ALGEBRAICITY OF SPECIAL L-VALUES ATTACHED TO
SIEGEL-JACOBI MODULAR FORMS

THANASIS BOUGANIS AND JOLANTA MARZEC

In this work we obtain algebraicity results on special L-values attached to Siegel-Jacobi
modular forms in the spirit of Deligne’s Period Conjectures. Our method relies on a
generalization of the doubling method to the Jacobi group obtained in our previous
work, and on introducing a notion of nearly holomorphicity for Siegel-Jacobi modular
forms.

1. INTRODUCTION

This paper should be seen as a continuation of our earlier paper [3] on properties of
the standard L-function attached to a Siegel-Jacobi modular form. Indeed, in [3] we
have established various analytic properties (Euler product decomposition, analytic
continuation and detection of poles) of the standard L-function attached to Siegel-
Jacobi modular forms, and in this paper we turn our attention to algebraicity properties
of some special L-values.

Shintani was the first one to attach an L-function to a Siegel-Jacobi modular form which
is an eigenfunction of a properly defined Hecke algebra. He initiated the study of its
analytic properties by finding an integral representation. His work was left unpublished,
but then was took over by Murase [8, 9] and Arakawa [1] who obtained results on the
analytic properties of this L-function using variants of the doubling method. In our
previous work [3] we extended their results to a very general setting: non-trivial level,
character and a totally real algebraic number field. For this purpose we applied the
doubling method to the Jacobi group, and consequently related Siegel-type Jacobi
Eisenstein series to the standard L-function. This identity has a further application in
the current paper.

Here the starting point of our investigation is a result of Shimura in [11] on the arith-
meticity of Siegel-Jacobi modular forms. Namely, if we let S be a positive definite
half-integral [ by | symmetric matrix, and write M’ for the space of Siegel-Jacobi
modular forms of weight k£ and index S (see next section for a definition), and of any
congruence subgroup, and we also denote by M} ¢(K) the subspace of M]'¢ consist-
ing of those functions whose Fourier expansion at infinity has Fourier coefficients in
a subfield K of C, then it is shown in (loc. cit.) that M} ¢(K) = M} s(Q) ®q K.
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n particular, for a given f € and a 0 € Au one can define the elemen
I ticular, fi i f € Mg and Aut(C/Q define the el t
ffeM kg Dy letting o act on the Fourier coefficients of f.

The main result of this paper is Theorem 4.6. Without going into too much details,
it may be vaguely stated as follows. Denote by L(s, f, XLthe standard L-function

attached to a Siegel-Jacobi cuspidal eigenform f € M 5(Q), which is twisted by a
Dirichlet character x, and let

A(SvfaX) = L(2S_n_l/27f,X)

L (2s —1/2,xvg) ifl € 2Z,
1 if | ¢ 2Z,

where g is the non-trivial quadratic character attached to the extension Kg :=
Q(/(=1)1/2det(29)) if Ks # Q, and otherwise 1bs = 1. Then for certain integers
o and for k> 2n+1+1,

Alo/2, f,x)
wee < f, f >

for an explicit power e, € N, and where < f, f > is a Petersson inner product on the
space of cuspidal Siegel-Jacobi modular forms.

€qQ,

To the best of our knowledge these are first results concerning algebraic properties of
the special L-values of Siegel-Jacobi modular forms.

Of course, results of the above form have been proven by many researchers (most
profoundly by Shimura, see for example [13]) in the cases when the standard L-function
is attached to an automorphic form (e.g. a Siegel or Hermitian modular form) associated
to a Shimura variety. Then such results can be also understood in the general framework
of Deligne’s Period Conjectures for critical values of motives [4]. Indeed, according
to the general Langlands conjectures, the standard L-functions of automorphic forms
related to Shimura varieties can be identified with motivic L-functions, and hence
the algebraicity results for the special values of the automorphic L-functions can be
also seen as a confirmation of Deligne’s Period Conjecture, albeit it is usually hard to
actually show that the conjectural motivic period agrees with the automorphic one.

However, Siegel-Jacobi modular forms and - in particular - the algebraicity results
obtained in this paper do not fit in this framework. Indeed, since the Jacobi group
is not reductive, it does not satisfy the necessary properties to be associated with
a Shimura variety, and hence we are not in the situation described in the previous
paragraph. Nevertheless, the Jacobi group can be actually associated with a geometric
object, namely with a mixed Shimura variety, as it is explained for example in [6, 7]. Of
course, we cannot expect that the standard L-function studied here can be in general
identified with a motivic one. However, it is very tempting to speculate that it could
be identified with an L-function of a mixed motive, and hence the theorem above could
be seen as a confirmation of the generalization of Deligne’s Period Conjecture to the
mixed setting as for example stated by Scholl in [10].

Finally, we would like to point out that even though in some cases one can identify the
standard L-function associated to a Siegel-Jacobi form with the standard L-function
associated to a Siegel modular form (see for example the remark on page 252 in [9]),
this is possible under some quite restrictive conditions on both index and level of
the Siegel-Jacobi form. Actually, even in the situation of classical Jacobi forms this
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correspondence becomes quite complicated when one considers an index different than
1 and/or non-trivial level, which is very clear for example in the work of [14].

Remark: In an earlier version of [3], which one can find on the arXiv (]2]), we had also
included the results of this paper. However this had resulted in a rather long exposi-
tion, and for this reason we decided to keep the two main results of our investigations
separately. Namely, [3] contains now our results towards the analytic properties of the
standard L function, whereas this paper focuses on the algebraic properties.

2. PRELIMINARIES

2.1. Siegel-Jacobi modular forms. In this section we recall basic facts regarding
Siegel-Jacobi modular forms of higher index and set up the notation. We follow closely
our previous work [3].

Let F' be a totally real algebraic number field of degree d, ? the different of F', and
0 its ring of integers. For two natural numbers [,n, we consider the Jacobi group
G := G™!' := H™! x Sp,, of degree n and index [ over F:

G™(F):={g= (A u,K)g: A, € Myu(F), & € Symy(F), g € G"(F)},
where H(F) := H" (F) := {(\, 1, k)12, € G™'(F)} is the Heisenberg group, and

G"(F) :=Sp,,(F) := {g € SLo, (F): 2tg(ln *ln)g = (1n *1”)}.
The group law is given by
A R) gV KD g = A Xt i+ &+ N+ A+ X — X )gd
where (Afi) := (W p)g™t = (N'd — /% 4'%a — N®), and the identity element of
G™!(F) is 1j1s,, where 15 := (0,0,0) is the identity element of H™!(F) (whenever it

does not lead to any confusion we suppress the indices n,[). For an element g € Sp,,

we write g = <a9 bg>, where ag, by, cq, dg € M.
¢g dy

We write {0, : F' — R, v € a} for the set of real embeddings of F, a denoting the

set of archimedean places of F'. Each o, induces an embedding G(F) — G(R); we

will write (Ay, fty, Kv) gy for o,(g). The group G(R)? acts on H,,; := (H, x M;,(C))?

component wise via

gz = g(Tv w) = ()‘a Hy ’i)g(Tv w) = H(gUTm wv)‘(gva Tv)_l + )\vgvTv + ,va)a

vea

where g,7, = (ayTy + by)(coTy +dy) ™! and A(gu, ) = (cuTy + dy) for g, = (“” b )

Ccy dy
For k € Z2 and a matrix S € Sym;(d~!) we define the factor of automorphy of weight

k and index S by
Jk,sl Gn’l(F) X Hn,l —C

Jk,S(g)Z) - Jk,S(Q? (7—7 U})) = Hj(gvaTv)kvjsv(gvamev)a

vea

Where g = ()‘a 122 ’{)ga j(gva 7-11) = det(CUTU + dv) = det()‘(g’tla Tv)) and
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Js, (9w, Tv, wy) = e(—tr (Syky) + tr (Sy[wy]A(go, Tv)_lcv)
— 2tr (N SpwyA (g, Tv)_l) —tr (Sp[Ao]guTv))

with e(z) := e*™® and we set S[x] := &Sz; Ji g satisfies the usual cocycle relation:
(1) Jr,5(99',2) = Ji,5(9,9" 2) J.s(g', 2).

For a function f: H,; — C we define

(2) (flrs 9)(2) = Jis(9,2) ' f(g2).

A subgroup T' of G(F') will be called a congruence subgroup if there exist a frac-
tional ideal b and an integral ideal ¢ of F' such that I' is a subgroup of finite index
of the group G(F) N gK[b,c]g~! for some g € Gy, := [I,en G(Fy), h denoting non-
archimedean places of F'. The group Kb, c] is defined as K|[b,¢] := Kp[b, c|Ga, where
Ga = [[,ca G(Fy), and

Kp[b,¢] := Chlo,b71, 671 x Dyu[b7t, b] € Gy,

-1 —1 / )\veMl,n(Uv)y ﬂveMl,n(b;l):
Chlo, 671,671 := {(\, i, & EEIH Yo e 1
n[67!, b : HD (671, be],

veh

-1 ). (ax b . aw€Mn (o), be€My(byh),
D,[b™", bc] := {x = (Cx dx> e Gy M (bons), daehn(os) [ °
We now consider an S € b0~ 17, where

(3) T :={x € Symy(F) : tr (zy) € o for all y € Symy (o)},

and assume additionally that S is positive definite in the sense that if we write S, :=
oy(S) € Symy(R) for v € a, then all S, are positive definite.

Definition 2.1. Let k and .S be as above, and T" a congruence subgroup equipped with
a homorphism y. A Siegel-Jacobi modular form of weight k& € Z?, index S, level I' and
Nebentypus x is a holomorphic function f: H,; — C such that

(1) (g)f for every g € T,
(2) for each g € G"(F), flk,s g admits a Fourier expansion of the form

Flis g(rw) = 325 elgst, r)ealtr (tr))ea(tr (frw)) (+)

teL reM
t>0

for some appropriate lattices L C Sym,(F) and M C M;,(F), where t > 0
means that ¢, is semi-positive definite for each v € a.

We will denote the space of such functions by M}’ ¢(T', x).

We say that f is a cusp form if in the expansion (%) above for every g € G"(F), we

v Tov

have ¢(g;t,r) = 0 unless <$

v t’l}

) is positive definite for every v € a. The space of

cusp forms will be denoted by Sy’ 5(T', x).
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We define Petersson inner product of Siegel-Jacobi forms f and g of weight k& and level
T’ under assumption that one of them is a cusp form as:

< f,g>= vol(A)_1 /A f(z)@A&k(z)dz, A:=T\Hny,

where for z = (r,w) € Hypy, T = x + iy with 2,y € Sym,(Fa) and w = u + v
with u,v € M, (Fa), we set dz := d(1,w) := det(y) " Ddrdydudv and Agy(z) :=
det(y)*ea(—4ntr (vSvy™1)). In this way the inner product is independent of the group
T.

2.2. Adelic Siegel-Jacobi modular forms. Denote by A the adeles of F', and let
Kn[b,¢] C Gy be the subgroup defined in the previous section. Then Jacobi group G
satisfies strong approximation theorem:

G(A) = G(F)Kp[b, ] Ga.

It will be useful to define also groups
Ko[b,¢] := KJ'[b,¢] := Kn[b,¢] x Koo and K := K™ := Ky[b, cJ(HM x D2),

where Ko, ~ Sym;(R)® x D& c H™(R)2 x Sp,(R)? is the stabilizer of the point
ig := (2,0) € H,,;, and D is the maximal compact subgroup of Sp,(R). Here ¢ € H3
denotes the point (il,, ...,il,) on the Siegel upper space.

Now, we fix once and for all an additive character ¥ : A/F — C* as follows. Write
U =[] en Yo ll,ca Yo and define

o= {0 0

where y, € Q is such that Trp, g, (2v) — y» € Zp for p := v N Q. Given a symmetric
matrix S € Symy(F) we define a character ¢g : Sym;(A)/Sym;(F) — C* by taking
Ys(k) := ¥(tr (Sk).

Consider an adelic Hecke character x : A*/F* — C* of F of finite order such that
Xvo(z) =1 for all x € o) with  — 1 € ¢,. We extend this character to a character of
the group Ko[b, ¢] by setting x(w) := Hv|ch(det(ag))_1 for w = hg € Ky[b, c].

Now, let k € Z2 and S € Sym;(F) be such that S € bd~17; with 7; as in (3). Moreover,
let K be an open subgroup of K[b, ¢] for some b and c.

Definition 2.2. An adelic Siegel-Jacobi modular form of degree n, weight k, index S
and character y, with respect to the congruence subgroup K is a function f : G(A) — C
such that

(1) £((0,0, k)ygw) = x(w)Jy s(w, io) "Ps(x)f(g), for all k € Symy(A), v € G(F),
g € G(A) and w € K N Kb, cl;
(2) for every g € Gy, the function fg on H,,; defined by the relation
(fg

is a Siegel-Jacobi modular form for the congruence group I'Y := G(F)NngKg™'.

k,sY)(io) :=f(gy) forall y € Ga
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We denote the space of adelic Siegel-Jacobi modular forms by My (K, x). For any
given g € Gy, there exists a bijection

(4) ks(BX) = Mis(T9, xg), £ fg,

where x4 is the character on I'? defined as xg4(7) := x(g 'vg). We say that f is a
cusp form, and we denote this space by S;',(K, x), if in the above notation fg is a cusp
form for all g € Gy. If g = 1, we will write f for the Siegel-Jacobi modular form
corresponding to f via (4).

3. THE STANDARD L-FUNCTION AND THE DOUBLING METHOD IDENTITY

In this section we recall some results and notation from [3] which will be necessary to
establish results in the next section.

3.1. The L-function. We start by fixing some notation. For a fractional ideal b, and
an integral ideal ¢ we let

D = {(\ p,k)x € Cylo,b7 1, 671D, [67 e, be] = (ap — 1,)y € My(c,) for every v|c},
I' =T(¢c) =G"(F)N D,
Q(c) :={r € GL,(An) N H M, (0y) : 7y = 1,, for every v|c},
vEh
R(c) := {diag[r,r] : 7 € Q(¢)}.
For r € Q(c) and f € M 4(T') we define a linear operator T} : My ¢(T') — M’ o(T') by
(5) AT =" flese,
acA

where A C G"(F) is such that G"(F) N Ddiag|[7,r|D = [],c 4 F'a. Further, for an
integral ideal a of F' we put

fIT(@) ==Y fIT,

reQ(c)
det(r)o=a

where we sum over all those r for which the cosets [], ., GLyn(0,) 7 [[,cp, GLn(0,) are
distinct.

Note that if |7, is the adelic Siegel-Jacobi form associated to f|T; by the bijection
given in (4) with g = 1, then
(F1T)(z) = Y flza™),  z€G™(A),
acA
where Ddiag[7,r]D = [[,c 4 Da with A C Gy,; we define f|T'(a) in a similar way.

We now consider a nonzero f € S (D) such that f|T(a) = A(a)f for all integral ideals
a of F. For a Hecke character x of F', and denoting by x* the corresponding ideal
character, we define an absolutely convergent series

D(s,£,x) : ZA N(a)™%,  Re(s)>2n-+1+1.
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In [3] we proved the following theorem regarding the Euler product representation of
this Dirichlet series. For the condition M, for primes away from ¢ we refer to [3].

Theorem 3.1 (Theorem 7.1, [3]). Let 0 # £ € S g(D) be such that £f|T(a) = A(a)f

for all integral ideals a of F. Assume that the matrix S satisfies the condition Mer for
every prime ideal p with (p,c) = 1. Then

£068)D(s +n+1/2,8,x) = L(s, £,x) == [ [ Le ()N (9) )%,
p

where for every prime ideal p of I
T (= 20 = 1 20)s s €CF if (pre) = 1,
Ly(X) = .
1 if (p,e) # 1.
Moreover, £(x, s) = H(p,c):l £y(x, ), where
[T Lp(2s + 2n — 2i, x?) ifl €22
[T, Lp(2s +2n — 2+ 1,x?) if | ¢ 2Z

and Gp(x,s) is a ratio of Euler factors which for almost all p is equal to one. In
particular, the function L(s,f,x) is absolutely convergent for Re(s) >n+1/2+ 1.

(X, 8) = Gp(x,8) - {

We note here that the Euler product expression implies that
(6) L(s,f,x) #0, Re(s) >n+1/2+ 1.

We set f€(z) := f(—%), where f corresponds to f € Si (D) via (4). We write £¢ for
the adelic form corresponding to f¢. Then

Proposition 3.2 (Proposition 7.9, [3]). Let f € S ¢(T') be an eigenform with f|T'(a) =
Xa)f for all fractional ideals a prime to c. Then so is f¢. In particular, f¢|T(a) =
@) f¢ and L(s, f, x) = L(s, £, x).

3.2. Doubling method. The L-function introduced above may be also obtained via
a doubling method. We chose to take Arakawa’s approach [1] and considered a homo-
morphism
ta: G x gt gmt
AN, k)g) x (Nl k) g)) o= ((AN), (i), + K )es (g x o),
where ,
a
53076 @ s () % (44)) = (140 ).
d d
The map ¢4 induces an embedding
Mg X Hng = Hngmyi, 21 X 22 +— diag[z1, 22),

defined by

(Tl, wl) X (TQ, U)Q) —> (diag[ﬁ, 7'2], (U)l ’LUQ))
The doubling method suggests that computation of the Petersson inner product of a
cuspidal Siegel-Jacobi modular form f on H,; against a Siegel-type Eisenstein series
pull-backed from H,,;,; leads to an L-function associated with f. Before we state the
result, we need to define an Eisenstein series.
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Fix a weight k € Z* and consider a Hecke character y such that for a fixed integral
ideal ¢ of F we have

(1) xo(z) =1forall z € 0 withz —1€¢,, v € h,
ky
(2) Xa(ra) = sgn(za)* = [Loea (éﬁ) , for x4 € Ay;

we will also write x, := Hv| c Xv- We define an absolutely convergent adelic Eisenstein
series of Siegel type on a Jacobi group with a parabolic subgroup

P"(F) :={(0,p,k)g : p € My n(F),k € Symy(F),g € P"(F)},
where P"(F) is a Siegel subgroup of G™(F') as follows:

1
E(wsix):= Y, é(zsx), Re(s)>g(n+l+1),
YeP"(F)\G"(F)

where ¢(z,s;x) =0 if x ¢ P"(A)K"™ and otherwise, if z = pw with p € P"(A) and
w € K", we set

¢, 53x) = x(det(dp)) " xe(det(dw)) ™ Tr,s(w, i0) 7| det(dy) [,

where p,w € Sp,(A) denote symplectic parts of p,w, respectively. The classical
Eisenstein series which corresponds to E(z,s;x) via bijection (4) will be denoted by
E(z, 87 ).

Theorem 3.3 ([3]). Let f € Si o(T') be a Hecke eigenform and E(z, s; x) an Eisenstein
series defined above. Then:
G(x, 25 —n —1/2)N(6)*"xn(0) " (=1)" D vol (A)AZ" ) 5 (s = 1/4, x1bs)
< (El,sp)(diaglz1, 22], 5:X), (fr,51,)(22) >
(7) = vecs k(s — k/2)A(s, f,x) f(21),
where

AT (5, xtbs) = {L (25 —1/2,xs) [1i; Le(4s — 1 — 2i,x?) if l € 27,

TG L (s — 1 — 20 +1,%2) ifl¢ 2z,
Als, f,x)i=L(2s—n—1/2,£, ) Le(25 = 1/2,x08) [T pia Le(4s — 1 — 2i, %), 1€ 2Z,
* TTCn D2 Lo(as — 1 - 20+ 1,02), | ¢ 927,
(8) G(x,2s—n—1/2):= [ Gplx.2s—n—1/2),

(p,0)=1

and the rest of notation is as in [3, Section 6]; in particular: n, = 1y (

L)
—non(n —4s,—n n(n Fn(SV+kV : i)
csi(s) =11 <i det(28,) non(nt8)/2-dsy mnky pnlntl)/2 Fn(sl,+kl,2— 0 )2

vea

and Ty (s) := 7= V/AT I T(s - 1).

Statement of the above theorem expresses a combination of equations (30) and (31)
from [3, Section 9] before multiplying them by the factor G_;/9 2, (s —1/4).
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Remark 3.4. In fact, the results proved in [3] are more general than the ones presented
above. Indeed, we worked with congruence subgroups of the form

D = {(\ p,k)x € Cylo, b7 67D,y [67 e, be] : (ap — 1)y € My (e,) for every vle},

1

where ¢ is an integral ideal such that ¢ C ¢ and ¢ is prime to ¢~ "c. If we set

I:=G"(F)ND,

then I'y(¢) C T C I'g(c) where the last group is obtained by setting ¢ = 0. However, in
this paper we decided to work with ¢ = ¢, because for simplicity reasons we restricted
the proof of our main theorem to this case.

4. ARITHMETIC PROPERTIES OF SIEGEL-JACOBI MODULAR FORMS

As we indicated in the introduction, assuming that one can define a sensible algebraic
structure on the space of Siegel-Jacobi modular forms, it is natural to ask whether
a “Deligne’s Conjecture”-style result may hold for some values of the standard L-
function, which are often called special L-values. This is indeed the case for Siegel
modular forms, as shown for example in [13, 15]. Indeed, by using the theory of
canonical models for the Siegel modular varieties (as it is explained in [13, Chapter
2]), one can define an algebraic structure on the space of Siegel modular forms, and for
an algebraic eigenfunction establish algebraicity results for the special L-values of the
attached standard L-function (see for example Theorem 28.8 in [13]). Furthermore,
one can, conjecturally, attach a motive to such a Siegel modular form, such that the
associated motivic L-function can be identified with the standard L-function (see for
example [16]). Then the special values of the standard L-function can be identified
with the critical values of the motivic L-function and then the algebraicity results can
be seen in the light of Deligne’s Period conjectures [4] (up to the difficult issue of
comparing motivic and automorphic period).

It is then quite natural to ask whether the picture described above holds also for Siegel-
Jacobi forms; that is, whether we can establish results towards the algebraicity of special
L-values of Siegel-Jacobi modular forms. The starting point of our investigation is the
paper of Shimura [11], where the arithmetic nature of Siegel-Jacobi modular forms is
studied. We should remark right away that the paper of Shimura is written for F' = Q,
but it is not very hard to see that almost everything there can be generalized to the
situation of any totally real field F'. Indeed, in what follows, whenever we state a result
from that paper, we always comment on what is needed to extend it to the case of a
totally real field.

In this section we change our convention: we will write f (instead of f) for Siegel-Jacobi
modular forms, f will still denote the corresponding adelic form, and f will be used for
other types of forms.

For a congruence subgroup I' of G(F') as in the previous section and a subfield K of C
we define the set

MPg(DK) o= {f € MPg(D) : f(r,w) = 3 elt, rea(tr (tr + w), e(t,r) € K}
t,r
the subspace S} ¢(T", K) consisting of cusp forms is defined in a similar way. Moreover,
we write M} g(K) for the union of all spaces M’ (T'1(b, ¢), K) for all integral ideals ¢
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and fractional ideals b, where I'1(b,¢) := G™(F) N D1(b,¢), and
D(b,¢) ;= {(\, p, k) € Clo, b=, 67 D[b e, be] : (ap — 1n)w € My (c,) for every vlc}.

For an element o € Aut(C) and an element k = (k,) € Z* we define k7 := (k) € Z2,

where vo is the archimedean place corresponding to the embedding K SCcS C, if r
is the embedding in C corresponding to the archimedean place v.

Proposition 4.1. Let k € Z2, and let ® be the Galois closure of F in Q, and ®;, the
subfield of ® such that

Gal(®/®) := {0 € Gal(®/F): k° =k}.
Then M g(C) = M} 4(®),) @a, C.

Proof. If F = Q, this is [11, Proposition 3.8]. A careful examination of the proof [11,
page 60] shows that the proof is eventually reduced to the corresponding statement
for Siegel modular forms of integral (if I is even) or half-integral (if [ is odd) weight.
However, in both cases the needed statement does generalize to the case of totally real
fields, as it was established in [13, Theorems 10.4 and 10.7]. O

Given an f € M 5(C), we define

fo(rw) = ea(Sw(t —7) Hw) f(r,w)
and write Q for the maximal abelian extension of Q. Moreover, for k € %Za such that
ky — % € Z for all v € a we write M;' for the space of Siegel modular forms of weight k,
and of any congruence subgroup, and M} (K') for those with the property that all their
Fourier coefficients at infinity lie in K (see for example [13, Chapter 2] for a detailed
study of these sets).

Proposition 4.2. Let K be a field that contains Q% and ® as above. Then

(1) f € M{¢(K) if and only if f.(1,0Q,) € Mp(K), where Q; := {7 1,), and
v E Ml72n(F).
(2) For any element v € Sp,(F) — G"(F) and f € M} 4(K), we have

Flesv € M g(K).
Moreover if f € My o(T', K), it follows that f|T, € M} (T, K) for any r €
Q(c).

Proof. If F' = Q, this is [11, Proposition 3.2]. It is easy to see that the proof generalizes
to the case of any totally real field. Indeed, the first part of the proof is a direct
generalization of the argument used by Shimura. The second part requires the fact
that the space M]'(K) is stable under the action of elements in Sp,,(F'), which is true
for any totally real field, as it is proved in [13, Theorem 10.7 (6)]. The last statement
follows from the definition of the Hecke operator T;. . O

For a symmetric matrix S € Symy(F'), h € M;,(F) and a lattice L C M, (F) we
define the Jacobi theta series of characteristic h by

Os,h(T w) = ) ealtr (5(;(:6 +h)T(@+h) + (2 + h)w))).
zeL
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Theorem 4.3. Assume that n > 1 or F' # Q, and let K be any subfield of C.
Let A € GLi(F) be such that AS'A = diag[s1,...,s)], and define the lattices Ay :=
AM;,(0) C My, (F) and Ay == 2diag[s;’,...,s; |M,(0) C My,(F). Then there is
an isomorphism
o MEg(K)= @ My ,(K)
hGAl/AQ
given by f = (fn)y, where the fr, € M}' 1/2( ) are defined by the expression

= > [u(7)Oasan(T,w).

hEAl/Az

Moreover, under the above isomorphism,

o[ B SpK) | CSps(E).
hEAl/AQ

Remark 4.4. We remark here that the assumption of n > 1 or F # Q is needed to
guarantee that the fi’s are holomorphic at the cusps, which follows from the Koécher
principle. However, even in the case of F = Q and n = 1, if we take f to be of trivial
level, then the f;’s are holomorphic at infinity (see for example [5, page 59]).

Proof of Theorem 4.3. The first statement is [11, Proposition 3.5] for F' = Q and it
easily generalizes to the case of any totally real field. We explain the statement about
cusp forms.

Consider first expansions around the cusp at infinity. Fix h € A1/A2 and let fj,(7) =
> i,s0 C(t2)ea(tr (t27)). It is known that Fourier coefficients c(t1,7) of a Jacobi theta
series

O25A01 (T, w) =D clty, r)ea(tr (t17))ea(tr (rw))

t1,r

are nonzero only if 4t; = rS™1% (see [17, p. 210]). Hence, the coefficients of

Tn(T)O25 7y 1 (T, w) = Z ( Z C(tlaT)C(t2)> ea(tr (t7))ea(tr (‘rw))

t,r t1+ta=t

are nonzero only if 4t = 4(t; + t9) = rS~™Mr + 4ty > rS~'%. This means that the
function f3,(7)Oag a,.1(T, w) satisfies cuspidality condition at infinity.

Now let v be any element in Sp,,(F). The first statement in the Theorem states that
for every hy € Aq1/Ay there exist fi, 4, € Ml?fl/z(K)’ he € A1/Asg, such that

25 A9,k [k,57Y(T; W) thth 7) 025,85, (T, ).

Hence, for some cusp forms f5, € Skil/Q(K),

Fli,s7v(T,w) thlhﬂ thl ha (T)©28,As,hy (T, W)
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= Z Z Im |k’7(7-)fh1,h2 (1) ©25,A2,hs (1, w).

ho h1

The same argument as used for the cusp at infinity implies that the functions f| gy(7, w)
and D, fry[kY(T) fry,no (T) are cuspidal. This finishes the proof. O

Note that the above theorem does not state that ®—* (®h€A1/A2 SZ_Z/Z(K)) = S} ¢(K).
For this reason we make the following definition.

Property A. We say that a cusp form f € S};S(K) has the Property A if

e(f)e D SiyplK)

heA1/A2

Examples of Siegel-Jacobi forms that satisfy the Property A:

(1) Siegel-Jacobi forms over a field F' of class number one, and with trivial level, i.e.
with ¢ = 0. Note that in this situation there is only one cusp. Then, keeping the
notation as in the proof of the theorem above we need to verify that if f(7,w) =
> oirce(t,r)ealtr (t7))ea(tr (rw)) with 4t > rS~1 whenever c(t,r) # 0, then
the fn have to be cuspidal. Observe first that if hy,hy € Aj/Ag are differ-
ent, O25.4, 1y (T,w) = 3, c1(t, 7)ea(tr (t7))ea(tr (rw)), and Ozsa, ny (T, w) =
> C2(t,r)eal(tr (t7))ea(tr (rw)), then there is no 7 such that at the same time
ci1(t,r) # 0 and ca(¢,7) # 0. Indeed, if it was not the case then there would be
A1, A2 € Ag such that o = 2S(\; + hy) and r = 25(A\y + h2), that is, \; + hy =
Ao + ho or, equivalently, hy — hs € Aso; contradiction. Hence, for any given r
there is a unique h € Ay /A3 such that Oag 5, 5 has a nonzero coefficient c¢(t,r).
This means that there exists a unique h such that c¢(t,r) is the Fourier coeffi-
cient of f(7)O25ay1(T,w) = 37, . 370 41y Ct1, 7)c(t2)eal(tr (t7))ea(tr (rw)).
But then rS™1% < 4t = A(ty + ta) = rS~lr 4+ 4ty and so to > 0, which proves
that fp is cuspidal.

(2) Siegel-Jacobi forms of index S such that det(2S) € 0%, as in this case the
lattices A1 and Ao from Theorem 4.3 are equal.

(3) Siegel-Jacobi forms of non-parallel weight, that is, if there exist distinct v,v" € a
such that k, # k,. Indeed, in this case M}* , ,(K) = S}, ,(K) for all h €

k—1/2 k—1/2
A1 /As (see [12, Proposition 10.6]).

Let us now explain the significance of the Property A. Recall first that we have defined
a Petersson inner product < f,g > when f,g € M} ¢(K) and one of them, say, f is
cuspidal. If f satisfies the Property A, then we claim that

< f,9>=N(det(49))™? > < fu, 05>
heAi /A2
Indeed, as in [17, Lemma 3.4],

< f.g >= N(det(45)) " *vol(A)~" / 3" fu(r)gn(r) det(Im(r))F 2= Dgr,
A heAr /Ay
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where A = I'\H?2 and a congruence subgroup I is deep enough. We obtain the claimed
equality after exchanging the order of integration and summation. This can be done
exactly because each fj is cuspidal, which makes each individual integral well defined.

Lemma 4.5. Assume thatn > 1 or F # Q and that f € S 4(Q) satisfies the Property
A and one of the following two conditions holds:

(i) there exist v,v" € a such that ky # ky;
(i) k = pa = (p,...,pn) € Z2, with p € Z depending on n and F in the following
way:
n>2 n=2F=Q n=2F#Q n=1
w>3n/2+1/2 >3 > 2 p>1/2

Then for any g € My’ 5(Q) there ezists g := q(g) € S,?S(@) such that
<f.g>=<fg>.

Proof. There is nothing to show in the case of non-parallel weight, since as it was
mentioned above there is no (holomorphic) Eisenstein part in this case. In the parallel
weight case, since f has the Property A, < f,g >= N(det(4S)) "™/? ZheAl/AQ <
Inygn >. Let q : Ml?—l/z((@) — Sl?_l/?((@) be the projection operator defined in [13,
Theorem 27.14]. Then, if we put g, := q(gp) for all h € Ay/As9, it follows that
< f,9>=N(det(49)™? > < fu.gn >=N(det(49))™* > < fu, G0 >
heAy/As heAi/As

In particular, if we set g := ®~1((g5)n), we obtain the statement of the lemma. O

We consider now a non-zero f € S,??S(l", Q) with T' := G N D, where
D :={(\p,k)x € Clo,b" 67 Db cp,bey] & (az—1,)0 € My((cy)y) for every vles}.

We assume that f is an eigenfunction of the operators T'(a) for all integral ideals a,
write f|T'(a) = A(a)f and define the space

V(f) ={f € Sp5(T,Q) : fIT(a) = A(a) for all a}.
We are now ready to state the main theorem of this paper on algebraic properties of

L(2s —1/2,xyg) ifl € 2Z,

1 if | & 27.

Theorem 4.6. Assume n > 1 or F' # Q. Let x be a Hecke character of F such
that xa(x) = sgn,(z)*, and 0 # f € Sis(I,Q) an eigenfunction of all T'(a). Set
W = miny, k, and assume that

A(57f7X):L(2S_n_l/2af7X){

(1) w>2n+1+1, N
(2) Property A holds for all f € V(f),
(3) ky = ky mod 2 for all v,v' € a.

Let o € Z be such that

(1) 2n+1—(ky —1/2) <o —1/2 <k, —1/2 for allv € a,
(2) |o— 5 —2E| 20l (kg —1/2) € 27 for all v € a,
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(8) ky >1/24n(1+ky,—1/2—]oc—1/2—(2n+1)/2| — (2n+1)/2) for all v € a,
but exclude the cases

(1) o=n+1+1/2, F=Q and x*¢? =1 for some 1,
(2) o =1/2, ¢ =0 and xsip; = 1 for some 1;,

(3) 0<o—1/2<n,c=0 and x*V? =1 for some 1);.

(4) o <1+ mn in case F has class number larger than one.

Under these conditions

A(o/2 _
Al0/2.5.%) g
e < f, f >
where
ey =13 (ko—lto)—de, e:= nZ+n—a+z/2, if 20—l €22 and o = 2n+1/2,
vEa ns, otherwise.

This theorem will be proved at the end of the next section. First we need to introduce
the notion of nearly holomorphic Siegel-Jacobi modular forms N;"’¢(T) for r € Z2.

5. NEARLY HOLOMORPHIC SIEGEL-JACOBI MODULAR FORMS AND ALGEBRAICITY OF
SPECIAL L-VALUES

Definition 5.1. A C*° function f(7,w) : H,; — C is said to be a nearly holomorphic
Siegel-Jacobi modular form (of weight k& and index S) for the congruence subgroup T’
if

(1) f is holomorphic with respect to the variable w and nearly holomorphic with
respect to the variable 7, that is, f belongs to the space N” (Hg) for some r € N
defined in [13, page 99];

(2) flr,sy = f forally eT.

We denote this space by N,¢(T') and write N, := Up N;/s(T') for the space of all
nearly holomorphic Siegel-Jacobi modular forms of weight &£ and index S.

We note that if f € N:g, then f,(r,v Q,) € , the space of nearly holomorphic

Siegel modular forms, where recall Q, := {7 1 ) and v € M2, (F). Below we extend
Theorem 4.3 to the nearly—holomorphic situaton.

Theorem 5.2. Assume that n > 1 or F # Q. Let A € GL;(F) be such that
AS'A = diag[s1, ..., s, and define the lattices Ay := AM; ,(0) C My, (F) and Ay :=
2diag[si ', ..., 8; My, (0) C My, (F). Then there is an isomorphism

. n,r A n,r
PNy = @ NyZiss
hEAl/AQ
gwen by f — (fn);, where the f, € N, k l/2 are defined by the expression

= Y fu(1)O250,4(T, w).

heA1 /A2
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Proof. Given an f € N,? ’g, the modularity properties with respect to the variable w
show that (see for example [11, proof of Proposition 3.5]) we may write

> fu(r)Oasagn(r w)

hGAl/AQ

for some functions fp,(7) with the needed modularity properties. In order to establish
that they are actually nearly holomorphic one argues similarly to the holomorphic case.
Indeed, a close look at the proof of [11, Lemma 3.4] shows that the functions f;, have the
same properties (real analytic, holomorphic, nearly holomorphic, meromorphic, etc.)
with respect to the variable 7 as f(7,w), since everything is reduced to a linear system
of the form

T w’L - Z fh 625,/\2,}1(7—7 wi)a 1= 17 .. '7ﬁA1/A27
hEAl/AQ

for some {w;} such that det(©2g a, 1(7, w;)) # 0. In particular, after solving the linear
system of equations we see that the nearly holomorphicity of f, follows from that of f
since the ©gg A, 1 (T, w;) are holomorphic with respect to the variable 7. ]

The above theorem immediately implies the following.

Corollary 5.3. For a congruence subgroup T, N,?’g(l") is a finite dimensional C vector
space.

Proof. The theorem above states that N,¢(T') = &, N, /o(I'n) for some congruence
subgroups I'j, which are known to be finite dimensional (see [13, Lemma 14.3]). O

Given an automorphism o € Aut(C) and f € N,"g, we define

= ) [7(1N)O2s0,m(T,w),

hEAl/AQ

where f, € N, 7}/2, and f7 is defined as in [13, page 117]. Also, for a subfield K
of C, define the space N:g(K) to be the subspace of N,?g such that @(N,:"g(K)) =
Drea/ns N,:,L_Z/Q(K). In particular, f € N,?; belongs to N:g(K) if and only if f7 = f
for all o € Aut(C/K). Moreover, if K contains the Galois closure of F' in Q and Q%,
then N;"g = N;"4(K) @ C as the same statement holds for N," 7}/2 Similarly it fol-
lows that if f € N,"¢(Q), 1 s(Q) for all v € G(F). At this point we
also remark that for an f € My g the f¢ defined before is nothing else than f* where
1 # p € Gal(C/R) i.e. a complex conjugation.

We now define a variant of the holomorphic projection in the Siegel-Jacobi case. We

define a map p: N;"g(Q) — M 4(Q) whenever k, > n +r, for all v € a by

P =p| D f(MOwsnn(rw) | = D B(fa(r)Oa2s.a,n(Tw),

heA1 /A2 heA1 /A2
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where p: N]?’_Tl/z(@) — M5

example in [13, Chapter III, section 15].

(Q) is the holomorphic projection operator defined for

Lemma 5.4. Assumen > 1 or F' # Q and that f € S} ¢ satisfies the Property A, and
ky > n+ry for allv € a. Then for any g € N, ¢(Q),

< f,g>=<f,p(g) >.

Proof. This follows from the fact that the above property holds for nearly holomorphic
Siegel modular forms, and the fact that the Property A allows us to write the Petersson
inner product of Siegel-Jacobi forms as a sum of Petersson inner products of Siegel
modular forms, in a similar way as we did in the proof of Lemma 4.5. (]

Let us write Fj for the Hilbert class field extension of F' and denote by {1;} the ideal
characters corresponding to the characters of Gal(F;/F). We can now state a theorem
regarding the nearly holomorphicity of Siegel-type Jacobi Eisenstein series.

Theorem 5.5. Consider the normalized Siegel-type Jacobi-Eisenstein series
D(s) := D(z, sk, x) = Aj_y o (s = 1/4,X03)E(z, X, 5).
Let p € Z be such that

(1) n+1—(ky,—1/2) <pu—1/2<k,—1/2 for allv € a, and
(2) |p—1/2 - 2 g, 1+ 1/2 € 2Z,

but exclude the cases

(1) p= ”TJFQ +1/2, F =Q and x*¥? = 1 for some 1,
(2) w=1/2, ¢ =0 and xs; =1 for some 1;,

(3) 0<pu—1/2<n/2, c=0 and x*¢? =1 for some 1);.
(4) uw <l+n if F has class number larger than one.

Then
D(u/2) € 7° Ny 5(Q),
where
k— .
W ifu="2+L F=Q =1,
r = g_é if”:l,MZQ"‘%’F:QaX”LﬁS:L
k-5 —|p— 45— "a-2Ha) otheruwise.

Moreover, =15 %", co(ky — 1+ p) — de, where

e = [(ZT)Q]—HJFé if2u—1l+ne2Z,p>n+1i,
(7] otherwise.

Proof. The proof is similar to the proof of Theorem 8.3 in [3], where the analytic
properties of this series were established. As in there, we can read off the nearly
holomorphicity of the Jacobi Eisenstein series from the classical Siegel Eisenstein series,
which are given in [13, Theorem 17.9]; to be more precise, from the Siegel-type series
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E(1,s —1/4; xtsi, k — 1/2) (with the notation as in [3]), where 1);’s vary over all the
Hilbert characters. Indeed, the series

Ay (/2 = 1/4, x1)s)
A/\nlc /1/2’(’“/2 _ l/4 sti.) Z—l/z,c(M/Q — l/4>X¢S@Z}i)E(T, s — l/4; stk — l/2)
k-l 2,C 9 7

has the same algebraic properties as the normalized series
AR _1y2, (/2 = 1/4, x¥si) E(T, s — 1/ 4; xtbsii, k = 1/2),

AZ—l/2,c (“/2_l/4vst)
R o /2150

if we exclude the cases where the factor ) has a pole. Therefore all

we need to check is that
Ak 1/2(,“/2 l/4 Xs)
Ak_l/g(:u/Q l/4, X@Z)SZZ%)

This should follow from the general Bellinson conjectures for motives associated to
finite Hecke characters over totally real fields (see for example [10]). However this is
not known in general, and hence we are forced to set the condition y > n +1{ in case F’
has class number larger than one, in which case we obtain values whose ratio is known
to be algebraic, since we are then considering critical values. O

Lemma 5.6. Consider the embedding
A Hy g X Hing = Hpgmt, (T1,w1) X (12, w2) — (diag[ri, 72, (w1 w2)).

Then the pullback
A (NEE™T (@) © NPE(@) @ NiE @),

Proof. The proof of this lemma is identical to the Siegel modular form case (see [13,
Lemma 24.11]). Let f € N ,? tmr(rmtm Q) for a sufficiently deep congruence subgroup
I™*™. Note that the function g(z1, 22) := A* f(diag[z1, 22]) is in N,Z’g(l"") as a function
in z; and in NZ: g(Fm) as a function in zy for appropriate congruence subgroups I'"
and I"". Hence, by Corollary 5.3 and the fact that N;"g = N;"¢(Q) ®gC, for each fixed

Z1 we may write
g(21, 22) E gi(z1)h

where g;(21) € C, and h; € N;"¢(Q) form a basis of the space. The general argument
used in [13, Lemma 24.11], which is based on the linear independence of the basis h;,
shows that the functions g;(z1) have the same properties as the function g when viewed
as a function of the variable z;. Hence, g, € N:’Sr Now, for any o € Aut(C/Q),

g(z1,22) = g7 (21, 22) Zg, z1)h] (22) Zg, z1)h
Hence, g7 (22) = g,(22) for all 0 € Aut(C/Q), and thus g, € N,?g(@) O

We can now establish a theorem which is the key result towards Theorem 4.6.
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Theorem 5.7. Assumen >1 or F £ Q. Let 0 # f € S,??S(F,@) be an eigenfunction
of T'(a) for all integral ideas a with (a,cf) = 1. Define p := minyea {ky} and assume
that
(1) p>2n+1+1, B
(2) Property A holds for all f € V(f),
(3) ky = ky mod 2 for all v,v' € a.
(4) ky > 1/2+n(1+ky, — p) for allv € a.
Then for any g € M}'4(Q),
< > =
f?g 6 Q
<f.f>
Proof. By Lemma 4.5 it suffices to prove this theorem for g € S}’ 5(Q). Furthermore,
as it was shown in [3, section 7.4, the Hecke operators are normal and Proposition
4.2 states that the Hecke operators T'(a) preserve S o(T',Q). That is, we have a
decomposition

Sks(T,Q) =V(f)oU,
where U is a Q-vector space orthogonal to V(). Therefore, without loss of generality,
we may assume that g € V(f).

Now consider a character x of conductor f, # o such that yq(z) = sgng(z)¥, x? # 1
and G(x, p—n—1/2) € Q°, where G(x, p—n—1/2) is as in equation (8). The existence
of such a character follows from the fact that G(x,2s —n —1/2) is the ratio of products
of finitely many Fuler polynomials.

We recall that if f € V(f), then so is f* € V(f) and their L-functions agree. In
particular, up to some non-zero algebraic number, the identity (7) becomes:

AR 10 (11/2 = 1/4, xtbs)vol (A) < (Elxsp)(diag(z1, 2], 11/25 X), (£ |k,sm,) (22) >

X ~C
= s (/2 = k/2)A(1/2, F, ) F (21)-
By Theorem 5.5, A7" 1o (/2 = 1/4, x¥s)E(z, 1/2; x) € WBNZ;’T(@) for § € N, and
hence the same holds for
AZ 0 (/2 = 1/4, x05) E (2, 11/2; )|k, 5P-

In particular,

TN 0 (11)2 = 1/ 4, x0s) (B s p) (diag[21, 22, 11/2; X) Zfz 21)9:(22),

where f;,g; € N;"5(Q) by Lemma 5.6. Moreover, vol(A) = ’R’dOQX, where dj is the

dimension of Hrdl since the volume of the Heisenberg part is normalized to one. Fur-
thermore,

— 1
csr(n/2 —kJ2) e m°Q7, b€ 2
Altogether we obtain

Z Fi(z1) < gi(22),9(22) >= @Xﬂéfdowf\(ﬂ/l £ F (21),
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where g := (}c|k,5"7n)c = flesm,' € SIQL,S(@)- Considering the Fourier expansion of
fi’s and f, and comparing any (r,t) coefficients for which ¢(r,¢; fc) # 0, we find that

X
< Qiragi(z2), g(z2) >=C 70 OBA(u/2, f,x) #0

for some «;,+ € Q, where the non-vanishing follows from (6), a corollary to Theorem
3.1. Setting hy¢(22) := >, ir19;(22) € N["¢(Q), we obtain

~X
< hr,t(22)7g(z2) >= ¢ 7I-(sido+lgj\(/’b/27 fa X) 7é 0

or,
~ = X
< PRl smn) (22), Flz2) >= L 70O BA(u/2, f,x) #0

where

o )P, k not parallel,
P77 Vqop, & parallel,

That is, since f € V(f) was arbitrary, the forms h vt = PO (Ptlk.smy,) € S,?S(@) (or
rather their projections to V(f)) for the various (r,t) span the space V (f) over Q and

<Ry, f>€ 70O A ()2, £, 0Q
That is, for any g € V(f) we have < g, f >€ n0=9t8A(1/2, f,x)Q". In particular,
the same holds for g = f, and that concludes the proof. (Il

Proof of Theorem 4.6. We follow the same steps as in the proof of Theorem 5.7 but
this time we set s = 0/2. In exactly the same way as above we obtain

< hp(20), F(z2) >= @ 10 DHBA (02, £,%),

for some h,; € NZS(@) Thanks to Theorem 5.7 the proof will be finished after
dividing the above equality by < f, f > if we make the powers of 7 precise. Recall
that

in(n a/2+k —1/2— (n+1)/2)
o /2}1 T(0/2+ ky — 1/2)

n(t /2 T [[5 T(o/2+ ks —1/2— (n+1)/2—1i/2) _ QX dn(n+1)/2.
1720 T(o/2+ ks —1/2—i/2)

csi(o/2—k/2) =

vea

Hence, § = dn(n + 1)/2. However, this is also equal to the dimension of the space H¢,
which we denoted by dg. We are then left only with 3, which is provided by Theorem

5.5; namely,
B=ny (k—1+0)—de,
vea
where e :=n? +n— o +1/2if 20 — 1 € 2Z and ¢ > 2n + /2, and e := n? otherwise.
This concludes the proof of the theorem. O
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