γ deltaA_(mu)=-del_(mu)Gamma\delta A_{\mu}=-\partial_{\mu} \GammaδAμ=μΓ
δ S = d 4 x ( 1 4 2 F μ ν δ F μ ν + J μ δ A μ ) = d 4 x J μ μ Γ = 0 δ S = d 4 x 1 4 2 F μ ν δ F μ ν + J μ δ A μ = d 4 x J μ μ Γ = 0 {:[delta S,=intd^(4)x(-(1)/(4)2F_(mu nu)deltaF^(mu nu)+J^(mu)deltaA_(mu))],[,=-intd^(4)xJ_(mu)del_(mu)Gamma,=0]:}\begin{array}{rlr} \delta S & =\int d^{4} x\left(-\frac{1}{4} 2 F_{\mu \nu} \delta F^{\mu \nu}+J^{\mu} \delta A_{\mu}\right) \\ & =-\int d^{4} x J_{\mu} \partial_{\mu} \Gamma & =0 \end{array}δS=d4x(142FμνδFμν+JμδAμ)=d4xJμμΓ=0
where we used integration by parts followed by current conservation.

Equations of motion:

Now consider a general variation δ A μ δ A μ deltaA_(mu)\delta A_{\mu}δAμ :
δ S = d 4 x ( 1 4 2 F μ v δ F μ v + J ν δ A ν ) = d 4 x ( μ δ A v F μ v + J ν δ A ν ) = d 4 x A ν ( μ F μ ν + J ν ) μ F μ ν + J ν = 0 δ S = d 4 x 1 4 2 F μ v δ F μ v + J ν δ A ν = d 4 x μ δ A v F μ v + J ν δ A ν = d 4 x A ν μ F μ ν + J ν μ F μ ν + J ν = 0 {:[delta S=intd^(4)x(-(1)/(4)2F_(mu v)deltaF^(mu v)+J_(nu)deltaA^(nu))],[=intd^(4)x(-del^(mu)deltaA^(v)F_(mu v)+J_(nu)deltaA^(nu))],[=intd^(4)x intA^(nu)(del^(mu)F_(mu nu)+J_(nu))rarrdel^(mu)F_(mu nu)+J_(nu)=0]:}\begin{aligned} \delta S & =\int d^{4} x\left(-\frac{1}{4} 2 F_{\mu v} \delta F^{\mu v}+J_{\nu} \delta A^{\nu}\right) \\ & =\int d^{4} x\left(-\partial^{\mu} \delta A^{v} F_{\mu v}+J_{\nu} \delta A^{\nu}\right) \\ & =\int d^{4} x \int A^{\nu}\left(\partial^{\mu} F_{\mu \nu}+J_{\nu}\right) \rightarrow \partial^{\mu} F_{\mu \nu}+J_{\nu}=0 \end{aligned}δS=d4x(142FμvδFμv+JνδAν)=d4x(μδAvFμv+JνδAν)=d4xAν(μFμν+Jν)μFμν+Jν=0

Gauge-fixing:

Using δ A μ = μ Γ δ A μ = μ Γ deltaA_(mu)=-del_(mu)Gamma\delta A_{\mu}=-\partial_{\mu} \GammaδAμ=μΓ, we can impose Lorenz gauge: μ A μ = 0 μ A μ = 0 del_(mu)A^(mu)=0\partial_{\mu} A^{\mu}=0μAμ=0. Setting J μ = 0 J μ = 0 J^(mu)=0J^{\mu}=0Jμ=0, the EOM reduce to
0 = μ F μ ν = μ ( μ A ν ν A μ ) = 2 A ν ν A 0 = 2 A v 0 = μ F μ ν = μ μ A ν ν A μ = 2 A ν ν A 0 = 2 A v {:[0=del_(mu)F^(mu nu)=del_(mu)(del^(mu)A^(nu)-del^(nu)A^(mu))],[=del^(2)A^(nu)-del^(nu)ubrace(del*Aubrace)_(0)],[=del^(2)A^(v)]:}\begin{aligned} 0=\partial_{\mu} F^{\mu \nu} & =\partial_{\mu}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right) \\ & =\partial^{2} A^{\nu}-\partial^{\nu} \underbrace{\partial \cdot A}_{0} \\ & =\partial^{2} A^{v} \end{aligned}0=μFμν=μ(μAννAμ)=2AννA0=2Av
These are just the EOM of 4 massless scalars! On the other hand, there are fewer that 4 degrees of freedom due to gauge-invariace. To see this, let's Fourier transform to momentum space:
A μ ( x ) = d 4 k ( 2 π ) 4 e i k x A μ ( k ) A μ ( x ) = d 4 k ( 2 π ) 4 e i k x A μ ( k ) A_(mu)(x)=int(d^(4)k)/((2pi)^(4))e^(ik*x)A_(mu)(k)A_{\mu}(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{i k \cdot x} A_{\mu}(k)Aμ(x)=d4k(2π)4eikxAμ(k)
After doing so, the EOM reduce to
k 2 A ( k ) = 0 k 0 = ± ω k , ω k = | k | k 2 A ( k ) = 0 k 0 = ± ω k , ω k = | k | k^(2)A(k)=0rarrk^(0)=+-omega_(k),quadomega_(k)=| vec(k)|k^{2} A(k)=0 \rightarrow k^{0}= \pm \omega_{k}, \quad \omega_{k}=|\vec{k}|k2A(k)=0k0=±ωk,ωk=|k|
Note that there is a residual gauge symmetry which preserves the gauge condition:
A μ ( x ) A μ ( x ) μ ω ( x ) A μ ( x ) A μ ( x ) μ ω ( x ) A_(mu)(x)rarrA_(mu)(x)-del_(mu)omega(x)A_{\mu}(x) \rightarrow A_{\mu}(x)-\partial_{\mu} \omega(x)Aμ(x)Aμ(x)μω(x)
where 2 ω ( x ) = 0 2 ω ( x ) = 0 del^(2)omega(x)=0\partial^{2} \omega(x)=02ω(x)=0. Fourier transforming to momentum space:
ω ( x ) = d 4 k ( 2 π ) 4 δ ( k 2 ) e i k x ω ( k ) A μ ( x ) = d 4 k ( 2 π ) 4 δ ( k 2 ) e i k x ϵ μ ( k ) ω ( x ) = d 4 k ( 2 π ) 4 δ k 2 e i k x ω ( k ) A μ ( x ) = d 4 k ( 2 π ) 4 δ k 2 e i k x ϵ μ ( k ) {:[omega(x)=int(d^(4)k)/((2pi)^(4))delta(k^(2))e^(ik*x)omega(k)],[A_(mu)(x)=int(d^(4)k)/((2pi)^(4))delta(k^(2))e^(ik*x)epsilon_(mu)(k)]:}\begin{aligned} & \omega(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} \delta\left(k^{2}\right) e^{i k \cdot x} \omega(k) \\ & A_{\mu}(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} \delta\left(k^{2}\right) e^{i k \cdot x} \epsilon_{\mu}(k) \end{aligned}ω(x)=d4k(2π)4δ(k2)eikxω(k)Aμ(x)=d4k(2π)4δ(k2)eikxϵμ(k)
where δ ( k 2 ) δ k 2 delta(k^(2))\delta\left(k^{2}\right)δ(k2) enforces the equations of motion and ϵ μ ϵ μ epsilon_(mu)\epsilon_{\mu}ϵμ is a polarisation vector. After doing so, the gauge condition corresponds to k ϵ ( k ) = 0 k ϵ ( k ) = 0 k*epsilon(k)=0k \cdot \epsilon(k)=0kϵ(k)=0 and the residual gauge transformation corresponds to ϵ μ ( k ) ϵ μ ( k ) + i ω ( k ) k μ ϵ μ ( k ) ϵ μ ( k ) + i ω ( k ) k μ epsilon_(mu)(k)rarrepsilon_(mu)(k)+i omega(k)k_(mu)\epsilon_{\mu}(k) \rightarrow \epsilon_{\mu}(k)+i \omega(k) k_{\mu}ϵμ(k)ϵμ(k)+iω(k)kμ. Hence ϵ μ ϵ μ epsilon_(mu)\epsilon_{\mu}ϵμ and ϵ μ + i α k μ ϵ μ + i α k μ epsilon_(mu)+i alphak_(mu)\epsilon_{\mu}+i \alpha k_{\mu}ϵμ+iαkμ are physically equivalent, where α α alpha\alphaα is arbitrary and k 2 = 0 k 2 = 0 k^(2)=0k^{2}=0k2=0.
Since ϵ ϵ epsilon\epsilonϵ satisfies ϵ k = 0 ϵ k = 0 epsilon*k=0\epsilon \cdot k=0ϵk=0 and has a residual gauge symmetry, it has two physical degrees of freedom, ϵ ± ϵ ± epsilon_(+-)\epsilon_{ \pm}ϵ±. To see this more explicitly, choose a frame where
k μ = ( ω k , 0 , 0 , ω k ) k μ = ω k , 0 , 0 , ω k k^(mu)=(omega_(k),0,0,omega_(k))k^{\mu}=\left(\omega_{k}, 0,0, \omega_{k}\right)kμ=(ωk,0,0,ωk)
Then ϵ k = 0 ϵ μ = ( 0 , b , c , 0 ) + a ( 1 , 0 , 0 , 1 ) ϵ k = 0 ϵ μ = ( 0 , b , c , 0 ) + a ( 1 , 0 , 0 , 1 ) epsilon*k=0rarrepsilon^(mu)=(0,b,c,0)+a(1,0,0,1)\epsilon \cdot k=0 \rightarrow \epsilon^{\mu}=(0, b, c, 0)+a(1,0,0,1)ϵk=0ϵμ=(0,b,c,0)+a(1,0,0,1). Using the residual gauge symmetry, we may then take
ϵ μ ϵ μ a ω k k μ = ( 0 , b , c , 0 ) ϵ μ ϵ μ a ω k k μ = ( 0 , b , c , 0 ) epsilon^(mu)rarrepsilon^(mu)-(a)/(omega_(k))k^(mu)=(0,b,c,0)\epsilon^{\mu} \rightarrow \epsilon^{\mu}-\frac{a}{\omega_{k}} k^{\mu}=(0, b, c, 0)ϵμϵμaωkkμ=(0,b,c,0)
The two independent solutions are then given by ϵ ± μ = 1 2 ( 0 , 1 , i , 0 ) ϵ ± μ = 1 2 ( 0 , 1 , i , 0 ) epsilon_(+-)^(mu)=(1)/(sqrt2)(0,1,∓i,0)\epsilon_{ \pm}^{\mu}=\frac{1}{\sqrt{2}}(0,1, \mp i, 0)ϵ±μ=12(0,1,i,0), where we have fixed the normalisation. These correspond to positive and negative helicity. In summary, the polarisation vectors satisfy
ϵ ± ( k ) k = ϵ ± ( k ) ϵ ± ( k ) = 0 , ϵ + μ ( k ) = ϵ μ ( k ) , ϵ + ( k ) ϵ ( k ) = 1 ϵ ± ( k ) k = ϵ ± ( k ) ϵ ± ( k ) = 0 , ϵ + μ ( k ) = ϵ μ ( k ) , ϵ + ( k ) ϵ ( k ) = 1 epsilon_(+-)(k)*k=epsilon_(+-)(k)*epsilon_(+-)(k)=0,quadepsilon_(+)^(mu)(k)=epsilon_(-)^(mu)(k)^(**),quadepsilon_(+)(k)*epsilon_(-)(k)=1\epsilon_{ \pm}(k) \cdot k=\epsilon_{ \pm}(k) \cdot \epsilon_{ \pm}(k)=0, \quad \epsilon_{+}^{\mu}(k)=\epsilon_{-}^{\mu}(k)^{*}, \quad \epsilon_{+}(k) \cdot \epsilon_{-}(k)=1ϵ±(k)k=ϵ±(k)ϵ±(k)=0,ϵ+μ(k)=ϵμ(k),ϵ+(k)ϵ(k)=1
where we assume that k 2 = 0 k 2 = 0 k^(2)=0k^{2}=0k2=0. These properties were derived in a particular frame, but they are Lorentz-invarlient so hold in all frames.
Hence, we find the following solution to the EOM:
A μ ( x ) = d 3 k ( 2 π ) 3 d k 0 δ ( k 2 ) θ ( k 0 ) h = ± [ a h ( k ) ϵ h μ ( k ) e i k x + a h ( k ) ϵ h μ ( k ) e i k x ] A μ ( x ) = d 3 k ( 2 π ) 3 d k 0 δ k 2 θ k 0 h = ± a h ( k ) ϵ h μ ( k ) e i k x + a h ( k ) ϵ h μ ( k ) e i k x A^(mu)(x)=int(d^(3)k)/((2pi)^(3))int dk^(0)delta(k^(2))theta(k^(0))sum_(h=+-)[a_(h)(( vec(k)))epsilon_(-h)^(mu)(( vec(k)))e^(ik*x)+a_(h)^(**)(( vec(k)))epsilon_(h)^(mu)(( vec(k)))e^(-ik*x)]A^{\mu}(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \int d k^{0} \delta\left(k^{2}\right) \theta\left(k^{0}\right) \sum_{h= \pm}\left[a_{h}(\vec{k}) \epsilon_{-h}^{\mu}(\vec{k}) e^{i k \cdot x}+a_{h}^{*}(\vec{k}) \epsilon_{h}^{\mu}(\vec{k}) e^{-i k \cdot x}\right]Aμ(x)=d3k(2π)3dk0δ(k2)θ(k0)h=±[ah(k)ϵhμ(k)eikx+ah(k)ϵhμ(k)eikx]
where k μ = ( ω k , k ) k μ = ω k , k k^(mu)=(omega_(k),( vec(k)))k^{\mu}=\left(\omega_{k}, \vec{k}\right)kμ=(ωk,k). Note that A μ = ( A μ ) A μ = A μ A^(mu)=(A^(mu))^(**)A^{\mu}=\left(A^{\mu}\right)^{*}Aμ=(Aμ) since ϵ h = ϵ h ϵ h = ϵ h epsilon_(h)^(**)=epsilon_(-h)\epsilon_{h}^{*}=\epsilon_{-h}ϵh=ϵh. Using
d x δ ( f ( x ) ) = i | 1 / f ( x i ) | , f ( x i ) = 0 d x δ ( f ( x ) ) = i 1 / f x i , f x i = 0 int dx delta(f(x))=sum_(i)|1//f^(')(x_(i))|,quad f(x_(i))=0\int d x \delta(f(x))=\sum_{i}\left|1 / f^{\prime}\left(x_{i}\right)\right|, \quad f\left(x_{i}\right)=0dxδ(f(x))=i|1/f(xi)|,f(xi)=0
we then perform the k 0 k 0 k^(0)k^{0}k0 integral to obtain
d k ~ h = ± [ ϵ h μ ( k ) a h ( k ) e i k x + ϵ h μ ( k ) a h ( k ) e i k x ] d k ~ h = ± ϵ h μ ( k ) a h ( k ) e i k x + ϵ h μ ( k ) a h ( k ) e i k x int widetilde(dk)sum_(h=+-)[epsilon_(-h)^(mu)(( vec(k)))a_(h)(( vec(k)))e^(ik*x)+epsilon_(h)^(mu)(( vec(k)))a_(h)^(**)(( vec(k)))e^(-ik*x)]\int \widetilde{d k} \sum_{h= \pm}\left[\epsilon_{-h}^{\mu}(\vec{k}) a_{h}(\vec{k}) e^{i k \cdot x}+\epsilon_{h}^{\mu}(\vec{k}) a_{h}^{*}(\vec{k}) e^{-i k \cdot x}\right]dk~h=±[ϵhμ(k)ah(k)eikx+ϵhμ(k)ah(k)eikx]
Note that this is essatially the mode expansion for two scalar fields dressed with polarisations. In particular, we can quantise by promoting the Fourier coefficients to creation and annihilation operators, as we did for the scalar field.

9 LSZ and Path Integral For Photons

This is based on Srednicki Chapters 56 , 57 , 62 56 , 57 , 62 56,57,6256,57,6256,57,62. We previously found that the general solution to Maxwell theory in the absence of sources is given by
A μ ( x ) = d k ~ h = ± [ ϵ h μ ( k ) a h ( k ) e i k ˙ x + ϵ h μ ( + k ) a h ( k ) e i k x ] A μ ( x ) = d k ~ h = ± ϵ h μ ( k ) a h ( k ) e i k ˙ x + ϵ h μ ( + k ) a h ( k ) e i k x A^(mu)(x)=int widetilde(dk)sum_(h=+-)[epsilon_(-h)^(mu)(( vec(k)))a_(h)(( vec(k)))e^(ik^(˙)*x)+epsilon_(h)^(mu)(+( vec(k)))a_(h)^(**)(( vec(k)))e^(-ik*x)]A^{\mu}(x)=\int \widetilde{d k} \sum_{h= \pm}\left[\epsilon_{-h}^{\mu}(\vec{k}) a_{h}(\vec{k}) e^{i \dot{k} \cdot x}+\epsilon_{h}^{\mu}(+\vec{k}) a_{h}^{*}(\vec{k}) e^{-i k \cdot x}\right]Aμ(x)=dk~h=±[ϵhμ(k)ah(k)eik˙x+ϵhμ(+k)ah(k)eikx]
We can quantise as we did for scalar fields. Taking a a a a a^(**)rarra^(†)a^{*} \rightarrow a^{\dagger}aa :
[ a h ( k ) , a h ( k ) ] = [ a h ( k ) , a h ( k ) ] = 0 [ a h ( k ) , a h ( k ) ] = ( 2 π ) 3 2 ω k δ 3 ( k k ) δ h h a h ( k ) , a h k = a h ( k ) , a h k = 0 a h ( k ) , a h k = ( 2 π ) 3 2 ω k δ 3 k k δ h h {:[[a_(h)(( vec(k))),a_(h^('))( vec(k)^('))]=[a_(h)^(†)(( vec(k))),a_(h^('))^(†)( vec(k)^('))]=0],[{:[a_(h)(( vec(k))),a_(h^('))^(†)( vec(k)^('))]=(2pi)^(3)2omega_(k)delta^(3)(( vec(k))- vec(k)^('))delta_(hh^(')):}]:}\begin{aligned} & {\left[a_{h}(\vec{k}), a_{h^{\prime}}\left(\vec{k}^{\prime}\right)\right]=\left[a_{h}^{\dagger}(\vec{k}), a_{h^{\prime}}^{\dagger}\left(\vec{k}^{\prime}\right)\right]=0} \\ & {\left[a_{h}(\vec{k}), a_{h^{\prime}}^{\dagger}\left(\vec{k}^{\prime}\right)\right]=(2 \pi)^{3} 2 \omega_{k} \delta^{3}\left(\vec{k}-\vec{k}^{\prime}\right) \delta_{h h^{\prime}}} \end{aligned}[ah(k),ah(k)]=[ah(k),ah(k)]=0[ah(k),ah(k)]=(2π)32ωkδ3(kk)δhh
where a h ( k ) / a h ( k ) a h ( k ) / a h ( k ) a_(h)^(†)( vec(k))//a_(h)( vec(k))a_{h}^{\dagger}(\vec{k}) / a_{h}(\vec{k})ah(k)/ah(k) creates/annihilates a photon with momentum k k vec(k)\vec{k}k and polarisation ϵ h μ ϵ h μ epsilon_(h)^(mu)\epsilon_{h}^{\mu}ϵhμ. Moreover, we can obtain a formula for creation and annihilation operators in exactly the same way we did for scalar fields:
a h ( k ) = i ϵ h μ ( k ) d 3 x e i k x t A μ ( x ) a h ( k ) = + i ϵ h ( k ) d 3 x e i k x t A μ ( x ) a h ( k ) = i ϵ h μ ( k ) d 3 x e i k x t A μ ( x ) a h ( k ) = + i ϵ h ( k ) d 3 x e i k x t A μ ( x ) {:[a_(h)^(†)( vec(k))=-iepsilon_(-h)^(mu)( vec(k))intd^(3)xe^(ik*x)del^(harr)_(t)A^(mu)(x)],[a_(h)( vec(k))=+iepsilon_(h)( vec(k))intd^(3)xe^(-ik*x)del^(harr)_(t)A^(mu)(x)]:}\begin{aligned} & a_{h}^{\dagger}(\vec{k})=-i \epsilon_{-h}^{\mu}(\vec{k}) \int d^{3} x e^{i k \cdot x} \stackrel{\leftrightarrow}{\partial}_{t} A^{\mu}(x) \\ & a_{h}(\vec{k})=+i \epsilon_{h}(\vec{k}) \int d^{3} x e^{-i k \cdot x} \stackrel{\leftrightarrow}{\partial}_{t} A^{\mu}(x) \end{aligned}ah(k)=iϵhμ(k)d3xeikxtAμ(x)ah(k)=+iϵh(k)d3xeikxtAμ(x)
where we used
ϵ h ( k ) ϵ h ( k ) = δ h h ϵ h ( k ) ϵ h ( k ) = δ h h epsilon_(h^('))( vec(k))*epsilon_(-h)( vec(k))=delta_(hh^('))\epsilon_{h^{\prime}}(\vec{k}) \cdot \epsilon_{-h}(\vec{k})=\delta_{h h^{\prime}}ϵh(k)ϵh(k)=δhh
Following the same steps used to derive LSZ for scalars, we can make the following replacements when computing photon amplitudes:
a h ( k , ) i ϵ h μ ( k ` ) d 4 x e i k x ( 2 ) A μ ( x ) a h ( k , + ) i ϵ h μ ( k ) d 4 x e i k x ( 2 ) A μ ( x ) a h ( k , ) i ϵ h μ k ` d 4 x e i k x 2 A μ ( x ) a h k , + i ϵ h μ k d 4 x e i k x 2 A μ ( x ) {:[a_(h)^(†)( vec(k)","-oo) rarr iepsilon_(-h)^(mu)(k^(`)^('))intd^(4)xe^(ik*x)(-del^(2))A_(mu)(x)],[a_(h)(ℏ_(k),+oo) rarr iepsilon_(h)^(mu)(ℏ_(k))intd^(4)xe^(-ik*x)(-del^(2))A_(mu)(x)]:}\begin{aligned} a_{h}^{\dagger}(\vec{k},-\infty) & \rightarrow i \epsilon_{-h}^{\mu}\left(\grave{k}^{\prime}\right) \int d^{4} x e^{i k \cdot x}\left(-\partial^{2}\right) A_{\mu}(x) \\ a_{h}\left(\hbar_{k},+\infty\right) & \rightarrow i \epsilon_{h}^{\mu}\left(\hbar_{k}\right) \int d^{4} x e^{-i k \cdot x}\left(-\partial^{2}\right) A_{\mu}(x) \end{aligned}ah(k,)iϵhμ(k`)d4xeikx(2)Aμ(x)ah(k,+)iϵhμ(k)d4xeikx(2)Aμ(x)
where the a a a^(†)a^{\dagger}a creates incoming photons and the a a aaa annihilates outgoing photons.
Summary: To compute photon amplitudes, first compute time-ordered correlators of A μ ( x ) A μ ( x ) A_(mu)(x)A_{\mu}(x)Aμ(x), Fourier transform to momentum space, amputate external propagators, and dress with polarisation vectors. In practice we will not distinguish between ϵ + μ ϵ + μ epsilon_(+)^(mu)\epsilon_{+}^{\mu}ϵ+μ and ϵ μ ϵ μ epsilon_(-)^(mu)\epsilon_{-}^{\mu}ϵμ and simply dress the amputated correlator with ϵ μ ( k ) ϵ μ ( k ) epsilon^(mu)( vec(k))\epsilon^{\mu}(\vec{k})ϵμ(k). Due to gauge symmetry, the amplitude must be invariant if we shift an external polarisation by its momentum:
ϵ μ ( k ) ϵ μ ( k ) + α k μ ϵ μ ( k ) ϵ μ ( k ) + α k μ epsilon_(mu)(k)rarrepsilon_(mu)(k)+alpha k mu\epsilon_{\mu}(k) \rightarrow \epsilon_{\mu}(k)+\alpha k \muϵμ(k)ϵμ(k)+αkμ
It follows that if we write
i M = i ϵ μ ( k ) M μ ( k ) k μ M μ ( k ) = 0 i M = i ϵ μ ( k ) M μ ( k ) k μ M μ ( k ) = 0 iM=iepsilon_(mu)(k)M^(mu)(k)rarrk^(mu)M_(mu)(k)=0i \mathcal{M}=i \epsilon_{\mu}(k) \mathcal{M}^{\mu}(k) \rightarrow k^{\mu} \mathcal{M}_{\mu}(k)=0iM=iϵμ(k)Mμ(k)kμMμ(k)=0
i.e. if we replace a polarisation with its momentum, then the amplitude vanishes. This is known as the "Ward identity."
Now we must understand how to compute time-ordered corrclators of A μ ( x ) A μ ( x ) A_(mu)(x)A_{\mu}(x)Aμ(x). This is easiest to do using the path integral formalism. We have
Z 0 ( J ) = D A exp [ i d 4 x ( 1 4 F μ ν F μ ν + J μ A μ ) ] Z 0 ( J ) = D A exp i d 4 x 1 4 F μ ν F μ ν + J μ A μ Z_(0)(J)=intDA exp[i intd^(4)x(-(1)/(4)F_(mu nu)F^(mu nu)+J^(mu)A_(mu))]Z_{0}(J)=\int \mathcal{D} A \exp \left[i \int d^{4} x\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+J^{\mu} A_{\mu}\right)\right]Z0(J)=DAexp[id4x(14FμνFμν+JμAμ)]
Let us denote the argument of the exponential i S 0 i S 0 iS_(0)i S_{0}iS0. Fourier transforming to momentum space:
A μ ( k ) = d 4 x e i k x A μ ( x ) , A μ ( x ) = d 4 k ( 2 π ) 4 e i k x A μ ( k ) A μ ( k ) = d 4 x e i k x A μ ( x ) , A μ ( x ) = d 4 k ( 2 π ) 4 e i k x A μ ( k ) A_(mu)(k)=intd^(4)xe^(-ik*x)A_(mu)(x),quadA_(mu)(x)=int(d^(4)k)/((2pi)^(4))e^(ik*x)A_(mu)(k)A_{\mu}(k)=\int d^{4} x e^{-i k \cdot x} A_{\mu}(x), \quad A_{\mu}(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{i k \cdot x} A_{\mu}(k)Aμ(k)=d4xeikxAμ(x),Aμ(x)=d4k(2π)4eikxAμ(k)
we find that
i S 0 = i d 4 x d 4 k ( 2 π ) y d 4 k ( 2 π ) 4 e i ( k + k ) x [ 1 4 ( i k μ A ν ( k ) i k ν A μ ( k ) ) ( i k μ A ν ( k ) i k ν A μ ( k ) ) + 1 2 ( J μ ( k ) A μ ( k ) + J μ ( k ) A μ ( k ) ) ] i S 0 = i d 4 x d 4 k ( 2 π ) y d 4 k ( 2 π ) 4 e i k + k x 1 4 i k μ A ν ( k ) i k ν A μ ( k ) i k μ A ν k i k ν A μ k + 1 2 J μ ( k ) A μ k + J μ k A μ ( k ) {:[iS_(0)=i intd^(4)x(d^(4)k)/((2pi)^(y))(d^(4)k^('))/((2pi)^(4))e^(i(k+k^('))*x)],[[-(1)/(4)(ik_(mu)A_(nu)(k)-ik_(nu)A_(mu)(k))(ik^('mu)A^(nu)(k^('))-ik^(')nuA^(mu)(k^('))):}],[{:+(1)/(2)(J^(mu)(k)A_(mu)(k^('))+J^(mu)(k^('))A_(mu)(k))]]:}\begin{aligned} & i S_{0}=i \int d^{4} x \frac{d^{4} k}{(2 \pi)^{y}} \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} e^{i\left(k+k^{\prime}\right) \cdot x} \\ & {\left[-\frac{1}{4}\left(i k_{\mu} A_{\nu}(k)-i k_{\nu} A_{\mu}(k)\right)\left(i k^{\prime \mu} A^{\nu}\left(k^{\prime}\right)-i k^{\prime} \nu A^{\mu}\left(k^{\prime}\right)\right)\right.} \\ & \left.+\frac{1}{2}\left(J^{\mu}(k) A_{\mu}\left(k^{\prime}\right)+J^{\mu}\left(k^{\prime}\right) A_{\mu}(k)\right)\right] \end{aligned}iS0=id4xd4k(2π)yd4k(2π)4ei(k+k)x[14(ikμAν(k)ikνAμ(k))(ikμAν(k)ikνAμ(k))+12(Jμ(k)Aμ(k)+Jμ(k)Aμ(k))]
The x x xxx-integral gives ( 2 π ) 4 δ 4 ( k + k ) ( 2 π ) 4 δ 4 k + k (2pi)^(4)delta^(4)(k+k^('))(2 \pi)^{4} \delta^{4}\left(k+k^{\prime}\right)(2π)4δ4(k+k). Performing k k k^(')k^{\prime}k integral then gives
i S 0 = i 2 d η k ( 2 π ) 4 [ A μ ( k ) ( k 2 η μ ν k μ k ν ) A ν ( k ) + J μ ( k ) A μ ( k ) + J μ ( k ) A μ ( k ) ] i S 0 = i 2 d η k ( 2 π ) 4 A μ ( k ) k 2 η μ ν k μ k ν A ν ( k ) + J μ ( k ) A μ ( k ) + J μ ( k ) A μ ( k ) iS_(0)=(i)/(2)int(d^(eta)k)/((2pi)^(4))[-A_(mu)(k)(k^(2)eta^(mu nu)-k^(mu)k^(nu))A_(nu)(-k)+J^(mu)(k)A_(mu)(-k)+J^(mu)(-k)A_(mu)(k)]i S_{0}=\frac{i}{2} \int \frac{d^{\eta} k}{(2 \pi)^{4}}\left[-A_{\mu}(k)\left(k^{2} \eta^{\mu \nu}-k^{\mu} k^{\nu}\right) A_{\nu}(-k)+J^{\mu}(k) A_{\mu}(-k)+J^{\mu}(-k) A_{\mu}(k)\right]iS0=i2dηk(2π)4[Aμ(k)(k2ημνkμkν)Aν(k)+Jμ(k)Aμ(k)+Jμ(k)Aμ(k)]
The next step is to complete the square but the 4 × 4 4 × 4 4xx44 \times 44×4 matrix k 2 η μ ν k μ k ν k 2 η μ ν k μ k ν k^(2)eta^(mu nu)-k^(mu)k^(nu)k^{2} \eta^{\mu \nu}-k^{\mu} k^{\nu}k2ημνkμkν is not invertible. To see this, consider the matrix
P μ ν ( k ) = η μ ν k μ k ν / k 2 P μ ν ( k ) = η μ ν k μ k ν / k 2 P^(mu nu)(k)=eta^(mu nu)-k^(mu)k^(nu)//k^(2)P^{\mu \nu}(k)=\eta^{\mu \nu}-k^{\mu} k^{\nu} / k^{2}Pμν(k)=ημνkμkν/k2
This is a projection matrix:
p μ ν ( k ) P ν λ ( k ) = p μ λ ( k ) p μ ν ( k ) P ν λ ( k ) = p μ λ ( k ) p^(mu nu)(k)P_(nu)^(lambda)(k)=p^(mu lambda)(k)p^{\mu \nu}(k) P_{\nu}^{\lambda}(k)=p^{\mu \lambda}(k)pμν(k)Pνλ(k)=pμλ(k)
Hence, the only allowed eigenvalues of P P PPP are zero or one. There is at least one zero eigenvalue because
P μ ν ( k ) k μ = 0 P μ ν ( k ) k μ = 0 P^(mu nu)(k)k_(mu)=0P^{\mu \nu}(k) k_{\mu}=0Pμν(k)kμ=0
On the other hand, the sum of the eigenvalues is given by the trace
η μ ν P μ ν ( k ) = 3 . η μ ν P μ ν ( k ) = 3 . eta_(mu nu)P^(mu nu)(k)=3.\eta_{\mu \nu} P^{\mu \nu}(k)=3 .ημνPμν(k)=3.
Hence the remaining three eigenvalues are all 1. From this, we see that the component of A μ ( k ) A μ ( k ) A_(mu)(k)A_{\mu}(k)Aμ(k) along k μ k μ k_(mu)k_{\mu}kμ does not contribute to the quadratic term in the action. Moreover, it does not contribute to the linear term since μ J μ ( x ) = μ J μ ( x ) = del_(mu)J^(mu)(x)=\partial_{\mu} J^{\mu}(x)=μJμ(x)= 0 k μ J μ ( k ) = 0 0 k μ J μ ( k ) = 0 0rarrk^(mu)J_(mu)(k)=00 \rightarrow k^{\mu} J_{\mu}(k)=00kμJμ(k)=0. Thus the path integral over this component just gives an oo\infty constant which we can discard.
The non-trivial part of the path integral is over the components of A μ ( k ) A μ ( k ) A_(mu)(k)A_{\mu}(k)Aμ(k) in the space orthogonal to k μ k μ k_(mu)k_{\mu}kμ. The matrix P μ ν ( k ) P μ ν ( k ) P^(mu nu)(k)P^{\mu \nu}(k)Pμν(k) projects 4 -vectors into this subspace and in this subspace it is the identity matrix. Therefore with in this subspace the inverse of k 2 P μ ν ( k ) k 2 P μ ν ( k ) k^(2)P^(mu nu)(k)k^{2} P^{\mu \nu}(k)k2Pμν(k) is 1 / k 2 P μ ν ( k ) 1 / k 2 P μ ν ( k ) 1//k^(2)P_(mu nu)(k)1 / k^{2} P_{\mu \nu}(k)1/k2Pμν(k) and we can complete the square in the action to give
Z 0 ( J ) exp [ i 2 d 4 k ( 2 π ) 4 J μ ( k ) P μ ν ( k ) k 2 i ϵ J ν ( k ) ] Z 0 ( J ) exp i 2 d 4 k ( 2 π ) 4 J μ ( k ) P μ ν ( k ) k 2 i ϵ J ν ( k ) Z_(0)(J)prop exp[(i)/(2)int(d^(4)k)/((2pi)^(4))J_(mu)(k)(P^(mu nu)(k))/(k^(2)-i epsilon)J_(nu)(k)]Z_{0}(J) \propto \exp \left[\frac{i}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} J_{\mu}(k) \frac{P^{\mu \nu}(k)}{k^{2}-i \epsilon} J_{\nu}(k)\right]Z0(J)exp[i2d4k(2π)4Jμ(k)Pμν(k)k2iϵJν(k)]
where we have restored the Feynman i ϵ i ϵ i epsiloni \epsiloniϵ prescription. Since k μ J μ ( k ) = 0 k μ J μ ( k ) = 0 k^(mu)J_(mu)(k)=0k^{\mu} J_{\mu}(k)=0kμJμ(k)=0, we are thee to shift
P μ v ( k ) P μ ν ( k ) + ξ k μ k v k 2 . P μ v ( k ) P μ ν ( k ) + ξ k μ k v k 2 . P^(mu v)(k)rarrP^(mu nu)(k)+xi(k^(mu)k^(v))/(k^(2)).P^{\mu v}(k) \rightarrow P^{\mu \nu}(k)+\xi \frac{k^{\mu} k^{v}}{k^{2}} .Pμv(k)Pμν(k)+ξkμkvk2.
Then the propagator in momentum space becomes
m m = i k 2 i ( η μ v ( 1 ξ ) k μ k ν k 2 ) m m = i k 2 i η μ v ( 1 ξ ) k μ k ν k 2 m^(m)=(-i)/(k^(2)-i in)(eta_(mu v)-(1-xi)(k_(mu)k_(nu))/(k^(2)))\stackrel{\mathrm{m}}{\mathrm{~m}}=\frac{-i}{k^{2}-i \in}\left(\eta_{\mu v}-(1-\xi) \frac{k_{\mu} k_{\nu}}{k^{2}}\right) mm=ik2i(ημv(1ξ)kμkνk2)
where ξ = 1 ξ = 1 xi=1\xi=1ξ=1 is called "Feynman gauge" and ξ = 0 ξ = 0 xi=0\xi=0ξ=0 is called "Lorenz gauge" or "Landau gauge." This form of the propagator can be derived by adding a "gauge-fixing" term to the Lagrangian:
L = 1 4 F μ ν F μ v 1 2 ξ ( μ A μ ) 2 L = 1 4 F μ ν F μ v 1 2 ξ μ A μ 2 L=-(1)/(4)F_(mu nu)F^(mu v)-(1)/(2xi)(del^(mu)A_(mu))^(2)\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu v}-\frac{1}{2 \xi}\left(\partial^{\mu} A_{\mu}\right)^{2}L=14FμνFμv12ξ(μAμ)2
After adding this term and going to momentum space, the 4 × 4 4 × 4 4xx44 \times 44×4 matrix in the qaudratic part of the action becomes invertable and the inverse is the propagator given above.
In this way, we can compute photon amplitudes by drawing Feynman diagrams. We can also compute them from Wick's theorem in the interaction picture replacing A ^ μ A ν A ^ μ A ν widehat(A)^(mu)A^(nu)\widehat{A}^{\mu} A^{\nu}A^μAν with the propagator and
A μ | k , ϵ ^ = ϵ μ ( k ) A μ | k , ϵ ^ = ϵ μ ( k ) widehat(A_(mu)|k,epsilon:))=epsilon_(mu)(k)\widehat{A_{\mu}|k, \epsilon\rangle}=\epsilon_{\mu}(k)Aμ|k,ϵ^=ϵμ(k)
which follows from LSZ.

10 Dirac Equation

This is based on Tong sections 4.1-4.3, 4.6.

Representations of Lorentz group:

Under a Lorentz transformation x μ x μ = Λ μ ν x ν x μ x μ = Λ μ ν x ν x^(mu)rarrx^(mu)=Lambda^(mu)_(nu)x^(nu)x^{\mu} \rightarrow x^{\mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}xμxμ=Λμνxν we have seen that
ϕ ( x ) ϕ ( Λ 1 x ) ( spin-0 ) A μ ( x ) Λ μ v A μ ( Λ 1 x ) ( spin- ) ϕ ( x ) ϕ Λ 1 x      (  spin-0  ) A μ ( x ) Λ μ v A μ Λ 1 x      (  spin-  ) {:[phi(x)rarr phi(Lambda^(-1)x),(" spin-0 ")],[A_(mu)(x)rarrLambda^(mu)_(v)A_(mu)(Lambda^(-1)x),(" spin- ")]:}\begin{array}{ll} \phi(x) \rightarrow \phi\left(\Lambda^{-1} x\right) & (\text { spin-0 }) \\ A_{\mu}(x) \rightarrow \Lambda^{\mu}{ }_{v} A_{\mu}\left(\Lambda^{-1} x\right) & (\text { spin- }) \end{array}ϕ(x)ϕ(Λ1x)( spin-0 )Aμ(x)ΛμvAμ(Λ1x)( spin- )
In general, we can write
Λ = exp ( 1 2 Ω ρ σ M ρ σ ) Λ = exp 1 2 Ω ρ σ M ρ σ Lambda=exp((1)/(2)Omega_(rho sigma)M^(rho sigma))\Lambda=\exp \left(\frac{1}{2} \Omega_{\rho \sigma} \mathcal{M}^{\rho \sigma}\right)Λ=exp(12ΩρσMρσ)
where Ω ρ σ = Ω σ ρ Ω ρ σ = Ω σ ρ Omega_(rho sigma)=-Omega_(sigma rho)\Omega_{\rho \sigma}=-\Omega_{\sigma \rho}Ωρσ=Ωσρ are six numbers that pananeterise the Lorentz transformation ( 3 rotations, 3 boosts) and M ρ σ M ρ σ M^(rho sigma)\mathcal{M}^{\rho \sigma}Mρσ are generators, whose representation
depends on the spin of the particle. For spin-1, the generator of rotations in the x 1 x 2 x 1 x 2 x^(1)-x^(2)x^{1}-x^{2}x1x2 plane is
( M 12 ) ν μ = ( 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 ) M 12 ν μ = 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 (M^(12))_(nu)^(mu)=([0,0,0,0],[0,0,-1,0],[0,1,0,0],[0,0,0,0])\left(M^{12}\right)_{\nu}^{\mu}=\left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)(M12)νμ=(0000001001000000)
The generator of boosts along x 1 x 1 x^(1)x^{1}x1 direction is:
( M 01 ) ν μ = ( 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ) M 01 ν μ = 0      1      0      0 1      0      0      0 0      0      0      0 0      0      0      0 (M^(01))_(nu)^(mu)=([0,1,0,0],[1,0,0,0],[0,0,0,0],[0,0,0,0])\left(M^{01}\right)_{\nu}^{\mu}=\left(\begin{array}{llll} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)(M01)νμ=(0100100000000000)
In general the spin-1 generators can be written as follows:
( M ρ σ ) ν μ = η σ μ δ ν ρ η ρ μ δ ν σ M ρ σ ν μ = η σ μ δ ν ρ η ρ μ δ ν σ (M^(rho sigma))_(nu)^(mu)=eta^(sigma mu)delta_(nu)^(rho)-eta^(rho mu)delta_(nu)^(sigma)\left(M^{\rho \sigma}\right)_{\nu}^{\mu}=\eta^{\sigma \mu} \delta_{\nu}^{\rho}-\eta^{\rho \mu} \delta_{\nu}^{\sigma}(Mρσ)νμ=ησμδνρηρμδνσ
These obey the algebra
[ M μ ν , M ρ σ ] = ( η μ σ μ ν ρ μ ν ) ρ σ M μ ν , M ρ σ = η μ σ μ ν ρ μ ν ρ σ [M^(mu nu),M^(rho sigma)]=(eta^(mu sigma)mu^(nu rho)-mu harr nu)-rho harr sigma\left[M^{\mu \nu}, M^{\rho \sigma}\right]=\left(\eta^{\mu \sigma} \mu^{\nu \rho}-\mu \leftrightarrow \nu\right)-\rho \leftrightarrow \sigma[Mμν,Mρσ]=(ημσμνρμν)ρσ
The genentors in any representation must obey this algebra.
For spin-s, a Lorentz transformation becomes trivial for a rotation of 2 π / s 2 π / s 2pi//s2 \pi / \mathrm{s}2π/s. For spin- 1 , consider a rotation by θ θ theta\thetaθ in the x 1 x 2 x 1 x 2 x^(1)-x^(2)x^{1}-x^{2}x1x2 plane:
Ω 12 = θ Λ ( θ ) = exp ( Ω 12 M 12 ) = ( 1 0 0 0 0 cos θ sin θ 0 0 sin θ cos θ 0 0 0 0 1 ) Ω 12 = θ Λ ( θ ) = exp Ω 12 M 12 = 1 0 0 0 0 cos θ sin θ 0 0 sin θ cos θ 0 0 0 0 1 Omega_(12)=theta rarr Lambda(theta)=exp(Omega_(12)M^(12))=([1,0,0,0],[0,cos theta,-sin theta,0],[0,sin theta,cos theta,0],[0,0,0,1])\Omega_{12}=\theta \rightarrow \Lambda(\theta)=\exp \left(\Omega_{12} \mathcal{M}^{12}\right)=\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)Ω12=θΛ(θ)=exp(Ω12M12)=(10000cosθsinθ00sinθcosθ00001)
Hence Λ ( 2 π ) = 1 Λ ( 2 π ) = 1 Lambda(2pi)=1\Lambda(2 \pi)=1Λ(2π)=1, as expected.

Spin-1/2

Next we will look at spin- 1 / 2 1 / 2 1//21 / 21/2, which decribes electrons. In this case, we expect that a spatial rotation by 4 π 4 π 4pi4 \pi4π will be trivial but not by 2 π 2 π 2pi2 \pi2π, i.e. Λ ( 4 π ) = 1 Λ ( 4 π ) = 1 Lambda(4pi)=1\Lambda(4 \pi)=1Λ(4π)=1 but Λ ( 2 π ) 1 Λ ( 2 π ) 1 Lambda(2pi)!=1\Lambda(2 \pi) \neq 1Λ(2π)1. Since Λ ( 4 π ) = ( Λ ( 2 π ) ) 2 Λ ( 2 π ) = 1 Λ ( 4 π ) = ( Λ ( 2 π ) ) 2 Λ ( 2 π ) = 1 Lambda(4pi)=(Lambda(2pi))^(2)rarr Lambda(2pi)=-1\Lambda(4 \pi)=(\Lambda(2 \pi))^{2} \rightarrow \Lambda(2 \pi)=-1Λ(4π)=(Λ(2π))2Λ(2π)=1. Let us postulate the following generators and verify that they imply this property:
S ρ σ = 1 4 [ γ ρ , γ σ ] γ μ = ( 0 σ μ σ ¯ μ 0 ) "Dirac matrices" S ρ σ = 1 4 γ ρ , γ σ γ μ = 0 σ μ σ ¯ μ 0  "Dirac matrices"  S^(rho sigma)=(1)/(4)[gamma^(rho),gamma^(sigma)]quadgamma^(mu)=([0,sigma^(mu)],[ bar(sigma)^(mu),0])quad" "Dirac matrices" "S^{\rho \sigma}=\frac{1}{4}\left[\gamma^{\rho}, \gamma^{\sigma}\right] \quad \gamma^{\mu}=\left(\begin{array}{cc} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{array}\right) \quad \text { "Dirac matrices" }Sρσ=14[γρ,γσ]γμ=(0σμσ¯μ0) "Dirac matrices" 
where
σ μ = ( 1 , σ ) , σ ¯ μ = ( 1 , σ ) , σ 1 = ( 0 1 1 0 ) , σ 2 = ( 0 i i 0 ) , σ 3 = ( 1 0 0 1 ) σ μ = ( 1 , σ ) , σ ¯ μ = ( 1 , σ ) , σ 1 = 0 1 1 0 , σ 2 = 0 i i 0 , σ 3 = 1 0 0 1 sigma^(mu)=(1, vec(sigma)), bar(sigma)^(mu)=(1,- vec(sigma)),quadsigma^(1)=([0,1],[1,0]),sigma^(2)=([0,-i],[i,0]),sigma^(3)=([1,0],[0,-1])\sigma^{\mu}=(\mathbb{1}, \vec{\sigma}), \bar{\sigma}^{\mu}=(\mathbb{1},-\vec{\sigma}), \quad \sigma^{1}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), \sigma^{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma^{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)σμ=(1,σ),σ¯μ=(1,σ),σ1=(0110),σ2=(0ii0),σ3=(1001)
The Dirac matrices obey a Clifford algebra:
{ γ μ , γ ν } = 2 η μ ν , { A , B } = A B + B A γ μ , γ ν = 2 η μ ν , { A , B } = A B + B A {gamma^(mu),gamma^(nu)}=-2eta^(mu nu),quad{A,B}=AB+BA\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=-2 \eta^{\mu \nu}, \quad\{A, B\}=A B+B A{γμ,γν}=2ημν,{A,B}=AB+BA
Using this algebra, you can check that S ρ σ S ρ σ S^(rho sigma)S^{\rho \sigma}Sρσ indeed obey the Lorentz algebra (HW)
Using these generators, the Lorentz transformations are given by
S [ Λ ] = exp ( 1 2 Ω ρ σ S ρ σ ) S [ Λ ] = exp 1 2 Ω ρ σ S ρ σ S[Lambda]=exp((1)/(2)Omega_(rho sigma)S^(rho sigma))S[\Lambda]=\exp \left(\frac{1}{2} \Omega_{\rho \sigma} S^{\rho \sigma}\right)S[Λ]=exp(12ΩρσSρσ)
This is known as the "spinor representation." Let's see what rotations and boosts look like. For a rotation by θ θ theta\thetaθ in x 1 x 2 x 1 x 2 x^(1)-x^(2)x^{1}-x^{2}x1x2 plane,
S 12 = 1 4 [ γ 1 , γ 2 ] = i 2 ( σ 3 0 0 σ 3 ) S [ Λ ] = exp ( S 12 θ ) = ( exp ( i θ σ 3 / 2 ) 0 0 exp ( i θ σ 3 / 2 ) ) S 12 = 1 4 γ 1 , γ 2 = i 2 σ 3 0 0 σ 3 S [ Λ ] = exp S 12 θ = exp i θ σ 3 / 2 0 0 exp i θ σ 3 / 2 {:[S^(12)=(1)/(4)[gamma^(1),gamma^(2)]=-(i)/(2)([sigma^(3),0],[0,sigma^(3)])],[S[Lambda]=exp(S^(12)theta)=([exp(-i thetasigma^(3)//2),0],[0,exp(-i thetasigma^(3)//2)])]:}\begin{gathered} S^{12}=\frac{1}{4}\left[\gamma^{1}, \gamma^{2}\right]=-\frac{i}{2}\left(\begin{array}{cc} \sigma^{3} & 0 \\ 0 & \sigma^{3} \end{array}\right) \\ S[\Lambda]=\exp \left(S^{12} \theta\right)=\left(\begin{array}{cc} \exp \left(-i \theta \sigma^{3} / 2\right) & 0 \\ 0 & \exp \left(-i \theta \sigma^{3} / 2\right) \end{array}\right) \end{gathered}S12=14[γ1,γ2]=i2(σ300σ3)S[Λ]=exp(S12θ)=(exp(iθσ3/2)00exp(iθσ3/2))
For θ = 2 π , S [ Λ ] = 1 θ = 2 π , S [ Λ ] = 1 theta=2pi,quad S[Lambda]=-1\theta=2 \pi, \quad S[\Lambda]=-1θ=2π,S[Λ]=1 as expected. Boosts are generated by
S 0 i = 1 4 [ γ 0 , γ i ] = 1 2 ( σ i 0 0 σ i ) S 0 i = 1 4 γ 0 , γ i = 1 2 σ i 0 0 σ i S^(0i)=(1)/(4)[gamma^(0),gamma^(i)]=(1)/(2)([-sigma^(i),0],[0,sigma^(i)])S^{0 i}=\frac{1}{4}\left[\gamma^{0}, \gamma^{i}\right]=\frac{1}{2}\left(\begin{array}{cc} -\sigma^{i} & 0 \\ 0 & \sigma^{i} \end{array}\right)S0i=14[γ0,γi]=12(σi00σi)
. A boost along the x 3 x 3 x^(3)x^{3}x3 direction with rapidity η η eta\etaη is then given by
S [ Λ ] = ( exp ( η σ 3 / 2 ) 0 0 exp ( η σ 3 / 2 ) ) S [ Λ ] = exp η σ 3 / 2 0 0 exp η σ 3 / 2 S[Lambda]=([exp(-etasigma^(3)//2),0],[0,exp(etasigma^(3)//2)])S[\Lambda]=\left(\begin{array}{cl} \exp \left(-\eta \sigma^{3} / 2\right) & 0 \\ 0 & \exp \left(\eta \sigma^{3} / 2\right) \end{array}\right)S[Λ]=(exp(ησ3/2)00exp(ησ3/2))

Constructing an Action:

The object which transforms under S [ Λ ] S [ Λ ] S[Lambda]S[\Lambda]S[Λ] is calleda "Dirac spinor"
ψ α ( x ) S [ Λ ] α β ψ β ( Λ 1 x ) ψ α ( x ) S [ Λ ] α β ψ β Λ 1 x psi^(alpha)(x)rarr S[Lambda]^(alpha)_(beta)psi^(beta)(Lambda^(-1)x)\psi^{\alpha}(x) \rightarrow S[\Lambda]^{\alpha}{ }_{\beta} \psi^{\beta}\left(\Lambda^{-1} x\right)ψα(x)S[Λ]αβψβ(Λ1x)
where α = 1 , 2 , 3 , 4 α = 1 , 2 , 3 , 4 alpha=1,2,3,4\alpha=1,2,3,4α=1,2,3,4. To construct a Lorentz-invariant action, we need some identities:
( γ μ ) = γ 0 γ μ γ 0 ( S μ ν ) = γ 0 S μ ν γ 0 S [ Λ ] = γ 0 S [ Λ ] 1 γ 0 γ μ = γ 0 γ μ γ 0 S μ ν = γ 0 S μ ν γ 0 S [ Λ ] = γ 0 S [ Λ ] 1 γ 0 {:[(gamma^(mu))^(†)=gamma^(0)gamma^(mu)gamma^(0) rarr(S^(mu nu))^(†)=-gamma^(0)S^(mu nu)gamma^(0)],[ rarr S[Lambda]^(†)=gamma^(0)S[Lambda]^(-1)gamma^(0)]:}\begin{aligned} \left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0} & \rightarrow\left(S^{\mu \nu}\right)^{\dagger}=-\gamma^{0} S^{\mu \nu} \gamma^{0} \\ & \rightarrow S[\Lambda]^{\dagger}=\gamma^{0} S[\Lambda]^{-1} \gamma^{0} \end{aligned}(γμ)=γ0γμγ0(Sμν)=γ0Sμνγ0S[Λ]=γ0S[Λ]1γ0
You will show this on the HW. A natural guess for a Lorentz invariant is ψ ψ ψ ψ psi^(†)psi\psi^{\dagger} \psiψψ but under Lorentz transformation we get
ψ ψ ψ S [ Λ ] S [ Λ ] ψ = ψ γ 0 S [ Λ ] 1 γ 0 S [ Λ ] ψ ψ ψ ψ S [ Λ ] S [ Λ ] ψ = ψ γ 0 S [ Λ ] 1 γ 0 S [ Λ ] ψ psi^(†)psi rarrpsi^(†)S[Lambda]^(†)S[Lambda]psi=psi^(†)gamma^(0)S[Lambda]^(-1)gamma^(0)S[Lambda]psi\psi^{\dagger} \psi \rightarrow \psi^{\dagger} S[\Lambda]^{\dagger} S[\Lambda] \psi=\psi^{\dagger} \gamma^{0} S[\Lambda]^{-1} \gamma^{0} S[\Lambda] \psiψψψS[Λ]S[Λ]ψ=ψγ0S[Λ]1γ0S[Λ]ψ
so this is not invariant.
To get an invariant define
ψ ¯ ( x ) = ψ ( x ) γ 0 ψ ¯ ( x ) = ψ ( x ) γ 0 bar(psi)(x)=psi^(†)(x)gamma^(0)\bar{\psi}(x)=\psi^{\dagger}(x) \gamma^{0}ψ¯(x)=ψ(x)γ0
Then ψ ¯ ψ ψ ¯ ψ bar(psi)psi\bar{\psi} \psiψ¯ψ is a Lorentz scalar:
ψ ¯ ψ ( ψ S [ Λ ] γ 0 ) S [ Λ ] ψ = ( ψ γ 0 S [ Λ ] 1 γ 0 γ 0 ) S [ Λ ] ψ = ( ψ ¯ S [ Λ ] 1 ) S [ Λ ] ψ = ψ ¯ ψ ψ ¯ ψ ψ S [ Λ ] γ 0 S [ Λ ] ψ = ψ γ 0 S [ Λ ] 1 γ 0 γ 0 S [ Λ ] ψ = ψ ¯ S [ Λ ] 1 S [ Λ ] ψ = ψ ¯ ψ {:[ bar(psi)psi rarr(psi^(†)S[Lambda]^(†)gamma^(0))S[Lambda]psi],[=(psi^(†)gamma^(0)S[Lambda]^(-1)gamma^(0)gamma^(0))S[Lambda]psi],[=(( bar(psi))S[Lambda]^(-1))S[Lambda]psi= bar(psi)psi]:}\begin{aligned} \bar{\psi} \psi & \rightarrow\left(\psi^{\dagger} S[\Lambda]^{\dagger} \gamma^{0}\right) S[\Lambda] \psi \\ & =\left(\psi^{\dagger} \gamma^{0} S[\Lambda]^{-1} \gamma^{0} \gamma^{0}\right) S[\Lambda] \psi \\ & =\left(\bar{\psi} S[\Lambda]^{-1}\right) S[\Lambda] \psi=\bar{\psi} \psi \end{aligned}ψ¯ψ(ψS[Λ]γ0)S[Λ]ψ=(ψγ0S[Λ]1γ0γ0)S[Λ]ψ=(ψ¯S[Λ]1)S[Λ]ψ=ψ¯ψ
Moreover ψ ¯ γ μ ψ ψ ¯ γ μ ψ bar(psi)gamma^(mu)psi\bar{\psi} \gamma^{\mu} \psiψ¯γμψ is a Lorentz vector:
ψ ¯ γ μ ψ ψ ¯ S [ Λ ] 1 γ μ S [ Λ ] ψ = Λ ν μ ψ ¯ γ ν ψ ψ ¯ γ μ ψ ψ ¯ S [ Λ ] 1 γ μ S [ Λ ] ψ = Λ ν μ ψ ¯ γ ν ψ bar(psi)gamma^(mu)psi rarr bar(psi)S[Lambda]^(-1)gamma^(mu)S[Lambda]psi=Lambda_(nu)^(mu) bar(psi)gamma^(nu)psi\bar{\psi} \gamma^{\mu} \psi \rightarrow \bar{\psi} S[\Lambda]^{-1} \gamma^{\mu} S[\Lambda] \psi=\Lambda_{\nu}^{\mu} \bar{\psi} \gamma^{\nu} \psiψ¯γμψψ¯S[Λ]1γμS[Λ]ψ=Λνμψ¯γνψ
as you will show in the HW.
Hence, the following Lagrangian is Lorentz-invariant:
L = ψ ¯ ( x ) ( γ μ μ m ) ψ ( x ) L = ψ ¯ ( x ) γ μ μ m ψ ( x ) L= bar(psi)(x)(gamma^(mu)del_(mu)-m)psi(x)\mathcal{L}=\bar{\psi}(x)\left(\gamma^{\mu} \partial_{\mu}-m\right) \psi(x)L=ψ¯(x)(γμμm)ψ(x)
We will denote γ μ μ = ∂̸ γ μ μ = ∂̸ gamma^(mu)del_(mu)=del\gamma^{\mu} \partial_{\mu}=\not \partialγμμ=∂̸. The choice of relative coefficients will become clear when we show the EOM rarr\rightarrow the Klein-Gordon equation.

Equations of motion:

Varying with respect to ψ ¯ ψ ¯ bar(psi)\bar{\psi}ψ¯ :
0 = δ S = d 4 x δ ψ ¯ ( i ∂̸ m ) ψ ( i m ) ψ = 0 0 = δ S = d 4 x δ ψ ¯ ( i ∂̸ m ) ψ ( i m ) ψ = 0 {:[0=delta S=intd^(4)x delta bar(psi)(i del-m)psi],[ rarr(i⊅-m)psi=0]:}\begin{aligned} 0 & =\delta S=\int d^{4} x \delta \bar{\psi}(i \not \partial-m) \psi \\ & \rightarrow(i \not \supset-m) \psi=0 \end{aligned}0=δS=d4xδψ¯(i∂̸m)ψ(im)ψ=0
This is the "Dirac equation." Note that the Dirac equation implies the KleinGordon equation:
0 = ( i ∂̸ + m ) ( i ∂̸ m ) ψ = ( ∂̸ ∂̸ m 2 ) ψ = ( 2 m 2 ) ψ 0 = ( i ∂̸ + m ) ( i ∂̸ m ) ψ = ∂̸ ∂̸ m 2 ψ = 2 m 2 ψ 0=(i del del+m)(i del-m)psi=(-del del del-m^(2))psi=(del^(2)-m^(2))psi0=(i \not \partial \partial+m)(i \not \partial-m) \psi=\left(-\not \partial \not \partial \partial-m^{2}\right) \psi=\left(\partial^{2}-m^{2}\right) \psi0=(i∂̸+m)(i∂̸m)ψ=(∂̸∂̸m2)ψ=(2m2)ψ
where we noted that
γ μ γ ν μ ν = 1 2 { γ μ , γ ν } μ ν = 2 γ μ γ ν μ ν = 1 2 γ μ , γ ν μ ν = 2 gamma^(mu)gamma^(nu)del_(mu)del_(nu)=(1)/(2){gamma^(mu),gamma^(nu)}del_(mu)del_(nu)=-del^(2)\gamma^{\mu} \gamma^{\nu} \partial_{\mu} \partial_{\nu}=\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \partial_{\mu} \partial_{\nu}=-\partial^{2}γμγνμν=12{γμ,γν}μν=2

Hamiltonian:

For a scalar field the Hamiltonian density is H = L ( 0 ϕ ) 0 ϕ L H = L 0 ϕ 0 ϕ L H=(delL)/(del(del_(0)phi))del_(0)phi-L\mathcal{H}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \phi\right)} \partial_{0} \phi-\mathcal{L}H=L(0ϕ)0ϕL. Similarly, for a Dirac field
H = L ( 0 ψ ) 0 ψ L = ( i ψ ¯ γ 0 ) ( 0 ψ ) ψ ¯ ( i ∂̸ m ) ψ = ψ ¯ ( i γ i i + m ) ψ H = d 3 x ψ ¯ ( i γ i i + m ) ψ H = L 0 ψ 0 ψ L = i ψ ¯ γ 0 0 ψ ψ ¯ ( i ∂̸ m ) ψ = ψ ¯ i γ i i + m ψ H = d 3 x ψ ¯ i γ i i + m ψ {:[H=(delL)/(del(del_(0)psi))del_(0)psi-L],[=(i( bar(psi))gamma^(0))(del_(0)psi)- bar(psi)(i del-m)psi],[= bar(psi)(-igamma^(i)del_(i)+m)psi rarr H=intd^(3)x bar(psi)(-igamma^(i)del_(i)+m)psi]:}\begin{aligned} \mathcal{H} & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \psi\right)} \partial_{0} \psi-\mathcal{L} \\ & =\left(i \bar{\psi} \gamma^{0}\right)\left(\partial_{0} \psi\right)-\bar{\psi}(i \not \partial-m) \psi \\ & =\bar{\psi}\left(-i \gamma^{i} \partial_{i}+m\right) \psi \rightarrow H=\int d^{3} x \bar{\psi}\left(-i \gamma^{i} \partial_{i}+m\right) \psi \end{aligned}H=L(0ψ)0ψL=(iψ¯γ0)(0ψ)ψ¯(i∂̸m)ψ=ψ¯(iγii+m)ψH=d3xψ¯(iγii+m)ψ
where i = 1 , 2 , 3 i = 1 , 2 , 3 i=1,2,3i=1,2,3i=1,2,3.

Electric charge:

Note that L L L\mathcal{L}L is invariant under
ψ e i α ψ , ψ ¯ e i α ψ ¯ ψ e i α ψ , ψ ¯ e i α ψ ¯ psi rarre^(-i alpha)psi,quad bar(psi)rarre^(i alpha) bar(psi)\psi \rightarrow e^{-i \alpha} \psi, \quad \bar{\psi} \rightarrow e^{i \alpha} \bar{\psi}ψeiαψ,ψ¯eiαψ¯
where α α alpha\alphaα is a constant. This is a " U ( 1 ) U ( 1 ) U(1)\mathrm{U}(1)U(1) global symmetry." For scalars the Noether current of a global symmetry is
j μ = L ( μ ϕ ) δ ϕ j μ = L μ ϕ δ ϕ j^(mu)=(delL)/(del(del_(mu)phi))delta phij^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phijμ=L(μϕ)δϕ
where δ ϕ δ ϕ delta phi\delta \phiδϕ is an infinitesimal symmetry variation. For a Dirac field, the Noether current associated with the above symmetry is
j μ = L ( μ ψ ) δ ψ = ( i ψ ¯ γ μ ) ( i α ψ ) ψ ¯ γ μ ψ j μ = L μ ψ δ ψ = i ψ ¯ γ μ ( i α ψ ) ψ ¯ γ μ ψ j^(mu)=(delL)/(del(del_(mu)psi))delta psi=(i( bar(psi))gamma^(mu))(-i alpha psi)∼ bar(psi)gamma^(mu)psij^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} \delta \psi=\left(i \bar{\psi} \gamma^{\mu}\right)(-i \alpha \psi) \sim \bar{\psi} \gamma^{\mu} \psijμ=L(μψ)δψ=(iψ¯γμ)(iαψ)ψ¯γμψ
where we dropped α α alpha\alphaα, and recalled that infinitesimally
e i α ψ = ( 1 i α + ) ψ δ ψ = i α ψ e i α ψ = ( 1 i α + ) ψ δ ψ = i α ψ e^(-i alpha)psi=(1-i alpha+dots)psi rarr delta psi=-i alpha psie^{-i \alpha} \psi=(1-i \alpha+\ldots) \psi \rightarrow \delta \psi=-i \alpha \psieiαψ=(1iα+)ψδψ=iαψ
Let us check that the current is conserved:
μ j μ = ( μ ψ ¯ ) γ μ ψ + ψ ¯ ∂̸ ψ = i m ψ ¯ ψ i m ψ ¯ ψ = 0 . μ j μ = μ ψ ¯ γ μ ψ + ψ ¯ ∂̸ ψ = i m ψ ¯ ψ i m ψ ¯ ψ = 0 . del_(mu)j^(mu)=(del_(mu)( bar(psi)))gamma^(mu)psi+ bar(psi)del psi=im bar(psi)psi-im bar(psi)psi=0.\partial_{\mu} j^{\mu}=\left(\partial_{\mu} \bar{\psi}\right) \gamma^{\mu} \psi+\bar{\psi} \not \partial \psi=i m \bar{\psi} \psi-i m \bar{\psi} \psi=0 .μjμ=(μψ¯)γμψ+ψ¯∂̸ψ=imψ¯ψimψ¯ψ=0.
where we noted that
∂̸ ψ = i m ψ ( ∂̸ ψ ) = i m ψ i m ψ ¯ = ( ∂̸ ψ ) γ 0 = μ ψ ( γ μ ) γ 0 = μ ψ ¯ γ μ ∂̸ ψ = i m ψ ( ∂̸ ψ ) = i m ψ i m ψ ¯ = ( ∂̸ ψ ) γ 0 = μ ψ γ μ γ 0 = μ ψ ¯ γ μ {:[del psi=-im psi rarr(del psi)^(†)=impsi^(†)],[ rarr im bar(psi)=(del psi)^(†)gamma^(0)=del_(mu)psi^(†)(gamma^(mu))^(†)gamma^(0)=del_(mu) bar(psi)gamma^(mu)]:}\begin{aligned} \not \partial \psi=-i m \psi & \rightarrow(\not \partial \psi)^{\dagger}=i m \psi^{\dagger} \\ & \rightarrow i m \bar{\psi}=(\not \partial \psi)^{\dagger} \gamma^{0}=\partial_{\mu} \psi^{\dagger}\left(\gamma^{\mu}\right)^{\dagger} \gamma^{0}=\partial_{\mu} \bar{\psi} \gamma^{\mu} \end{aligned}∂̸ψ=imψ(∂̸ψ)=imψimψ¯=(∂̸ψ)γ0=μψ(γμ)γ0=μψ¯γμ
The Noether charge corresponding to the current in (10) then given by
Q = d 3 x j 0 = d 3 x ψ ¯ γ 0 ψ Q = d 3 x j 0 = d 3 x ψ ¯ γ 0 ψ Q=intd^(3)xj^(0)=intd^(3)x bar(psi)gamma^(0)psiQ=\int d^{3} x j^{0}=\int d^{3} x \bar{\psi} \gamma^{0} \psiQ=d3xj0=d3xψ¯γ0ψ

11 Classical Solutions of the Dirac Equation

This is based on Srednicki pg 238-239 and Tong section 4.7. Recall that the Dirac equation implies Klein-Gordon equation. Hence, it admits plane-wave solutions:
ψ ( x ) = u ( p ) e i p x + v ( p ) e i p x ψ ( x ) = u ( p ) e i p x + v ( p ) e i p x psi(x)=u( vec(p))e^(ip*x)+v( vec(p))e^(-ip*x)\psi(x)=u(\vec{p}) e^{i p \cdot x}+v(\vec{p}) e^{-i p \cdot x}ψ(x)=u(p)eipx+v(p)eipx
where p 0 = ω p = p 2 + m 2 , u ( p ) p 0 = ω p = p 2 + m 2 , u ( p ) p^(0)=omega_(p)=sqrt( vec(p)^(2)+m^(2)),u( vec(p))p^{0}=\omega_{p}=\sqrt{\vec{p}^{2}+m^{2}}, u(\vec{p})p0=ωp=p2+m2,u(p) and v ( p ) v ( p ) v( vec(p))v(\vec{p})v(p) are 4 component Dirac spinors. Plugging this into Dirac equation gives
( i ∂̸ + m ) ψ = 0 ( + m ) u ( p ) = ( + m ) v ( p ) = 0 ( i ∂̸ + m ) ψ = 0 ( + m ) u ( p ) = ( + m ) v ( p ) = 0 (-i del+m)psi=0rarr(p+m)u( vec(p))=(-p+m)v( vec(p))=0(-i \not \partial+m) \psi=0 \rightarrow(\not p+m) u(\vec{p})=(-\not p+m) v(\vec{p})=0(i∂̸+m)ψ=0(+m)u(p)=(+m)v(p)=0
Each of these equations has two linearly independent solutions that we will call u s ( p ) u s ( p ) u_(s)( vec(p))u_{s}(\vec{p})us(p) and v s ( p ) v s ( p ) v_(s)( vec(p))v_{s}(\vec{p})vs(p), where s = 1 , 2 s = 1 , 2 s=1,2s=1,2s=1,2. The general solution is then
ψ ( x ) = s = 1 , 2 d p ~ [ b s ( p ) u s ( p ) e i p x + d s ( p ) v s ( p ) e i p x ] ψ ( x ) = s = 1 , 2 d p ~ b s ( p ) u s ( p ) e i p x + d s ( p ) v s ( p ) e i p x psi(x)=sum_(s=1,2)int widetilde(dp)[b_(s)(( vec(p)))u_(s)(( vec(p)))e^(ip*x)+d_(s)^(†)(( vec(p)))v_(s)(( vec(p)))e^(-ip*x)]\psi(x)=\sum_{s=1,2} \int \widetilde{d p}\left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{i p \cdot x}+d_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{-i p \cdot x}\right]ψ(x)=s=1,2dp~[bs(p)us(p)eipx+ds(p)vs(p)eipx]
where d p ~ = d 3 p ( 2 π ) 3 2 ω p d p ~ = d 3 p ( 2 π ) 3 2 ω p widetilde(dp)=(d^(3)p)/((2pi)^(3)2omega_(p))\widetilde{d p}=\frac{d^{3} p}{(2 \pi)^{3} 2 \omega_{p}}dp~=d3p(2π)32ωp.
Let us now work out u ( p ) u ( p ) u( vec(p))u(\vec{p})u(p) from its EOM:
0 = ( + m ) u ( p ) = ( m p σ p σ ¯ m ) ( u L ( p ) u R ( p ) ) σ μ = ( 1 , σ ) , σ ¯ μ = ( 1 , σ ) p σ = p 0 + p σ , p σ ¯ = p 0 p σ 0 = ( + m ) u ( p ) = m p σ p σ ¯ m ( u L ( p ) u R ( p ) ) σ μ = ( 1 , σ ) , σ ¯ μ = ( 1 , σ ) p σ = p 0 + p σ , p σ ¯ = p 0 p σ {:[0=(p+m)u( vec(p))=([m,p*sigma],[p* bar(sigma),m])((u_(L)(( vec(p))))/(u_(R)(( vec(p)))))],[sigma^(mu)=(1"," vec(sigma))"," bar(sigma)^(mu)=(1","- vec(sigma))rarr p*sigma=-p^(0)+ vec(p)* vec(sigma)","p* bar(sigma)=-p^(0)- vec(p)* vec(sigma)]:}\begin{aligned} & 0=(\not p+m) u(\vec{p})=\left(\begin{array}{cc} m & p \cdot \sigma \\ p \cdot \bar{\sigma} & m \end{array}\right)\binom{u_{L}(\vec{p})}{u_{R}(\vec{p})} \\ & \sigma^{\mu}=(\mathbb{1}, \vec{\sigma}), \bar{\sigma}^{\mu}=(\mathbb{1},-\vec{\sigma}) \rightarrow p \cdot \sigma=-p^{0}+\vec{p} \cdot \vec{\sigma}, p \cdot \bar{\sigma}=-p^{0}-\vec{p} \cdot \vec{\sigma} \end{aligned}0=(+m)u(p)=(mpσpσ¯m)(uL(p)uR(p))σμ=(1,σ),σ¯μ=(1,σ)pσ=p0+pσ,pσ¯=p0pσ
u L / R u L / R u_(L//R)u_{L / R}uL/R are called "left/right-handed chiral spinors." We now have
( p σ ) u R = m u L , ( p σ ¯ ) u L = m u R ( p σ ) u R = m u L , ( p σ ¯ ) u L = m u R (p*sigma)u_(R)=-mu_(L),quad(p* bar(sigma))u_(L)=-mu_(R)(p \cdot \sigma) u_{R}=-m u_{L}, \quad(p \cdot \bar{\sigma}) u_{L}=-m u_{R}(pσ)uR=muL,(pσ¯)uL=muR
Note that each equation implies the other:
u L = 1 m ( p σ ) u R ( p σ ¯ ) u L = 1 m ( p σ ) ( p σ ¯ ) + m 2 u R = m u R u L = 1 m ( p σ ) u R ( p σ ¯ ) u L = 1 m ( p σ ) ( p σ ¯ ) + m 2 u R = m u R u_(L)=-(1)/(m)(p*sigma)u_(R)rarr(p* bar(sigma))u_(L)=-(1)/(m)ubrace((p*sigma)(p*( bar(sigma)))ubrace)_(+m^(2))u_(R)=-mu_(R)u_{L}=-\frac{1}{m}(p \cdot \sigma) u_{R} \rightarrow(p \cdot \bar{\sigma}) u_{L}=-\frac{1}{m} \underbrace{(p \cdot \sigma)(p \cdot \bar{\sigma})}_{+m^{2}} u_{R}=-m u_{R}uL=1m(pσ)uR(pσ¯)uL=1m(pσ)(pσ¯)+m2uR=muR
where we noted that
( p σ ) ( p σ ¯ ) = ( p 0 + p σ ) ( p 0 p σ ) = ( p 0 ) 2 ( p σ ) 2 = + ( p 0 ) 2 p 2 = p 2 = + m 2 ( p σ ) ( p σ ¯ ) = p 0 + p σ p 0 p σ = p 0 2 ( p σ ) 2 = + p 0 2 p 2 = p 2 = + m 2 {:[(p*sigma)(p* bar(sigma))=(-p^(0)+( vec(p))*( vec(sigma)))(-p^(0)-( vec(p))*( vec(sigma)))],[=(p^(0))^(2)-( vec(p)* vec(sigma))^(2)=+(p^(0))^(2)- vec(p)^(2)=-p^(2)=+m^(2)]:}\begin{aligned} & (p \cdot \sigma)(p \cdot \bar{\sigma})=\left(-p^{0}+\vec{p} \cdot \vec{\sigma}\right)\left(-p^{0}-\vec{p} \cdot \vec{\sigma}\right) \\ & =\left(p^{0}\right)^{2}-(\vec{p} \cdot \vec{\sigma})^{2}=+\left(p^{0}\right)^{2}-\vec{p}^{2}=-p^{2}=+m^{2} \end{aligned}(pσ)(pσ¯)=(p0+pσ)(p0pσ)=(p0)2(pσ)2=+(p0)2p2=p2=+m2
where p i p j σ i σ j = 1 2 { σ i , σ j } p i p j = δ i j p i p j = p 2 p i p j σ i σ j = 1 2 σ i , σ j p i p j = δ i j p i p j = p 2 p_(i)p_(j)sigma^(i)sigma^(j)=(1)/(2){sigma^(i),sigma^(j)}p_(i)p_(j)=delta^(ij)p_(i)p_(j)= vec(p)^(2)p_{i} p_{j} \sigma^{i} \sigma^{j}=\frac{1}{2}\left\{\sigma^{i}, \sigma^{j}\right\} p_{i} p_{j}=\delta^{i j} p_{i} p_{j}=\vec{p}^{2}pipjσiσj=12{σi,σj}pipj=δijpipj=p2.
Now let us make the following ansatz: u L = A ( p σ ) ξ u L = A ( p σ ) ξ quadu_(L)=A(p*sigma)xi^(')\quad u_{L}=A(p \cdot \sigma) \xi^{\prime}uL=A(pσ)ξ for some 2component spinor ξ ξ xi^(')\xi^{\prime}ξ. The second equation in (11) implies
u R = 1 m ( p σ ¯ ) u L = A m ( p σ ¯ ) ( p σ ) ξ = m A ξ u ( p ) = A ( p σ ξ m ξ ) u R = 1 m ( p σ ¯ ) u L = A m ( p σ ¯ ) ( p σ ) ξ = m A ξ u ( p ) = A ( p σ ξ m ξ ) {:[u_(R)=-(1)/(m)(p* bar(sigma))u_(L)],[=-(A)/(m)(p* bar(sigma))(p*sigma)xi^(')=-mAxi^(')],[rarr u( vec(p))=A((p*sigmaxi^('))/(-mxi^(')))]:}\begin{aligned} u_{R} & =-\frac{1}{m}(p \cdot \bar{\sigma}) u_{L} \\ & =-\frac{A}{m}(p \cdot \bar{\sigma})(p \cdot \sigma) \xi^{\prime}=-m A \xi^{\prime} \\ \rightarrow u(\vec{p}) & =A\binom{p \cdot \sigma \xi^{\prime}}{-m \xi^{\prime}} \end{aligned}uR=1m(pσ¯)uL=Am(pσ¯)(pσ)ξ=mAξu(p)=A(pσξmξ)
To make the solution more symmetric, choose A = 1 / m , ξ = p σ ¯ ξ A = 1 / m , ξ = p σ ¯ ξ A=-1//m,xi^(')=sqrt(-p* bar(sigma))xiA=-1 / m, \xi^{\prime}=\sqrt{-p \cdot \bar{\sigma}} \xiA=1/m,ξ=pσ¯ξ, where square root of a matrix is defined by going to a basis where it is diaganal and taking square root of its eigenvalues. Note that in rest frame, p μ = ( m , 0 ) p μ = ( m , 0 ) p^(mu)=(m, vec(0))p^{\mu}=(m, \overrightarrow{0})pμ=(m,0) so
p σ ¯ = m 1 p σ ¯ = m 1 . p σ ¯ = m 1 p σ ¯ = m 1 . p* bar(sigma)=-m1quad rarrsqrt(-p* bar(sigma))=sqrtm1.p \cdot \bar{\sigma}=-m \mathbb{1} \quad \rightarrow \sqrt{-p \cdot \bar{\sigma}}=\sqrt{m} \mathbb{1} .pσ¯=m1pσ¯=m1.
Then we have
u ( p ) = 1 m ( p σ p σ ¯ ξ m p σ ¯ ξ ) = ( p σ ξ p σ ¯ ξ ) u ( p ) = 1 m p σ p σ ¯ ξ m p σ ¯ ξ = p σ ξ p σ ¯ ξ u( vec(p))=-(1)/(m)([p*sigmasqrt(-p* bar(sigma)),xi],[-msqrt(-p* bar(sigma)),xi])=([sqrt(-p*sigma),xi],[sqrt(-p* bar(sigma)),xi])u(\vec{p})=-\frac{1}{m}\left(\begin{array}{cc} p \cdot \sigma \sqrt{-p \cdot \bar{\sigma}} & \xi \\ -m \sqrt{-p \cdot \bar{\sigma}} & \xi \end{array}\right)=\left(\begin{array}{cc} \sqrt{-p \cdot \sigma} & \xi \\ \sqrt{-p \cdot \bar{\sigma}} & \xi \end{array}\right)u(p)=1m(pσpσ¯ξmpσ¯ξ)=(pσξpσ¯ξ)
Similarly, we find that
v ( p ) = ( p σ η p σ ¯ η ) v ( p ) = p σ η p σ ¯ η v( vec(p))=([sqrt(-p*sigma),eta],[-sqrt(-p* bar(sigma)),eta])v(\vec{p})=\left(\begin{array}{cc} \sqrt{-p \cdot \sigma} & \eta \\ -\sqrt{-p \cdot \bar{\sigma}} & \eta \end{array}\right)v(p)=(pσηpσ¯η)
where η η eta\etaη is some 2-componnent spinor. Indeed,
( + m ) v ( p ) = ( m p σ p σ ¯ m ) ( p σ η p σ ¯ η ) = ( ( m p σ + p σ p σ ¯ ) η ( p σ ¯ p σ m p σ ¯ ) η ) = ( 0 0 ) ( + m ) v ( p ) = m p σ p σ ¯ m ( p σ η p σ ¯ η ) = ( ( m p σ + p σ p σ ¯ ) η ( p σ ¯ p σ m p σ ¯ ) η ) = ( 0 0 ) {:[(-p+m)v( vec(p))=([m,-p*sigma],[-p* bar(sigma),m])((sqrt(-p*sigma)eta)/(-sqrt(-p* bar(sigma))eta))],[=(((msqrt(-p*sigma)+p*sigmasqrt(-p* bar(sigma)))eta)/((-p*( bar(sigma))sqrt(-p*sigma)-msqrt(-p* bar(sigma)))eta))=((0)/(0))]:}\begin{aligned} & (-\not p+m) v(\vec{p})=\left(\begin{array}{cc} m & -p \cdot \sigma \\ -p \cdot \bar{\sigma} & m \end{array}\right)\binom{\sqrt{-p \cdot \sigma} \eta}{-\sqrt{-p \cdot \bar{\sigma}} \eta} \\ & =\binom{(m \sqrt{-p \cdot \sigma}+p \cdot \sigma \sqrt{-p \cdot \bar{\sigma}}) \eta}{(-p \cdot \bar{\sigma} \sqrt{-p \cdot \sigma}-m \sqrt{-p \cdot \bar{\sigma}}) \eta}=\binom{0}{0} \end{aligned}(+m)v(p)=(mpσpσ¯m)(pσηpσ¯η)=((mpσ+pσpσ¯)η(pσ¯pσmpσ¯)η)=(00)
where we noted that p σ p σ ¯ = p σ ( p σ ) ( p σ ¯ ) = m p σ p σ p σ ¯ = p σ ( p σ ) ( p σ ¯ ) = m p σ p*sigmasqrt(-p* bar(sigma))=sqrt(-p*sigma)sqrt((-p*sigma)(-p* bar(sigma)))=-msqrt(-p*sigma)p \cdot \sigma \sqrt{-p \cdot \bar{\sigma}}=\sqrt{-p \cdot \sigma} \sqrt{(-p \cdot \sigma)(-p \cdot \bar{\sigma})}=-m \sqrt{-p \cdot \sigma}pσpσ¯=pσ(pσ)(pσ¯)=mpσ.
It's convenient to introduce a basis ξ s ξ s xi_(s)\xi_{s}ξs and η s , s = 1 , 2 η s , s = 1 , 2 eta_(s),s=1,2\eta_{s}, s=1,2ηs,s=1,2 such that
ξ r ξ s = δ r s , η r η s = δ r s ξ r ξ s = δ r s , η r η s = δ r s xi_(r)^(†)xi_(s)=delta_(rs),quadeta_(r)^(†)eta_(s)=delta_(rs)\xi_{r}^{\dagger} \xi_{s}=\delta_{r s}, \quad \eta_{r}^{\dagger} \eta_{s}=\delta_{r s}ξrξs=δrs,ηrηs=δrs
Then the independent solutions are given by
u s ( p ) = ( p σ ξ s p σ ¯ ξ s ) , v s ( p ) = ( p σ η s p σ ¯ η s ) u s ( p ) = p σ ξ s p σ ¯ ξ s , v s ( p ) = p σ η s p σ ¯ η s u_(s)( vec(p))=([sqrt(-p*sigma),xi_(s)],[sqrt(-p* bar(sigma)),xi_(s)]),quadv_(s)( vec(p))=([sqrt(-p*sigma),eta_(s)],[-sqrt(-p* bar(sigma)),eta_(s)])u_{s}(\vec{p})=\left(\begin{array}{cc} \sqrt{-p \cdot \sigma} & \xi_{s} \\ \sqrt{-p \cdot \bar{\sigma}} & \xi_{s} \end{array}\right), \quad v_{s}(\vec{p})=\left(\begin{array}{cc} \sqrt{-p \cdot \sigma} & \eta_{s} \\ -\sqrt{-p \cdot \bar{\sigma}} & \eta_{s} \end{array}\right)us(p)=(pσξspσ¯ξs),vs(p)=(pσηspσ¯ηs)
The classical solutions obey various useful identities (which you will prove in HW ):
u s ( p ) u s ( p ) = v s ( p ) v s ( p ) = 2 ω p δ s s u ¯ s ( p ) u s ( p ) = v ¯ s ( p ) v s ( p ) = 2 m δ s s u s ( p ) v s ( p ) = v s ( p ) u s ( p ) = 0 u ¯ s ( p ) v s ( p ) = v ¯ s ( p ) u s ( p ) = 0 s u s α ( p ) u ¯ s β ( p ) = ( + m ) α β s v s α ( p ) v ¯ s β ( p ) = ( m ) α β u s ( p ) u s ( p ) = v s ( p ) v s ( p ) = 2 ω p δ s s u ¯ s ( p ) u s ( p ) = v ¯ s ( p ) v s ( p ) = 2 m δ s s u s ( p ) v s ( p ) = v s ( p ) u s ( p ) = 0 u ¯ s ( p ) v s ( p ) = v ¯ s ( p ) u s ( p ) = 0 s u s α ( p ) u ¯ s β ( p ) = ( + m ) α β s v s α ( p ) v ¯ s β ( p ) = ( m ) α β {:[u_(s^('))^(†)( vec(p))u_(s)( vec(p))=v_(s)^(†)( vec(p))v_(s)( vec(p))=2omega_(p)delta_(ss^('))],[ bar(u)_(s^('))( vec(p))u_(s)( vec(p))=- bar(v)_(s^('))( vec(p))v_(s)( vec(p))=2mdelta_(ss^('))],[u_(s^('))^(†)( vec(p))v_(s)(- vec(p))=v_(s^('))^(†)( vec(p))u_(s)(- vec(p))=0],[ bar(u)_(s^('))( vec(p))v_(s)( vec(p))= bar(v)_(s^('))( vec(p))u_(s)( vec(p))=0],[sum_(s)u_(s)^(alpha)( vec(p)) bar(u)_(s)^(beta)( vec(p))=(-p+m)^(alpha beta)],[sum_(s)v_(s)^(alpha)( vec(p)) bar(v)_(s)^(beta)( vec(p))=(-p-m)^(alpha beta)]:}\begin{aligned} & u_{s^{\prime}}^{\dagger}(\vec{p}) u_{s}(\vec{p})=v_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p})=2 \omega_{p} \delta_{s s^{\prime}} \\ & \bar{u}_{s^{\prime}}(\vec{p}) u_{s}(\vec{p})=-\bar{v}_{s^{\prime}}(\vec{p}) v_{s}(\vec{p})=2 m \delta_{s s^{\prime}} \\ & u_{s^{\prime}}^{\dagger}(\vec{p}) v_{s}(-\vec{p})=v_{s^{\prime}}^{\dagger}(\vec{p}) u_{s}(-\vec{p})=0 \\ & \bar{u}_{s^{\prime}}(\vec{p}) v_{s}(\vec{p})=\bar{v}_{s^{\prime}}(\vec{p}) u_{s}(\vec{p})=0 \\ & \sum_{s} u_{s}^{\alpha}(\vec{p}) \bar{u}_{s}^{\beta}(\vec{p})=(-\not p+m)^{\alpha \beta} \\ & \sum_{s} v_{s}^{\alpha}(\vec{p}) \bar{v}_{s}^{\beta}(\vec{p})=(-\not p-m)^{\alpha \beta} \end{aligned}us(p)us(p)=vs(p)vs(p)=2ωpδssu¯s(p)us(p)=v¯s(p)vs(p)=2mδssus(p)vs(p)=vs(p)us(p)=0u¯s(p)vs(p)=v¯s(p)us(p)=0susα(p)u¯sβ(p)=(+m)αβsvsα(p)v¯sβ(p)=(m)αβ

Examples:

  • rest frame:
p μ = ( m , 0 ) p σ = p σ ¯ = m u s ( 0 ) = m ( ξ s ξ s ) , v s ( 0 ) = m ( η s η s ) p μ = ( m , 0 ) p σ = p σ ¯ = m u s ( 0 ) = m ( ξ s ξ s ) , v s ( 0 ) = m ( η s η s ) {:[p^(mu)=(m"," vec(0))rarr-p*sigma=-p* bar(sigma)=m rarr],[u_(s)( vec(0))=sqrtm((xi_(s))/(xi_(s)))","v_(s)( vec(0))=sqrtm((eta_(s))/(-eta_(s)))]:}\begin{aligned} p^{\mu} & =(m, \overrightarrow{0}) \rightarrow-p \cdot \sigma=-p \cdot \bar{\sigma}=m \rightarrow \\ u_{s}(\overrightarrow{0}) & =\sqrt{m}\binom{\xi_{s}}{\xi_{s}}, v_{s}(\overrightarrow{0})=\sqrt{m}\binom{\eta_{s}}{-\eta_{s}} \end{aligned}pμ=(m,0)pσ=pσ¯=mus(0)=m(ξsξs),vs(0)=m(ηsηs)
  • for p μ = ( p 0 , 0 , 0 , p 3 ) , p 3 > 0 p μ = p 0 , 0 , 0 , p 3 , p 3 > 0 p^(mu)=(p^(0),0,0,p^(3)),p_(3) > 0p^{\mu}=\left(p^{0}, 0,0, p^{3}\right), p_{3}>0pμ=(p0,0,0,p3),p3>0, and ξ = η = ( 1 0 ) ξ = η = ( 1 0 ) xi=eta=((1)/(0))\xi=\eta=\binom{1}{0}ξ=η=(10) we have
p σ = ( + p 0 p 3 0 0 + p 0 + p 3 ) , p σ ¯ = ( + p 0 + p 3 0 0 t p 0 p 3 ) p σ ξ = p σ η = p 0 p 3 ( 1 0 ) p σ ¯ ξ = p σ ¯ η = p 0 + p 3 ( 1 0 ) u ( p ) = ( p 0 p 3 ( 1 0 ) p 0 + p 3 ( 1 0 ) ) , v ( p ) = ( p 0 p 3 ( 1 0 ) p 0 + p 3 ( 1 0 ) ) p σ = + p 0 p 3 0 0 + p 0 + p 3 , p σ ¯ = + p 0 + p 3 0 0 t p 0 p 3 p σ ξ = p σ η = p 0 p 3 ( 1 0 ) p σ ¯ ξ = p σ ¯ η = p 0 + p 3 ( 1 0 ) u ( p ) = ( p 0 p 3 ( 1 0 ) p 0 + p 3 ( 1 0 ) ) , v ( p ) = ( p 0 p 3 ( 1 0 ) p 0 + p 3 ( 1 0 ) ) {:[quad-p*sigma=([+p^(0)-p^(3),0],[0,+p^(0)+p^(3)])","-p* bar(sigma)=([+p^(0)+p^(3),0],[0,tp^(0)-p^(3)])],[ rarrsqrt(-p*sigma)xi=sqrt(-p*sigma)eta=sqrt(p^(0)-p^(3))((1)/(0))],[sqrt(-p* bar(sigma))xi=sqrt(-p* bar(sigma))eta=sqrt(p^(0)+p^(3))((1)/(0))],[ rarr u( vec(p))=((sqrt(p^(0)-p^(3))((1)/(0)))/(sqrt(p^(0)+p^(3))((1)/(0))))","v( vec(p))=((sqrt(p^(0)-p^(3))((1)/(0)))/(-sqrt(p^(0)+p^(3))((1)/(0))))]:}\begin{aligned} & \quad-p \cdot \sigma=\left(\begin{array}{cc} +p^{0}-p^{3} & 0 \\ 0 & +p^{0}+p^{3} \end{array}\right),-p \cdot \bar{\sigma}=\left(\begin{array}{cc} +p^{0}+p^{3} & 0 \\ 0 & t p^{0}-p^{3} \end{array}\right) \\ & \rightarrow \sqrt{-p \cdot \sigma} \xi=\sqrt{-p \cdot \sigma} \eta=\sqrt{p^{0}-p^{3}}\binom{1}{0} \\ & \sqrt{-p \cdot \bar{\sigma}} \xi=\sqrt{-p \cdot \bar{\sigma}} \eta=\sqrt{p^{0}+p^{3}}\binom{1}{0} \\ & \rightarrow u(\vec{p})=\binom{\sqrt{p^{0}-p^{3}}\binom{1}{0}}{\sqrt{p^{0}+p^{3}}\binom{1}{0}}, v(\vec{p})=\binom{\sqrt{p^{0}-p^{3}}\binom{1}{0}}{-\sqrt{p^{0}+p^{3}}\binom{1}{0}} \end{aligned}pσ=(+p0p300+p0+p3),pσ¯=(+p0+p300tp0p3)pσξ=pση=p0p3(10)pσ¯ξ=pσ¯η=p0+p3(10)u(p)=(p0p3(10)p0+p3(10)),v(p)=(p0p3(10)p0+p3(10))
In the ultrarelativistic (or massless) limit p 3 = p 0 p 3 = p 0 p^(3)=p^(0)p^{3}=p^{0}p3=p0 this reduces to
lim m 0 u ( p ) = 2 p 0 ( 0 0 1 0 ) , lim m 0 v ( p ) = 2 p 0 ( 0 0 1 0 ) lim m 0 u ( p ) = 2 p 0 0 0 1 0 , lim m 0 v ( p ) = 2 p 0 0 0 1 0 lim_(m rarr0)u( vec(p))=sqrt(2p^(0))([0],[0],[1],[0]),lim_(m rarr0)v( vec(p))=-sqrt(2p^(0))([0],[0],[1],[0])\lim _{m \rightarrow 0} u(\vec{p})=\sqrt{2 p^{0}}\left(\begin{array}{l} 0 \\ 0 \\ 1 \\ 0 \end{array}\right), \lim _{m \rightarrow 0} v(\vec{p})=-\sqrt{2 p^{0}}\left(\begin{array}{l} 0 \\ 0 \\ 1 \\ 0 \end{array}\right)limm0u(p)=2p0(0010),limm0v(p)=2p0(0010)
  • Similarly, for p μ = ( p 0 , 0 , 0 , p 3 ) , p 3 > 0 p μ = p 0 , 0 , 0 , p 3 , p 3 > 0 p^(mu)=(p^(0),0,0,p^(3)),p^(3) > 0p^{\mu}=\left(p^{0}, 0,0, p^{3}\right), p^{3}>0pμ=(p0,0,0,p3),p3>0, and ξ = η = ( 0 1 ) ξ = η = ( 0 1 ) xi=eta=((0)/(1))\xi=\eta=\binom{0}{1}ξ=η=(01) we obtain
u ( p ) = ( p 0 + p 3 ( 0 1 ) p 0 p 3 ( 0 1 ) ) , v ( p ) = ( p 0 + p 3 ( 0 1 ) p 0 p 3 ( 0 1 ) ) u ( p ) = ( p 0 + p 3 ( 0 1 ) p 0 p 3 ( 0 1 ) ) , v ( p ) = ( p 0 + p 3 ( 0 1 ) p 0 p 3 ( 0 1 ) ) u( vec(p))=((sqrt(p^(0)+p^(3))((0)/(1)))/(sqrt(p^(0)-p^(3))((0)/(1)))),v( vec(p))=((sqrt(p^(0)+p^(3))((0)/(1)))/(-sqrt(p^(0)-p^(3))((0)/(1))))u(\vec{p})=\binom{\sqrt{p^{0}+p^{3}}\binom{0}{1}}{\sqrt{p^{0}-p^{3}}\binom{0}{1}}, v(\vec{p})=\binom{\sqrt{p^{0}+p^{3}}\binom{0}{1}}{-\sqrt{p^{0}-p^{3}}\binom{0}{1}}u(p)=(p0+p3(01)p0p3(01)),v(p)=(p0+p3(01)p0p3(01))
and in the massless limit this reduces to
lim m 0 u ( p ) = 2 p 0 ( 0 1 0 0 ) , lim m 0 v ( p ) = 2 p 0 ( 0 1 0 0 ) lim m 0 u ( p ) = 2 p 0 0 1 0 0 , lim m 0 v ( p ) = 2 p 0 0 1 0 0 lim_(m rarr0)u( vec(p))=sqrt(2p^(0))([0],[1],[0],[0]),lim_(m rarr0)v( vec(p))=sqrt(2p^(0))([0],[1],[0],[0])\lim _{m \rightarrow 0} u(\vec{p})=\sqrt{2 p^{0}}\left(\begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \end{array}\right), \lim _{m \rightarrow 0} v(\vec{p})=\sqrt{2 p^{0}}\left(\begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \end{array}\right)limm0u(p)=2p0(0100),limm0v(p)=2p0(0100)
Hence in massless limit, Dirac spinors become chiral spinors.

12 Quantizing the Dirac field

This is based on Srednicki Chapter 38, Tong section 5.1-5.3. For the Dirac Lagrangian
L = i ψ ¯ ∂̸ ψ m ψ ¯ ψ L = i ψ ¯ ∂̸ ψ m ψ ¯ ψ L=i bar(psi)del psi-m bar(psi)psi\mathcal{L}=i \bar{\psi} \not \partial \psi-m \bar{\psi} \psiL=iψ¯∂̸ψmψ¯ψ
we have the following canonical momentum:
Π ψ = L ψ ˙ = i ψ ¯ γ 0 = i ψ Π ψ = L ψ ˙ = i ψ ¯ γ 0 = i ψ Pi_(psi)=(delL)/(del(psi^(˙)))=i bar(psi)gamma^(0)=ipsi^(†)\Pi_{\psi}=\frac{\partial \mathcal{L}}{\partial \dot{\psi}}=i \bar{\psi} \gamma^{0}=i \psi^{\dagger}Πψ=Lψ˙=iψ¯γ0=iψ
and the following canonical (anti)commutation relations:
{ ψ α ( t , x ) , ψ β ( t , y ) } = 0 { ψ α ( t , x ) , ( Π ψ ) β ( t , y ) } = i δ α β δ 3 ( x y ) { ψ α ( t , x ) , ψ β ( t , y ) } = δ α β δ 3 ( x y ) ψ α ( t , x ) , ψ β ( t , y ) = 0 ψ α ( t , x ) , Π ψ β ( t , y ) = i δ α β δ 3 ( x y ) ψ α ( t , x ) , ψ β ( t , y ) = δ α β δ 3 ( x y ) {:[{psi_(alpha)(t,( vec(x))),psi_(beta)(t,( vec(y)))}=0],[{psi_(alpha)(t,( vec(x))),(Pi_(psi))_(beta)(t,( vec(y)))}=idelta_(alpha beta)delta^(3)( vec(x)- vec(y))rarr{psi_(alpha)(t,( vec(x))),psi_(beta)^(†)(t,( vec(y)))}=delta_(alpha beta)delta^(3)( vec(x)- vec(y))]:}\begin{aligned} & \left\{\psi_{\alpha}(t, \vec{x}), \psi_{\beta}(t, \vec{y})\right\}=0 \\ & \left\{\psi_{\alpha}(t, \vec{x}),\left(\Pi_{\psi}\right)_{\beta}(t, \vec{y})\right\}=i \delta_{\alpha \beta} \delta^{3}(\vec{x}-\vec{y}) \rightarrow\left\{\psi_{\alpha}(t, \vec{x}), \psi_{\beta}^{\dagger}(t, \vec{y})\right\}=\delta_{\alpha \beta} \delta^{3}(\vec{x}-\vec{y}) \end{aligned}{ψα(t,x),ψβ(t,y)}=0{ψα(t,x),(Πψ)β(t,y)}=iδαβδ3(xy){ψα(t,x),ψβ(t,y)}=δαβδ3(xy)
Note that we need anticommutators. Using commutators would lead to various inconsistencies such as negative-norm states or a Hamiltonian which is unbounded from below, as you will see in the HW. In general, integer-spin fields must be commuting and half-integer spin fields must be anti-commiting This known as "spin-statistics theorem".
Now recall the expansion:
ψ ( x ) = s = 1 , 2 d p ~ [ b s ( p ) u s ( p ) e i p x + d s ( p ) v s ( p ) e i p x ] ψ ( x ) = s = 1 , 2 d p ~ b s ( p ) u s ( p ) e i p x + d s ( p ) v s ( p ) e i p x psi(x)=sum_(s=1,2)int widetilde(dp)[b_(s)(( vec(p)))u_(s)(( vec(p)))e^(ip*x)+d_(s)^(†)(( vec(p)))v_(s)(( vec(p)))e^(-ip*x)]\psi(x)=\sum_{s=1,2} \int \widetilde{d p}\left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{i p \cdot x}+d_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{-i p \cdot x}\right]ψ(x)=s=1,2dp~[bs(p)us(p)eipx+ds(p)vs(p)eipx]
Let us use this to express b , d b , d b,db, db,d in terms of ψ , ψ ψ , ψ psi,psi^(†)\psi, \psi^{\dagger}ψ,ψ and then deduce the algebra of b , d b , d b,db, db,d. We have that
d 3 x e i p x ψ ( x ) = s d p ~ d 3 x [ b s ( p ) u s ( p ) e i ( p p ) x + d s ( p ) v s ( p ) e i ( p + p ) x ] = s d p ~ [ b s ( p ) u s ( p ) ( 2 π ) 3 δ 3 ( p p ) e + i ( ω p ω p ) t + d s ( p ) v s ( p ) ( 2 π ) 3 δ 3 ( p + p ) e i ( ω p + ω p ) t ] = s 1 2 ω p [ b s ( p ) u s ( p ) + e 2 i ω p t d s ( p ) v s ( p ) ] d 3 x e i p x ψ ( x ) = s d p ~ d 3 x b s p u s p e i p p x + d s p v s p e i p + p x = s d p ~ b s p u s p ( 2 π ) 3 δ 3 p p e + i ω p ω p t + d s p v s p ( 2 π ) 3 δ 3 p + p e i ω p + ω p t = s 1 2 ω p b s ( p ) u s ( p ) + e 2 i ω p t d s ( p ) v s ( p ) {:[intd^(3)xe^(-ip*x)psi(x)=sum_(s)int widetilde(dp)^(')intd^(3)x[b_(s)( vec(p)^('))u_(s)( vec(p)^('))e^(i(p^(')-p)*x)+d_(s)^(†)( vec(p)^('))v_(s)( vec(p)^('))e^(-i(p^(')+p)*x)]],[=sum_(s)int widetilde(dp)^(')[b_(s)( vec(p)^('))u_(s)( vec(p)^('))(2pi)^(3)delta^(3)( vec(p)^(')-( vec(p)))e^(+i(omega_(p)-omega_(p^(')))t):}],[{:+d_(s)^(†)( vec(p)^('))v_(s)( vec(p)^('))(2pi)^(3)delta^(3)( vec(p)^(')+ vec(p)^('))e^(i(omega_(p^('))+omega_(p))t)]],[=sum_(s)(1)/(2omega_(p))[b_(s)(( vec(p)))u_(s)(( vec(p)))+e^(2iomega_(p)t)d_(s)^(†)(-( vec(p)))v_(s)(-( vec(p)))]]:}\begin{aligned} \int d^{3} x e^{-i p \cdot x} \psi(x) & =\sum_{s} \int \widetilde{d p}^{\prime} \int d^{3} x\left[b_{s}\left(\vec{p}^{\prime}\right) u_{s}\left(\vec{p}^{\prime}\right) e^{i\left(p^{\prime}-p\right) \cdot x}+d_{s}^{\dagger}\left(\vec{p}^{\prime}\right) v_{s}\left(\vec{p}^{\prime}\right) e^{-i\left(p^{\prime}+p\right) \cdot x}\right] \\ & =\sum_{s} \int \widetilde{d p}^{\prime}\left[b_{s}\left(\vec{p}^{\prime}\right) u_{s}\left(\vec{p}^{\prime}\right)(2 \pi)^{3} \delta^{3}\left(\vec{p}^{\prime}-\vec{p}\right) e^{+i\left(\omega_{p}-\omega_{p^{\prime}}\right) t}\right. \\ & \left.+d_{s}^{\dagger}\left(\vec{p}^{\prime}\right) v_{s}\left(\vec{p}^{\prime}\right)(2 \pi)^{3} \delta^{3}\left(\vec{p}^{\prime}+\vec{p}^{\prime}\right) e^{i\left(\omega_{p^{\prime}}+\omega_{p}\right) t}\right] \\ & =\sum_{s} \frac{1}{2 \omega_{p}}\left[b_{s}(\vec{p}) u_{s}(\vec{p})+e^{2 i \omega_{p} t} d_{s}^{\dagger}(-\vec{p}) v_{s}(-\vec{p})\right] \end{aligned}d3xeipxψ(x)=sdp~d3x[bs(p)us(p)ei(pp)x+ds(p)vs(p)ei(p+p)x]=sdp~[bs(p)us(p)(2π)3δ3(pp)e+i(ωpωp)t+ds(p)vs(p)(2π)3δ3(p+p)ei(ωp+ωp)t]=s12ωp[bs(p)us(p)+e2iωptds(p)vs(p)]
From this we see that
d 3 x e i p x u s ( p ) ψ ( x ) = s 1 2 ω p [ b s ( p ) u s ( p ) u s ( p ) + e 2 i ω p t d s + ( p ) u s ( p ) v s ( p ) ] = b s ( p ) d 3 x e i p x u s ( p ) ψ ( x ) = s 1 2 ω p b s ( p ) u s ( p ) u s ( p ) + e 2 i ω p t d s + ( p ) u s ( p ) v s ( p ) = b s ( p ) {:[intd^(3)xe^(-ip*x)u_(s)^(†)( vec(p))psi(x)=sum_(s^('))(1)/(2omega_(p))[b_(s)^(')(( vec(p)))u_(s)^(†)(( vec(p)))u_(s^('))(( vec(p)))+e^(2iomega_(p)t)d_(s)^(+)(-( vec(p)))u_(s)^(†)(( vec(p)))v_(s^('))(-( vec(p)))]],[=b_(s)( vec(p))]:}\begin{aligned} \int d^{3} x e^{-i p \cdot x} u_{s}^{\dagger}(\vec{p}) \psi(x) & =\sum_{s^{\prime}} \frac{1}{2 \omega_{p}}\left[b_{s}^{\prime}(\vec{p}) u_{s}^{\dagger}(\vec{p}) u_{s^{\prime}}(\vec{p})+e^{2 i \omega_{p} t} d_{s}^{+}(-\vec{p}) u_{s}^{\dagger}(\vec{p}) v_{s^{\prime}}(-\vec{p})\right] \\ & =b_{s}(\vec{p}) \end{aligned}d3xeipxus(p)ψ(x)=s12ωp[bs(p)us(p)us(p)+e2iωptds+(p)us(p)vs(p)]=bs(p)
Similarly, computing d 3 x e i p x ψ ( x ) d 3 x e i p x ψ ( x ) intd^(3)xe^(ip*x)psi(x)\int d^{3} x e^{i p \cdot x} \psi(x)d3xeipxψ(x), multiplying by v s ( p ) v s ( p ) v_(s)^(†)( vec(p))v_{s}^{\dagger}(\vec{p})vs(p), and using v s ( p ) v s ( p ) = v s ( p ) v s ( p ) = v_(s)^(†)( vec(p))v_(s^('))( vec(p))=v_{s}^{\dagger}(\vec{p}) v_{s^{\prime}}(\vec{p})=vs(p)vs(p)= 2 ω p δ s s , v s ( p ) u s ( p ) = 0 2 ω p δ s s , v s ( p ) u s ( p ) = 0 2omega_(p)delta_(ss^(')),v_(s)^(†)( vec(p))u_(s^('))(- vec(p))=02 \omega_{p} \delta_{s s^{\prime}}, v_{s}^{\dagger}(\vec{p}) u_{s^{\prime}}(-\vec{p})=02ωpδss,vs(p)us(p)=0, we find
d s ( p ) = d 3 x e i p x v s ( p ) ψ ( x ) d s ( p ) = d 3 x e i p x v s ( p ) ψ ( x ) d_(s)^(†)( vec(p))=intd^(3)xe^(ip*x)v_(s)^(†)( vec(p))psi(x)d_{s}^{\dagger}(\vec{p})=\int d^{3} x e^{i p \cdot x} v_{s}^{\dagger}(\vec{p}) \psi(x)ds(p)=d3xeipxvs(p)ψ(x)
Taking complex conjugates:
b s ( p ) = d 3 x e i p x ψ ( x ) u s ( p ) d s ( p ) = d 3 x e i p x ψ ( x ) v s ( p ) b s ( p ) = d 3 x e i p x ψ ( x ) u s ( p ) d s ( p ) = d 3 x e i p x ψ ( x ) v s ( p ) {:[b_(s)^(†)( vec(p))=intd^(3)xe^(ip*x)psi^(†)(x)u_(s)( vec(p))],[d_(s)( vec(p))=intd^(3)xe^(-ip*x)psi^(†)(x)v_(s)( vec(p))]:}\begin{aligned} & b_{s}^{\dagger}(\vec{p})=\int d^{3} x e^{i p \cdot x} \psi^{\dagger}(x) u_{s}(\vec{p}) \\ & d_{s}(\vec{p})=\int d^{3} x e^{-i p \cdot x} \psi^{\dagger}(x) v_{s}(\vec{p}) \end{aligned}bs(p)=d3xeipxψ(x)us(p)ds(p)=d3xeipxψ(x)vs(p)
From this, we immediately see that
{ b s ( p ) , b s ( p ) } = { d s ( p ) , d s ( p ) } = { b s ( p ) , d s ( p ) } = 0 b s ( p ) , b s p = d s ( p ) , d s p = b s ( p ) , d s p = 0 {b_(s)(( vec(p))),b_(s^('))( vec(p)^('))}={d_(s)(( vec(p))),d_(s^('))( vec(p)^('))}={b_(s)(( vec(p))),d_(s^('))^(†)( vec(p)^('))}=0\left\{b_{s}(\vec{p}), b_{s^{\prime}}\left(\vec{p}^{\prime}\right)\right\}=\left\{d_{s}(\vec{p}), d_{s^{\prime}}\left(\vec{p}^{\prime}\right)\right\}=\left\{b_{s}(\vec{p}), d_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right)\right\}=0{bs(p),bs(p)}={ds(p),ds(p)}={bs(p),ds(p)}=0
since they all involve { ψ , ψ } = 0 { ψ , ψ } = 0 {psi,psi}=0\{\psi, \psi\}=0{ψ,ψ}=0. Similarly, the hermitian conjugates also vanish. Moreover
{ b s ( p ) , d s ( p ) } = d 3 x d 3 y e i p x i p y u s ( p ) α v s ( p ) β { ψ α ( x ) , ψ β ( y ) = d 3 x e i ( p + p ) x u s ( p ) v s ( p ) = ( 2 π ) 3 δ 3 ( p + p ) u s ( p ) v s ( p ) = 0 b s ( p ) , d s p = d 3 x d 3 y e i p x i p y u s ( p ) α v s p β ψ α ( x ) , ψ β ( y ) = d 3 x e i p + p x u s ( p ) v s ( p ) = ( 2 π ) 3 δ 3 p + p u s ( p ) v s ( p ) = 0 {:[{b_(s)(( vec(p))),d_(s^('))( vec(p)^('))}=intd^(3)xd^(3)ye^(-ip*x-ip^(')*y)u_(s)^(†)( vec(p))^(alpha)v_(s^('))( vec(p)^('))^(beta){psi_(alpha)(x),psi_(beta)^(†)(y):}],[=intd^(3)xe^(-i(p+p^('))*x)u_(s)^(†)( vec(p))v_(s^('))(- vec(p))],[=(2pi)^(3)delta^(3)(( vec(p))+ vec(p)^('))u_(s)^(†)( vec(p))v_(s^('))(- vec(p))=0]:}\begin{aligned} \left\{b_{s}(\vec{p}), d_{s^{\prime}}\left(\vec{p}^{\prime}\right)\right\} & =\int d^{3} x d^{3} y e^{-i p \cdot x-i p^{\prime} \cdot y} u_{s}^{\dagger}(\vec{p})^{\alpha} v_{s^{\prime}}\left(\vec{p}^{\prime}\right)^{\beta}\left\{\psi_{\alpha}(x), \psi_{\beta}^{\dagger}(y)\right. \\ & =\int d^{3} x e^{-i\left(p+p^{\prime}\right) \cdot x} u_{s}^{\dagger}(\vec{p}) v_{s^{\prime}}(-\vec{p}) \\ & =(2 \pi)^{3} \delta^{3}\left(\vec{p}+\vec{p}^{\prime}\right) u_{s}^{\dagger}(\vec{p}) v_{s^{\prime}}(-\vec{p})=0 \end{aligned}{bs(p),ds(p)}=d3xd3yeipxipyus(p)αvs(p)β{ψα(x),ψβ(y)=d3xei(p+p)xus(p)vs(p)=(2π)3δ3(p+p)us(p)vs(p)=0
The hermitian conjugate must therefore vanish as well.
Now let's look at the following anticommutator:
{ b s ( p ) , b s ( p ) } = d 3 x d 3 y e i p x + i p y u s α ( p ) u s β ( p ) { ψ α ( x ) , ψ β ( y ) } = d 3 x e i ( p p ) x u s ( p ) u s ( p ) = 2 ω p δ s , s ( 2 π ) 3 δ 3 ( p p ) b s ( p ) , b s p = d 3 x d 3 y e i p x + i p y u s α ( p ) u s β p ψ α ( x ) , ψ β ( y ) = d 3 x e i p p x u s ( p ) u s p = 2 ω p δ s , s ( 2 π ) 3 δ 3 p p {:[{b_(s)(( vec(p))),b_(s^('))^(†)( vec(p)^('))}=intd^(3)xd^(3)ye^(-ip*x+ip^(')*y)u_(s)^(†alpha)( vec(p))u_(s^('))^(beta)( vec(p)^(')){psi_(alpha)(x),psi_(beta)^(†)(y)}],[=intd^(3)xe^(-i(p-p^('))*x)u_(s)^(†)( vec(p))u_(s^('))( vec(p)^('))],[=2omega_(p)delta_(s,s^('))(2pi)^(3)delta^(3)(( vec(p))- vec(p)^('))]:}\begin{aligned} \left\{b_{s}(\vec{p}), b_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right)\right\} & =\int d^{3} x d^{3} y e^{-i p \cdot x+i p^{\prime} \cdot y} u_{s}^{\dagger \alpha}(\vec{p}) u_{s^{\prime}}^{\beta}\left(\vec{p}^{\prime}\right)\left\{\psi_{\alpha}(x), \psi_{\beta}^{\dagger}(y)\right\} \\ & =\int d^{3} x e^{-i\left(p-p^{\prime}\right) \cdot x} u_{s}^{\dagger}(\vec{p}) u_{s^{\prime}}\left(\vec{p}^{\prime}\right) \\ & =2 \omega_{p} \delta_{s, s^{\prime}}(2 \pi)^{3} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right) \end{aligned}{bs(p),bs(p)}=d3xd3yeipx+ipyusα(p)usβ(p){ψα(x),ψβ(y)}=d3xei(pp)xus(p)us(p)=2ωpδs,s(2π)3δ3(pp)
Similarly, we find
{ d s ( p ) , d s ( p ) } = d 3 x d 3 y e i p x i p y v s α ( p ) v s β ( p ) { ψ α ( x ) , ψ β ( y ) } = d 3 x e i ( p p ) x v s ( p ) v s ( p ) = 2 ω p δ s s ( 2 π ) 3 δ 3 ( p p ) d s ( p ) , d s p = d 3 x d 3 y e i p x i p y v s α ( p ) v s β ( p ) ψ α ( x ) , ψ β ( y ) = d 3 x e i p p x v s ( p ) v s p = 2 ω p δ s s ( 2 π ) 3 δ 3 p p {:[{d_(s)^(†)(( vec(p))),d_(s^('))( vec(p)^('))}=intd^(3)xd^(3)ye^(ip*x-ip^(')*y)v_(s)^(†alpha)( vec(p))v_(s^('))^(beta)( vec(p)){psi_(alpha)(x),psi_(beta)^(†)(y)}],[=intd^(3)xe^(i(p-p^('))*x)v_(s)^(†)( vec(p))v_(s^('))( vec(p)^('))],[=2omega_(p)delta_(ss^('))(2pi)^(3)delta^(3)(( vec(p))- vec(p)^('))]:}\begin{aligned} \left\{d_{s}^{\dagger}(\vec{p}), d_{s^{\prime}}\left(\vec{p}^{\prime}\right)\right\} & =\int d^{3} x d^{3} y e^{i p \cdot x-i p^{\prime} \cdot y} v_{s}^{\dagger \alpha}(\vec{p}) v_{s^{\prime}}^{\beta}(\vec{p})\left\{\psi_{\alpha}(x), \psi_{\beta}^{\dagger}(y)\right\} \\ & =\int d^{3} x e^{i\left(p-p^{\prime}\right) \cdot x} v_{s}^{\dagger}(\vec{p}) v_{s^{\prime}}\left(\vec{p}^{\prime}\right) \\ & =2 \omega_{p} \delta_{s s^{\prime}}(2 \pi)^{3} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right) \end{aligned}{ds(p),ds(p)}=d3xd3yeipxipyvsα(p)vsβ(p){ψα(x),ψβ(y)}=d3xei(pp)xvs(p)vs(p)=2ωpδss(2π)3δ3(pp)
In summary: { b s ( p ) , b s ( p ) } = { d s ( p ) , d s ( p ) } = ( 2 π ) 3 2 ω p δ 3 ( p p ) δ s s b s ( p ) , b s p = d s ( p ) , d s p = ( 2 π ) 3 2 ω p δ 3 ( p p ) δ s s {b_(s)(( vec(p))),b_(s^('))^(†)( vec(p)^('))}={d_(s)(( vec(p))),d_(s^('))^(†)( vec(p)^('))}=(2pi)^(3)2omega_(p)delta^(3)( vec(p)- vec(p))delta_(ss^('))\left\{b_{s}(\vec{p}), b_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right)\right\}=\left\{d_{s}(\vec{p}), d_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right)\right\}=(2 \pi)^{3} 2 \omega_{p} \delta^{3}(\vec{p}-\vec{p}) \delta_{s s^{\prime}}{bs(p),bs(p)}={ds(p),ds(p)}=(2π)32ωpδ3(pp)δss, and all other anticommutation relations vanish.

Hamiltonian:

Recall that
H = d 3 x ψ ¯ ( i γ i i + m ) ψ H = d 3 x ψ ¯ i γ i i + m ψ H=intd^(3)x bar(psi)(-igamma^(i)del_(i)+m)psiH=\int d^{3} x \bar{\psi}\left(-i \gamma^{i} \partial_{i}+m\right) \psiH=d3xψ¯(iγii+m)ψ
Noting that
( i γ i i + m ) ψ = s d p ~ [ b s ( p ) ( γ i p i + m ) u s ( p ) e i p x + d s ( p ) ( γ i p i + m ) v s ( p ) e i p x ] i γ i i + m ψ = s d p ~ b s ( p ) γ i p i + m u s ( p ) e i p x + d s ( p ) γ i p i + m v s ( p ) e i p x {:[(-igamma^(i)del_(i)+m)psi=sum_(s)int widetilde(dp)[b_(s)(( vec(p)))(gamma^(i)p_(i)+m)u_(s)(( vec(p)))e^(ip*x):}],[{:+d_(s)^(†)(( vec(p)))(-gamma^(i)p_(i)+m)v_(s)(( vec(p)))e^(-ip*x)]]:}\begin{aligned} \left(-i \gamma^{i} \partial_{i}+m\right) \psi=\sum_{s} \int \widetilde{d p} & {\left[b_{s}(\vec{p})\left(\gamma^{i} p_{i}+m\right) u_{s}(\vec{p}) e^{i p \cdot x}\right.} \\ & \left.+d_{s}^{\dagger}(\vec{p})\left(-\gamma^{i} p_{i}+m\right) v_{s}(\vec{p}) e^{-i p \cdot x}\right] \end{aligned}(iγii+m)ψ=sdp~[bs(p)(γipi+m)us(p)eipx+ds(p)(γipi+m)vs(p)eipx]
and using ( + m ) u ( p ) = ( + m ) v ( p ) = 0 ( + m ) u ( p ) = ( + m ) v ( p ) = 0 (p+m)u(p)=(-p+m)v(p)=0(\not p+m) u(p)=(-\not p+m) v(p)=0(+m)u(p)=(+m)v(p)=0, we find that
H = s , s d p ~ d p ~ d 3 x ( b s ( p ) u ¯ s ( p ) e i p x + d s ( p ) v ¯ s ( p ) e i p x ) ω p γ 0 ( b s ( p ) u s ( p ) e i p x d s ( p ) v s ( p ) e i p x ) s , s d p ~ d p ~ d 3 x ω p [ p ) b s ( p ) d s ( p ) v s ( p ) v s ( p ) e + i ( p p ) x ) u s ( p ) e i ( p p ) x b s ( p ) d s ( p ) u s ( p ) v s ( p ) e i ( p + p ) x + d s ( p ) b s ( p ) v s ( p ) u s ( p ) e i ( p + p ) x ] = s , s d p ~ 1 2 ( b s ( p ) b s ( p ) u s ( p ) u s ( p ) d s ( p ) d s ( p ) v s ( p ) v s ( p ) b s ( p ) d s ( p ) u s ( p ) v s ( p ) 0 + d s ( p ) b s ( p ) s s ( p ) u s ( p ) ) = s d p ~ ω p [ b s ( p ) b s ( p ) d s ( p ) d s ( p ) ] = s d p ~ ω p [ b s ( p ) b s ( p ) d s ( p ) d s ( p ) + { d s ( p ) , d s ( p ) } = s d p ~ ω p [ b s ( p ) b s ( p ) + d s ( p ) d s ( p ) ] 4 E 0 V H = s , s d p ~ d p ~ d 3 x b s p u ¯ s p e i p x + d s p v ¯ s p e i p x ω p γ 0 b s ( p ) u s ( p ) e i p x d s ( p ) v s p e i p x s , s d p ~ d p ~ d 3 x ω p p b s ( p ) d s ( p ) v s p v s ( p ) e + i p p x u s ( p ) e i p p x b s p d s ( p ) u s p v s ( p ) e i p + p x + d s p b s ( p ) v s p u s ( p ) e i p + p x = s , s d p ~ 1 2 b s ( p ) b s ( p ) u s ( p ) u s ( p ) d s ( p ) d s ( p ) v s ( p ) v s ( p ) b s ( p ) d s ( p ) u s ( p ) v s ( p ) 0 + d s ( p ) b s ( p ) s s ( p ) u s ( p ) = s d p ~ ω p b s ( p ) b s ( p ) d s ( p ) d s ( p ) = s d p ~ ω p b s ( p ) b s ( p ) d s ( p ) d s ( p ) + d s ( p ) , d s ( p ) = s d p ~ ω p b s ( p ) b s ( p ) + d s ( p ) d s ( p ) 4 E 0 V {:[H=sum_(s,s^('))int widetilde(dp) widetilde(dp)^(')d^(3)x(b_(s^('))^(†)( vec(p)^(')) bar(u)_(s^('))( vec(p)^('))e^(-ip^(')*x)+d_(s^('))( vec(p)^(')) bar(v)_(s^('))( vec(p)^('))e^(ip^(')*x))],[omega_(p)gamma^(0)(b_(s)(( vec(p)))u_(s)(( vec(p)))e^(ip*x)-d_(s)^(†)(( vec(p)))v_(s)( vec(p)^('))e^(-ip*x))],[{:-sum_(s,s^('))int( widetilde(dp))( widetilde(dp))d^(3)xomega_(p)[ vec(p)^('))b_(s^('))^(†)(( vec(p)))d_(s)^(†)(( vec(p)))v_(s^('))^(†)( vec(p)^('))v_(s)(( vec(p)))e^(+i(p^(')-p)*x))u_(s)( vec(p))e^(-i(p^(')-p)*x)],[-b_(s^('))^(†)( vec(p)^('))d_(s)^(†)( vec(p))u_(s^('))^(†)( vec(p)^('))v_(s)( vec(p))e^(-i(p+p^('))*x)],[{:+d_(s^('))( vec(p)^('))b_(s)(( vec(p)))v_(s^('))^(†)( vec(p)^('))u_(s)(( vec(p)))e^(i(p+p^('))*x)]],[=sum_(s,s^('))int widetilde(dp)(1)/(2)(b_(s^('))^(†)(( vec(p)))b_(s)(( vec(p)))u_(s)^(†)(( vec(p)))u_(s)(( vec(p)))-d_(s^('))(( vec(p)))d_(s)^(†)(( vec(p)))v_(s)^(†)(( vec(p)))v_(s)(( vec(p))):}],[-b_(s^('))^(†)(- vec(p))d_(s)^(†)( vec(p))ubrace(u_(s^('))^(†)(-( vec(p)))v_(s)(( vec(p)))ubrace)_(0)+d_(s)(- vec(p))b_(s)( vec(p))ubrace(ubrace)_({:s_(s^('))^(†)(( vec(p)))*u_(s)(( vec(p)))))],[=sum_(s)int widetilde(dp)omega_(p)[b_(s)^(†)(( vec(p)))b_(s)(( vec(p)))-d_(s)(( vec(p)))d_(s)^(†)(( vec(p)))]],[=sum_(s)int widetilde(dp)omega_(p)[b_(s)^(†)(( vec(p)))b_(s)(( vec(p)))-d_(s)^(†)(( vec(p)))d_(s)(( vec(p)))+{d_(s)(( vec(p))),d_(s)^(†)(( vec(p)))}:}],[=sum_(s)int widetilde(dp)omega_(p)[b_(s)^(†)(( vec(p)))b_(s)(( vec(p)))+d_(s)^(†)(( vec(p)))d_(s)(( vec(p)))]-4E_(0)V]:}\begin{aligned} H & =\sum_{s, s^{\prime}} \int \widetilde{d p} \widetilde{d p}^{\prime} d^{3} x\left(b_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right) \bar{u}_{s^{\prime}}\left(\vec{p}^{\prime}\right) e^{-i p^{\prime} \cdot x}+d_{s^{\prime}}\left(\vec{p}^{\prime}\right) \bar{v}_{s^{\prime}}\left(\vec{p}^{\prime}\right) e^{i p^{\prime} \cdot x}\right) \\ & \omega_{p} \gamma^{0}\left(b_{s}(\vec{p}) u_{s}(\vec{p}) e^{i p \cdot x}-d_{s}^{\dagger}(\vec{p}) v_{s}\left(\vec{p}^{\prime}\right) e^{-i p \cdot x}\right) \\ & \left.-\sum_{s, s^{\prime}} \int \widetilde{d p} \widetilde{d p} d^{3} x \omega_{p}\left[\vec{p}^{\prime}\right) b_{s^{\prime}}^{\dagger}(\vec{p}) d_{s}^{\dagger}(\vec{p}) v_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right) v_{s}(\vec{p}) e^{+i\left(p^{\prime}-p\right) \cdot x}\right) u_{s}(\vec{p}) e^{-i\left(p^{\prime}-p\right) \cdot x} \\ & -b_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right) d_{s}^{\dagger}(\vec{p}) u_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right) v_{s}(\vec{p}) e^{-i\left(p+p^{\prime}\right) \cdot x} \\ & \left.+d_{s^{\prime}}\left(\vec{p}^{\prime}\right) b_{s}(\vec{p}) v_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right) u_{s}(\vec{p}) e^{i\left(p+p^{\prime}\right) \cdot x}\right] \\ & =\sum_{s, s^{\prime}} \int \widetilde{d p} \frac{1}{2}\left(b_{s^{\prime}}^{\dagger}(\vec{p}) b_{s}(\vec{p}) u_{s}^{\dagger}(\vec{p}) u_{s}(\vec{p})-d_{s^{\prime}}(\vec{p}) d_{s}^{\dagger}(\vec{p}) v_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p})\right. \\ & -b_{s^{\prime}}^{\dagger}(-\vec{p}) d_{s}^{\dagger}(\vec{p}) \underbrace{u_{s^{\prime}}^{\dagger}(-\vec{p}) v_{s}(\vec{p})}_{0}+d_{s}(-\vec{p}) b_{s}(\vec{p}) \underbrace{}_{\left.s_{s^{\prime}}^{\dagger}(\vec{p}) \cdot u_{s}(\vec{p})\right)} \\ & =\sum_{s} \int \widetilde{d p} \omega_{p}\left[b_{s}^{\dagger}(\vec{p}) b_{s}(\vec{p})-d_{s}(\vec{p}) d_{s}^{\dagger}(\vec{p})\right] \\ & =\sum_{s} \int \widetilde{d p} \omega_{p}\left[b_{s}^{\dagger}(\vec{p}) b_{s}(\vec{p})-d_{s}^{\dagger}(\vec{p}) d_{s}(\vec{p})+\left\{d_{s}(\vec{p}), d_{s}^{\dagger}(\vec{p})\right\}\right. \\ & =\sum_{s} \int \widetilde{d p} \omega_{p}\left[b_{s}^{\dagger}(\vec{p}) b_{s}(\vec{p})+d_{s}^{\dagger}(\vec{p}) d_{s}(\vec{p})\right]-4 \mathcal{E}_{0} V \end{aligned}H=s,sdp~dp~d3x(bs(p)u¯s(p)eipx+ds(p)v¯s(p)eipx)ωpγ0(bs(p)us(p)eipxds(p)vs(p)eipx)s,sdp~dp~d3xωp[p)bs(p)ds(p)vs(p)vs(p)e+i(pp)x)us(p)ei(pp)xbs(p)ds(p)us(p)vs(p)ei(p+p)x+ds(p)bs(p)vs(p)us(p)ei(p+p)x]=s,sdp~12(bs(p)bs(p)us(p)us(p)ds(p)ds(p)vs(p)vs(p)bs(p)ds(p)us(p)vs(p)0+ds(p)bs(p)ss(p)us(p))=sdp~ωp[bs(p)bs(p)ds(p)ds(p)]=sdp~ωp[bs(p)bs(p)ds(p)ds(p)+{ds(p),ds(p)}=sdp~ωp[bs(p)bs(p)+ds(p)ds(p)]4E0V
where we noted that { d s ( p ) , d s ( p ) } = 2 ω p ( 2 π ) 3 δ 3 ( 0 ) = 2 ω p V d s ( p ) , d s ( p ) = 2 ω p ( 2 π ) 3 δ 3 ( 0 ) = 2 ω p V {d_(s)(( vec(p))),d_(s)^(†)(( vec(p)))}=2omega_(p)(2pi)^(3)delta^(3)( vec(0))=2omega_(p)V\left\{d_{s}(\vec{p}), d_{s}^{\dagger}(\vec{p})\right\}=2 \omega_{p}(2 \pi)^{3} \delta^{3}(\overrightarrow{0})=2 \omega_{p} V{ds(p),ds(p)}=2ωp(2π)3δ3(0)=2ωpV, where V V VVV is the volume of space, and E 0 = 1 2 d 3 p ( 2 π ) 3 ω p E 0 = 1 2 d 3 p ( 2 π ) 3 ω p E_(0)=(1)/(2)int(d^(3)p)/((2pi)^(3))omega_(p)\mathcal{E}_{0}=\frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{p}E0=12d3p(2π)3ωp is the vacuum energy. Hence, the Hamiltonion counts the number of b-type particles plus the number of d-type particles weighted by their energy.
  • ground state: b s ( p ) | 0 = d s ( p ) | 0 = 0 b s ( p ) | 0 = d s ( p ) | 0 = 0 quadb_(s)( vec(p))|0:)=d_(s)( vec(p))|0:)=0\quad b_{s}(\vec{p})|0\rangle=d_{s}(\vec{p})|0\rangle=0bs(p)|0=ds(p)|0=0.
  • single-particle states: b s ( p ) | 0 , d s ( p ) | 0 b s ( p ) | 0 , d s ( p ) | 0 b_(s)^(†)( vec(p))|0:),quadd_(s)^(†)( vec(p))|0:)b_{s}^{\dagger}(\vec{p})|0\rangle, \quad d_{s}^{\dagger}(\vec{p})|0\ranglebs(p)|0,ds(p)|0
  • two-particle states:
| p 1 , s 1 ; p 2 , s 2 = b s 1 ( p 1 ) b s 2 ( p 2 ) | 0 = b s 2 ( p 2 ) b s 1 ( p 1 ) | 0 = | p 2 , s 2 ; p 1 , s 1 p 1 , s 1 ; p 2 , s 2 = b s 1 p 1 b s 2 p 2 | 0 = b s 2 p 2 b s 1 p 1 | 0 = p 2 , s 2 ; p 1 , s 1 {:[| vec(p)_(1),s_(1); vec(p)_(2),s_(2):)=b_(s_(1))^(†)( vec(p)_(1))b_(s_(2))^(†)( vec(p)_(2))|0:)],[=-b_(s_(2))^(†)( vec(p)_(2))b_(s_(1))^(†)( vec(p)_(1))|0:)=-| vec(p)_(2),s_(2); vec(p)_(1),s_(1):)]:}\begin{aligned} \left|\vec{p}_{1}, s_{1} ; \vec{p}_{2}, s_{2}\right\rangle & =b_{s_{1}}^{\dagger}\left(\vec{p}_{1}\right) b_{s_{2}}^{\dagger}\left(\vec{p}_{2}\right)|0\rangle \\ & =-b_{s_{2}}^{\dagger}\left(\vec{p}_{2}\right) b_{s_{1}}^{\dagger}\left(\vec{p}_{1}\right)|0\rangle=-\left|\vec{p}_{2}, s_{2} ; \vec{p}_{1}, s_{1}\right\rangle \end{aligned}|p1,s1;p2,s2=bs1(p1)bs2(p2)|0=bs2(p2)bs1(p1)|0=|p2,s2;p1,s1
The antisymmetry of the states under particle exchange is konwn as "FermiDirac statistics" and implies that | p , s , p , s = 0 | p , s , p , s = 0 rarr| vec(p),s, vec(p),s:)=0\rightarrow|\vec{p}, s, \vec{p}, s\rangle=0|p,s,p,s=0, which is known as "Pauli exclusion principle," i.e. two fermions cannot occupy the same state. In contrast, integer-spin fields satisfy bosonic (commuting) statistics, so multiple bosons can occupy the same state. As mentioned above, quantising spin- 1 2 1 2 (1)/(2)\frac{1}{2}12 fields using commuting statistics would lead to inconsistencies. Hence, Dirac theory implies Pauli exclusion principle!

Electric charge:

Let us now right the electric charge in terms of creation and annihilation operators.
Q = d 3 x ψ ψ = s , s d p ~ d p ~ d 3 x ( b s ( p ) u s ( p ) e i p x + d s ( p ) v s ( p ) e i p x ) ( b s ( p ) u s ( p ) e i p x + d s ( p ) v s ( p ) e i p x ) = s d p ~ ( b s ( p ) b s ( p ) + d s ( p ) d s ( p ) ) = s d p ~ ( b s ( p ) b s ( p ) d s ( p ) d s ( p ) ) + const , Q = d 3 x ψ ψ = s , s d p ~ d p ~ d 3 x b s p u s p e i p x + d s p v s p e i p x b s ( p ) u s ( p ) e i p x + d s ( p ) v s ( p ) e i p x = s d p ~ b s ( p ) b s ( p ) + d s ( p ) d s ( p ) = s d p ~ b s ( p ) b s ( p ) d s ( p ) d s ( p ) +  const  , {:[Q=intd^(3)xpsi^(†)psi],[=sum_(s,s^('))int widetilde(dp) widetilde(dp^('))d^(3)x(b_(s^('))^(†)( vec(p)^('))u_(s^('))^(†)( vec(p)^('))e^(-ip^(')*x)+d_(s^('))( vec(p)^('))v_(s^('))^(†)( vec(p)^('))e^(ip^(')*x))],[qquad(b_(s)(( vec(p)))u_(s)(( vec(p)))e^(ip*x)+d_(s)^(†)(( vec(p)))v_(s)(( vec(p)))e^(-ip*x))],[=sum_(s)int widetilde(dp)(b_(s)^(†)(( vec(p)))b_(s)(( vec(p)))+d_(s)(( vec(p)))d_(s)^(†)(( vec(p))))],[=sum_(s)int widetilde(dp)(b_(s)^(†)(( vec(p)))b_(s)(( vec(p)))-d_(s)^(†)(( vec(p)))d_(s)(( vec(p))))+" const "","]:}\begin{aligned} & Q=\int d^{3} x \psi^{\dagger} \psi \\ & =\sum_{s, s^{\prime}} \int \widetilde{d p} \widetilde{d p^{\prime}} d^{3} x\left(b_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right) u_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right) e^{-i p^{\prime} \cdot x}+d_{s^{\prime}}\left(\vec{p}^{\prime}\right) v_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right) e^{i p^{\prime} \cdot x}\right) \\ & \qquad\left(b_{s}(\vec{p}) u_{s}(\vec{p}) e^{i p \cdot x}+d_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{-i p \cdot x}\right) \\ & =\sum_{s} \int \widetilde{d p}\left(b_{s}^{\dagger}(\vec{p}) b_{s}(\vec{p})+d_{s}(\vec{p}) d_{s}^{\dagger}(\vec{p})\right) \\ & =\sum_{s} \int \widetilde{d p}\left(b_{s}^{\dagger}(\vec{p}) b_{s}(\vec{p})-d_{s}^{\dagger}(\vec{p}) d_{s}(\vec{p})\right)+\text { const }, \end{aligned}Q=d3xψψ=s,sdp~dp~d3x(bs(p)us(p)eipx+ds(p)vs(p)eipx)(bs(p)us(p)eipx+ds(p)vs(p)eipx)=sdp~(bs(p)bs(p)+ds(p)ds(p))=sdp~(bs(p)bs(p)ds(p)ds(p))+ const ,
where we performed manipluations similar to the ones used to derive (12). In summary, the electric charge is equal to the number of b-type particles minus the number of d-type particles. We can think of b-type particles as electrons and d-type particles as positrons.

13 LSZ for spin half

This is based on Srednicki Chapter 41 and Peskin pg 118-119. Recall that
ψ ( x ) = s d p [ b s ( p ) u s ( p ) e i p x + d s ( p ) v s ( p ) e i p x ] ψ ( x ) = s d p b s ( p ) u s ( p ) e i p x + d s ( p ) v s ( p ) e i p x psi(x)=sum_(s)intd_(p)[b_(s)(( vec(p)))u_(s)(( vec(p)))e^(ip*x)+d_(s)^(†)(( vec(p)))v_(s)(( vec(p)))e^(-ip*x)]\psi(x)=\sum_{s} \int d_{p}\left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{i p \cdot x}+d_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{-i p \cdot x}\right]ψ(x)=sdp[bs(p)us(p)eipx+ds(p)vs(p)eipx]
where b b bbb annihilates b b bbb-type particles (ie. electrons) and d d d^(†)d^{\dagger}d aretes d d ddd-type particles (ie. positrons). Hence, ψ ψ psi\psiψ annihilates particles and creates antiparticles. Similarly, ψ ¯ ψ ¯ bar(psi)\bar{\psi}ψ¯ annihilates antiparticles and creates particles. We can use this fact to compute scattering amplitudes of Dirac particles. For example, the e e e e e e e e e^(-)e^(-)rarre^(-)e^(-)e^{-} e^{-} \rightarrow e^{-} e^{-}eeeeamplitude is given by
f i = 0 | T b s 4 ( p 4 , + ) b s 3 ( p 3 , + ) b s 2 ( p 2 , ) b s 1 ( p 1 , ) | 0 f i = 0 | T b s 4 p 4 , + b s 3 p 3 , + b s 2 p 2 , b s 1 p 1 , | 0 (:f∣i:)=(:0|Tb_(s_(4))( vec(p)_(4),+oo)b_(s_(3))( vec(p)_(3),+oo)b_(s_(2))^(†)( vec(p)_(2),-oo)b_(s_(1))^(†)( vec(p)_(1),-oo)|0:)\langle f \mid i\rangle=\langle 0| T b_{s_{4}}\left(\vec{p}_{4},+\infty\right) b_{s_{3}}\left(\vec{p}_{3},+\infty\right) b_{s_{2}}^{\dagger}\left(\vec{p}_{2},-\infty\right) b_{s_{1}}^{\dagger}\left(\vec{p}_{1},-\infty\right)|0\ranglefi=0|Tbs4(p4,+)bs3(p3,+)bs2(p2,)bs1(p1,)|0
where T T TTT denotes time ordering. Since the operators ate anti-commuting, any odd permutation gives a minus sign. We expect this to be related to the following time-ordered corrolator:
0 | T ψ ( x 4 ) ψ ( x 3 ) ψ ¯ ( x 2 ) ψ ¯ ( x 1 ) | 0 0 | T ψ x 4 ψ x 3 ψ ¯ x 2 ψ ¯ x 1 | 0 (:0|T psi(x_(4))psi(x_(3)) bar(psi)(x_(2)) bar(psi)(x_(1))|0:)\langle 0| T \psi\left(x_{4}\right) \psi\left(x_{3}\right) \bar{\psi}\left(x_{2}\right) \bar{\psi}\left(x_{1}\right)|0\rangle0|Tψ(x4)ψ(x3)ψ¯(x2)ψ¯(x1)|0
where Ψ ¯ Ψ ¯ bar(Psi)\bar{\Psi}Ψ¯ 's create the incoming electrons and Ψ Ψ Psi\PsiΨ 's anmithate the two outgoing electrons. The precise relation to the scatting amplitude is given by the LSZ formula.
We previously showed that
b s ( p ) = d 3 x e i p x ψ ¯ ( x ) γ 0 u s ( p ) b s ( p ) = d 3 x e i p x ψ ¯ ( x ) γ 0 u s ( p ) b_(s)^(†)( vec(p))=intd^(3)xe^(ip*x) bar(psi)(x)gamma^(0)u_(s)( vec(p))b_{s}^{\dagger}(\vec{p})=\int d^{3} x e^{i p \cdot x} \bar{\psi}(x) \gamma^{0} u_{s}(\vec{p})bs(p)=d3xeipxψ¯(x)γ0us(p)
In an interacting theory, b s ( p ) b s ( p ) b_(s)^(†)( vec(p))b_{s}^{\dagger}(\vec{p})bs(p) can be time-dependent:
b s ( p , ) b s ( p , + ) = d t 0 b ( p , t ) = d 4 x 0 ( e i p x ψ ¯ ( x ) γ 0 u s ( p ) ) = d 4 x ψ ¯ ( x ) ( γ 0 i γ 0 p 0 ) u s ( p ) e i p x i γ i p i i m , using ( + m ) u s ( p ) = 0 = d 4 x Ψ ¯ ( x ) ( γ 0 γ i i i m ) u s ( p ) e i p x = i d 4 x ψ ¯ ( x ) ( i μ γ μ + m ) u s ( p ) e i p x b s ( p , ) b s ( p , + ) = d t 0 b ( p , t ) = d 4 x 0 e i p x ψ ¯ ( x ) γ 0 u s ( p ) = d 4 x ψ ¯ ( x ) ( γ 0 i γ 0 p 0 ) u s ( p ) e i p x i γ i p i i m ,  using  ( + m ) u s ( p ) = 0 = d 4 x Ψ ¯ ( x ) γ 0 γ i i i m u s ( p ) e i p x = i d 4 x ψ ¯ ( x ) i μ γ μ + m u s ( p ) e i p x {:[b_(s)^(†)( vec(p)","-oo)-b_(s)^(†)( vec(p)","+oo)=-int_(-oo)^(oo)dtdel_(0)b^(†)( vec(p)","t)],[=-intd^(4)xdel_(0)(e^(ip*x)( bar(psi))(x)gamma^(0)u_(s)(( vec(p))))],[=-intd^(4)x bar(psi)(x)(gamma^(0)del ^(larr)ubrace(-igamma^(0)p^(0)ubrace))u_(s)( vec(p))e^(ip*x)],[-igamma^(i)p_(i)-im","" using "(p+m)u_(s)( vec(p))=0],[=-intd^(4)x bar(Psi)(x)(gamma^(0)del ^(larr)-gamma^(i) vec(del)_(i)-im)u_(s)( vec(p))e^(ip*x)],[=i intd^(4)x bar(psi)(x)(idel ^(larr)_(mu)gamma^(mu)+m)u_(s)( vec(p))e^(ip*x)]:}\begin{aligned} & b_{s}^{\dagger}(\vec{p},-\infty)-b_{s}^{\dagger}(\vec{p},+\infty)=-\int_{-\infty}^{\infty} d t \partial_{0} b^{\dagger}(\vec{p}, t) \\ & =-\int d^{4} x \partial_{0}\left(e^{i p \cdot x} \bar{\psi}(x) \gamma^{0} u_{s}(\vec{p})\right) \\ & =-\int d^{4} x \bar{\psi}(x)(\gamma^{0} \overleftarrow{\partial} \underbrace{-i \gamma^{0} p^{0}}) u_{s}(\vec{p}) e^{i p \cdot x} \\ & -i \gamma^{i} p_{i}-i m, \text { using }(\not p+m) u_{s}(\vec{p})=0 \\ & =-\int d^{4} x \bar{\Psi}(x)\left(\gamma^{0} \overleftarrow{\partial}-\gamma^{i} \vec{\partial}_{i}-i m\right) u_{s}(\vec{p}) e^{i p \cdot x} \\ & =i \int d^{4} x \bar{\psi}(x)\left(i \overleftarrow{\partial}_{\mu} \gamma^{\mu}+m\right) u_{s}(\vec{p}) e^{i p \cdot x} \end{aligned}bs(p,)bs(p,+)=dt0b(p,t)=d4x0(eipxψ¯(x)γ0us(p))=d4xψ¯(x)(γ0iγ0p0)us(p)eipxiγipiim, using (+m)us(p)=0=d4xΨ¯(x)(γ0γiiim)us(p)eipx=id4xψ¯(x)(iμγμ+m)us(p)eipx
Note that in free theory ψ ¯ ( i μ γ μ + m ) = 0 ψ ¯ i μ γ μ + m = 0 bar(psi)(idel ^(larr)_(mu)gamma^(mu)+m)=0\bar{\psi}\left(i \overleftarrow{\partial}_{\mu} \gamma^{\mu}+m\right)=0ψ¯(iμγμ+m)=0 by the EOM, but in an interacting theory this does not vanish so b b b^(†)b^{\dagger}b indeed changes over time. Hence,
b s ( p , ) = b s ( p , + ) + i d 4 x ψ ¯ ( x ) ( i μ γ μ + m ) u s ( p ) e i p x b s ( p , ) = b s ( p , + ) + i d 4 x ψ ¯ ( x ) i μ γ μ + m u s ( p ) e i p x b_(s)^(†)( vec(p),-oo)=b_(s)^(†)( vec(p),+oo)+i intd^(4)x bar(psi)(x)(idel ^(larr)_(mu)gamma^(mu)+m)u_(s)( vec(p))e^(ip*x)b_{s}^{\dagger}(\vec{p},-\infty)=b_{s}^{\dagger}(\vec{p},+\infty)+i \int d^{4} x \bar{\psi}(x)\left(i \overleftarrow{\partial}_{\mu} \gamma^{\mu}+m\right) u_{s}(\vec{p}) e^{i p \cdot x}bs(p,)=bs(p,+)+id4xψ¯(x)(iμγμ+m)us(p)eipx
On the other hand, when we plug this into scattering amplitude, time-ordering moves b ( p , + ) b ( p , + ) b^(†)( vec(p),+oo)b^{\dagger}(\vec{p},+\infty)b(p,+) to the left and it annihilates 0 | 0 | (:0|\langle 0|0|. Hence, we can make the replacement
b s ( p , ) i d 4 x ψ ¯ ( x ) ( i μ γ μ + m ) u s ( p ) e i p x b s ( p , ) i d 4 x ψ ¯ ( x ) i μ γ μ + m u s ( p ) e i p x b_(s)^(†)( vec(p),-oo)rarr i intd^(4)x bar(psi)(x)(idel ^(larr)_(mu)gamma^(mu)+m)u_(s)( vec(p))e^(ip*x)b_{s}^{\dagger}(\vec{p},-\infty) \rightarrow i \int d^{4} x \bar{\psi}(x)\left(i \overleftarrow{\partial}_{\mu} \gamma^{\mu}+m\right) u_{s}(\vec{p}) e^{i p \cdot x}bs(p,)id4xψ¯(x)(iμγμ+m)us(p)eipx
Similarly we find
b s ( p , + ) i d 4 x e i p x u ¯ s ( p ) ( i ∂̸ + m ) ψ ( x ) d s ( p , ) i d 4 x e i p x v ¯ s ( p ) ( i ∂̸ + m ) ψ ( x ) d s ( p , + ) i d 4 x ψ ¯ ( x ) ( i μ γ μ + m ) v s ( p ) e i p x b s ( p , + ) i d 4 x e i p x u ¯ s ( p ) ( i ∂̸ + m ) ψ ( x ) d s ( p , ) i d 4 x e i p x v ¯ s ( p ) ( i ∂̸ + m ) ψ ( x ) d s ( p , + ) i d 4 x ψ ¯ ( x ) i μ γ μ + m v s ( p ) e i p x {:[b_(s)( vec(p)","+oo) rarr i intd^(4)xe^(-ip*x) bar(u)_(s)( vec(p))(-i del+m)psi(x)],[d_(s)^(†)( vec(p)","-oo) rarr-i intd^(4)xe^(ip*x) bar(v)_(s)( vec(p))(-i del+m)psi(x)],[d_(s)( vec(p)","+oo) rarr-i intd^(4)x bar(psi)(x)(idel ^(larr)_(mu)gamma^(mu)+m)v_(s)( vec(p))e^(-ip*x)]:}\begin{aligned} b_{s}(\vec{p},+\infty) & \rightarrow i \int d^{4} x e^{-i p \cdot x} \bar{u}_{s}(\vec{p})(-i \not \partial+m) \psi(x) \\ d_{s}^{\dagger}(\vec{p},-\infty) & \rightarrow-i \int d^{4} x e^{i p \cdot x} \bar{v}_{s}(\vec{p})(-i \not \partial+m) \psi(x) \\ d_{s}(\vec{p},+\infty) & \rightarrow-i \int d^{4} x \bar{\psi}(x)\left(i \overleftarrow{\partial}{ }_{\mu} \gamma^{\mu}+m\right) v_{s}(\vec{p}) e^{-i p \cdot x} \end{aligned}bs(p,+)id4xeipxu¯s(p)(i∂̸+m)ψ(x)ds(p,)id4xeipxv¯s(p)(i∂̸+m)ψ(x)ds(p,+)id4xψ¯(x)(iμγμ+m)vs(p)eipx
Hence, to obtain a scattering amplitude, Fourier transform a time-ordered correlator to momentum space and act with the Dirac operator, amputating external propagators. Incoming particles/outgoing antipartides are created/annihilated by ψ ¯ ψ ¯ bar(psi)\bar{\psi}ψ¯, while incoming antiparticles/outgoing particles are created/annihilated by ψ ψ psi\psiψ, as expected. Coming back to the example of e e e e e^(-)e^(-)rarre^{-} e^{-} \rightarrowee e e e e e^(-)e^(-)e^{-} e^{-}eescattering, LSZ gives
f i = ( i ) 4 d 4 x 1 d 4 x 2 d 4 x 3 d 4 x 4 e i p 4 x 4 [ u ¯ s 4 ( p 4 ) ( i ∂̸ 4 + m ) ] α 4 e i p 3 x 3 [ u ¯ s 3 ( p 3 ) ( i ∂̸ 3 + m ) ] α 3 0 | T ψ α 4 ( x 4 ) ψ α 3 ( x 3 ) ψ ¯ α 2 ( x 2 ) ψ ¯ α 1 ( x 1 ) | 0 [ ( i x 2 μ μ γ μ + m ) u s 2 ( p 2 ) ] α 2 e i p 2 x 2 [ ( i x 1 μ γ μ + m ) u s 1 ( p 1 ) ] α 1 e i p 1 x 1 f i = ( i ) 4 d 4 x 1 d 4 x 2 d 4 x 3 d 4 x 4 e i p 4 x 4 u ¯ s 4 p 4 i ∂̸ 4 + m α 4 e i p 3 x 3 u ¯ s 3 p 3 i ∂̸ 3 + m α 3 0 | T ψ α 4 x 4 ψ α 3 x 3 ψ ¯ α 2 x 2 ψ ¯ α 1 x 1 | 0 i x 2 μ μ γ μ + m u s 2 p 2 α 2 e i p 2 x 2 i x 1 μ γ μ + m u s 1 p 1 α 1 e i p 1 x 1 {:[(:f∣i:)=(i)^(4)intd^(4)x_(1)d^(4)x_(2)d^(4)x_(3)d^(4)x_(4)],[e^(-ip_(4)*x_(4))[ bar(u)_(s_(4))( vec(p)_(4))(-idel_(4)+m)]_(alpha_(4))e^(-ip_(3)*x_(3))[ bar(u)_(s_(3))( vec(p)_(3))(-idel_(3)+m)]_(alpha_(3))],[quad(:0|Tpsi_(alpha_(4))(x_(4))psi_(alpha_(3))(x_(3)) bar(psi)_(alpha_(2))(x_(2)) bar(psi)_(alpha_(1))(x_(1))|0:)],[quad[(idel ^(larr)_(x_(2)^(mu))^(mu)gamma^(mu)+m)u_(s_(2))( vec(p)_(2))]_(alpha_(2))e^(ip_(2)*x_(2))[(idel ^(larr)_(x_(1)^(mu))gamma^(mu)+m)u_(s_(1))( vec(p)_(1))]_(alpha_(1))e^(ip_(1)*x_(1))]:}\begin{aligned} & \langle f \mid i\rangle=(i)^{4} \int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} d^{4} x_{4} \\ & e^{-i p_{4} \cdot x_{4}}\left[\bar{u}_{s_{4}}\left(\vec{p}_{4}\right)\left(-i \not \partial_{4}+m\right)\right]_{\alpha_{4}} e^{-i p_{3} \cdot x_{3}}\left[\bar{u}_{s_{3}}\left(\vec{p}_{3}\right)\left(-i \not \partial_{3}+m\right)\right]_{\alpha_{3}} \\ & \quad\langle 0| T \psi_{\alpha_{4}}\left(x_{4}\right) \psi_{\alpha_{3}}\left(x_{3}\right) \bar{\psi}_{\alpha_{2}}\left(x_{2}\right) \bar{\psi}_{\alpha_{1}}\left(x_{1}\right)|0\rangle \\ & \quad\left[\left(i \overleftarrow{\partial}_{x_{2}^{\mu}}^{\mu} \gamma^{\mu}+m\right) u_{s_{2}}\left(\vec{p}_{2}\right)\right]_{\alpha_{2}} e^{i p_{2} \cdot x_{2}}\left[\left(i \overleftarrow{\partial}_{x_{1}^{\mu}} \gamma^{\mu}+m\right) u_{s_{1}}\left(\vec{p}_{1}\right)\right]_{\alpha_{1}} e^{i p_{1} \cdot x_{1}} \end{aligned}fi=(i)4d4x1d4x2d4x3d4x4eip4x4[u¯s4(p4)(i∂̸4+m)]α4eip3x3[u¯s3(p3)(i∂̸3+m)]α30|Tψα4(x4)ψα3(x3)ψ¯α2(x2)ψ¯α1(x1)|0[(ix2μμγμ+m)us2(p2)]α2eip2x2[(ix1μγμ+m)us1(p1)]α1eip1x1
In terms of momentum space Feynman rules, we have

where arrows on lines indicate charge plow. Note that
In general we move fields around such that contractions are untangled and pick up factors of ( 1 ) ( 1 ) (-1)(-1)(1) in the process. When doing so, keep the ordering of labels in | | (:dots|\langle\ldots|| and | | |dots:)|\ldots\rangle|. In terms of Feynman diagrams, this means that diagrams related by an odd permutation of external legs will have a relative ( 1 ) ( 1 ) (-1)(-1)(1).

14 Fermionic Propagator

This is based on Srednicki Chapter 42. Recall that
ψ ( x ) = s d p ~ [ b s ( p ) u s ( p ) e i p x + d s ( p ) v s ( p ) e i p x ] ψ ¯ ( x ) = s d p ~ [ b s ( p ) u ¯ s ( p ) e i p x + d s ( p ) v ¯ s ( p ) e i p x ] ψ ( x ) = s d p ~ b s ( p ) u s ( p ) e i p x + d s ( p ) v s ( p ) e i p x ψ ¯ ( x ) = s d p ~ b s ( p ) u ¯ s ( p ) e i p x + d s ( p ) v ¯ s ( p ) e i p x {:[psi(x)=sum_(s)int widetilde(dp)[b_(s)(( vec(p)))u_(s)(( vec(p)))e^(ip*x)+d_(s)^(†)(( vec(p)))v_(s)(( vec(p)))e^(-ip*x)]],[ bar(psi)(x)=sum_(s)int widetilde(dp)[b_(s)^(†)(( vec(p))) bar(u)_(s)(( vec(p)))e^(-ip*x)+d_(s)(( vec(p))) bar(v)_(s)(( vec(p)))e^(ip*x)]]:}\begin{aligned} & \psi(x)=\sum_{s} \int \widetilde{d p}\left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{i p \cdot x}+d_{s}^{\dagger}(\vec{p}) v_{s}(\vec{p}) e^{-i p \cdot x}\right] \\ & \bar{\psi}(x)=\sum_{s} \int \widetilde{d p}\left[b_{s}^{\dagger}(\vec{p}) \bar{u}_{s}(\vec{p}) e^{-i p \cdot x}+d_{s}(\vec{p}) \bar{v}_{s}(\vec{p}) e^{i p \cdot x}\right] \end{aligned}ψ(x)=sdp~[bs(p)us(p)eipx+ds(p)vs(p)eipx]ψ¯(x)=sdp~[bs(p)u¯s(p)eipx+ds(p)v¯s(p)eipx]
Let's compute
0 | T ψ α ( x ) ψ ¯ β ( y ) | 0 = θ ( x 0 y 0 ) 0 | ψ α ( x ) ψ ¯ β ( y ) | 0 θ ( y 0 x 0 ) 0 | ψ ¯ β ( y ) ψ α ( x ) | 0 Fermi statistics 0 | T ψ α ( x ) ψ ¯ β ( y ) | 0 = θ x 0 y 0 0 | ψ α ( x ) ψ ¯ β ( y ) | 0 θ y 0 x 0 0 | ψ ¯ β ( y ) ψ α ( x ) | 0  Fermi statistics  {:[(:0|Tpsi_(alpha)(x) bar(psi)_(beta)(y)|0:)=theta(x^(0)-y^(0))(:0|psi_(alpha)(x) bar(psi)_(beta)(y)|0:)],[-theta(y^(0)-x^(0))(:0| bar(psi)_(beta)(y)psi_(alpha)(x)|0:)],[ uarr],[" Fermi statistics "]:}\begin{aligned} \langle 0| T \psi_{\alpha}(x) \bar{\psi}_{\beta}(y)|0\rangle & =\theta\left(x^{0}-y^{0}\right)\langle 0| \psi_{\alpha}(x) \bar{\psi}_{\beta}(y)|0\rangle \\ & -\theta\left(y^{0}-x^{0}\right)\langle 0| \bar{\psi}_{\beta}(y) \psi_{\alpha}(x)|0\rangle \\ & \uparrow \\ & \text { Fermi statistics } \end{aligned}0|Tψα(x)ψ¯β(y)|0=θ(x0y0)0|ψα(x)ψ¯β(y)|0θ(y0x0)0|ψ¯β(y)ψα(x)|0 Fermi statistics 
First compute 0 | ψ ψ ¯ | 0 0 | ψ ψ ¯ | 0 (:0|psi bar(psi)|0:)\langle 0| \psi \bar{\psi}|0\rangle0|ψψ¯|0. Note that the d d d^(†)d^{\dagger}d in ψ ψ psi\psiψ and d d ddd in ψ ¯ ψ ¯ bar(psi)\bar{\psi}ψ¯ can be dropped since they annihilate the vacuum on left and right, respectively. We are then left with
0 | ψ ( x ) ψ ¯ ( y ) | 0 = s , s d p ~ d p ~ e i p x i p y u s ( p ) u ¯ s ( p ) 0 | b s ( p ) b s ( p ) | 0 . 0 | ψ ( x ) ψ ¯ ( y ) | 0 = s , s d p ~ d p ~ e i p x i p y u s ( p ) u ¯ s p 0 | b s ( p ) b s p | 0 . (:0|psi(x) bar(psi)(y)|0:)=sum_(s,s^('))int widetilde(dp) widetilde(dp)^(')e^(ip*x-ip^(')*y)u_(s)( vec(p)) bar(u)_(s^('))( vec(p)^('))(:0|b_(s)( vec(p))b_(s^('))^(†)( vec(p)^('))|0:).\langle 0| \psi(x) \bar{\psi}(y)|0\rangle=\sum_{s, s^{\prime}} \int \widetilde{d p} \widetilde{d p}^{\prime} e^{i p \cdot x-i p^{\prime} \cdot y} u_{s}(\vec{p}) \bar{u}_{s^{\prime}}\left(\vec{p}^{\prime}\right)\langle 0| b_{s}(\vec{p}) b_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right)|0\rangle .0|ψ(x)ψ¯(y)|0=s,sdp~dp~eipxipyus(p)u¯s(p)0|bs(p)bs(p)|0.
where spinor indices are implicit. Using
b s ( p ) b s ( p ) = b s ( p ) b s ( p ) + { b s ( p ) , b s ( p ) } = b s ( p ) b s ( p ) + ( 2 π ) 3 2 ω p δ 3 ( p p ) δ s , s b s ( p ) b s p = b s p b s ( p ) + b s ( p ) , b s p = b s p b s ( p ) + ( 2 π ) 3 2 ω p δ 3 p p δ s , s b_(s)( vec(p))b_(s^('))^(†)( vec(p)^('))=-b_(s^('))^(†)( vec(p)^('))b_(s)( vec(p))+{b_(s)(( vec(p))),b_(s^('))^(†)( vec(p)^('))}=-b_(s^('))^(†)( vec(p)^('))b_(s)( vec(p))+(2pi)^(3)2omega_(p)delta^(3)(( vec(p))- vec(p)^('))delta_(s,s^('))b_{s}(\vec{p}) b_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right)=-b_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right) b_{s}(\vec{p})+\left\{b_{s}(\vec{p}), b_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right)\right\}=-b_{s^{\prime}}^{\dagger}\left(\vec{p}^{\prime}\right) b_{s}(\vec{p})+(2 \pi)^{3} 2 \omega_{p} \delta^{3}\left(\vec{p}-\vec{p}^{\prime}\right) \delta_{s, s^{\prime}}bs(p)bs(p)=bs(p)bs(p)+{bs(p),bs(p)}=bs(p)bs(p)+(2π)32ωpδ3(pp)δs,s
We obtain
0 | ψ ( x ) ψ ¯ ( y ) | 0 = d p ~ e i p ( x y ) s u s ( p ) u ¯ s ( p ^ ) = d p ~ e i p ( x y ) ( + m ) 0 | ψ ( x ) ψ ¯ ( y ) | 0 = d p ~ e i p ( x y ) s u s ( p ) u ¯ s ( p ^ ) = d p ~ e i p ( x y ) ( + m ) (:0|psi(x) bar(psi)(y)|0:)=int widetilde(dp)e^(ip*(x-y))sum_(s)u_(s)( vec(p)) bar(u)_(s)( hat(p))=int widetilde(dp)e^(ip*(x-y))(-p+m)\langle 0| \psi(x) \bar{\psi}(y)|0\rangle=\int \widetilde{d p} e^{i p \cdot(x-y)} \sum_{s} u_{s}(\vec{p}) \bar{u}_{s}(\hat{p})=\int \widetilde{d p} e^{i p \cdot(x-y)}(-\not p+m)0|ψ(x)ψ¯(y)|0=dp~eip(xy)sus(p)u¯s(p^)=dp~eip(xy)(+m)
Similarly, in 0 | ψ ¯ ψ | 0 0 | ψ ¯ ψ | 0 (:0| bar(psi)psi|0:)\langle 0| \bar{\psi} \psi|0\rangle0|ψ¯ψ|0 car neglect b b b^(†)b^{\dagger}b in ψ ¯ ψ ¯ bar(psi)\bar{\psi}ψ¯ and b b bbb in ψ ψ psi\psiψ since they annihilate vacuum and we obtain:
0 | ψ ¯ ( y ) ψ ( x ) | 0 = s , s d p ~ d p ~ e i p x + i p y v s ( p ) v s ( p ) 0 | d s ( p ) d s ( p ) | 0 = d p ~ e i p ( x y ) ( m ) 0 | ψ ¯ ( y ) ψ ( x ) | 0 = s , s d p ~ d p ~ e i p x + i p y v s ( p ) v s p 0 | d s p d s ( p ) | 0 = d p ~ e i p ( x y ) ( m ) {:[(:0| bar(psi)(y)psi(x)|0:)=sum_(s,s^('))int widetilde(dp) widetilde(dp)^(')e^(-ip*x+ip^(')*y)v_(s)( vec(p))v_(s^('))( vec(p)^('))(:0|d_(s^('))( vec(p)^('))d_(s)^(†)( vec(p))|0:)],[=int widetilde(dp)e^(-ip*(x-y))(-p-m)]:}\begin{aligned} \langle 0| \bar{\psi}(y) \psi(x)|0\rangle & =\sum_{s, s^{\prime}} \int \widetilde{d p} \widetilde{d p}^{\prime} e^{-i p \cdot x+i p^{\prime} \cdot y} v_{s}(\vec{p}) v_{s^{\prime}}\left(\vec{p}^{\prime}\right)\langle 0| d_{s^{\prime}}\left(\vec{p}^{\prime}\right) d_{s}^{\dagger}(\vec{p})|0\rangle \\ & =\int \widetilde{d p} e^{-i p \cdot(x-y)}(-\not p-m) \end{aligned}0|ψ¯(y)ψ(x)|0=s,sdp~dp~eipx+ipyvs(p)vs(p)0|ds(p)ds(p)|0=dp~eip(xy)(m)
Hence, we obtain
0 | T ψ ( x ) ψ ¯ ( y ) | 0 = θ ( x 0 y 0 ) d p ~ e i p ( x y ) ( + m ) + θ ( y 0 x 0 ) d p ~ e i p ( x y ) ( + m ) 0 | T ψ ( x ) ψ ¯ ( y ) | 0 = θ x 0 y 0 d p ~ e i p ( x y ) ( + m ) + θ y 0 x 0 d p ~ e i p ( x y ) ( + m ) {:[(:0|T psi(x) bar(psi)(y)|0:)=theta(x^(0)-y^(0))int widetilde(dp)e^(ip*(x-y))(-p+m)],[+theta(y^(0)-x^(0))int widetilde(dp)e^(-ip*(x-y))(p+m)]:}\begin{aligned} \langle 0| T \psi(x) \bar{\psi}(y)|0\rangle= & \theta\left(x^{0}-y^{0}\right) \int \widetilde{d p} e^{i p \cdot(x-y)}(-\not p+m) \\ & +\theta\left(y^{0}-x^{0}\right) \int \widetilde{d p} e^{-i p \cdot(x-y)}(\not p+m) \end{aligned}0|Tψ(x)ψ¯(y)|0=θ(x0y0)dp~eip(xy)(+m)+θ(y0x0)dp~eip(xy)(+m)
Recall that
d 4 p ( 2 π ) 4 e i p ( x y ) f ( p ) p 2 + m 2 i ϵ = i θ ( x 0 y 0 ) d p ~ e i p ( x y ) f ( p ) + i θ ( y 0 x 0 ) d p ~ e i p ( x y ) f ( p ) d 4 p ( 2 π ) 4 e i p ( x y ) f ( p ) p 2 + m 2 i ϵ = i θ x 0 y 0 d p ~ e i p ( x y ) f ( p ) + i θ y 0 x 0 d p ~ e i p ( x y ) f ( p ) int(d^(4)p)/((2pi)^(4))(e^(ip*(x-y))f(p))/(p^(2)+m^(2)-i epsilon)=i theta(x^(0)-y^(0))int widetilde(dp)e^(ip*(x-y))f(p)+i theta(y^(0)-x^(0))int widetilde(dp)e^(-ip*(x-y))f(-p)\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{i p \cdot(x-y)} f(p)}{p^{2}+m^{2}-i \epsilon}=i \theta\left(x^{0}-y^{0}\right) \int \widetilde{d p} e^{i p \cdot(x-y)} f(p)+i \theta\left(y^{0}-x^{0}\right) \int \widetilde{d p} e^{-i p \cdot(x-y)} f(-p)d4p(2π)4eip(xy)f(p)p2+m2iϵ=iθ(x0y0)dp~eip(xy)f(p)+iθ(y0x0)dp~eip(xy)f(p)
where f ( p ) f ( p ) f(p)f(p)f(p) is a polynomial in p μ p μ p^(mu)p^{\mu}pμ and p 0 = ω p p 0 = ω p p^(0)=omega_(p)p^{0}=\omega_{p}p0=ωp on the right-hand-side. This can be derived by contour integration in complex p 0 p 0 p^(0)p^{0}p0 plane. Puting everything together we find
0 | T ψ ( x ) ψ ¯ ( y ) | 0 = 1 i d 4 p ( 2 π ) 4 e i p ( x y ) ( + m ) p 2 + m 2 i ϵ 0 | T ψ ( x ) ψ ¯ ( y ) | 0 = 1 i d 4 p ( 2 π ) 4 e i p ( x y ) ( + m ) p 2 + m 2 i ϵ (:0|T psi(x) bar(psi)(y)|0:)=(1)/(i)int(d^(4)p)/((2pi)^(4))e^(ip*(x-y))((-p+m))/(p^(2)+m^(2)-i epsilon)\langle 0| T \psi(x) \bar{\psi}(y)|0\rangle=\frac{1}{i} \int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p \cdot(x-y)} \frac{(-\not p+m)}{p^{2}+m^{2}-i \epsilon}0|Tψ(x)ψ¯(y)|0=1id4p(2π)4eip(xy)(+m)p2+m2iϵ
we define this to be the Wick contraction of the fields:
0 | T ψ ( x ) ψ ¯ ( y ) | 0 ψ ( x ) ψ ( y ) 0 | T ψ ( x ) ψ ¯ ( y ) | 0 ψ ( x ) ψ ( y ) (:0|T psi(x) bar(psi)(y)|0:)-=psi(x)(◻)/(psi)(y)\langle 0| T \psi(x) \bar{\psi}(y)|0\rangle \equiv \psi(x) \frac{\square}{\psi}(y)0|Tψ(x)ψ¯(y)|0ψ(x)ψ(y)
Let S ( x y ) = i 0 | T ψ ( x ) ψ ¯ ( y ) | 0 S ( x y ) = i 0 | T ψ ( x ) ψ ¯ ( y ) | 0 S(x-y)=i(:0|T psi(x) bar(psi)(y)|0:)S(x-y)=i\langle 0| T \psi(x) \bar{\psi}(y)|0\rangleS(xy)=i0|Tψ(x)ψ¯(y)|0. This is the Green's function of the Dirac operator:
( i x + m ) S ( x y ) = d 4 p ( 2 π ) 4 ( + m ) ( + m ) p 2 + m 2 e i p ( x y ) = d 4 p ( 2 π ) 4 2 + m 2 p 2 + m 2 e i p ( x y ) = δ 4 ( x y ) i x + m S ( x y ) = d 4 p ( 2 π ) 4 ( + m ) ( + m ) p 2 + m 2 e i p ( x y ) = d 4 p ( 2 π ) 4 2 + m 2 p 2 + m 2 e i p ( x y ) = δ 4 ( x y ) {:[(-idel_(x)+m)S(x-y)=int(d^(4)p)/((2pi)^(4))((p+m)(-p+m))/(p^(2)+m^(2))e^(ip*(x-y))],[=int(d^(4)p)/((2pi)^(4))(-p^(2)+m^(2))/(p^(2)+m^(2))e^(ip*(x-y))=delta^(4)(x-y)]:}\begin{gathered} \left(-i \partial_{x}+m\right) S(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{(\not p+m)(-\not p+m)}{p^{2}+m^{2}} e^{i p \cdot(x-y)} \\ =\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{-\not p^{2}+m^{2}}{p^{2}+m^{2}} e^{i p \cdot(x-y)}=\delta^{4}(x-y) \end{gathered}(ix+m)S(xy)=d4p(2π)4(+m)(+m)p2+m2eip(xy)=d4p(2π)42+m2p2+m2eip(xy)=δ4(xy)
where we noted that 2 = p μ p ν γ μ γ ν = p μ p ν 1 2 { γ μ , γ ν } = p 2 2 = p μ p ν γ μ γ ν = p μ p ν _ 1 2 γ μ , γ ν = p 2 -p^(2)=-p_(mu)p_(nu)gamma^(mu)gamma^(nu)=-p_(mu)p_(nu _)(1)/(2){gamma^(mu),gamma^(nu)}=p^(2)-\not p^{2}=-p_{\mu} p_{\nu} \gamma^{\mu} \gamma^{\nu}=-p_{\mu} p_{\underline{\nu}} \frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=p^{2}2=pμpνγμγν=pμpν12{γμ,γν}=p2. Moreover it is easy to see that 0 | T ψ ( x ) ψ ( y ) | 0 = 0 | T ψ ( x ) ψ ( y ) | 0 = 0 0 | T ψ ( x ) ψ ( y ) | 0 = 0 | T ψ ( x ) ψ ( y ) | 0 = 0 (:0|T psi(x)psi(y)|0:)=(:0|T psi(x)psi(y)|0:)=0\langle 0| T \psi(x) \psi(y)|0\rangle=\langle 0| T \psi(x) \psi(y)|0\rangle=00|Tψ(x)ψ(y)|0=0|Tψ(x)ψ(y)|0=0 since there is no way pair up a b b bbb with a b b b^(†)b^{\dagger}b or a d d ddd with a d d d^(†)d^{\dagger}d. Hence the only nontrivial Wick contraction is between ψ ψ psi\psiψ and ψ ¯ ψ ¯ bar(psi)\bar{\psi}ψ¯, similar to a complex scalar field.
We may now evaluate time-ordered correlators of Dirac fields using Wick contractions:
Hence,
0 | T ψ α ( x 1 ) ψ ¯ β ( x 2 ) ψ γ ( x 3 ) ψ ¯ δ ( x 4 ) | 0 = ( 1 i ) 2 [ S ( x 1 x 2 ) α β S ( x 3 x 4 ) γ δ S ( x 1 x 4 ) α δ S ( x 3 x 2 ) γ β ] 0 | T ψ α x 1 ψ ¯ β x 2 ψ γ x 3 ψ ¯ δ x 4 | 0 = 1 i 2 S x 1 x 2 α β S x 3 x 4 γ δ S x 1 x 4 α δ S x 3 x 2 γ β (:0|Tpsi_(alpha)(x_(1)) bar(psi)_(beta)(x_(2))psi_(gamma)(x_(3)) bar(psi)_(delta)(x_(4))|0:)=((1)/(i))^(2)[S(x_(1)-x_(2))_(alpha beta)S(x_(3)-x_(4))_(gamma delta)-S(x_(1)-x_(4))_(alpha delta)S(x_(3)-x_(2))_(gamma beta)]\langle 0| T \psi_{\alpha}\left(x_{1}\right) \bar{\psi}_{\beta}\left(x_{2}\right) \psi_{\gamma}\left(x_{3}\right) \bar{\psi}_{\delta}\left(x_{4}\right)|0\rangle=\left(\frac{1}{i}\right)^{2}\left[S\left(x_{1}-x_{2}\right)_{\alpha \beta} S\left(x_{3}-x_{4}\right)_{\gamma \delta}-S\left(x_{1}-x_{4}\right)_{\alpha \delta} S\left(x_{3}-x_{2}\right)_{\gamma \beta}\right]0|Tψα(x1)ψ¯β(x2)ψγ(x3)ψ¯δ(x4)|0=(1i)2[S(x1x2)αβS(x3x4)γδS(x1x4)αδS(x3x2)γβ]
In momentum space, we have the following Feynman rule for the Dirac propgator:

which arises from the Wick contraction of ψ ψ psi\psiψ with ψ ¯ ψ ¯ bar(psi)\bar{\psi}ψ¯. The arrow on the line indices flow of charge. If momentum flows in the opposite direction of the charge
flow, take p p p p p rarr-pp \rightarrow-ppp in the Feynman rule. As we will see later, the direction of the arrows on internal lines are determined by the arrows on external lines (which come from LSZ) and charge conservation at the interaction vertices. One can then simply take the momentum on an internal line to point in the same direction as the charge flow and use the above Feynman rule.

15 Quantum Electrodynamics

This is based on Srednicki chapter 58 and Peskin pg 120. Recall Maxwell theory:
L = 1 4 F μ ν F μ ν + J μ A μ L = 1 4 F μ ν F μ ν + J μ A μ L=-(1)/(4)F_(mu nu)F^(mu nu)+J_(mu)A^(mu)\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+J_{\mu} A^{\mu}L=14FμνFμν+JμAμ
and the Dirac theory:
L = i ψ ¯ ψ m ψ ¯ ψ L = i ψ ¯ ψ m ψ ¯ ψ L=i bar(psi)p psi-m bar(psi)psi\mathcal{L}=i \bar{\psi} \not p \psi-m \bar{\psi} \psiL=iψ¯ψmψ¯ψ
And recall the Noether current J μ = e ψ ¯ γ μ ψ J μ = e ψ ¯ γ μ ψ quadJ_(mu)=e bar(psi)gamma^(mu)psi\quad J_{\mu}=e \bar{\psi} \gamma^{\mu} \psiJμ=eψ¯γμψ where e e eee is the charge of electron. A simple guess for how to couple electrons/positrons to photons is to identify Noether current with the source in Maxwell theory:
L QED = 1 4 F μ ν F μ v + i ψ ¯ ∂̸ ψ m ψ ¯ ψ + e ψ ¯ γ μ ψ A μ L QED = 1 4 F μ ν F μ v + i ψ ¯ ∂̸ ψ m ψ ¯ ψ + e ψ ¯ γ μ ψ A μ L_(QED)=-(1)/(4)F_(mu nu)F^(mu v)+i bar(psi)del psi-m bar(psi)psi+e bar(psi)gamma^(mu)psiA_(mu)\mathcal{L}_{\mathrm{QED}}=-\frac{1}{4} F_{\mu \nu} F^{\mu v}+i \bar{\psi} \not \partial \psi-m \bar{\psi} \psi+e \bar{\psi} \gamma^{\mu} \psi A_{\mu}LQED=14FμνFμv+iψ¯∂̸ψmψ¯ψ+eψ¯γμψAμ
Is this gauge-invariant? Recall that under a gauge transformation
A μ A μ μ Γ A μ A μ μ Γ A_(mu)rarrA_(mu)-del_(mu)GammaA_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \GammaAμAμμΓ
so ψ ψ psi\psiψ must transform somehow in order to cancel the gauge transformation of the last term. The following definition does the job:
ψ ( x ) e i e Γ ( x ) ψ ( x ) ψ ( x ) e i e Γ ( x ) ψ ( x ) psi(x)rarre^(-ie Gamma(x))psi(x)\psi(x) \rightarrow e^{-i e \Gamma(x)} \psi(x)ψ(x)eieΓ(x)ψ(x)
This can be obtained by promoting the U ( 1 ) U ( 1 ) U(1)U(1)U(1) global symmetry to a local one, where the U ( 1 ) U ( 1 ) U(1)U(1)U(1) transformation can vary from point to point in spacetime. This known as "gauging" the global symmetry. After gauging, the fermionic mass term remains invariant, but the derivative term does not.
Define the covariant derivative:
D μ ψ = μ ψ i e A μ ψ D μ ψ = μ ψ i e A μ ψ D_(mu)psi=del_(mu)psi-ieA_(mu)psiD_{\mu} \psi=\partial_{\mu} \psi-i e A_{\mu} \psiDμψ=μψieAμψ
Under a gauge transformation we have:
D μ ψ μ ( e i e Γ ψ ) i e ( A μ μ Γ ) ( e i e Γ ψ ) = e i e P D μ ψ D μ ψ μ e i e Γ ψ i e A μ μ Γ e i e Γ ψ = e i e P D μ ψ D_(mu)psi rarrdel_(mu)(e^(-ie Gamma)psi)-ie(A_(mu)-del_(mu)Gamma)(e^(-ie Gamma)psi)=e^(-ieP)D_(mu)psiD_{\mu} \psi \rightarrow \partial_{\mu}\left(e^{-i e \Gamma} \psi\right)-i e\left(A_{\mu}-\partial_{\mu} \Gamma\right)\left(e^{-i e \Gamma} \psi\right)=e^{-i e P} D_{\mu} \psiDμψμ(eieΓψ)ie(AμμΓ)(eieΓψ)=eiePDμψ
Hence,
ψ ¯ D ψ ( ψ ¯ e i e Γ ) ( e i e Γ D ψ ) = ψ ¯ ψ ψ ¯ D ψ ψ ¯ e i e Γ e i e Γ D ψ = ψ ¯ ψ bar(psi)D psi rarr(( bar(psi))e^(ie Gamma))(e^(-ie Gamma)D psi)= bar(psi)D psi\bar{\psi} D \psi \rightarrow\left(\bar{\psi} e^{i e \Gamma}\right)\left(e^{-i e \Gamma} D \psi\right)=\bar{\psi} \not D \psiψ¯Dψ(ψ¯eieΓ)(eieΓDψ)=ψ¯ψ
so this is gauge-invariant. Moreover,
[ D μ , D ν ] ψ = = ( μ i e A μ ) ( ν ψ i e A ν ψ ) μ ν i e A μ ν ψ e 2 A μ A ν ψ ) μ ν = i e F μ ν ψ D μ , D ν ψ = = μ i e A μ ν ψ i e A ν ψ μ ν i e A μ ν ψ e 2 A μ A ν ψ μ ν = i e F μ ν ψ {:[[D_(mu),D_(nu)]psi=],[=(del_(mu)-ieA_(mu))(del_(nu)psi-ieA_(nu)psi)-mu harr nu],[{:-ieA_(mu)del_(nu)psi-e^(2)A_(mu)A_(nu)psi)-mu harr nu],[=-ieF_(mu nu)psi]:}\begin{aligned} {\left[D_{\mu}, D_{\nu}\right] } & \psi= \\ = & \left(\partial_{\mu}-i e A_{\mu}\right)\left(\partial_{\nu} \psi-i e A_{\nu} \psi\right)-\mu \leftrightarrow \nu \\ & \left.-i e A_{\mu} \partial_{\nu} \psi-e^{2} A_{\mu} A_{\nu} \psi\right)-\mu \leftrightarrow \nu \\ = & -i e F_{\mu \nu} \psi \end{aligned}[Dμ,Dν]ψ==(μieAμ)(νψieAνψ)μνieAμνψe2AμAνψ)μν=ieFμνψ
More abstractly, we can write F μ ν = i e [ D μ , D ν ] F μ ν = i e D μ , D ν F_(mu nu)=(i)/(e)[D_(mu),D_(nu)]F_{\mu \nu}=\frac{i}{e}\left[D_{\mu}, D_{\nu}\right]Fμν=ie[Dμ,Dν] and the auge transformation of D μ ψ D μ ψ D_(mu)psiD_{\mu} \psiDμψ can be written as
D μ ψ ( e i e Γ D μ e i e Γ ) ( e i e Γ ψ ) D μ ψ e i e Γ D μ e i e Γ e i e Γ ψ D_(mu)psi rarr(e^(-ie Gamma)D_(mu)e^(ie Gamma))(e^(-ie Gamma)psi)D_{\mu} \psi \rightarrow\left(e^{-i e \Gamma} D_{\mu} e^{i e \Gamma}\right)\left(e^{-i e \Gamma} \psi\right)Dμψ(eieΓDμeieΓ)(eieΓψ)
so D μ e i e Γ D μ e i e Γ D μ e i e Γ D μ e i e Γ D_(mu)rarre^(-ie Gamma)D_(mu)e^(ie Gamma)D_{\mu} \rightarrow e^{-i e \Gamma} D_{\mu} e^{i e \Gamma}DμeieΓDμeieΓ. This provides another perspective on gauge -invariance of F μ ν F μ ν F_(mu nu)F_{\mu \nu}Fμν since under a gauge transformation we have
F μ ν = i e [ D μ , D ν ] i e [ e i e Γ D μ e i e Γ , e i e Γ D ν e i e Γ ] = i e e i e Γ [ D μ D ν ] e i e Γ = e i e Γ F μ ν e i e Γ = F μ ν F μ ν = i e D μ , D ν i e e i e Γ D μ e i e Γ , e i e Γ D ν e i e Γ = i e e i e Γ D μ D ν e i e Γ = e i e Γ F μ ν e i e Γ = F μ ν {:[F_(mu nu)=(i)/(e)[D_(mu),D_(nu)] rarr(i)/(e)[e^(-ie Gamma)D_(mu)e^(ie Gamma),e^(-ie Gamma)D_(nu)e^(ie Gamma)]],[=(i)/(e)e^(-ie Gamma)[D_(mu)D_(nu)]e^(ie Gamma)],[=e^(-ie Gamma)F_(mu nu)e^(ie Gamma)],[=F_(mu nu)]:}\begin{aligned} F_{\mu \nu}=\frac{i}{e}\left[D_{\mu}, D_{\nu}\right] & \rightarrow \frac{i}{e}\left[e^{-i e \Gamma} D_{\mu} e^{i e \Gamma}, e^{-i e \Gamma} D_{\nu} e^{i e \Gamma}\right] \\ & =\frac{i}{e} e^{-i e \Gamma}\left[D_{\mu} D_{\nu}\right] e^{i e \Gamma} \\ & =e^{-i e \Gamma} F_{\mu \nu} e^{i e \Gamma} \\ & =F_{\mu \nu} \end{aligned}Fμν=ie[Dμ,Dν]ie[eieΓDμeieΓ,eieΓDνeieΓ]=ieeieΓ[DμDν]eieΓ=eieΓFμνeieΓ=Fμν
Hence, a gange-invariant Lagrangian is given by
L = 1 4 F μ ν F μ ν + i ψ ¯ D ψ m ψ ¯ ψ L = 1 4 F μ ν F μ ν + i ψ ¯ D ψ m ψ ¯ ψ L=-(1)/(4)F_(mu nu)F^(mu nu)+i bar(psi)D psi-m bar(psi)psi\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+i \bar{\psi} D \psi-m \bar{\psi} \psiL=14FμνFμν+iψ¯Dψmψ¯ψ
which agrees with our initial guess.

Feynman rules:

Photons are represented by wavy lines and fermions are represented by solid lines with arrows. We already derived the momentum space Feynman vales for external legs (from LSZ) and internal propagators. Now we just need to derive the interaction vertex coming from
L int = e ψ ¯ γ μ ψ A μ L int = e ψ ¯ γ μ ψ A μ L_(int)=e bar(psi)gamma^(mu)psiA_(mu)\mathcal{L}_{\mathrm{int}}=e \bar{\psi} \gamma^{\mu} \psi A_{\mu}Lint=eψ¯γμψAμ
Consider the tree-level amplitude e e γ e e γ e^(-)rarre^(-)gammae^{-} \rightarrow e^{-} \gammaeeγ :
p p 2 ^ λ p 3 u s ( p 2 ) = e ( p 2 ) γ ( p 3 ) | + i e 7 ψ γ μ ψ A μ | e ( p 1 ) = tie ( p 3 ) u ¯ s 2 ( p 2 ) γ μ u s 1 ( p ) p p 2 ^ λ p 3 u s ¯ p 2 = e p 2 γ p 3 + i e 7 ψ γ μ ψ A μ e p 1 =  tie  p 3 u ¯ s 2 p 2 γ μ u s 1 ( p ) {:[p_(p_(2))uarr hat(∼)lambda_(p_(3))^( bar(u_(s))(p_(2)))=(:e^(-)(p_(2))gamma(p_(3))|+ie^((7)/(psi)gamma^(mu)psiA_(mu)|e^(-)(p_(1)):))],[=" tie "in( vec(p)_(3)) bar(u)_(s_(2))( vec(p)_(2))gamma^(mu)u_(s_(1))( vec(p))]:}\begin{aligned} & p_{p_{2}} \uparrow \hat{\sim} \lambda_{p_{3}}^{\overline{u_{s}}\left(p_{2}\right)}=\left\langle e^{-}\left(p_{2}\right) \gamma\left(p_{3}\right)\right|+i e^{\frac{7}{\psi} \gamma^{\mu} \psi A_{\mu}\left|e^{-}\left(p_{1}\right)\right\rangle} \\ & =\text { tie } \in\left(\vec{p}_{3}\right) \bar{u}_{s_{2}}\left(\vec{p}_{2}\right) \gamma^{\mu} u_{s_{1}}(\vec{p}) \end{aligned}pp2^λp3us(p2)=e(p2)γ(p3)|+ie7ψγμψAμ|e(p1)= tie (p3)u¯s2(p2)γμus1(p)
Stripping off the external polarisation and spinors, the Feynman rule for the interaction vertex is given by
Note that one arrow always points towards vertex and one always points away from vertex due to charge conservation.

Summary:

  • Fermions described by solid lines with arrows, photons by wavy lines.
  • For incoming e e e^(-)e^{-}e, arrow and p μ p μ p^(mu)p^{\mu}pμ point toward vertex. For outgoing e e e^(-)e^{-}e, arrow and p μ p μ p^(mu)p^{\mu}pμ point away from vertex. For incoming e + e + e^(+)e^{+}e+, arrow points away from vertex and p μ p μ p^(mu)p^{\mu}pμ points toward vertex. For outgoing e + e + e^(+)e^{+}e+, arrow points toward and vertex and p μ p μ p^(mu)p^{\mu}pμ points away from vertex.
  • Arrows on internal solid lines are determined by charge conservation at vertices. It is conventional to choose p μ p μ p^(mu)p^{\mu}pμ to point along internal arrows. Then conserve p μ p μ p^(mu)p^{\mu}pμ at each vertex.
  • For each internal photon, use
  • For each internal fermion, use
  • Spinor indices are contracted in opposite direction of arrows along fermion lines starting with a u ¯ u ¯ bar(u)\bar{u}u¯ or v ¯ v ¯ bar(v)\bar{v}v¯ (corresponding to an outgoing e e e^(-)e^{-}eor an incoming e + e + e^(+)e^{+}e+) and ending with u u uuu or v v vvv (corresponding to an in coming e e e^(-)e^{-}eor outgoing e + e + e^(+)e^{+}e+).
  • Dress external photons with polarisations ϵ μ ϵ μ epsilon_(mu)\epsilon_{\mu}ϵμ
  • The overall sign of a diagram is determined by drawing all fermian lines pointing in the same direction with a fixed ordering of the incoming arrows. If the ordering of the outgoing arrows is an odd permutation of some given ordering, then that diagram gets a ( -1 ).
For example, at tree-level e e e e e e e e e^(-)e^(-)rarre^(-)e^(-)e^{-} e^{-} \rightarrow e^{-} e^{-}eeeeis described by

so the second diagram comes with a ( -1 ).

Fermion loops:

To compute Feynman diagrams with fermion loops, we need two more rules:
  • Take the trace of the product of γ γ gamma\gammaγ matrices from the vertices and fermionic propagator numerators that arise when going backwards along fermion lines.
  • Multiply by ( 1 ) ( 1 ) (-1)(-1)(1) for each fermion loop.
Example:

where we leave out the γ γ gamma\gammaγ matrices coming from the interaction vertices and the minus sign comes from anticommuting the ψ ψ psi\psiψ on the right all the way to the left.

16 Scattering in QED

This is based on Tong sections 6.6, 3.5.2, and Peskin pg 121,125, 126. Let us consider a few examples of tree-level scattering amplitudes.
  • e e e e e e e e e^(-)e^(-)rarre^(-)e^(-)e^{-} e^{-} \rightarrow e^{-} e^{-}eeee

    where the minus sign in the second term arises from the exchange of legs 3 and 4 , and we use shorthand: u i = u s 1 ( p i ) u i = u s 1 p i u_(i)=u_(s_(1))( vec(p)_(i))u_{i}=u_{s_{1}}\left(\vec{p}_{i}\right)ui=us1(pi).
  • e e + γ γ e e + γ γ e^(-)e^(+)rarr gamma gammae^{-} e^{+} \rightarrow \gamma \gammaee+γγ
= ( i e ) 2 [ v ¯ 2 γ μ ϵ 3 μ i ( 1 4 m ) ( p 1 p 4 ) 2 + m 2 γ ν ϵ 4 ν u 1 + v ¯ 2 γ μ ϵ 4 μ i ( 1 3 m ) ( p 1 p 3 ) 2 + m 2 γ ν ϵ 3 ν u 1 ] = ( i e ) 2 v ¯ 2 γ μ ϵ 3 μ i 1 4 m p 1 p 4 2 + m 2 γ ν ϵ 4 ν u 1 + v ¯ 2 γ μ ϵ 4 μ i 1 3 m p 1 p 3 2 + m 2 γ ν ϵ 3 ν u 1 =(ie)^(2)[ bar(v)_(2)gamma_(mu)epsilon_(3)^(mu)(i(p_(1)-p_(4)-m))/((p_(1)-p_(4))^(2)+m^(2))gamma_(nu)epsilon_(4)^(nu)u_(1)+ bar(v)_(2)gamma_(mu)epsilon_(4)^(mu)(i(p_(1)-p_(3)-m))/((p_(1)-p_(3))^(2)+m^(2))gamma_(nu)epsilon_(3)^(nu)u_(1)]=(i e)^{2}\left[\bar{v}_{2} \gamma_{\mu} \epsilon_{3}^{\mu} \frac{i\left(\not p_{1}-\not p_{4}-m\right)}{\left(p_{1}-p_{4}\right)^{2}+m^{2}} \gamma_{\nu} \epsilon_{4}^{\nu} u_{1}+\bar{v}_{2} \gamma_{\mu} \epsilon_{4}^{\mu} \frac{i\left(\not p_{1}-\not p_{3}-m\right)}{\left(p_{1}-p_{3}\right)^{2}+m^{2}} \gamma_{\nu} \epsilon_{3}^{\nu} u_{1}\right]=(ie)2[v¯2γμϵ3μi(14m)(p1p4)2+m2γνϵ4νu1+v¯2γμϵ4μi(13m)(p1p3)2+m2γνϵ3νu1]
In this case there is no relative minus sign since photons are bosonic
  • e e + e e + e e + e e + -e^(-)e^(+)rarre^(-)e^(+)quad-e^{-} e^{+} \rightarrow e^{-} e^{+} \quadee+ee+ (Bhabha scattering)
= ( i e ) 2 [ u ¯ 4 γ μ u 1 i η μ ν ( p 1 p 4 ) 2 v ¯ 2 γ ν v 3 v ¯ 2 γ μ u 1 i η μ ν ( p 1 + p 2 ) 2 u ¯ 4 γ ν v 3 ] = ( i e ) 2 u ¯ 4 γ μ u 1 i η μ ν p 1 p 4 2 v ¯ 2 γ ν v 3 v ¯ 2 γ μ u 1 i η μ ν p 1 + p 2 2 u ¯ 4 γ ν v 3 =(ie)^(2)[ bar(u)_(4)gamma^(mu)u_(1)(-ieta_(mu nu))/((p_(1)-p_(4))^(2)) bar(v)_(2)gamma^(nu)v_(3)- bar(v)_(2)gamma^(mu)u_(1)(-ieta_(mu nu))/((p_(1)+p_(2))^(2)) bar(u)_(4)gamma^(nu)v_(3)]=(i e)^{2}\left[\bar{u}_{4} \gamma^{\mu} u_{1} \frac{-i \eta_{\mu \nu}}{\left(p_{1}-p_{4}\right)^{2}} \bar{v}_{2} \gamma^{\nu} v_{3}-\bar{v}_{2} \gamma^{\mu} u_{1} \frac{-i \eta_{\mu \nu}}{\left(p_{1}+p_{2}\right)^{2}} \bar{u}_{4} \gamma^{\nu} v_{3}\right]=(ie)2[u¯4γμu1iημν(p1p4)2v¯2γνv3v¯2γμu1iημν(p1+p2)2u¯4γνv3]
The relative minus sign can be understood by drawing all fermion lines in the same direction with a fixed order of the incoming lines:
After doing so, we see that the first diagram is related to second one by exchanging legs 2 and 4.
  • e γ e γ e γ e γ e^(-)gamma rarre^(-)gammaquade^{-} \gamma \rightarrow e^{-} \gamma \quadeγeγ (Compton scattering)
You will look at this in the HW.

Coulomb potential:

We will now show how the Coulomb potential arises from charged partides exchanging photons. To see this, let's take the non-relativistic limit of the following diagram which contributes to e e e e e e e e e^(-)e^(-)rarre^(-)e^(-)e^{-} e^{-} \rightarrow e^{-} e^{-}eeee:
Recall that in this limit.
u s ( 0 ) = m ( ξ s ξ s ) . u s ( 0 ) = m ( ξ s ξ s ) . u_(s)( vec(0))=sqrtm((xi_(s))/(xi_(s))).u_{s}(\overrightarrow{0})=\sqrt{m}\binom{\xi_{s}}{\xi_{s}} .us(0)=m(ξsξs).
From this we find
u ¯ s ( 0 ) γ μ u s ( 0 ) = m ξ s ( σ μ + σ ¯ μ ) ξ s = { 2 m δ s , s μ = 0 0 μ 0 u ¯ s ( 0 ) γ μ u s ( 0 ) = m ξ s σ μ + σ ¯ μ ξ s = 2 m δ s , s      μ = 0 0      μ 0 bar(u)_(s)( vec(0))gamma^(mu)u_(s^('))( vec(0))=mxi_(s)^(†)(sigma^(mu)+ bar(sigma)^(mu))xi_(s^('))={[2mdelta_(s,s^(')),mu=0],[0,mu!=0]:}\bar{u}_{s}(\overrightarrow{0}) \gamma^{\mu} u_{s^{\prime}}(\overrightarrow{0})=m \xi_{s}^{\dagger}\left(\sigma^{\mu}+\bar{\sigma}^{\mu}\right) \xi_{s^{\prime}}= \begin{cases}2 m \delta_{s, s^{\prime}} & \mu=0 \\ 0 & \mu \neq 0\end{cases}u¯s(0)γμus(0)=mξs(σμ+σ¯μ)ξs={2mδs,sμ=00μ0
To compute the denominator, note that in this limit
p μ = ( m , p ) ( p 1 p 4 ) 2 = ( p 1 p 4 ) 2 p μ = ( m , p ) p 1 p 4 2 = p 1 p 4 2 p^(mu)=(m, vec(p))rarr(p_(1)-p_(4))^(2)=( vec(p)_(1)- vec(p)_(4))^(2)p^{\mu}=(m, \vec{p}) \rightarrow\left(p_{1}-p_{4}\right)^{2}=\left(\vec{p}_{1}-\vec{p}_{4}\right)^{2}pμ=(m,p)(p1p4)2=(p1p4)2
Hence we obtain
i M ( 2 m ) 2 = i e 2 δ s 1 , s 4 δ s 3 , s 2 ( p 1 p 4 ) 2 A 4 δ s 1 , s 4 δ s 3 , s 2 i M ( 2 m ) 2 = i e 2 δ s 1 , s 4 δ s 3 , s 2 p 1 p 4 2 A 4 δ s 1 , s 4 δ s 3 , s 2 (iM)/((2m)^(2))=(-ie^(2)delta_(s_(1),s_(4))delta_(s_(3),s_(2)))/(( vec(p_(1))- vec(p_(4)))^(2))-=A_(4)delta_(s_(1),s_(4))delta_(s_(3),s_(2))\frac{i \mathcal{M}}{(2 m)^{2}}=\frac{-i e^{2} \delta_{s_{1}, s_{4}} \delta_{s_{3}, s_{2}}}{\left(\overrightarrow{p_{1}}-\overrightarrow{p_{4}}\right)^{2}} \equiv \mathcal{A}_{4} \delta_{s_{1}, s_{4}} \delta_{s_{3}, s_{2}}iM(2m)2=ie2δs1,s4δs3,s2(p1p4)2A4δs1,s4δs3,s2
In non-relativistic QM, the amplitude for a particle to scatter from | p 1 p 1 | vec(p)_(1):)\left|\vec{p}_{1}\right\rangle|p1 to | p 4 p 4 | vec(p)_(4):)\left|\vec{p}_{4}\right\rangle|p4 due to a potential V ( x ) V ( x ) V( vec(x))V(\vec{x})V(x) (in the Born approximation) is the Fourier transform of the potential:
A 4 ( p 4 p p ) = i d 3 x V ( x ) e i ( p 4 p 1 ) x A 4 p 4 p p = i d 3 x V ( x ) e i p 4 p 1 x A_(4)( vec(p)_(4)- vec(p)_(p))=-i intd^(3)xV( vec(x))e^(-i( vec(p)_(4)- vec(p)_(1))* vec(x))\mathcal{A}_{4}\left(\vec{p}_{4}-\vec{p}_{p}\right)=-i \int d^{3} x V(\vec{x}) e^{-i\left(\vec{p}_{4}-\vec{p}_{1}\right) \cdot \vec{x}}A4(p4pp)=id3xV(x)ei(p4p1)x
Hence,
d 3 x V ( x ) e i ( p 4 p 1 ) x = e 2 ( p 4 p 1 ) 2 V ( x ) = e 2 d 3 p ( 2 π ) 3 1 p 2 e i p x = e 2 4 π | x | d 3 x V ( x ) e i p 4 p 1 x = e 2 p 4 p 1 2 V ( x ) = e 2 d 3 p ( 2 π ) 3 1 p 2 e i p x = e 2 4 π | x | {:[ intd^(3)xV( vec(x))e^(-i( vec(p)_(4)- vec(p)_(1))* vec(x))=(e^(2))/(( vec(p)_(4)- vec(p)_(1))^(2))],[ rarr V( vec(x))=e^(2)int(d^(3)p)/((2pi)^(3))(1)/( vec(p)^(2))e^(i vec(p)* vec(x))=(e^(2))/(4pi|( vec(x))|)]:}\begin{aligned} & \int d^{3} x V(\vec{x}) e^{-i\left(\vec{p}_{4}-\vec{p}_{1}\right) \cdot \vec{x}}=\frac{e^{2}}{\left(\vec{p}_{4}-\vec{p}_{1}\right)^{2}} \\ & \rightarrow V(\vec{x})=e^{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\vec{p}^{2}} e^{i \vec{p} \cdot \vec{x}}=\frac{e^{2}}{4 \pi|\vec{x}|} \end{aligned}d3xV(x)ei(p4p1)x=e2(p4p1)2V(x)=e2d3p(2π)31p2eipx=e24π|x|
which is the Coulomb potential. For details on how to compute integral on LHS, see Tong pg 67. Alternatively, it easy to see that both sides satisfy the same differential equation:
x V ( x ) = δ 3 ( x ) x V ( x ) = δ 3 ( x ) ◻_(x)V( vec(x))=-delta^(3)( vec(x))\square_{x} V(\vec{x})=-\delta^{3}(\vec{x})xV(x)=δ3(x)

17 Renormalisation of QED

This is based on Kabat section 7.2.2 and Appendix C. The Coulomb potential receives quantum corrections from diagrams of the form
This has observable effects, for example the "Lamb shift" of the energy levels of
Hydrogen. Heuristically the virtual electron and positron in the loop screen the electron. This is known as "vacuum polarisation." This screening effect causes the electron charge to decrease at long distances, or low energies. Mathematically, this can be derived from renormalisation.
Consider QED with a cutoff Λ Λ Lambda\LambdaΛ on Euclidean momentum:
L = 1 4 Z A F μ ν F μ ν + i ψ ¯ D ψ m ψ ¯ ψ , D μ = μ i e A μ L = 1 4 Z A F μ ν F μ ν + i ψ ¯ D ψ m ψ ¯ ψ , D μ = μ i e A μ L=-(1)/(4)Z_(A)F_(mu nu)F^(mu nu)+i bar(psi)D psi-m bar(psi)psi,quadD_(mu)=del_(mu)-ieA_(mu)\mathcal{L}=-\frac{1}{4} Z_{A} F_{\mu \nu} F^{\mu \nu}+i \bar{\psi} D \psi-m \bar{\psi} \psi, \quad D_{\mu}=\partial_{\mu}-i e A_{\mu}L=14ZAFμνFμν+iψ¯Dψmψ¯ψ,Dμ=μieAμ
where Z A Z A Z_(A)Z_{A}ZA encodes the normalisation of the gauge field A μ A μ A_(mu)A_{\mu}Aμ. As we will see shortly, the normalisation will run with the scale Λ Λ Lambda\LambdaΛ. This is known as "wavefunction renormalisation". Now imagine lowering the cutoff to Λ = Λ δ Λ Λ = Λ δ Λ Lambda^(')=Lambda-delta Lambda\Lambda^{\prime}=\Lambda-\delta \LambdaΛ=ΛδΛ and write down a new theory
L = 1 4 Z A F μ ν F μ ν + i ψ ¯ D ψ m ψ ¯ ψ L = 1 4 Z A F μ ν F μ ν + i ψ ¯ D ψ m ψ ¯ ψ L^(')=-(1)/(4)Z_(A)^(')F_(mu nu)F^(mu nu)+i bar(psi)D psi-m bar(psi)psi\mathcal{L}^{\prime}=-\frac{1}{4} Z_{A}^{\prime} F_{\mu \nu} F^{\mu \nu}+i \bar{\psi} D \psi-m \bar{\psi} \psiL=14ZAFμνFμν+iψ¯Dψmψ¯ψ
where Euclidean momentum is restricted to | k E | < Λ k E < Λ | vec(k)_(E)| < Lambda^(')\left|\vec{k}_{E}\right|<\Lambda^{\prime}|kE|<Λ. The two theories will agree provided we relate Z A Z A Z_(A)Z_{A}ZA and Z A Z A Z_(A)^(')Z_{A}^{\prime}ZA appropriately. For δ Λ / Λ δ Λ / Λ delta Lambda//Lambda\delta \Lambda / \LambdaδΛ/Λ small, write
Z A = Z A d Z A d Λ δ Λ Z A = Z A d Z A d Λ δ Λ Z_(A)^(')=Z_(A)-(dZ_(A))/(d Lambda)delta LambdaZ_{A}^{\prime}=Z_{A}-\frac{d Z_{A}}{d \Lambda} \delta \LambdaZA=ZAdZAdΛδΛ
Plugging this into primed Lagrangian, we see that it has an extra term compared to the unprimed Lagrangian:
L = L + 1 4 F μ ν F μ ν d Z A d Λ δ Λ L = L + 1 4 F μ ν F μ ν d Z A d Λ δ Λ L^(')=L+(1)/(4)F_(mu nu)F^(mu nu)(dZ_(A))/(d Lambda)delta Lambda\mathcal{L}^{\prime}=\mathcal{L}+\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \frac{d Z_{A}}{d \Lambda} \delta \LambdaL=L+14FμνFμνdZAdΛδΛ
The extra term can be thought of as a new 2-point interaction vertex with the following Feynman rule:
Note that Fourier transforming F μ ν F μ ν F μ ν F μ ν F_(mu nu)F^(mu nu)F_{\mu \nu} F^{\mu \nu}FμνFμν to momentum space gives 2 ( η μ ν k 2 k μ k ν ) 2 η μ ν k 2 k μ k ν 2(eta_(mu nu)k^(2)-k_(mu)k_(nu))2\left(\eta_{\mu \nu} k^{2}-k_{\mu} k_{\nu}\right)2(ημνk2kμkν), as we've seen before. An addifiond factor of 2 comes from the 2 possible ways of Wick contracting the two external states onto the vertex.
On the other hand in the unprimed theory, the photon propagator receives corrections from vacuum polarisation diagram given at the beginning of the chapter where the Euclidean loop momentum is restricted to Λ < | E | < Λ Λ < E < Λ Lambda^(') < |ℓ_(E)| < Lambda\Lambda^{\prime}<\left|\ell_{E}\right|<\LambdaΛ<|E|<Λ and we neglect higher-loop corrections. In the HW, you will show that after amputating external legs this diagram evaluates to
= 4 i e 2 ( η μ ν k 2 k μ k ν ) 0 1 d x d 4 q ( 2 π ) 4 2 x ( 1 x ) ( q 2 + k 2 x ( 1 x ) + m 2 ) 2 + = 4 i e 2 η μ ν k 2 k μ k ν 0 1 d x d 4 q ( 2 π ) 4 2 x ( 1 x ) q 2 + k 2 x ( 1 x ) + m 2 2 + =-4ie^(2)(eta_(mu nu)k^(2)-k_(mu)k_(nu))int_(0)^(1)dx int(d^(4)q)/((2pi)^(4))(2x(1-x))/((q^(2)+k^(2)x(1-x)+m^(2))^(2))+dots=-4 i e^{2}\left(\eta_{\mu \nu} k^{2}-k_{\mu} k_{\nu}\right) \int_{0}^{1} d x \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{2 x(1-x)}{\left(q^{2}+k^{2} x(1-x)+m^{2}\right)^{2}}+\ldots=4ie2(ημνk2kμkν)01dxd4q(2π)42x(1x)(q2+k2x(1x)+m2)2+
where q q qqq is a Euclidean loop momentum with Λ < | q | < Λ Λ < | q | < Λ Lambda^(') < | vec(q)| < Lambda\Lambda^{\prime}<|\vec{q}|<\LambdaΛ<|q|<Λ, and ... denotes terms that break gauge invariance. Such terms are an artifact of working with a cutoff and don't arise if we use a regulator that preserves gauge invariance like dimensional regularisation, so we ignore them.
Hence, for the two theories to agree, we need
d Z A d Λ δ Λ = 4 e 2 0 1 d x d 4 q ( 2 π ) 4 2 x ( 1 x ) ( q 2 k 2 x ( 1 x ) + m 2 ) 2 d Z A d Λ δ Λ = 4 e 2 0 1 d x d 4 q ( 2 π ) 4 2 x ( 1 x ) q 2 k 2 x ( 1 x ) + m 2 2 (dZ_(A))/(d Lambda)delta Lambda=-4e^(2)int_(0)^(1)dx int(d^(4)q)/((2pi)^(4))(2x(1-x))/((q^(2)-k^(2)x(1-x)+m^(2))^(2))\frac{d Z_{A}}{d \Lambda} \delta \Lambda=-4 e^{2} \int_{0}^{1} d x \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{2 x(1-x)}{\left(q^{2}-k^{2} x(1-x)+m^{2}\right)^{2}}dZAdΛδΛ=4e201dxd4q(2π)42x(1x)(q2k2x(1x)+m2)2
Assuming that k 2 Λ 2 k 2 Λ 2 k^(2)≪Lambda^(2)k^{2} \ll \Lambda^{2}k2Λ2 and m 2 Λ 2 m 2 Λ 2 m^(2)≪Lambda^(2)m^{2} \ll \Lambda^{2}m2Λ2, we can set k 2 = m 2 = 0 k 2 = m 2 = 0 k^(2)=m^(2)=0k^{2}=m^{2}=0k2=m2=0 :
d Z A d Λ δ Λ = 4 e 2 0 1 d x 2 x ( 1 x ) Λ Λ 2 π 2 q 3 d q ( 2 π ) 4 1 q 2 d Z A d Λ = e 2 6 π 2 Λ d Z A d Λ δ Λ = 4 e 2 0 1 d x 2 x ( 1 x ) Λ Λ 2 π 2 q 3 d q ( 2 π ) 4 1 q 2 d Z A d Λ = e 2 6 π 2 Λ {:[(dZ_(A))/(d Lambda)delta Lambda=-4e^(2)int_(0)^(1)dx2x(1-x)int_(Lambda^('))^(Lambda)(2pi^(2)q^(3)dq)/((2pi)^(4))(1)/(q^(2))],[rarr(dZ_(A))/(d Lambda)=-(e^(2))/(6pi^(2)Lambda)]:}\begin{aligned} \frac{d Z_{A}}{d \Lambda} \delta \Lambda & =-4 e^{2} \int_{0}^{1} d x 2 x(1-x) \int_{\Lambda^{\prime}}^{\Lambda} \frac{2 \pi^{2} q^{3} d q}{(2 \pi)^{4}} \frac{1}{q^{2}} \\ \rightarrow \frac{d Z_{A}}{d \Lambda} & =-\frac{e^{2}}{6 \pi^{2} \Lambda} \end{aligned}dZAdΛδΛ=4e201dx2x(1x)ΛΛ2π2q3dq(2π)41q2dZAdΛ=e26π2Λ
Hence normalisation of Maxwell kinetic term depends on cutoff! If we rescale A μ 1 / Z A A μ A μ 1 / Z A A μ A_(mu)rarr1//sqrt(Z_(A))A_(mu)A_{\mu} \rightarrow 1 / \sqrt{Z_{A}} A_{\mu}Aμ1/ZAAμ to get a canonical kinetic term for the Maxwell field, then the interaction term becomes
L int = e ψ ¯ γ μ ψ A μ e phys ψ ¯ γ μ ψ A μ L int = e ψ ¯ γ μ ψ A μ e phys ψ ¯ γ μ ψ A μ L_(int)=e bar(psi)gamma^(mu)psiA_(mu)rarre_(phys) bar(psi)gamma^(mu)psiA_(mu)\mathcal{L}_{\mathrm{int}}=e \bar{\psi} \gamma^{\mu} \psi A_{\mu} \rightarrow e_{\mathrm{phys}} \bar{\psi} \gamma^{\mu} \psi A_{\mu}Lint=eψ¯γμψAμephysψ¯γμψAμ
where e phys = e Z A e phys  = e Z A e_("phys ")=(e)/(sqrt(Z_(A)))e_{\text {phys }}=\frac{e}{\sqrt{Z_{A}}}ephys =eZA. Hence, we find that
β ( e phys 2 ) = d d ln Λ e phys 2 = d d ln Λ ( e 2 Z A ) = e 2 Z A 2 d Z A d ln Λ = e phys 4 6 π 2 > 0 β e phys 2 = d d ln Λ e phys 2 = d d ln Λ e 2 Z A = e 2 Z A 2 d Z A d ln Λ = e phys 4 6 π 2 > 0 beta(e_(phys)^(2))=(d)/(d ln Lambda)e_(phys)^(2)=(d)/(d ln Lambda)((e^(2))/(Z_(A)))=-(e^(2))/(Z_(A)^(2))(dZ_(A))/(d ln Lambda)=(e_(phys)^(4))/(6pi^(2)) > 0\beta\left(e_{\mathrm{phys}}^{2}\right)=\frac{d}{d \ln \Lambda} e_{\mathrm{phys}}^{2}=\frac{d}{d \ln \Lambda}\left(\frac{e^{2}}{Z_{A}}\right)=-\frac{e^{2}}{Z_{A}^{2}} \frac{d Z_{A}}{d \ln \Lambda}=\frac{e_{\mathrm{phys}}^{4}}{6 \pi^{2}}>0β(ephys2)=ddlnΛephys2=ddlnΛ(e2ZA)=e2ZA2dZAdlnΛ=ephys46π2>0
This differential equation is then solved by
1 e phys 2 ( Λ ) = 1 e phys 2 ( μ ) 1 6 π 2 ln ( Λ μ ) 1 e phys 2 ( Λ ) = 1 e phys 2 ( μ ) 1 6 π 2 ln Λ μ (1)/(e_(phys)^(2)(Lambda))=(1)/(e_(phys)^(2)(mu))-(1)/(6pi^(2))ln((Lambda )/(mu))\frac{1}{e_{\mathrm{phys}}^{2}(\Lambda)}=\frac{1}{e_{\mathrm{phys}}^{2}(\mu)}-\frac{1}{6 \pi^{2}} \ln \left(\frac{\Lambda}{\mu}\right)1ephys2(Λ)=1ephys2(μ)16π2ln(Λμ)
where μ μ mu\muμ is the renormalisation scale. Hence e phys 2 e phys  2 e_("phys ")^(2)e_{\text {phys }}^{2}ephys 2 increases as Λ Λ Lambda\LambdaΛ increases, and there is a Landau pole at Λ max = μ exp ( 6 π 2 / e phys 2 ( μ ) ) Λ max = μ exp 6 π 2 / e phys  2 ( μ ) Lambda_(max)=mu exp(6pi^(2)//e_("phys ")^(2)(mu))\Lambda_{\max }=\mu \exp \left(6 \pi^{2} / e_{\text {phys }}^{2}(\mu)\right)Λmax=μexp(6π2/ephys 2(μ)), like in the ϕ 4 ϕ 4 phi^(4)\phi^{4}ϕ4 theory.