ON THE STANDARD L-FUNCTION ATTACHED TO
SIEGEL-JACOBI MODULAR FORMS OF HIGHER INDEX

THANASIS BOUGANIS AND JOLANTA MARZEC

In this work we study the analytic properties of the standard L-function attached to
Siegel-Jacobi modular forms of higher index, generalizing previous results of Arakawa
and Murase. Furthermore, we obtain algebraicity results on special L-values in the
spirit of Deligne’s Period Conjectures.
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1. INTRODUCTION

The standard L-function attached to a cuspidal Siegel eigenform f is perhaps one of
the most well-studied automorphic L-functions. Indeed, its analytic properties have
been extensively studied by many authors such as Andrianov and Kalinin [1], Bocherer
[4, 5, 6], Garrett [10], Piatetski-Shapiro and Rallis [17], and Shimura [21, 22]. Moreover,
if one assumes that f is algebraic, in the sense that the Fourier coefficients of f at infinity
are algebraic, then the values of the L-function at specific points (usually called special
L-values), after dividing by appropriate powers of 7 and the Petersson self inner product
< f,f >, are algebraic. Results of this kind have been obtained first by Sturm [26],
then extended by Bocherer and Schmidt [7] and Shimura [24].

Siegel-Jacobi modular forms - called here after [12] - are higher dimensional general-
izations of classical Jacobi forms. As in the one-dimensional case they are very closely
related to Siegel modular forms. Indeed, many examples may be naturally obtained
from Fourier-Jacobi expansion of Siegel modular forms. However, one of the main
differences of these automorphic forms in comparison to Siegel modular forms is that
the underlying algebraic group, the Jacobi group, is not reductive. In particular, this
means that these automoprhic forms cannot be understood as sections of line bundles of
Shimura varieties, but rather of mixed Shimura varieties [13]. We will come back to this
point later in the introduction when discussing our results regarding the algebraicity
of the special L-values.

Siegel-Jacobi modular forms have already been studied by many researchers. The
ones that are best understood are classical Jacobi forms. Their first systematic study
was carried out in [9], but they were already used in earlier papers (cf. [25]). For
the higher dimensional situation we would like to mention works which are especially
relevant to this paper, namely the papers of Shimura [19], Ziegler [28] and Kramer
[12]. The approach of Ziegler is what may be called classical, Shimura’s is arithmetic
and Kramer’s is geometric. We will come back to Shimura’s approach later in the
introduction.

In spite of such a variety of methods to study Siegel-Jacobi modular forms, still not
much is known about associated Dirichlet series. A systematic study of a Hecke alge-
bra acting on the space of Siegel-Jacobi modular forms, and of the resulting standard
L-function was started by Shintani (unpublished). However, the first results concern-
ing analytic properties of this L-function were obtained by Murase - in [14, 15] he
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established the analytic continuation, a representation as an Euler product and a func-
tional equation. In this paper we not only extend the results of Murase, but also study
arithmetic properties of the L-function at particular points.

Before going any further we give a brief account of main theorems proved in this paper.
For simplicity we describe them here only for Siegel-Jacobi modular forms over the
rational numbers, even though our results are more general and are proved over a
totally real field. First we need to introduce some notation.

Let S € M;;(Q) be a positive definite half-integral symmetric matrix, and f a Siegel-
Jacobi modular form of weight k£ and index S for the congruence subgroup I'o(N). We
give the detailed definition in section 3 but for the purposes of this introduction it is
enough to say that f is a holomorphic function on the space H,; = H, x M, ;(C),
where H, is the Siegel upper half space, satisfying a particular modular property with
respect to the group I'g(N) := H(Z) x I'y(NN), a congruence subgroup of the Jacobi
group G™!(F) := H(F) x Sp,,(F). Here H(Z) denotes the Z-points of the Heisenberg
group of degree n and index [, and I'o(IV) the classical congruence subgroup of level N
in the theory of Siegel modular forms.

Shintani (unpublished), Murase [14] and Murase and Sugano [16] defined and studied
Hecke operators T'(m) acting on f. Actually, this was done only for the case of N = 1.
In this work (see section 7) we extend this to the case of any N. Then, assuming that
f is an eigenform for all T'(m) with eigenvalues A\(m) and x is a Dirichlet character of
a conductor M, we consider a Dirichlet series D(s, f,x) = > oo A(m)x(m)m~*. This
series is absolutely convergent for Re(s) > 2n+1[+1 and - as we will show in section 7 -
after multiplying by an appropriate factor it possesses an Euler product representation.
More precisely, we prove the following:

Theorem 1.1. Assume that the matriz S satisfies the condition M;‘ (see section 7 for
a definition) for every prime ideal p with (p, N) = 1. Then

L0 8)D(s +n+1/2, f,x) = L(s, £,x) == [ [ Lo(x(®)p™) 7,

where for every prime number p

Ly(X) = {H?I ((1 — ppiX)(1 - N;,%X)) ppi € C*if (p,N) =1,
[T (1 = ppiX) ppi € C, otherwise.

Moreover, £(x,s) = 1, n)=1 £p(X, 5), where

[T, Lp(2s 4 2n — 24, %) ifl € 27
[T, Lp(2s +2n —2i +1,x%) ifl €27

and Gp(x, s) is a ratio of Euler factors which for almost all p is one.

Lp(x; 8) = Gp(Xvs){

The above theorem was originally shown by Murase and Sugano in the case of N =1,
x = 1and [ = 1. We extended it to any N, any character y and any [. Together
with generalization to any [ certain new phenomena appear, such as for example the
presence of the factor G(x,s), which is equal to one in the case of [ = 1. We defer a
more detailed discussion to section 7.
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Analytic properties of L(s, f,x): The theorem above establishes that the function
L(s, f,x) is absolutely convergent for Re(s) > n + % + 1 and hence holomorphic. Re-
garding its meromorphic continuation we prove the following:

Theorem 1.2. With notation as above, assume that x(—1) = (—=1)*. Then, for some
Q|N, the function <Hq|Q Lq(x(q)q*5)> L(s, f,x) has a meromorphic continuation to

the whole complex plane.

Actually in the full version of the theorem (Theorem 9.3), after introducing an extra
factor depending on the parity of [ and some Gamma factors, we also provide infor-
mation on the location of the poles of the function. Our theorem extends previous
work of Murase [14, 15] in various directions: we consider the case of totally real fields,
non-trivial level and twisting by characters. However, perhaps the most important dif-
ference with the works [14, 15] is the method used. Even though both in our work and
in these of Murase the doubling method is used, there are some very serious differences
with advantages and disadvantages. The work of Murase has as its prototype the ap-
proach of Piatetski-Shapiro and Rallis [17] and their theory of zeta integrals. Murase
uses an embedding of the form

G™(Q) x G™(Q) = Spy,1(Q),

and computes an adelic zeta integral a la Piatetski-Shapiro and Rallis of a Siegel-type
Eisenstein series of Sp,, ,; restricted to the image of the product G™!(Ag) x G™!(Aq)
against two copies of the adelic counterpart f of f.

Our approach is completely different. We use instead a map of the form
Gn’l(Q) > Gm,l(Q) N (;vm-i-n,l((@>7

which is not quite an embedding; this map was first used by Arakawa in [3]. We will
later discuss in more details the differences of our approach to the one of Arakawa,
but first we give a brief account of the comparison of the method employed by Murase
and the one of this paper. One of the big advantages of the first approach is that
one can read off analytic properties of the standard L-function associated to a Siegel-
Jacobi modular form by making use of well-studied analytic properties of Siegel-type
symplectic Eisenstein series. On the other hand, the method used in this paper allows us
to obtain analytic properties of the standard L-function by studying analytic properties
of Siegel-type Jacobi Eisenstein series. More precisely, for a Dirichlet character x with
x(—=1) = (=1)¥ and m > n we prove a formula of the form

where E" "™ (diag|z, w], s; x, k, N) is the restriction under the diagonal embedding H,, ; x
Hmi — Hpam, of a Siegel-type Jacobi Eisenstein series of degree n + m associated
to the character x, and E™(z,s; f,x, V) is a Klingen-type Jacobi Eisenstein series of
degree m associated to the cuspidal form f through parabolic induction. That is, we
obtain an identity in the spirit of the doubling method which says that after taking
the Petersson inner product of a restricted Siegel-type Eisenstein series against a cusp
form, we obtain a Klingen-type Eisenstein series induced by the cusp form normalized
by the standard L-function associated to the same cusp form.
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This identity was first obtained by Arakawa in [3] in the case of N = 1 and trivial x
(and hence k even), and in this paper is extended to the situation of totally real fields,
arbitrary level as well as non-trivial characters y. However, we should stress here that
our approach is quite different than that of Arakawa. Indeed, Arakawa’s approach is
modeled to the original approach of Garrett in [10] who invented the doubling method
and applied it to the case of Siegel modular forms over Q of trivial level and without
twists by Dirichlet characters. Our approach is modeled after the work of Shimura [22],
where he extended Garrett’s approach to the case of totally real field, arbitrary level
as well as twisting by Hecke characters.

It is important to note here that opposite to the first map used by Murase, in the map
used in this work we have the option to take n # m. And indeed we will make use of
this in order to obtains results towards the analytic properties of Klingen-type Jacobi
Eisenstein series (see Theorem 9.5).

Algebraic properties of L-values: In this paper we also investigate algbebraic
properties of special values of the L-function under consideration. The starting point
of our investigation is a result of Shimura in [19] on the arithmeticity of Siegel-Jacobi
modular forms. Namely, if we write M’ ¢ for the space of Siegel-Jacobi modular forms
of weight k and index S, and of any Eongruence subgroup, and we also denote by
M ,? 5(K) the subspace of M ,? g with the property that the Fourier expansion at infinity
of an element in the space has Fourier coefficients in a subfield K of C, then it is shown
in (loc. cit.) that M o(K) = M;'¢(Q) ®g K. In particular, for a given f € Mg
and a 0 € Aut(C/Q) one can define the element f7 € Mg by letting o act on the
Fourier coefficients of f. The main theorem we proved regarding algebraicity (Theorem
10.6) is stated below in the simplest form of N = 1. In the following, and for [ even,
we write ©g for the non-trivial quadratic character corresponding to the extension
Kgs = Q(v/(—1)1/2det(25)) if Ks # Q, and we set 15 = 1 otherwise.

Theorem 1.3. Assume n > 1 and let 0 # f € S} 4(T',Q) be an eigenfunction, and x

be a Dirichlet character such that x(—1) = (—=1)*. Assume that k > 2n + 1+ 1 and let
o € Z be such that

(1) 2n+1—(k—1/2)<o—1/2<k—1/2,
(2) o —§ — 25| + 28 — (k —1/2) € 22,
(3) k>1/2+n(l+k—1/2—|c—1/2—(2n+1)/2] — (2n+1)/2),

but exclude the cases

(1) o =n+1+1/2 and x* =1,
(2) o =1/2 and xs =1,
(3) 0<o—1/2<n and x*=1.

If we set

A(s, f,x) = =L(12s—n—1/2,f,x) {1LC(28 —1/2,xvs) ZZ? Z ;?

then

@210 (g

wee < f, f >
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where

24 pn—04+1/2 if20-1€2Z ando >2n+1/2
eU:n(k_l+U)_e and e:= {n2+n U+/ Zf o € ana o = 2n + /7

n otherwise.

We remark here that our methods can also cover the case of n =1 and F = Q if we
take x to be the trivial character.

Let us now try to put the above theorem in some broader context. Theorems of the
above form for the standard L-functions of automorphic forms associated to Shimura
varieties, such as Siegel and Hermitian modular forms, were obtained by many re-
searchers, most profoundly by Shimura (see for example [24]). These deep results can
also be understood in the general framework of Deligne’s Period Conjectures for critical
values of motives [8]. Indeed, according to the general Langlands conjectures, the stan-
dard L-functions of automorphic forms related to Shimura varieties can be identified
with motivic L-functions, and hence the algebraicity results for the special values of
the automorphic L-functions can also be seen as a confirmation of Deligne’s Period
Conjecture, albeit is usually hard to actually show that the conjectural motivic period
agrees with the automorphic one.

However, Siegel-Jacobi modular forms, and in particular the algebraicity result of the
above theorem, do not fit in this framework. Indeed, since Jacobi group is not reductive,
it does not satisfy the properties needed for associating a Shimura variety to it, and
hence we are not in the situation described in the previous paragraph. On the other
hand, the Jacobi group can actually be associated with a geometric object, namely with
a mixed Shimura variety, as it is explained for example in [13, 12]. Of course, we cannot
expect that the standard L-function studied here can be in general identified with a
motivic one. Nevertheless, it is very tempting to speculate that it could be identified
with an L-function of a mixed motive, and hence the theorem above could be seen as a
confirmation of the generalization of Deligne’s Period Conjecture to the mixed setting
as for example stated by Scholl in [18].

What is not done in this paper: This paper is already quite long, and we have
decided to defer some interesting questions for a forthcoming work. In particular, we
mention the following:

(1) In all our theorems we assume a particular parity condition between the char-
acter x and the weight k of the Siegel-Jacobi modular form. It is, of course,
very important to be able to relax this condition and obtain the theorems for
any finite character y, independent of the weight k.

(2) In order to obtain a generalization of Theorem 1.3 above we need to assume
the Property A (see section 10). Even though there are many cases where
the Property A holds, it is undoubtedly very interesting to weaken or even
completely remove this condition. Furthermore, we had to exclude the case of
F = Q and n = 1, and it is interesting to extend our methods to cover also
this case. Finally, one could try to obtain a reciprocity law for the action of the
absolute Galois group on the normalized special values. That is with ¢ as in
Theorem 1.3 to obtain results of the form

( A(o/2.£.x) )": A(0/2.17X)

meow(x) < f, f > meew(x%) < fo, fo > o € Gal(Q/Q),




ON THE STANDARD L-FUNCTION ATTACHED TO SIEGEL-JACOBI MODULAR FORMS 7

where w(x) is a product of Gauss sums associated to the character x and x7 :=
ooX.

Brief description of each section: We finish this introduction by giving a short
description of each section. In the second section we set most common notation used
throughout this paper. In section three we introduce the notion of Siegel-Jacobi mod-
ular forms over a totally real field F', as well as the notion of adelic or automorphic
Siegel-Jacobi forms. To the best of our knowledge their systematic study has not ap-
peared before in the literature, notably Proposition 3.4 on the adelic Fourier expansion.
In section four we develop the theory of Klingen-type Eisenstein series. We do this in
greatest generality possible. Again, to the best of our knowledge, a systematic study of
the adelized Klingen-type Jacobi Eisenstein series has not appeared before in the litera-
ture. In sections five and six we employ the doubling method in the way described above
and compute the Petersson inner product of a restricted Siegel-type Jacobi Eisenstein
series against a cuspidal Siegel-Jacobi form. In section seven we introduce the theory
of Hecke operators in the Jacobi setting and extend previous results of Murase and
Sugano. In the next section we turn our attention to the analytic properties of Siegel-
type Jacobi Eisenstein series. We build on an idea going back to a work of Bocherer
[4] and more recently of Heim [11]. After establishing the analytic properties of these
Eisenstein series we use the results established in section 6 to obtain Theorem 9.3 on
the analytic properties of the standard L-function. Moreover we also establish Theo-
rem 9.5 on the analytic continuation of Klinegn-type Jacobi Eisenstein series. Finally,
in the last section of this paper we turn to the algebraic properties of the standard
L-function at specific intervals, which we call special L-values. The main result of this
section is Theorem 10.6.

2. NOTATION

Throughout the paper we use the following notation:

e F' denotes a totally real algebraic number field of degree d, ? the different of F,
and o its ring of integers;

e A stands for the adeles of F'; we write a and h for the sets of archimedean and
non-archimedan places of F' respectively, so that e.g. Ay := H;jeh F, (restricted
product) and A, := [],c, F denote the finite and infinite adeles of F'; for x € A
we will write xp, r4 meaning the finite and infinite part of z, correspondingly;
for a ring R we use the superscript R* to denote the invertible elements in R;

e A finite adele a € Ay, corresponds to a fractional ideal a of F' via a := ] o, b3,

where a, = 7)v0), n, € Z, m, a uniformiser at v and p, the corresponding
prime ideal at the finite place v. We will call a the ideal corresponding to a.

e We define Z2 := Z?, and a typical element k € Z? is of the form k = (ky)vea
with k, € Z. Moreover for an integer p € Z we write pa = (u, i, ..., p) € Z2.

e For an adelic Hecke character x : A*/F* — C*, we will write x* for the cor-
responding ideal Hecke character obtained by class field theory. Furthermore,

|z

k, € Z. We then write sgn, (za)* for xa(za) where k := (k,) € Z2.

ky
if x is finite, then its infinite part is of the form xa(za) = [[,ca ( Lo ) , for
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e M;,, denotes the set of [ x n matrices, and we set M, := M, ,. We write
Symy C M, for the subset of symmetric matrices; if A € M;, and B €
M, then (AB) € M, 4m denotes concatenation of the matrices A, B; if
S € Symy,x € My, we set S[z] := 'zSx;

. . . - -1
e For an invertible matrix z we define % :=*

T
e For two matrices a € M,, and b € M,, we define diaga, b] := <8 2) € Mpim;

o We set ea() 1= [[,cqe(@v) := [[,cq €™ for @ = [],c, zo € C2.
e (" stands for the algebraic group Sp,, whose F-points are defined as follows:

Spn(F) :={g €SLan(F): ‘g (1, ") 9= (1, ™)};
g
Cg
e for [ a fixed positive integer, G™' := H™ x Sp,, denotes the Jacobi group with
H™! denoting the Heisenberg subgroup, whose global points are defined as

GM(F):={g=(\pr)g: \p€ Mu(F),r e Sym(F),g € G"(F)},

HY(F) = {(\ 1, 6) 1o € G™ (F)};
the group law is given by

(A k)gN' 1 51)g (>\+>\ pot s+ & N+ RN+ X=X W )gg,

where (Afi) = (X ;/) = NWd— % p'la—Nb), the identity element of
G™(F) is 15712y, where 17 := (0,0,0) denotes the identity element of H™!(F),
i.e. we always suppress the indices n,[ in 1y as its size will be clear from the
context;

whenever it does not lead to any confusion, we omit superscripts and write
G,G,G" or H;

following the convention described above, G(A) = [] 0 G(Fy) = GuGa,
where Gn = [[,cp G(Fy), Ga = [L,ea G(Fo);

o My = (H,xM;,(C))?, where H,, := {7 € Sym,,(C) : Im(7) positive definite};
an element z € H,,; will be written as z = (2y)yea = (7, w), where 7 = (7 )yea €
H2, w = (wy)vea € M;,(C)?; we distinguish an element iy := (,0) € H,y,
where 7 := (il,,)?;
for z € Hy; we define §(2) := det(Im(2)) := [],ca det(Im(2y)));

e For a fractional ideal b and an integral ideal ¢ we define the following subgroups
of G(A):

For an element g € Sp,, we write g = ( Zg>, where ag, by, cq,dg € My;
g

Kb, c] := K"[b, | :== Kn[b, ¢|Ga,

Kolb,¢] := Kb, ¢] := Kn[b,¢] x Koo and K := K™ := Ky[b, J(HM x D2),
where Koo ~ Symy(R)2 x D2 c H™ (R)2 x Sp,,(R)? is the stabilizer of the
point ip, and D is the maximal compact subgroup of Sp,, (R),

Kyb,¢] :== Cplo, b7 1, b_l] x Dp[6™!, be] C Gy,

1 o . / AUEMl,n(Uv)v ,U/veMl,n(bljl)v
Ch[O, b ,b ] { A sy K E ;}l}l H Vv ch nveSyml(bgl) }7

Dyp[b7 %, b = HDblbc

veh
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Dy[b™ !, b = {:c = <a"” bx) € G, : EMnlov), o€ M (b ), };

Ccy dg Ccz€EMp(bycy), de€Mp(oy)

e For r € {0,1,...,n} we define parabolic subgroups of G" and G" as follows:

ar 0 by by
n,r L a3z a4 b3 b4 n .
P (F) = i 0 dy dy e (F) tay,bi,cr,dy EMT(F) R
0 0 0 dy

P (F) :={((AOpp—y), 1, 6)g : A € My (F),pp € My ,,(F), k€ Symy(F),g € P""(F)};
additionally, we set P" := P™Y.

3. SIEGEL-JACOBI MODULAR FORMS OF HIGHER INDEX

In this section we introduce the notion of Siegel-Jacobi modular form, both from a
classical and an adelic point of view, and then explain the relation between the two
notions. The content of this section is well-known to researchers working on Jacobi
forms, but to the best of our knowledge it has not been written elsewhere in such detail
and generality. Our exposition follows mainly [14, 28].

3.1. Siegel-Jacobi modular forms. For two natural numbers [,n, we consider the
Jacobi group G := G™' of degree n and index [ over a totally real algebraic number
field F. Note that the global points G(F) may be viewed as a subgroup of G!*"(F) :=
Spyyn(F) via the embedding

1 A F»—tut/\ p 1,
(1) g—(%uw)9&>< o >< “1lb), g=1(2%).
-t 1, c d
We write {o, : F' — R, v € a} for the set of real embeddings of F'. Each o, induces
an embedding G(F') — G(R); we will write (\y, fty, £v) gy for o,(g). The group G(R)?
acts on Hy,; := (H,, x M;,(C))* component wise via

gz = g(Tv w) = ()‘a 122 5)9(7—7 U)) = H(gUT’U7 wv)\(gva Tv)_l + Ao GoTo + ,U”U)a

vea

where g,7, = (ayTy + by)(coTy + dy) ™t and A(gu, ) = (cyTy + dy) for g, = (“” b )

cy dy

For k € Z2 and a matrix S € Sym;(d~!) we define the factor of automorphy of weight
k and index S by
Jk75: Gn’l(F) X Hn,l —C

Trs(9,2) = Jis(g, (r,w)) = [ [ (g0, 7)" Ts., (Go, 7o, w0),

vea

Where g = ()\a 122 ’{)ga j(gv; 7-11) = det(CUTU + d’U) = det()‘(g’Ua Tv)) and

T3, (v, Tv, wy) = e(—tr (Syky) + tr (Sy[wy] (g, Tv)flcv)
— 2tr ( t)\vvav)\(gU, Tv)fl) —tr (Syp[Ao]guTv))



10 THANASIS BOUGANIS AND JOLANTA MARZEC

with e(z) := €™, and we recall that S[z] = %Sz. A rather long but straightforward
calculation shows that Jj ¢ satisfies the usual cocycle relation:

(2) Jr,s(99',2) = Jks(9,9" 2) Jr,s(g', 2)-
For a function f: H,; — C we define
(3) (fle,s 9)(2) = Jrs(g,2) " f(g2).

The property (2) implies that
(flk,s99)(2) = (fle,s 9

A subgroup I of G(F') will be called a congruence subgroup if there exist a fractional
ideal b and an integral ideal ¢ of F' such that T is a subgroup of finite index of the
group G(F) N gK|[b,c]g~! for some g € Gy,.

k,S g/)(z)‘

Of particular interest will be the congruence subgroup,

To(b,c):= I‘g’l(b, ) :={(\, 1, k) (25) EG(F): e My (o), e M, (671, ke Symy(b™h),
a,d € My,(0),b e M,(b~%),c € M,(bc)}.
Often we will be given a congruence subgroup I' equipped with a homomorphism Y :

I' — C*. For example, given a Hecke character x of F' of conductor f, dividing ¢, we
can extend it to a homomorphism

X : To(b,c) = CX, y (()\,M, %) <i Z)) — x(det d).

We now consider an S € bd~'7; where
(4) T = {x € Symy(F) : tr (xy) € o for all y € Sym,(o)}.
Moreover we assume that S is positive definite in the sense that if we write S, :=

oy(S) € Symy(R) for v € a, then all S, are positive definite.

Definition 3.1. Let k£ and .S be as above, and I' a congruence subgroup equipped with
a homorphism y. A Siegel-Jacobi modular form of weight k € Z?, index S, level I' and
Nebentypus x is a holomorphic function f: H,,; — C such that

(1) fle,s g = x(g)f for every g € T,
(2) for each g € G™(F), flk,s g admits a Fourier expansion of the form

fle,sg(T,w) = Z Z c(g;t,r)ea(tr (t7))ea(tr (rw)) (x)

teL reM
t>0

for some appropriate lattices L C Sym,(F) and M C M;,(F), where t > 0
means that t, is semi-positive definite for each v € a.

We will denote the space of such functions by M ¢(T, x).
The second property is really needed only in the case of n = 1 and F' = Q thanks to the

Kocher principle for Siegel-Jacobi forms, as it is explained for example in [28, Lemma
1.6].
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We note that if f € My g(T'o(b,¢), x), then

ST ) eltyr)ealtr (t))ea(tr (rw)),

tebd 17, rebd 17,
t>0

where T;,, := {x € M}, (F) : tr ("zy) € o for all y € M ,,(0)} .

We say that f is a cusp form if in the expansion (%) above for every g € G"(F), we

have ¢(g;t,7) = 0 unless <,§U "

v t’U

> is positive definite for every v € a. The space of

cusp forms will be denoted by Sy 5(I', x).

We now introduce the notion of Petersson inner product for Jacobi forms, following
[28]. Let f and g be Jacobi forms of weight k, one of which is a cusp form. Moreover,
assume that both f and g are of level I'. For z = (7,w) € H,,; we write 7 = = + iy
with z,y € Symy(Fa) and w = u + iv with u,v € M;,(Fa). Let dz = d(1,w) :=
det(y) =D drdydudy and set Ag . (2) := det(y)*ea(—4mtr (wSvy™')). Then we de-
fine

<fg>r/f ASk( )d A::F\Hml,
and

< f,9>=vol(A /f 92D ()dz,

so that the latter is independent of the group I' as long as both f and g are in M K (I x).

As it is explained in [28], the volume differential dz is selected in such a way that
vol(A) = vol(I" \ H2) where I' is the symplectic part of T

3.2. Adelic Siegel-Jacobi modular forms. We keep writing G := G™' for the
Jacobi group of degree n and index [. For two ideals b and ¢ of F', of which ¢ is integral,
we recall that we have defined the open subgroups Kylb,¢| C Gh, Du[b~1,bc] C G in
Section 2.

Lemma 3.2. The strong approxzimation theorem holds for the algebraic group G. In
particular,

G(A) = G(F)Kp[b, ] Ga.

Proof. We give a sketch of the proof. We first observe that the strong approximation
holds for the Heisenberg group. Indeed, its center Z is isomorphic to the group Symy
of symmetric matrices, and we have H”’l/Z & M, x M, ;. Furthermore, the strong
approximation holds for the symmetric matrices (as an additive group) and the same
holds also for M,,; x M, ;. From this it is easy to see that the strong approximation
holds for H™!. Then, for the whole Jacobi group, it is enough to observe that the strong
approximation holds for Sp,, with respect to the subgroup D[b~!, bc] (see [22]), and
hence the statement follows by observing that the Heisenberg group is, by definition, a
normal subgroup of G. U
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We now fix once and for all an additive character ¥ : A/F — C* as follows. We write
U =[] en Yo llyca ¥o and define

\I’v(xv) — {e(_yv)? veh

G(CCU), v Ea,

where y,, € Q is such that Trp, /g, (xy) — y» € Zyp for p :== v N Q. Given a symmetric
matrix S € Sym;(F) we define a character g : Sym;(A)/Sym;(F) — C* by taking
Ys(k) == ¥(tr (Sk).

We consider an adelic Hecke character x : Ay /F* — C* of F' of finite order such that

Xvo(z) =1 for all x € o) with  —1 € ¢,. We extend this character to a character of
the group Ko[b, ¢| by setting x(w) := Hv|cxv(det(ag))_1 for w = hg € Kylb, c].

Now, let k € Z2 and S € Sym;(F) be such that S € bd~!7; with 7; as in (4). Moreover,
let K be an open subgroup of Kb, ¢] for some b and c.

Definition 3.3. An adelic Siegel-Jacobi modular form of degree n, weight k, index S
and character x, with respect to the congruence subgroup K is a function f : G(A) — C
such that

(1) £((0,0,k)ygw) = x(w)Jys(w, io) "Ps(x)f(g), for all k € Symy(A), v € G(F),
g € G(A) and w € K N Ky[b,;
(2) for every g € Gy, the function fg on #,,; defined by the relation

(fglk,sy) (o) := f(gy) forall y € Ga

is a Siegel-Jacobi modular form for the congruence group I'? := G(F)NgKg~'.

Note that the relation (1) is well defined. Indeed, thanks to the strong approximation for
Sym; we may write K = Kpkpka With kg € Symi(F), kn € [ cn Symy(by1) and k, €
[Toca Symu(R). Furthermore, observe that ¢¥g(k) = [[,ca ¥s.0 (ko) = Jk,s((0,0, K),ig) ™
since g h(kn) = 1 by our choice of the matrix S.

We denote the space of adelic Siegel-Jacobi modular forms by M} (K, x). As in the
case of Siegel modular forms (see for example [23, Lemma 10.8]) we can use Lemma 3.2
to establish a bijection between adelic Siegel-Jacobi forms and Siegel-Jacobi modular
forms. Indeed, for any given g € Gy, we have the bijective map

(5) M (K, x) = My 5(T9, xg)

given by f — fg, with notation as in the Definition 3.3 and x4 the character on I'Y
defined as x(7) := x(g~'vg). Furthermore, we say that f is a cusp form, and we denote
this space by S}!;(K, x) if in the above notation fg is a cusp form for all g € Gy,. We
will often use the bijection above with g = 1. In this case, if we start with an adelic
Siegel-Jacobi form f, we will write f for the Siegel-Jacobi modular form corresponding
to f.

We finish this section with a formula for Fourier expansion of adelic Siegel-Jacobi forms.
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Proposition 3.4. Every Siegel-Jacobi form £ € M 4(K[b,c],x) admits Fourier ex-
pansion of the form

© (00 (T 7)) = X X ettrsaeattrto))ettr (70 + ),

teL reM
t>0

where 0 € Symy(A),q € GL,(A), X\, p € My ,,(A) are such that \yq, € M, (b,1) for all
v € h. Moreover, the coefficients c(t,r;q, \) satisfy the following properties:

(1) c(t,r;q,A) = Wa(tr (S[N]o))ea(tr (S[N|(iq'q))) (det g)5eaitr (‘gtq+ g 'rAq))co(t, 7.4, N),
where co(t, 59, N) is a complez number that depends only on £,t,7,qn and \p.
(2) c(t,r;aq, )\a_l) x(det a)c(lata, ra; q, \) for every a € GL,(F).

(3) c(t,r3q, )h% 0 only if (‘gtq)y € (607" Tn)y and ey(tr (g fro(Mypn(b;1))) = 1 for
every v € h.

Proof. First of all, note that it is enough to provide a formula for f at (A, u, k)g with
k = 0 (thanks to the relation (1)) and g of the form as in the hypothesis.

Let X;, :={v € Mi(A) : vy € My, (b,h) for allv € h} and X :={z € X, ,: . = :U}
As it was observed in [23, Lemma 9.6], we can write 0 = s+qx'g and As+pu=m+vlg
with s € Sym,(F),xz € X,m € M, ,(F) and v € X;,,. Then:

£((A, 1,0) (q "q?)):f((l j) (A As + g1, As]A) (q q;))
= £((0,m,0)(\,'g, As'N)a(X, 0, 0)n (0, ‘g, 5)n (q qqf“’)>
= (00425000, 0.0inelg 70 (7))

— s () (fp\k,s@, vg, A5 (q qg) ) (io),

where we take £ = AsA — (\¢v + vg\),p := (), 0,0)ndiaglg, gln and fp is as in
Definition 3.3.

Since fp € M o(G(F)NpK][b, Jp~1, %), it is invariant under the translations 7 +— 7+b
and w — w + p for every b € £ := Sym,(F) N gnXgn and p € Ly, := M ,(F) N
(X1 'qn). Indeed, for each such b and u the finite parts of the adelic elements

71 ~
(0,0, \b1A) (é I{) = (X,0,0)diaglg, 4](0, ~Abd, 0) ((1) ! 1bq> diaglg™", 'g)(=X,0,0)

and
(0, 11, Adgped + pA) = (A, 0,0)diaglq, 4](0, g, 0)diaglg ", ‘g (=, 0,0)
are in the finite part of the group pK|[b, ¢]p~'. Hence, fp has a Fourier expansion

fp(T,w) = ZZ (p;t,m)ea(tr (tr + rw)),

teL reM
t>0

where

L = {x € Symp(F) : ea(tr (zL)) =1},
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M= {z € M ,(F):ealtr('zL;,)) =1}.

In particular, ¢(p;t,r) # 0 only if at every v € h and for every z € Xy, 21, € (Xin)o
we have e(tr (‘gytyqux)) = 1 and e(tr (‘gy ro(21,))) = 1. Further, if we put r :=
(A v g, Ash)a (1 qu)a’ we have

f((\, 11,0) (q Og)) = ¢5(kn)Jrs(r, o)~ fp(rio)

= Wy (tr (Sk))ea(tr (S[A]s) + tr (S[N|(iq'q + gz ') (det )%
- fplia'q + qz'q,iNg'q + Mgz 'g +vg)

= Wn(tr (Sk))ea(tr (SN (ig g + 0)))(det q)x foia'a + gz, iNg'g + gz g + 1),

Now note that
Uy (tr (Sk)) = Uy (tr (S(AsA — (Mg +vg™)))) = Up(tr (S(As™))
= Wp(tr (S(AeN))Wp(—tr (S(Agz'g]\)) = Up(tr (S(Ao'N))).
Moreover, since ep(tr (tgrfq)) = 1 = en(r\qgrlq + rv'g)) for t € L,r € M, we have
ea(tr (to)) = ea(tr (ts + tqr'q)) = ea(tr (tgz'q)) = ea(tr (tqzg))

and

ep(tr (r(\o + ) = ep(tr (r(m +v'q) + riqrlq)) = eatr (rv'g + rigzy)).

Hence,
forio) = > c(pit,r)ealitr (tg'q + rAqg))ea(tr (to))ea(tr (Ao + rpn)).
teL reM
t>0

In this way we obtain Fourier expansion (6) that satisfies properties (1) and (3). The
second property follows from the fact that f|, sdiagla,a] = x(det a)~'f for a € GL,(F).
O

4. JACOBI EISENSTEIN SERIES

In this section we introduce Klingen-type Jacobi Eisenstein series. We do this both
from a classical and adelic point of view, and also explore the relation between the two
in the spirit of the bijection (5) between classical and adelic Siegel-Jacobi forms, which
was established in the previous section. First systematic study of Eisenstein series from
a classical point of view was undertaken by Ziegler in [28]. Our contribution here is to
extend his results to include non-trivial level, non-trivial nebentype and we also work
over a general totally real field. Furthermore, we introduce the adelic point of view,
which, to the best of our knowledge, a systematic study of which, has not appeared
before in the literature in the Jacobi setting.

For an integer r € {0,1,...,n}, we let P™", P™" be Klingen parabolic subgroups of G™
and G™' respectively, as defined in Section 2. We define the map Ay G" — F by

mi(O\ s K)g) == N (9),
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where A\ : Sp,, — F' is the map defined as in [22] by

ar az bl bQ
a3 a4 bg b4
Ccl1 C d1 dQ
C3 C4 d3 d4

A

= det(dy),

where the matrices a1, b1, c1,dy are of size r and the matrices a4, by, ¢4, dyq of size n — r;
we set Ap(g) :== 1. We extend this map to the adeles so that A, : G™(A) — A.

Furthermore for r > 0 we define the map
Wy HnJ — Hr’l

by w,(7,w) := (71, w1), where 71 denotes the r x r upper left corner of the matrix 7
and wj is the [ X r matrix obtained from the first 7 columns of w. Note that 71 = w,.(7)
for w, as in [22]; we extend this and write w, (w) := wy.

Finally, we define a (set theoretic) map
7 H™ X Moy, — H™ X My, w0 (N 1, 5), 9) == (A1, g1, 6), 7(9)),
where A1 (resp p1) is the I X r matrix obtained by taking the first 7 columns of A (resp.

w), and m.(g) := (2((33 Zig;) is the map defined in [22] with m(g) := 1.

As we pointed out above, the maps A\, w,, 7, generalize the maps defined in [22]. In a
similar manner their properties generalize the ones of the symplectic setting.

Lemma 4.1. Assume r > 0. Then for all g € P™"(A)we have

(7) wr(gz) = mr(g)wr(2)
and
(8) Jk,5(97 Z) = (Aﬁl(g)a)k‘]lﬂ,S(ﬂ-T(g)u w’f‘(z))

Proof. Write z = (1,w) and g = hg = (\, p,k)g. Then, by [22, (1.24)], wy(97) =
mr(9)wr(7) and j(g,7) = Ar(9)aj (7r(9), wr(7)). Thus, to show (7) it suffices to establish
the equality

(w(eg +dg) ™" 4+ AgT + 1)1 = Wi (Cr, ()i (T) + dr, () ™" + M7 (9)wr () + poa;
or, after using the fact that m,.(g)w,(7) = w,(g7) for g € P™",
(

1
(
(w(cg +dg) ™1 = wilcr (wr(T) + duy)) ™ (AgT)1 = Mwr(g7).

Set ¢ := ¢g4, d := d4 and observe that for g € P™"(A),

_[c1 O T T di do\  [eami+di x
=5 0) (5 7)) - (070" ),
where ¢, 7,d; are r X r matrices. In particular,
-1 _ (01T1 + dl)_l *
(CT + d) = ( 0 le )
and thus

(w(er +d)™Hy = (w1 ws) <(Clﬁ —gdl)_l d}))l = (wi(cymy +di) ™t #)
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=wi(cm +dp) ! = W1 (Crp(g)T1 + dm(g))_l‘

Similarly,
AgT = (A1 0) <wr(*g7') :> = (Mwr(g7) *).

We will now prove the equality (8). Because A\;(g)a = Ar(9)a and j(g, 7) = Ar(9)aj(mr(9), wr (7)),

it is enough to show that

Js(g,2) = »78(7’7“(9)7“’7“(2)),
that is,
(1) tr (Sfw](cym + dg)~teg) = tr (S[wi](Cr, ()71 + dr, () Crr(g))

(2) tr (ASw(cym +dg)™1) = tr ("N Swi(cr, ()71 + dr,(g) ") and
(3) tr (SAgr) = tr (S[Ai]mr(9)71)-

Write w = (w; wa), so that

S[w] = (zwl ) S(wy wy) = (iz;g) (w1 wy) = <S[w1] *> .

w2 * *

-1
Moreover, as we have seen before, (c,7+d,) ™! = <(Cﬁr<9>“T(T())+dw(g)) * ), c= (C"B@ 0 ),
so that

_ Crn(g)Wr(T) +dp. *1cm 0
(CgT—i-dg) 1Cg:<< () () 0 (g)) (9) O).

Hence

tr (Sl (cgr +dg) Leg) = tr <(S[w1] *) <(cm(g)71 + dgr(g))_lcw(g) 8))

%
=tr (S[wl](cﬂ'r(g)Tl + dﬂ'r(g))_lcﬂ"r‘(g))'
Now write A = (A1 0). Then

_ S(A,w * Crr(q)wWr(T) + dy., -1y
NS (cy + dy) 1:< Oy n) 0) (< () F ) *)

_ <S(/\1’w1)(c7rr(g)w7°(7—) +dr, () *>
0 0)

In particular,

tr ( t)\Sw(ch + dg)_l) = tr(t)\lswl(cm(g)ﬁ + dm(g))_l).

For the final equation it is enough to observe that S[\] = (S[S\ 1 8) and so

o= (5 ) (2} 52) - (M )

But (g7)1 = wy(97) = 7 (g9)w,(7) and hence
tr (S[Algr) = tr (S[A]mr(g)71).
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4.1. Adelic Jacobi Eisenstein series of Klingen-type. We are now ready to define
adelic Jacobi Eisenstein series of Klingen type. Fix a weight £k € Z* and consider a
Hecke character x such that for a fixed integral ideal ¢ of ' we have

(1) xo(z) =1for all z € o) with z —1 € ¢,, v € h,
ky
(2) Xa(wa) = sgn(wa)* = [Teq ([2) ' for va € Aa

we will also write x, := HU| < Xv- We fix a fractional ideal b and an integral ideal e such
that ¢ C ¢ and ¢ is prime to e !c. Further, for r € {1,...,n} we set

K := Kp[b, J(HM x D2),

K" ={x=\ur)reK: (a(x) — 1)y € My,(ey),
(a2(x))y —r(ey), (b1(x))y € Mm(b;lev) for every vle},

€ Myn
(e
where x = <cz dz> ol C;l( ) dy(x) do(z) , and
c3(x) ca(w) d3(x) da(x)
be

K" :={xc Kb e,
If r =0, we put K™Y := K.
For a cusp form f € S};S(KT,X_l), f:=1if »r = 0, we define a C-valued function

¢(z,s;f) withx € G"(A) and s € C as follows. We set ¢(z, s;f) :=0ifx ¢ P™"(A)K™"
and otherwise, if x = pw with p € P™"(A) and w € K™", we set

¢z, 5:F) 1= x(A\y ()~ xe(det(dw))) ™ Tr s (w, i0) T (mr () A ()1
where w = hw with w € Sp,,(A). We recall here that if we write p for the symplectic
part of p then A7 ,(p) = N'(p). Moreover, since at archimedean places x5 € Py Ky =
PYTKY" if and only if o € PLKa" , where P’ := ﬂ:};& P™" ([22], Lemma 3.1), we
always choose p € P™"(A) so that Do = Pa € P,. We now check that ¢(x,s;f) is
well-defined, i.e. that it is independent of the choice of p and w.

i (ag — 1)y € M, (ey) for every vle}.

Let © = pyw; = pyws, set r := p, 'p; = wow; "’ € P”’"(A) N K™" and assume that
(1)a, (p2)a € P5. Observe that A (r), = (det dp, 1), L(det dy, 4)y € 0 for every v € h,
and |[AY)(7)v[y = 1 for all v € a. Hence, [A;(p )22 is independent of choice of p and
w, and X(\,(p)) " = e\, (p) (A" (p)a) ~*. Because

£(mr(p1)) = £(mr(por)) = £(7r(Po) (7)) = £(7r(P2)) Xxc(det am(r))Jk,S(WT(T)a 7:0)717

we have to prove that
XA () T O (1)a) ™ xe(det(du, ) ™" xe(det(dus,)) Xe(det ag, ()
= Ji,s(m(r),0) Jr,s (w1, o) Ji s (wa, i) !
First of all, since r, € P,

A2 1(1)a) T, s (m(r), 50) ks (w1, §0) Jp,s (w2, i0) ™ = Ji,s(r, d0) Jp,s(r, wy -ig) ™' = 1.

Moreover, it is easy to check that
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Xe(A%y (1) T xe(det(duw, ) T xe(det(du, ) ) Xe(det ar, ()
= X¢ (det dm‘(w))xc(det dﬂr(wl))_1XC (det am.(r)) =1.
This proves the statement above.
We define the Eisenstein series of Klingen type by
(9)  E(z,5f) = E(x,sf,x, K™") = > ¢(yz,s£), Re(s) > 0.
YEP™T(F)\G"(F)
If r =0 and f = 1, then we say that E(x,s) := E(x,s;1) is an Eisenstein series of
Siegel type.
It is clear from the above calculations that this is well defined, and for v € P™"(F),
we K] x Ky,
P(yrw, 5;f) = xc(det(dy))  Jp.s(w, o) L é(z, 5; F).
In particular, for k € Symy(A), v € G*(F), z € G"(A) and w € K}"" x Ko,
E((0,0,k)yzw, 53 ) = s (k)xe(det(dw)) ™" Ji,s (w, o) Bz, ;).

We will show in Proposition 4.3 below that the series above, evaluated at s = k/2 for
ke€Z,k>n+r+1+1,is absolutely convergent and hence defines an adelic Siegel-
Jacobi modular form of parallel weight ka := (k, k,..., k) € Z2.

We now investigate the relation of the adelic Eisenstein series (9) with the classical one.

Write K;" = Chlo, 671,671 x D" [671, be]. Then it follows from [22, Lemma 3.2] and
[20, Lemma 1.3] that

Prr(A) = | | PP(F)a(P™T(A) N DR (b, b)) P (Aa),
zeX
where X is a finite subset of P™"(A) such that {a,(z) : x € X} forms a set of represen-
tatives for the ideal class group of F', where a,(z) is the ideal of F' defined in [22, page
551] as the ideal corresponding to the idele A,(z). In particular one may pick x’s of a

very specific form, namely diag[1,—1,¢t7!, 1,_1,t] with ¢ € AJ. Since P™" = HM s pror
and the strong approximation holds for H,' ! by the same argument as in Lemma 3.2,
we have that
P(A) = | | P(F)2/ (P (A) N K" [b, ) P™(Aa),
z’'eX’
where X' is the set X extended trivially to G™ by the canonical embedding Sp,, — G™.
We can now establish that
PY )K" = || PR (R) K b, ¢ P (A K7 (A)
z'eX’
= | | PM(F)2/ K" [b, (|G (Aa).
z’'eX’
Indeed, we only need to establish that the union is disjoint. Assume that the cosets

determined by z1,x2 € X' are not disjoint, that is x1 = axsbe for some a € P™"(F),
b€ Knlb,c] and ¢ € P™"(Aa) K™"(Aa). Since z1,x2 € Gy, we have that 1 = anx2b.
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Moreover, since a € P™"(F) and x1,29 are diagonal, b € P™"(A) N K{""[b,¢] and

€ P™"(R). But then this implies that 21 € P™"(F)zo(P™" (A)NK,"[b, c])P™" (Aa),
and thus z1 = xo.
Take the set X’ to be of the particular form indicated above, that is let 2’ € X’ be of
the form diag[l,,—1,¢t 7, 1,-1,¢] € Sp,(A) — G™(A) with t € A}. Observe that for any
such o/, 2’ K}""[b, ¢|(Aa) G" (Aa) N G"(F) # (. Indeed, this follows from the fact that
diag[ly,—1,t71, 1,1, 8] Dy [671, be]Sp,, (R) NSp,, (F) # 0. In particular, we can conclude
the analogue of [22, Lemma 3.3] in the Jacobi setting:
Lemma 4.2. Set Y := UteAf, diag[l,—1,t7 1, 11, ] Kn[b, (] P™" (Aa) K™ (Aa). Then
there exists a subset Z of G"(F)NY such that
PYT(A)K™ = | | PP(F)CK b, | P™(R)K™ (Aa) = | | P™"(F)CKL"[b, | G™(R)

ez ez
and
G"(F) N P (A)K™ = | | PP (F)¢ (K[, P™ (Aa)K (Aa) N G"(F))
cez

= | | PP (F)¢ (KL [b, ] G™(Aa) N G™(F)) .
¢ez

4.2. Classical Jacobi Eisenstein series of Klingen-type. We now associate a
Siegel-Jacobi modular form to an adelic Eisenstein series defined in (9). We set I' :=
G"(F)N K" [b,c]G"(Aa), and with Z as in Lemma 4.2 we define R¢ := (P™"(F) N
(T¢™Y) \ (T, for ¢ € Z. Then, again by the same lemma, it follows that a set of
representatives for P™"(F) \ (G"(F) NP (A)K™") is given by R := [J;cz R¢. In
particular, we may write

E(x,s;f) Zgbvxsf

YER

For any given z € H,,; there is an y € G}, such that y-ip = 2. Moreover, we can always
pick y such that the symmetric matrix in the Heisenberg part of y is zero, i.e. k, = 0.
A Siegel-Jacobi modular form that corresponds to E(z, s;f) via the bijection (5) with
g = 1 is the Eisenstein series,

E(Z, 53 f) = Jk,S(yv iO) Z ¢(7ya 53 f)
YER

We will write it down in terms of f and z using the bijection (5) again. For some ¢ € Z
and v € R, we may write vy = 7w, where 7, = diag[l n— 1,t 5 1,1, as in Lemma
4.2, T4 € ﬂ;};&Pg’r and w € K™". This is because Hy’ L Ky and, by [22, Lemma
3.1], G™(A) = N3 P™"(A) D% Dy[b~', b]. Therefore

P(rw, s £) = xu(t) " xa(A71(T)a) " Xe(det(dw) ™ i (w, o) ™ (e (Ta)) A7 (7)1

Observe further that, in case r > 0,

(1) £(mr () = Jhs (w0 () 0) "L (0 (7)) T2 Ty (ayi0) LT (7)) f (w1 (72)):
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j(rasd) _(S(me(ra)d) \ V2 (8(wr(r2)) \ V2
(2) [Xy(T)alr =] (in(ra)wr(z'))’F—( fet) = (M)
(3) |)‘r,l( m)la = Itz |)\r,l( 7)alF;
k,5 (7, 2) ks (Y, 20) = Jk,s(VY, 20) = Jk,s(T, wig) J s(w, 20) = Jg,5(7,20) k5 (w, 20).
(4) Jk,s(7,2)Jk,5(y,%0) = Jk,s( ) = Ji,s( )k,s(w,i0) = Ji s(7,%0) ks (w, 20)

Moreover, since the product xn(t) "!x(det(dy)) ! depends only on the symplectic part
of 7, we can follow the reasoning in [22, Lemma 3.6] and denote it by x[7y], which agrees
with the definition of x[v] in [22, (3.11)]. Taking all these into account we obtain

P s—k/2
Besit) = Dbl (5o0y;)  Swrba) st

ECE

) 6(zx) \
(10) — OB Y kb (M) F(wr(2)lis.

ez 'YGRC

Analogously, if r = 0 (and f = 1), we obtain the Siegel type Jacobi Eisenstein series,

(11)
$) =Y NOFE Y xS T sy =D N@(@)* Y xM0(2) 2k s

ez YER: ez YER¢
We finish this section with a result regarding the absolute convergence of the series.

Proposition 4.3. The Eisenstein series E(z, s;f) is absolutely convergent for Re(2s) >
n+r+1+1. In particular for ka € Z* with k > n+r +1+1 the series E(z,k/2;f) is
a Siegel-Jacobi form of parallel weight k.

Proof. This follows from the calculations of Ziegler in [28, pages 204-207]. The differ-
ence with his Theorem 2.5 is the different normalisation of our Eisentein series as well as
the introduction of the complex parameter s, but it is easy to see that his calculations
lead to the range of absolute convergence stated above. ([

Later in the paper we will explore analytic properties of the Klingen-type Eisenstein
series, such as analytic continuation and possible poles regarding the parameter s. This
will be done in section 8. Furthermore, in the last section of this paper we will study
the analytic properties of F(z, s;f) with respect to the variable z for some particular
values of s. Namely, we will try to establish whether this series, even if it fails to be
holomorphic in z, still has some good algebraic properties. To do this, we will introduce
in the last section the notion of nearly holomorphic Siegel-Jacobi forms, and we will
see that for particular values of s the Jacobi Eisenstein series are of this kind.

5. THE DOUBLING METHOD

As it was discussed in the introduction of this paper one of the most fruitful methods
for studying various L-functions attached to (classical, i.e. Siegel, Hermitian, orthog-
onal) automorphic forms is, what is often called, the doubling method. It is perhaps
not surprising that the same method can be used to study also L-functions attached to
Siegel-Jacobi forms. We will introduce the latter a bit later in the paper, after devel-
oping necessary background for the doubling method. Actually there are two, rather
different, ways to use this method.
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(1)

Method I. This is the original approach of Murase [14, 15], where he used a
homomorphism (actually an injection)

G™' x G™ = Spy.,.

As we indicated in the introduction one of the main advantages of this ap-
proach is the fact that analytic properties of the L-function can be read off
from analytic properties of (classical) Siegel Eisenstein series of Sp,,, ,;, which
are well-understood. On the other hand, it is not quite clear how one could
translate the picture classically, i.e. pulling back the Siegel Eisenstein series to
the Jacobi symmetric space, which makes the method less attractive for other
applications (differential operators, algebraicity, study of Klingen-type Eisen-
stein series and others).

Method II. The second approach, which we follow in this paper, was first em-
ployed by Arakawa [3]. It uses a homomorphism (shortly to be made explicit),

Gm,l > Gn,l N Gner,l

This seems to be a more natural approach and closer to the spirit of the doubling
method, since one “doubles” the same “kind” of a group. Moreover, it is quite
clear what happens on the corresponding symmetric spaces. However, this
method calls for a study of analytic and algebraic properties of Siegel-type
Jacobi Eisenstein series introduced in the previous section, a task that will be
taken upon later in this paper.

In this section we will develop technical results which will be necessary to apply the
doubling method. The main result here is Lemma 5.3, which will be used in the next
section to study a particular pullback of a Siegel-type Eisenstein series. Our approach
is modeled on the work of Shimura in [22] where the symplectic case is considered, and
our results here generalize those of Shimura to the Jacobi setting.

We define first the map mentioned above. Let

where

tar G x G — G

ea((As s k)g) x (N1, 60)97) == (AN), (ui'), 4+ K5 1s(g x g')),

b
2@ an o am s ((2g) x (840) = (1440,
d d

In what follows we will often write g x g’ for t4(g x g’). Sometimes it will be useful
to view elements of G™*™! as elements of G*™*+" via the embedding in equation (1).

Denote by H," ! the Heisenberg subgroup of P™", that is, put

HPM(F) = {(AOper), 1, ) € HY(F)}.

We will now adapt a method presented in [22] to find good coset representatives for
P (E)\G™(F). Let n < m and define 7, := 1y7. € G™"(F), where

1m
T = ( i:f 1 ), ey = (1T0) € My n(F).
1n
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Lemma 5.1. If n < m,
G™(F) = | | P"T(F)Ta(GT(F) x G'(F)).

0<r<n

Proof. Let G (F) = ||, P"1"(F)g;ca(G™(F) x G"(F)) be a double coset decom-
position. There exist unique g; € G™+*(F) and h; € H™™!(F) such that g, = g;h;.
Note also that LA(Gm(F) x G"(F)) = H™"™Y(F) x 14(G™(F) x G™(F)). We have

G (F |_|Pm+” )gih H™ M (F)ua (G™(F) x G™(F))
— Ll Hy ™ (F) P (F)H™ Y (F) gus (G™ (F) x G™(F)))
= [ HG ™ ) H (R P (P)gias (G7(F) x G (F).

Since G™(F) = H™ ™ F)G™ " (F) and G™T(F) = Uo<ran P (F)Trts(G™(F) %
G"(F)) by [22, Lemma 4.2], we can take {g;}; = {7 : 0 < r < n} and thus {g;}; =
{Tr:0<r <n}. O

Lemma 5.2.

P (P, (G™(F) x G™(F)) = |_| P (F)1,.((€ x 1glam_2.)8 X 7),
£.8,y

where & runs over Symi(F)\G"(F), B over P™"(F)\G™(F), and v over P™"(F)\G"(F).
Proof. By previous lemma and Lemma 4.3 from [22],
P (F)Tria(G™(F) x G'(F))
|_| Hm+nl Hm+nl( )Pern(F)Trbs(Ls(f « 12m—27‘)/8 « "Y)),

£.8
where &, 8, run over G"(F'), P"™"(F)\G™(F), P™"(F)\G"(F') respectively. Note that
PR EH™ME) = () HYTYE) (A 0,0)10m % (X,0,0)12,),
AEM; 1 (F)
NeM,,,(F)

and for g = (4 B) € P™(F),
((A,0,0) 19, x (X,0,0)12)1g € Hy ™™ (F)P™ ™ (F)((AX)A,0,0) o ).

Indeed, if we view it as an element of G *" we obtain
1, AN

1m 1;
1n A B
ll 1l

-\ 1 D

1, 1 Kk (AN)B 1, AA)A

— A B 1m+n tBt(/\)\/) 1m+n

L 1, L
D —tAYAN) Togn

]-m+n



ON THE STANDARD L-FUNCTION ATTACHED TO SIEGEL-JACOBI MODULAR FORMS 23

1, K (AN)B'A 1, 1, AN)A
— Imtn ABYAN) A B lmtn
1; 1 L ’
D —PAYAN) Lngn

1m+n

where k = (AN)B'AY{AN). Moreover, because T, commutes with ((X,0,0)12,, x
(A/7O70)12n)7 we have

Pern(F)TTLA(Gm(F) % Gn(F)) — I_l U Hgn—l—n,l(F)PernTT
575)7 )\EMI,WL(F))‘,EMIJL(F)

LA((A7070)12m X (A/’O,O):l?n)LS(LS(f X 12m—2r)/8 X ’Y)'

Write A = (A1 A2) and X = (A} A\y) as concatenation of matrices A\; € M, (F), Ay €
My (F), X, € My, (F), Ny € My,,_(F). Because H)"t™!(F) and P"+"(F) commute
(as follows from the above computation) and

H(7)71+n7l(F)TT = TT{(:LLI temu, 5)12m X (Mervula ’{/)1271 :
JURS Ml,n(F)aM/ € Ml,n(F)a K, k' € Syml(F)}v

we can include (0, (A} 0),0)12,, x ((A]0),0,0)1z, in the set above for each X', and so
we are left with

(A, (=A10),0)es(€ X Lap—2,)8 x ((013),0,0)7.
In fact,
(A, (=A10),0)e5(€ % Lam—2-)B8 = (A1, =1, 0)€ X 1 lam—2,)((0 A2),0,0)5.
Therefore we can exchange the representatives
Trea(ta((Ar, A1, 0)6 X 1lom—2:)((0X2),0,0)8 x ((0A3),0,0)v)
with 7,04 ((taA(& X 1glom—2,)3 X 7v), where &, 3,7 are as in the hypothesis. Reversing

the process described above, it is easy to see that the cosets are distinct. [l

We are now ready to prove the main result of this section. The following lemma is the
generalization of [22, Lemma 4.4].

Lemma 5.3. Let e, b, ¢ be as in Section 4.1, and o an element of GZ”F" given by

1ydiag[ly, 0, 1 1,, 1y, 0, 1,] ifvfe,
oy =
v Lgdiag[ly,, 0; 1, 1, 01,70 if vle,

v

where § is an element of Fy such that fo = b. Let D™ := K™*"[b,¢] C G™"(A).
Assume that n < m. Then

P (F)71,(G™(F) x G™(F)) N (P™"(A) D™ o)

= || PMT(E)mal(laes(€ X 1am)B X Lalan),
£eX,BeB
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where m' = m —n, B is a subset of G™(F)NY as in Lemma 4.2, which represents
P (F\NG™(F)NP™"(A)D™), and X = G"(F) NGy [[,en Xov with

{(\ gy k) € Cylo, 671,067 DR 67 ¢, bc] t ay — 1 € My p(en)}  if e,
X, =4 Cylo, 671,671 D[ c, b]W,Cylo, b1, 611D 61, be] if vle~Le,
Colo, b1, 6-1G"(F,)Colo, b1, b-1] ifote

W, = {diaglq, q] : ¢ € GLn(Fy) N My n(co)};
if m =n, we take B = {1glon}.

Remark 5.4. Before we proceed to the proof of the lemma we should stress a significant
difference between this result and the symplectic case. In [22, Lemma 4.4], at the places
v which do not divide ¢, one obtains that the set X, (with the notation there) is the
entire symplectic group G™(F,) = Sp,,(F,). However, this is not the case here as the
set X, above is not equal to the group G"(F,). This is one of the main differences
between the Jacobi and the symplectic group regarding their Hecke theory at the “good
places”. It will become even more apparent later in this paper when we will consider
the theory of Hecke operators.

Proof of Lemma 5.3. We will divide the proof into two parts: the case where v does
not divide ¢ (a good place) and when it does (a bad place). We first consider the case
of v being good.

We first obtain a description of the set Cy[o, b~ b= G™(F,)Cy[0, b7, b71]. First note
that a set of representatives for G"(F,)/D,[b~!, b] consists of

“lp g loth!
m(g7haa) = (g 0 gtgth—l

where (g,h) € GLy(0,)\W/(GLy(0y) X 1), 0 € Sym,(F,)/gSym, (b, 1)lg and W =
{(9,h) € Bx B: gL+ hL = L}, where L = My, 1(0,), and B = GL,(F,) N M;(0,). In
particular, if we write D" = C, D,,, then

C,G"(F,)Cy = | ) Cym(g,h,0)D,Cy, = | | Com(g, h,0)CyD,

g,h,U g,h,o‘

(12) = |J Gy, =M lotg T 4 bty #)mlg, hy o) D,
g;h,o
A

Consider now the set P (F,) D" and write P™*"(F,) = H°(F,)P™"(F,). Since
ap b S TN | ~1 ap b
(010 di) (A %) = (Aa, -, Aay, " bpd, ™ + pd, ™, %) ( Op d}; ’
we can conclude that
Pern(Fv)D:;nJrn = {()‘7 H, R)g IAE Ml,ner(Uv)a;lv pne Ml,n+m(Fv)7 g = pk € Spn+m(Fv)}-
Note that this is well defined. Indeed, if we write g = p1k1 = pako then pl_lpg € D, and

in particular a;llam € My1m(0y) N GLy 4 (Fy), and similarly a;;am € Myim(0y,) N
GLj+m (Fy); that is, a;llap2 € GLym(0y).
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Consider now a = 14(€ X 1gla,)B with £ € Sym(F)\G"(F), B € P™"(F)\G™(F),
and write £ = (A1, 111,0)€,8 = ((0X2),0,0)3, where Ay € M, ,—,(F'). Then
a = 1aA((A1, 11, 0)§ X 1125 )((0A2),0,0)8 = (A1 0), (11 0),0)(€ x 12m/)((0A2),0,0)8
= ((A10), (11 0),0)((0A2),0,0)(§ X 127)B = ((A1 A2), (111 0),0)(§ X Layms) B,
and so
tala x 1gla,) = (A1 A20), (11 00),0)((€ X 19,0/) 8 X 12).

Now we see that

Toea(@ x Lrlan)o ™ = (A1 A2 (=), (1100),0)75((€ X Lop) B X 12n)0 ™
= (()‘1 )‘2 (*/‘1))7 (:ul 00)7 O)Tn((g X 12m’)ﬁ X 12n)0'_1-

Put g := 7,((¢§ X 1u_pn)B X 12,)0~ ! and write g = pk € P™T" D™, Then by [22,
Lemma 4.4] we may take 3 to be of the form hw, where h = diag[l,_1,t7%, Ln_1,1]
and w is in the congruence subgroup D™. Moreover, we may take

-1 -1 _tp—1
_[(9gh g oh
6 - ( 0 tgthfl ) da

where g, h, o are in the sets as above, and d € D". In particular,

A 0 B 0
0 1, 0 O
0o 0 0 1,

where d; is some element in D"T™,

—1 _ -1 -1
(9 h Q (gl 0 (g 0
A._<0 h),B._< 0 pe (0

and h = diag[l,,_n_1,t]. In this way we obtain

A 0 B 0

4 | o 61, o0 0o |,

Tn((é X ].Qm/)ﬁ X 12n)0' = 0 Hven D 0 d
1

A 0  e,B 0,1,
for some d’ in the congruence subgroup D". Furthermore, if we write

A 0 B 0

0 6,1, O 0
O,en, D 0

te,A 0 ',B 0;1 1,

k1 ko
ks ky

%%:@ﬂ o)am‘%“:@wafu'

for some p € P"*™(F,) and k = < > € D™ [b~1, be], then we can conclude that
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Since the matrix [k3 k4] extends to an element in the congruence subgroup D?*+™[b~1, be],
it follows that
0, kA + kaA = A,

where now A = M, ;(0). That is, for any given £ € A there exist 1,3 € A such that
0, Lkgly + kaly = £. Write A = [Aq, Aa, Ag] with Ay, Az € M, and Ay € M p,—p. Then

the relation ta; 19; ks A + ta; 1k:4A = ta; 1A, which can be also written as

0 €n D 0 t —1
<9v_1tenA 0 ) A+ (tenB 9;11n> A=la, A

means that the set ta; YA can be described as

0 en D 0
<91tenA 0 ) t[£1’£27f3] + <tenB 911n) t[ /1’ /2743}7
where 1,0} € Ay, l3,05 € A3, £o, 0y € Ay and, recall, e, = (7') € My,,. Therefore,
since e, A = (g_lh 0) and ‘e, B = (gflath_l 0), we get

Y
0 €n> t 5
P (01, la, £3] = 0
<‘9’U CnA 0 9;19_1ht£1
and )
t tp, —Ltpr
gh
D 0 ~
<t6nB 0—11n> t[ /17 /2,55,] = ht‘€/2
v gilo'th_ltﬂll + 0;1%/3
Hence,

ty + tgth—ltgrl
fa) ' A = hit, ,
g—lhev—ltgl + g_lo'th_ltfll + 0;1%{3
and after taking a transposition

oyt = (5 + 6hlg R 6, 0y Gh ol 4 6,1e).

In particular, we see that the element

Tota(a x 1lon)o ™ = (A Az (=), (11 00),0) 7 (€ X 1) B X 12n)o "
belongs to P"™™(F,)D™™ if and only if A\; is of the form ¢35 + ¢{h~1g, and py is of
the form —(0;201'h'g~" + ¢;h o'~ " + 071¢}). This together with (12) concludes the
proof of the lemma in the case of good places.

Now assume that v is a place in the support of ¢. First we consider the case when
vle~tc. As above, we start with a description of the set

Cylo, 67, 671D 6 e, b]W,Cy[0, 671, 671D 671, be],
where W, = {diag[q, 4] : ¢ € GL,(F,) N My, ,(c,)}. As it was shown in [22, page 567],

Dyb "¢, b]diag[q, ¢ Dy [b~", be] = | <£ 9;) Do~ L, b,
1.9
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where f € GL,,(0,)\GLy,(0,)qGLy(0,) and g € Symy, (b, e,/ f Symy, (b, 1) f. Set C, :=
Cylo,b671,671]. Then:

CuDy[b ™ e, bW, CL Db be] = C, Db~ e, bW, D} o~ belC,
- U U Cy (fq qutI) Db, be|C, = U U c, (fq gqfq) CoD"b", b
0 Jfq i 0 f

q fq79q

1) U U i =Mt st (B 907) Dot el
9 fq:9q:A 1 a
where f, € GL,(0,)\GL,(0,)¢GL,(0,) and g, € Symn(bglcy)/tquymn(bgl)fq.

Further we argue as in the case of good places. In particular, we may write as before
Taea(e x 1glag)o ™ = (A A2 (=), (1100), 0)70 (€ X L) B X 1an)o !

with £ = (A1, 1,0)6 € Symi(F)\G™(F), B = ((0X),0,0)8 € P™"(F)\G™!(F).
fq gquq
0 q
My (¢0)NGLy (Fy), fq € GLn(00)\GLy(04)gGLn(0y), gg € Symn(b;lcv)/tquymn(bgl)fq
and d € D,[b~!, bc]. Then we obtain

Moreover, using [22, Lemma 4.4] again, we may take £ = ) d for some q €

A 0 B 0

4 | 0o 61, o 0 '

Tn((f X 12m’)ﬁ X 12n)0' = 0 gven D 0 d
1

for some d’ € D", where this time

_(fa O _(etf 0 (st 0
A—<Oq fq),B.-(qoq 0)7D—<8 il1>

A 0 B 0
. 0 6,1, 0 0 .
As before, write ( 0 6oer D 0 ) as a product of an element in P™*" and D",

tenA 0 TenB 0y '1,
Then, after the same computations and with notation as above, we obtain

Nay ' = (G3+ 0070 00 0 00+ 0 f g + 0,1 4%)
In particular, we see that the element
’TnLA(Oz X 1H12n)0'_1 = (()\1 Ao (—,Ltl)), (,LLl 00),0)Tn((f X 1mfn)5 X lzn)O'_l

belongs to P (F,)D"*" if and only if A; is of the form 3 + ¢} f7!, and p is of the
form — (0,101, + ¢} fe Lg,+ 0, 10%). This requirement matches the decomposition (13),
and thus finishes the proof of the second case.
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Finally, we consider the case of v|e. In this situation we also argue as before, but note
that now

A 0 B 0

4 | 0o 61, o0 0 ,

Tn((f X 12m’)/8 X 12n)0' = 0 even D 0 d,
1

enA 0 e,B 0,11,

1 0 0 0 1 0
U m-+n . n - - noo_
d e D" ,A._<0 1n),B._(0 0),D._(O h—l)'

Hence, doing exactly the same computations as before, we see that the element

TnLA<Oé X 1H12n>0'_1 = (()\1 )\2 (—,U,l)), (MOO),O)Tn((g X 1m_n)5 X 12n>0'_1

belongs to P™ ™ (F,)D7*™ if and only if A1 is of the form ¢35+ ¢}, and p4 is of the form
— (0,11 + 0} + 6,7144), which gives the set we claimed in the lemma. O

where

6. DIAGONAL RESTRICTION OF EISENSTEIN SERIES
The map G™! x G™' — G™+™ introduced in the previous section induces an embed-
ding
Mo X Hug = Hoemi, 21 X 22 — diaglzi, 22],
defined by
(11, w1) X (T2, w2) — (diag[T1, T2], (w1 w2)).

The aim of this section is to obtain the main identity (22), that is, to compute the
Petersson inner product of a cuspidal Siegel-Jacobi modular form against a pull-backed
Siegel-type Eisenstein series. This identity should be seen as a generalization of the
identity [22, equation (4.11)] from the Siegel to the Jacobi setting.

6.1. The factor of automorphy. We start with a study of the behavior of the factor
of automorphy under diagonal restriction. First we compute Jj, g(7,2) for 0 <7 < n;
similar calculations have also been done in [3, page 191].

Lemma 6.1. Let z = diag|z1, 22| be as above, and T, as in the previous section. Then
Ji,s(7r, 2) = ea(—tr (Slwr (w2)wy (12) " = wy(w1)](wr(12) ™ = wi(11)) 7))
i s (1, i (22))) det(wp(11) — wi(2) 7,
where, recall, we write wy(z;) = wyr(Ti,w;) = (wp(7), wr(w;)) fori=1,2.
Proof. By definition
Ji,5(Tr, 2) = j(7r, diag[7i, To])ea(tr (S{wr wa] (7, diag[71, TQ])_lfr)),
where 7, = (lfff 1N), fr= (ter e") and e, = (IT 0), with N := m 4+ n. Further

-1
A(TT7dia‘g[Tlv TQ])ilf'r - (frdiag[Tl, 7'2] —+ 1N)71f'r‘ = < L, 67«7'2> fr

t
e 1y

_ lm —€rT2 (lm - 67"7-2)567"7-1)71 0 0 Cr
“\-l,m 1, 0 (1, —te,mierm)™t ) \le, O
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t —1
_ lm —€rT2 0 (1m — €rT2 67-7'1) €r
—fe,m 1p (L = fermie,m) e, 0 ’

(L — e;mole,mi) e, = (1’“ - wT(gQ)”T(Tl) _”T(T2)b72> (107" 8)

where

j P—
_ <(1T - WT(TQ)WT(TI))il 0>
0 0

and, similarly,
1t <(1T — wr (11w (72)) 7! 0)

(1n - t€r7—167"7_2)_ €r = 0 0

Hence,

(frdiag[ti, 7] + 1n) " fr =

0 0 (1r - WT(TQ)WT(Tl))il 0
e —em 0 0 0 00
T\l 1, (1r — wr(T1)wr(12)) 1 0 0 0
0 0 0
p)

00
1, 0 —wp(m) = 0 0 (1, — wy(m2)w (1))~ 0
. 0 j S 0 0 0 0 0 0
T —we(m) % 1, 0 (1, — wp(m1)wr(72))71 0 0 0
0 0 0 1,_r 0 0 0 0
—w,(12) (1, — wy (11w (12))71 0 (1, — wp(m2)wp (1))t 0
B 0 0 0 0
o (17‘ - wr(Tl)wr(T2>)_1 0 _wT(Tl)(lT - wT(7-2>wT<Tl))_l 0]’
0 0 0 0

and thus we can compute
tr (S[wy wa)\(7,, diag[ry, 7)) "1 f,) =

= tr (= 'w, (w1)Sw, (w1)wy (72) (1, — wp (11w, 7'2))_1)

+ tr (w, (w1) Swr (w2) (1, — wr(T1)wr(12)) ™)
+ tr (w, (wa) Swi(w1) (1, — wy(12)wr (11)) 1)
— tr ("w, (we2) Sw, (w2)w, (11) (1, — wr(Tz)Wr(Tl))_l)

=tr((— twr(wl)swr(wl)wr(7'2) + twr(wl)swr(w2 )1 — WT(Tl)WT(Q))_l

In particular, we conclude that
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Tr,s(Tr, 2) = ea(—tr (Slwr (w2)wr (12) ™ = wi(w))(wr (72) 7 = wi(71)) ™))

- ea(tr (S[wr(w2)wr (12) ™ wr(12)))j (77, diaglry, 72])".

But j(7, diag[m, 12]) = det(1, — wy(71)wr(72)) = det(wy(11) + N,wr(72)) det(—w,.(12)),
where n,, = 1y (lr *1T), and so we have that
ea(tr (S[w,(wa)wr (12)~ wr(72)))j (77, diag[ri, 72])"
= s (M, (wr(12), wy(ws))) det(wr (1) — wp(r2) 7.
That is, Ji s(7, 2) is equal to
ea(—tr (Swy(w2)w, (1) ™! = wy(w1)](wp(12) ™! = wi(11)) )
i 5 (0, (wr(72), @r (w2))) det(w, (1) — wr(72) 71"

O

Now, with the notation of Lemma 5.3, we compute Jj, s(7r ((§ X 1am—2,)Bx7), diag[z1 22]).

Lemma 6.2. With notation as above,

(14)  Jr,s(1r((§ X 12m—2/)B x ), diag[21 22]) =
= Ji,s(&wr(B21))Jk,5(8, 21) Ji,5(7, 22) Th 5 (M, wr (¥22)) det(wi (1]) — wi(73) 1)
- €a(—tr (Slwr (wy)wr (15) ™ = wp(w)))(wr (15) ™ —wi (1)) 7).
Proof. It follows from the cocycle relation that Ji g(7((€ X 1lom—2,)8 X ), diag[z; 22])
is equal to,
Ji,s (s (€ X Lom—27)B x v) - diag[z1 20]) - Ji,5((€ X Lam—27)B X 7), diag|z1 22]).
Note that
((& X lam—2,)B x ) - diag[z1 20] = diag[(§ X lam—2r)B21,v22],
and so
Jr,5((€ X 1am—2,)B X 7), diag[z1 22])
= Ji,5((§ X lam—2r) X 1oy, diag[B2z1 v22]) x Ji,s(B % v, diag[z; 22])
= Ji,s((€ X Lom—2r), B21)Jk,5(L2n, ¥22) Jk,5(B; 21) J,5 (7, 22)
= Ji,5((§ X Loam—2r), B21)Jk 5(B, 21) Jr,5 (7, 22)-

Putting the last few calculations together we get that Jy g(7((§ X 12m—2,)B%7y), diag[z; 22])
is equal to

Ik, s (T, diag[(€ X lam—2r)B21,722]) - Jk,s((€ X lam—2r), B21)Jk,5(B, 21) k5 (7 22)-
Since € X 1oy o € P™7,
Tes(€xTam—r), B21) = (NI} (6 x Lam—2r)) i 5 (01 (€ Lamar) w1 (B21)) = Ji5(€, i (B2)).
Moreover, by our previous computations,

Ji,5(Tr, diag[(€ x lopm_2,)B21,722]) =
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= ea(—tr (Slwr (wh)w (15) 7" — wy(w))](wr(75) ™ = wi(r)) 7))

s (M (w0 (73), wr (w))) det(wp (1) — wp(r) )"

)

where we have set (€ X lom—2,)B21 = (71, w]) and yzo = (75, wh).

Hence, with the above notation,

(15)  Ji,s(1r((§ X 12ym—2,)B x =), diag[z1 22]) =
= Ji,s(&,wr(821)) Jr,5(B, 21) Tk, (7, 22) T 5 (M wir(22)) det(wy (71) — wy(73) )"
- ea(—tr (Sfwr(wh)wr (15) " = wp(w))](wr(15) ™" = wp(71))7H).

O

The considerations above and the identity
d(gr) = 6()li(g,7)|7>  for g € G", 7 € Hy,

lead to the following formula:

(16)  8(7((€ X Lom—2,)B X ), diag[z1 22]) = 6(7-((€ X Lam—2,)B % 7), diag[ri 2])
= (8 (y72) 13 (& wr(B71))j (0, wr(v72)) det(€wr(BT1) — wr(y72) ™1 2.

6.2. Decomposing the Eisenstein series I; the non-full rank part. Thanks to
the strong approximation (Lemma 3.2) we can pick an element p = 1yp € G™"(F)N
K™*"[b, cJo such that g ot =1 € Mijnmin(€)y for all v|e. If we now write p = wo

with w € K™"[b, ¢], then for y € G, such that yip = z,
E(yo™') = E(p~'wy) = E(wy) = E(whway) = x(det(duw,)) " E(way)
= X(det(duwy,)) " (Elk,sway) (io)-

But since o, is trivial, w, = p, and, by the condition on p, x(det(dw,,)) = x(det(dg,, ).

In particular, we see that the adelic Eisenstein series F(xo !, s) corresponds to the clas-
sical series (E|x.sp)(2,s).

Let y, p be as above and put
cr(z5) = 3 pal2), pal2) i= dlaya",s)Jks(y, io),
CMGAT
where A, := P™"T"(F)\P™ " (F)1,1.4(G™(F) x G"(F)). Then
(Elksp)(z8) = Y enlz9),
0<r<n

and for a fixed r each o € A, is of the form (&, B,7) := 7-((§ X 1ulym—r))B x ) for
some &, 3,~ as in Lemma 5.2.

The following Lemma generalizes Lemma 2.2 in [22] to the Jacobi case.

Lemma 6.3. Let f be a cuspidal Siegel-Jacobi form on H,; of weight k € Z* and
9(2) a function on M, depending only on w,(z) and Im(z) := (Im(7), Im(w)) for some
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r € N with 0 < r < n. If for a congruence subgroup I' we have gl sy = g for every
v e PP (FYNTDr~ ! with T € G™(F), then

< glksy f>=0

YER
for any set R of representatives for P (F)N7Tr=1\ 7T.

Proof. The proof is almost identical to the one of [22, Lemma 2.2], and we only need

to establish that
/ f <(Z;12 Z) , (wy w2)> drodzadus = 0
XxU

for 7; = x; +iy;, m € H?, w; = u; + iv;, wy € M;,(C). This can be shown by
considering the Fourier expansion of f at infinity. Namely, if

f(rw) =" e(T, R)ea(tr (T'7 + Ruw))
T,R

and we put T = <t§}2 ttff), R = (1 7r2) with ¢;,r; of suitable size, then

tr (TT—i—tR’LU) = tr ( ttg t$2/2+t2.1‘2/2+t4x4+t7’21m)+M = tr (tgiL'Q)—l—tI' (t4x4)+tr (tT’QUQ>+M,

where M is independent of xs, x4, us. In this way

/ f ((;&:_12 :i) ,(wl w2)> dxgdx4du2
XxU

= Z c(T, R)ea(M) / ea(tr (tawg) 4 tr (taxy) + tr (roug))dradrsdus = 0
TR XxU

since c((t1 0) ,t(%l)) =0, since [ is a cusp form. O

Proposition 6.4. Let n < m, 21 € Hp,y and z2 € Hyy. For a cusp form f on Hy of
weight k, 0 < r < n and for s large enough, we have

< er(diag[z1, 22, 8), f(z2) >= 0.

Proof. Let z = diag[z1, 22] € Hpminy and fix r € {0,1,...,n — 1}. Put
D' :={z € K™™[b,¢ : det(d,), — 1 € ¢, for every v|c}.

Let T' be a congruence subgroup of G™(F) such that t4(1g1ls, x ') C o7 'D'a. By
the definition of ¢, for any d’ € K™ *"[b, (]

$ad’, s) = xc(det(da)) " Tr,s(d' d0) "o (z, 5),

aurld thus pa|pd’ = paar for o € G™™(F) N o~'D’'o. Further, write G"(F) =
P"™"(F)rT, so that
TeT )

&= D Pa@sm) =D Y D Paesmlbtallilam X 7 kea(lilam x ),

£7ﬁ77 £7ﬁ TeT ’YGRT
where R, := (P™"(F) N 7T 1)\7T. We will check that for each 7 € T,

gr = Zpa(ﬁ,,@,r)|kLA(1H12m X T_l)
£.8
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satisfies the conditions of Lemma 6.3.

Fix 7 € T and take n € P™"(F)N1T7~!. We will show that

(17) > Paesnktallilom X 770T) =D pagepr.
676

which in turn immediately implies

Zpa(g,g,r)!kLA(llem x T1In) = Zpa(ﬁ,ﬁ,r)|kLA(1H12m x b,

&8 £
First of all, because 797 € T,

Pa(esm) kta(Lirlom X T70T) = page,gam),
where
(&, B,nT) = T1.((§ X 1H12(m—r))/3 X NT)
= Tr(lngm X ’I’])((E X 1H12(m—r))ﬁ X ’T).

Because p,, depends only on P™*"(F)a, in order to prove (17) it suffices to show that
there exists ¢ € G"(F') such that

(18) a(€, B,nT) € P (F)a(C€, B, 7).
Write n = ((\} 0), i/, ")n. By the same calculation as in the proof of Lemma 5.2,

Tr(Llom x m) € P (E) T (=4 %er, (<21 0),0) 120 x 157)
= Pm+n(F)TT(1H12m X 1H77)((_,U 67«,( )‘, 0),0)12m x 1glay).

On the other hand, by [22, Lemma 4.3|, there is ¢ € G"(F') such that 7,05(12m X 1) €
P (F)705(65(C X 1o(m—y)) X 125,). Hence, (18) holds for ¢ = C(—,u'(lor), —A1,0). This
proves (17), and thus also an invariance property for g,.

It remains to show that g,(diag[z1, 22],s) depends only on s, z1,Im(z2) and w,(z2).
Observe that whenever ayo~! = pw for some p € P™°(A),w € K™°, then

Playo ™, 5)Ji,s(y. d0) = x(det dyp) " xe(det(dw)e) " Ti,s(w, d0) | det dyl > Ty, s (y. Go)
= u(ano ™) xa(det(dp)a) ™! Ji,s (P, i0) Jr,s (e, 2) 7 det dy |,
where we put u(ano ™) := xn(det(dy)n)  txc(det(dy)c)~t. Moreover, because
Jis(p,i0) = Xa(det(dy)a)| det dpt  and | det dy|,** = 6(caz)*N(ag(ao ™))%,

we get
(19) (Elesp)(z8)= > > dlayo™,5)Jks(y, i)
0<r<n acA,
_ZZN ao(o ™))% p(ano ) Ji s (e, diag[z1, 22]) "' 8 (aadiagle1, 20]) /2.

From this and the formulas (14), (16) we see that g depends only on s, 21, Im(z2) and
wy(z2). This finishes the proof. O
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6.3. Decomposing the Eisenstein series 1I; the full rank part. We start with
the following auxiliary lemma.

Lemma 6.5. For a symmetric positive definite matriz S € Symy(R), X € M; ,(R), A €
Symy(C) and a scalar a € C*, we have the following formula:
/ exp(atr (—S[X]A+ RXA))dX
Rixn

nl/2

— (et )2 (2) (et )2 exp (Ser (571 RL))

d1
Proof. Write A = UD W, where U is unitary, and D = ( ) diagonal positive
dn
definite. Let X = XU and write X = (7 ...4,), #; € M;1(R). Then:
/exp(atr (=S[X]A+RXA))dX = (det U)_l/exp(atr(—S[X]D)—i—atr(tURf(D))dX

Ji

Further, substitute J := UR and write J = ( : ) , Ji € My,;(C), so that the integral
Jn

is equal to

e T exp(ad;(—S[Z;] + §:%:))d;
(det U) HI/]R pladi(—S[&] + jid)d;

~ (det U)_zf[l ((&)W (det S)™'/? exp (L@S_l[yi](adf))

™

= (det A)~1/? ( )"l/ ? (det §)2 exp (%tr (S*l[tR]A)) .

a

To compute the last integral we used a formula for an integral of a shifted /-dimensional
Gaussian function. (]

Now we can prove,

Lemma 6.6 (Reproducing Kernel). Let f be a holomorphic function on H,,; of weight
k € Z* such that Agy(2)f(2)? is bounded. Then for s € C? satisfying Re(s,) > 0,
Re(s,) + k, —1/2 > 2n for each v € a, and for (¢, p) € Hy,, we have

Cs,k(s) det(Im(¢)) " f(C, p) =
/?{(T, w)ea(—tr (Sfw — p](r — ¢)71)) det (7 — ¢)~F|det(r—C)|**det(Im(7))* As o (2)d(7, w),

where
ooty = § = 241
(s + ky — %)

L'y
ES,k(S) _ H det(2sy)—n(_1)n(l+kl,/2)2n(n+3)/2—4sy—nk,,7rn(n+1)/2 (

vea

and 'y (s) := an(n—1)/4 H?;01 I(s— %)
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Proof. We remark that a very similar integral was computed in the proof of [3, Lemma
2.8]. Since the above lemma is only implicit in the form stated above in [3], we decided
to provide the full proof for the sake of completeness.

To compute the above integral we plug in f in its Fourier expansion:

/ S o(T, R)ea(tr (T7 + Ruw))ea(—tr (8w — 7)(r — 0)1)) det(r — ¢)*
Hni T R

- det(r — )| 72 det(Im(7))*Fexp, (—4mtr (S[Im(w)])Im (7)) d(r, w).
We integrate first against the variables of w = u + iv. Note that
ea(—tr (S[w —pl(r = )7h)
= ea(—tr ((S[u] + uS(iv — p) + (iv — p)Su + Sliv = p))(r = {)™1)))
= ea(—tr ((S[u](r — )™")))ea(—2tr ((iv — p)Su(r — ) ™"))eal(—tr (S[iv — pl(r — ) 7)

Put A := —i(7 — {)~!. A part of the expression under the integral that contains a
variable u equals

expa (2mitr (S[u)(F — )7t — 2 (iv 4 p)Su(7 — €)' + Ru)))
= exp, (27tr (—=S[u]A + (2 (iv + p)S + A7YiR)uA)).
Therefore, after setting R := R?, we obtain by Lemma 6.5,

/ expy (27t (—STulA + (21(iv + p)S + A~ViR)uA))du
Rlxn
= (det A)~Y/2277/2(det §) " ?exp, <2m (S7YS(iv + p) + % tRA_l]A)>
= (det A)~Y2277/2(det §) " 2exp, <2m (S[iv + p|A + iR(iv + p) — iS‘l[tR]A‘1)> :

where by (det A)~!/22="/2 e understand I, ca((det A,)7M22771/2): e take this con-
vention for the rest of the proof. After this integration a part that contains v equals

exp, (—27tr (Rv))exp, (—4mtr (S[v]Tm(7) ™))expy (—27tr (S[iv 4 p]A)
- exp, (2mtr (Sfiv + plA + R(—v +ip)))
= exp, (—4ntr (S[v]Im(7) ! 4+ Rv))ea(tr (Rp))
= exp, (4ntr ((=S[v] + (=Im(7)) Rv))Im(7) " Vea(tr (Rp)).

Using Lemma 6.5 again,

/R expy(dmtr (o] + (~Tm(r)) Ro)Im(r) ™))

= (det Im(7))"227™ (det S) 7/ 2exp, (wtr (ST ['R]Im(7))).

Now, joining all the pieces together, we get
/H f(r w)ea(—tr(Sfw — pl(r — ()71)) det(r — ()~F| det(r — ¢)| 7** det(Im())*
L Asu(2)d(r,w)
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= 27"/2 det(25) Zea (tr (Rp) / (det A2 det(7 — ¢)7F| det(¢ — 7)| 72

: det(Im(7))5+k+l/2eXpa(7Ttr (ST 'RJIm(r)))exp, (—tr (ST RIi(7 - ©)))
Y " e(T, R)ea(tr (T'7))dr

T

1
—nl/2 Iie
= 27"/ det(25)” E ealt <R,0—|—45 [R]g))
' / det(¢ — 7)/2R(—1)nH2H/D) det(¢ — 7)| 72 det(Im(r)) T2

- €a <_111tr (Sl[tR]T>> > e(T, R)ea(tr (T7)) det(Im(r)) dr,

T

By the “classical” reproducing kernel formula for holomorphic functions on the Siegel
upper half space as stated for example in [22, Lemma 4.7,

[ det(q = 7)1y U] dor(C - 7)[ 7 det(Tn(r) 4

n

. ea <_411tr (Sl[tR]T)> > o(T, R)ea(tr (T)) det(Im(r)) dr

T

¢ S 1 —1r¢ —s
— o en (- (5RO ) det(mn(0)* 3ol Riea (7)),

T
where ¢g(s) is as in the hypothesis. This in particular shows that

/ F(r,w)ea(—tr(S[w — p)(r — ¢) 1)) det(r — ) *| det(r — &) det(Im(r))*
-Agr(2)d(T,w) = g (s)det(Im(¢))~° Z c(T, R)ea(tr (Rp))ea(tr (T¢)),

T,R
which concludes the proof. O

In order to proceed further we introduce the following notation, taken from [22, equation
(4.5)]. We have that G"(A) = D"[b~L, 6]WD"[b~!, b] with

W = {diag[q,(j] : ¢ € GL,(Ap)N H GLn(ov)} ,

vEh

that is, any element = € G™(A) may be written as x = vydiag[q, |y2 with v1,72 €
D"[b=1,b] and ¢ € W. We define £y(x) to be the ideal associated to det(q), ¢1(x) :=
[T to(2)v and set £(x) for the norm of the ideal £y(z). With this notation we have,

Lemma 6.7. For 21 € Hy,y and 22 € Hyy,

en(diaglzr, z2],8) = D D N(0) 72" N(ag(8))**£(€) > xn (6" )x[B]X" (€1(€))xe(det(de)) !

BeB X
Tis(& wn(B21) ks (8s 21) " ks (M, 22) T det(wn(1]) — 75 1) F
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ea(tr (Sluamy = wn(w))](r5 ™ — wn (1)) (B(B71)5(r))* 2

: |j(€,wn(ﬁ71))3(77n, 7—2) det(wn(Tl) — Ty )| 2$+ka
where we have set (& X lopm_2,)B21 = (71, W)).
Proof. The statement follows from the explicit computation of the factors occurring in
the formula (19). Recall that we have already computed the values of the automorphy
factor and § in (14), (16). Therefore it suffices to find ag(ao™!) and p(apo™!) for
a = Tpta(ta(§ X 1glypm—n))B x v) with £ € X, 8 € B as in Lemma 5.3. Observe
though that neither ag nor ;1 depends on the elements from Heisenberg group. Moreover,
because for any symplectic matrix g we have gH = Hg, the symplectic factors of the
representatives given in Lemma 5.3 are exactly the same as the representatives provided

n [22, Lemma 4.4]. Hence, it is clear that the formulas for ag and p have to be the
same as the ones computed in [22, Lemma 4.6]. That is:

ap(ao ™) = b "ap(B)o(§) ",  plano ™) = xu(0™)x[BIX" (€1(8))xc(det(de)) ™!

We now consider an f € Si(T, x~!) where T := G" N D with
D :={(\ p,k)x € Clo,b= 1,67 |D[b e, be] : (az — 1n)y € My p(ey) for every vle}.

We set v, = 2 if ¢|2, and 1 otherwise. Then by using the standard unfolding trick
regarding the zp variable and setting A := T\ #,,;, we obtain

<5n(diag[z1,22] ) f(ZQ) >

= vewol(A)71 Y > N (0) 72N (an(B))*6(€) > xu (0" )X[BIX" (£1(€))xe(det(dg)) !

BeBécx
Tis(€ wn(B21) ks (B, 21) T (Br) TR |5(€ w (Bry))| 2

/ Ti,5(Ms 22) 7! det(wn (1)) = 75 1) " ea(tr (Swary ' — wa(w))](ry ' = wa(r1)) ™)
Hn,l

< 8(72) 2| (nn, 72) det(wn(1]) — 75 )T (22) Ag g (72, w2) (7, w2).
The integral on the right of the above formula is equal to

/Hi,?g(nn,@)‘l(—l)”’“ det(ry ' — wn (1)) Fe(tr (S[wary ' — wy(w)))(ry ' = wnlr]) ™)
< 5(mam2)* M2 det(ry !t — wn ()73 f (20) A (2, wo)d (72, w2)
= [ s ) sz ) et (o)
- ea(tr (S[—wz — wy(w)] (=72 — wa(r])) ™))
- 5(mamam2)* ) det(—7o — wi (7)) 72 Flk 5m (22) A i (72, w2)d (2, wo)

= /H Tr,s(—Lilan, 22) 7" det(rz + wn(71)) " ea(—tr (Slwa +wn (w))](72 + wn (1)) 1))

-3 (—72) 72 det (o 4+ wa (1)) 72 flr,5mm (22) As g (T2, w2)d (72, w2)
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- / Fli 57 (22) det(72 + wn (1)) ea(—tr (S[ws + wn(w))] (72 + wn(r]) ™))
Hn,l
(=1)EFRD 5 () 57R 2] det (1o + wn (7)) T2ETRD Ag 1 (9, wo)d(T2, wa).
By Lemma 6.6, this is equal to

(20) (—1)MTR D g (5 — k/2)8(Ewn(BT1)) /2 f |1 sm, (—Ew, (B21)).

Put 0y % := [[,ca dv,n,k, Where 0, 1 is equal to 1 if nk, even and —1 otherwise, and let
cs,k(8) := Op kCsk(s). Then, because I'(5) = I'(s), the quantity (20) equals

(=)™ g g (s — k/2)8(Ewn(B71)) 2 Flr,sm, (—€w,, (B21)).
Hence, if we set f°(z) := f(—Z), where —% := (=7, —w) for z = (7,w), then
1

N(b)>xn(0) " (—1)"~ k/Q)CSk(S —k/2)" wol(A) < en(diag[z1, 22], 5), f(22) >
=ve > S N(ao(8))*0(6) "2 xIB)x* (¢1(6))xe(det(de)) s (B, 21) !
BeB &eX
Trs(& wn(B21)) " 0(B1)* M2 [§(€, wa(B1))| 26 (Ewn (Brr)) T
((f1r,5M0) |k, 58) (Wn(B21)) k.5 (&, wn(B21))

5(ﬁ7'1) s—k/2
_ﬁ;?,N Cl0 ]JkS(/67Z1) <5(wn(671)))
D UEOTEX(E)xe(det(de)) T (Flr,570) T .5€) (wn (B21))-
geX

It is not hard to see that n,,'X =Y, !, where Y = G"(F) N G4 [[,ep Y with
{(\ pu, k)Y € Cylb~Y 0, b_ UD"be, b7 ] 1 ay — 1 € My pn(en)} if vle,

Y
Y, =< Cy[6=1 067D b, 61| Z,C,[67 1, 0,671 D7 [bc, b1 if v|e e,
Cy[61, 0,671 |G™(F,)Cy[671, 0,671 if vtc,

Z, = {diag[q,q] : ¢ € GL,(F,) N My n(cy)}-

Moreover, it follows from Proposition 7.9 which we prove later that (flx.sm,)¢ =
felk,smy ' Set

(21) (z:5,9) = Y ()X (61(8))xe(det(ag)) " (glk,5€)(2),

£cy
where ¢/(&) = L(nuényt), 04 (€) == 6 (nnén,t). Then, using Proposition 6.4, formula
(10) and the fact that N(a(8)) = [A\}}(8)|r, we obtain
N(©)*"xn(0) 7" (=1)" e (s — k/2) " wol(A) < (Blysp)(diaglz1, 2], 5), f(22) >

(22) =v Y _ N(a X181 Jk.5(8, 21)” < 6(871) )s_k%(w (B21),25, f)|k.smn
— Ve 0 k,S s <1 n 1) ) k,STln -
2 §eon (1)
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7. SHINTANI’S HECKE ALGEBRAS AND THE STANDARD L-FUNCTION ATTACHED TO
SIEGEL-JACOBI MODULAR FORMS

In this section we define Hecke operators acting on the space of Siegel-Jacobi modular
forms. These operators were studied in the higher index case first by Shintani (un-
published), Murase [14, 15] and Murase and Sugano [16]. As we have indicated in the
introduction this was done in the case of trivial level, and one of our contributions in
this section is to define such operators also for non-trivial level. Furthermore, in this
section we introduce the standard Dirichlet series which can be attached to a Hecke
eigenform. Our main result here is an Euler product representation for this series,
which extends previous results in [16] from index one to higher indices.

We start by fixing some notation. For the usual fractional ideals b, ¢, ¢ let
D :={(\p,k)x € Clo,b7L,671D[b e, be] : (az — 1)y € M, (e,) for every vle},
r =G"(F)nD,
Q(e) :={r € GL,(An) N H My (0y) : 7y = 1,, for every v|e},
vEh
R(e) := {diag[r,r] : r € Q(e)}.
For r € Q(¢) and f € MﬁS(I‘,LZJ) we define a linear operator T, : M} S(I‘ V) —

(23) fITry = > te(det(an)e) " flrsa,

acA

where A C G"(F) is such that G"(F) N Ddiag[r,r]D = [[,c4 . Further, for an
integral ideal a of F' we put

fITp(a) = Y fITry,

reQ(e)
det(r)o=a

where we sum over all those r for which the cosets ErE are distinct, where E :=
[L,en GLn(0y).
We also note here that if we let f|T, , be the adelic Siegel-Jacobi form associated to

fIT; by the bijection given in (5) with g = 1, then
(£ Typ)(x) = Y te(det(an)e) flza™l),  zeG"(A),
acA
where Ddiag[7,7|D = [[,c 4 Do with A C G,. As above we may also define f|T(a).

We now consider a nonzero f € Sy g(D, ) such that £f[Ty(a) = A(a)f for all integral
ideals a of F'. For a Hecke character y of F' we define the series

(s,f,%x) Z/\ N(a)™%, Re(s) >0,

where for a Hecke character x we write x* for the corresponding ideal character. Of
course, for a prime ideal q that divides the conductor f, we set x*(q) = 0. A similar
argument to [3, Lemma 2.2] extended to the totally real field case shows that the
function D(s,f,y) is absolutely convergent for Re(s) > 2n +1 + 1.
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We now impose a condition on the matrix S. We follow [14, page 142]. Consider any
prime ideal p of F' such that (p,¢) = 1 and write v for the corresponding finite place
of F. We say that the lattice L := o/ C F! is an o0,-maximal lattice with respect to
a symmetric matrix 25 if for every o, lattice M of Fé that contains L and satisfies
S[z] € 0, for all x € M, we have M = L. For any uniformiser 7w of F,, we now set

L' :={zec(28)7'L:7S[z] € 0,} C F..

We say that the matrix S satisfies the condition ]\4;r if L is an o,-maximal lattice with
respect to the symmetric matrix 25 and L = L’. The main aim of this section is to
prove the following theorem.

Theorem 7.1. Let 0 # f € S 5(D,¢) be such that f|Ty(a) = Aa)f for all integral

ideals a of F. Assume that the matriz S satisfies the condition Mer for every prime
ideal p with (p,¢) = 1. Then

(¢, $)D(s +n+1/2,£,x) = L(s. £,x) == [[ Ly 0N () ),
p

where for every prime ideal p of F

Ty (0= i X)(1 = 5t X)), pps €T if (9,6) = 1,
Ly(X) = [T (U = ppiX) ppi € C if (pe le) #1
1 if (p.e) # 1.

Moreover, £(x,s) = 1y =1 Lo(X, 5), where

[T Lp(2s + 2n — 2i,x?) ifl € 2Z

£ =G .
P06 8) = Gy(x 5) {H?:le(2s+2n—2i+1,X2) if 1 ¢ 22

and Gy(x, s) is a ratio of Euler factors which for almost all p is equal to one. (Below,
in Theorem 7.6 we make Gy(x, s) very precise.) In particular, the function L(s,f,x) is
absolutely convergent for Re(s) >n+1/2+ 1.

Remark 7.2. It is worth to notice that the factor Gy (x, s) does not appear in the works
of [16] and [3]. It is because in the case of [ = 1 considered there, the condition M, is
equivalent to the condition that the matrix S is regular (see for example [14, Remark
4.3]), which implies that the factor G(x, s) is equal to one for all good primes.

Before we proceed to the proof of the above theorem, we state an immediate corollary
regarding the vanishing of the L-function defined above.

Corollary 7.3. With notation and assumptions as in Theorem 7.1,

L(s,£,x) #0
whenever Re(s) >n+1/2+1.
Proof. This follows from the fact that the function L(s, f, x) is absolutely convergent for

Re(s) > n+1/2+1 and has an Euler product representation. For the formal argument
see [24, Lemma 22.7]. O
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The rest of this section is devoted to a proof of Theorem 7.1. Note that if we fix a
prime ideal p of F' and consider the series

(s.£,x) ZA PX ()N (p) ™7, Re(s) >0,

then

D(s,f,x) = HDpst H Dy(s, £, x),

(p.fx)=1

which means that it suffices to prove the theorem locally place by place.
Local Notation. For the rest of this section we fix the following notation. We fix
a finite place v € h of F. We abuse the notation and write F' for F},, o for o,, and
just p for the corresponding maximal ideal in 0,. Moreover, we denote by 7m € p any
uniformiser of this place. We further set g := [0 : p] and denote by |- | the absolute value
of F normalised so that |7| = ¢~1. We also write G, G, D, D for G(F,), G(F,), D, and
D,. Finally, in this part of the paper we denote by g the v-component of the additive
adelic character ¥g introduced in section 3.

7.1. The good places. We consider first a finite place v which is not in the support
of cfy. We assume that the matrix S, satisfies condition M,". As we have indicated at
the beginning of this section we will extend the results of [16] from the case [ = 1 to
any [, and also introduce the twisting by a finite character y. Here we use (more or
less) the notation from [14, 15, 16].

We define a local Hecke algebra X as in [14, page 142]. That is, let X be the C-module
consisting of C-valued functions ¢ on G which satisfy

#((00, k)dgd') = ¥s(rk)p(g), d,d € D,ge G, k€ Sym(F)

and have compact support modulo Z := Sym;(F) C G. As it is explained in [14], one
can give to this module the structure of an algebra by defining multiplication through
convolution of functions. Moreover, it is shown in [14, Lemma 4.4] that the assumption
MpJr implies that a function ¢ € X has support in

where AT := {(a1,as,...,a,) €Z" a1 > as > ... > a, > 0},
d, :GL, — G C G, dp(a) == diag[a,ta_l],
and 7, = diag[r®, 72, ... 7% ] € GL,(F).

Let

T :=T(F) :={d,(diag[t,...,tn)) : t; € F*} € G
and

Xo(T) :={¢ € Hom(T,C*) : ¢ is trivial on T'(0)}.
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For a character £ € X((T) and ¢ € X set
)‘5(¢) = Z 5_1(dn(77a))¢3(dn(7ra))>

aEZn

where for a function ¢ € X, ¢(t) is defined as in [14, equation (4.8)], that is,

B(t) = O,y ()12 N $(not)dny,

where Ng := Vo Ny C G, Ny is the unipotent radical of the Siegel parabolic P of Sp,,,

Vo := {(0,1,0) : p € M, }, and dn, and the Haar measure dng are normalized as in
[14, page 144].

For an o € AT we define ¢, € X by

Ys(k) if g = (0,0,k)dd,(7o)d € ZDd,(r,)D,
¢a(g) = .
0 otherwise,

and for a finite unramified character x of F* we define the function v, on G, s € C,
by the conditions

VS,X((O,O, “)dgd/) = ¢S(_H)Vs,x(g)a ge@G, d,deD

and
o) q—é(oc)s

Y

Vs,x(ﬂ-a) = X(Trv)
where £(a) = Y | a;. It is shown in [16] that these two conditions uniquely determine
the function v, . Now, given a character £ € Xo(7') and an unramified character x of
F*, we introduce the series

B(&,x,5) = ) Ae(a)x(m) Vg1,

aEAx

Given a £ € Xo(T') we define the function ¢¢ on G following [14, equation (4.11)] by
¢§((0707 K‘)not()\v 07 O)d) = 2!)3(/{)(65;{)2)(t)@l/()\), de D7 t e T7 ng € NUa

where @y, is the characteristic function of L := M, (0). The following lemma ([3],
Lemma 5.2) gives an important integral representation of the series B(§, x, $).

Lemma 7.4 (Murase). For £ € Xo(T') and a finite unramified character x of F* we
have

B(E.x.5) = /Z e @)9la)ds

Remark 7.5. The original lemma in [3] is stated without a twist by x, but it is easy to
see that the arguments there extend easily to include also the case of twisting by an
unramified character.

For a finite unramified character y and a character £ = (&1,...,&,) € Xo(T), where &;
are unramified characters of F'*, we define the local L-function
L(& x,8) = [ [ = &(mx(m)g*) (1 = & M (m)x(m)g ") "

i=1
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In order to state the main theorem of this section we need to introduce a bit more
notation. We write ag(s, x) for the Siegel series attached to the symmetric matrix S
and to the character y, as defined for example in [23, Chapter III]. Moreover, by [23,
Theorem 13.6], we have

[1/2) !

(24) 045(8, X) = L(S7 X) H L(25 — 2, X2) 95(8, X)
=1

for some analytic function gg(s, x) of the form gg(s, x) = G(x(m)g™*) for some polyno-
mial G(X) € Z[X] of constant term one. Moreover if S is regular, that is, det(2S5) = o*
for | even and det(2S5) = 20* for [ odd, then gg(s, x) = 1.

The following theorem generalizes a result due to Murase and Sugano [16], where the
case of [ = 1 and x trivial is considered.

Theorem 7.6. With the notation as above,

_gs(s+n+1/2,x) /
L(£7X7 S) - gS(S ¥ l/2, X) A(X7 S) 272G Vx,s+n+l/2(g)¢§(g)dgA(X7 3)7
where
n o 2 .
Ay, s) = ngl L(2s+2n 22.,X ) ) @.fl € 27,
[ L(2s+2n —2i+1,x%) ifl & 27.

In particular,

gS(S+n+l/27X)

gs(s 12,y oos)

L& x,s) =B, x,s+n+1/2)

The rest of this subsection is devoted to a proof of this theorem. First we extend some
calculations of Murase and Sugano [16]. Denote by oy, n, the characteristic function
of M, n,(0) and let

F(s,x,9) == F(s,x, hg) =

1 0 ST *
/ O2n+1,4n+21 <<y (01 ) ,ya(h)>> x(det(y))| det(y)|** 2 ey
GLQn-H(Fv) g

where for h = (A, i, k) € H we set

Define also
Flsoxg) = [ Fls. 0.0, 0)g)us )
We now recall a theorem of Murase in [15, Theorem 2.12].
Theorem 7.7 (Murase). We have the equality:
T, L(2s 4+ 2n + 1 — 2i,x?)
[ Lis +n+1/2 —i,x)

L(&,x,s) = as(s +1/2,x) " L(s + 1/2, x)
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: / F(s,x,9)0¢(g9)dg
2\G

The following lemma extends a result of Murase and Sugano in [16, Lemma 6.8] from
the case of index one (I = 1) to any index.

Lemma 7.8. We have the following equality:

F(s,x,9) = <HLs+n+l/2—z+1 X))as(s—i—n—i—l/QX
=1

2n
: (HL(S +n— l/2 —i+ ]-a X)) Vs+n+l/2,x(g)'
i=1

Proof. We recall first a result of Shimura. By [23, Lemma 3.13], for any g € M,,(F),

(25) /ch(F) om2m(y9, y)x(det(y))| det(y)|*d"y = };[1 L(s —i+1,x)x(r0(9))v(g9) "%,

where 1(g) and v(g) denote the denominator ideal of g and its norm respectively, as
defined for example in [23, page 19].

By [15, Proposition 2.3 |,

F(&X? (0707ﬁ)d9d,) = wS(_H)F(&ng)

for all Kk € Z and d,d’ € D. That is, thanks to [14, Lemma 4.4], for a fixed s the
function F (s, x, g) is supported on (J, A+ ZDmp D. Hence, it is enough to prove the
equality of the Lemma for g = m,, for an m € A;}. We have

1 STMN &
Foxmm = [ omiane (o(" 1, ) (")) aertuldertenstzary

GLapti(F

/U)s )dk

Write y = k (24), where k € GLa,14(0), a € GLy(F), d € GLon(F) and b € M; 2, (F).
Then F(s,x,7m) = I1 - Iz - I3, where

I :/ zbg(fi)/ Ul,l(a)al,l(am)x(det(a))]det(a)\S‘L”H/Zd*a,
z GLy(F)

I = / 0120 (BT ) 712 () D
Ml 2n(F)
and

Iy = / Ton.on(d) oo on (dmm ) x (det(d))| det (d)|*T7H/2| det(d)|"'d*d.
GLan (F)
We compute first the integral I;. By the equation (25),

/ or1(a)oy(ak)x(det(a))| det(a)|*T"2d*q
GLy(F)
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L £t b 12+ L)
=1
and hence Z
L= ﬁ L(s+n+1/2—i+1,x) /z Vs (k)x(vo(k))v (k)5 2dk.
i=1
But the last integral is nothing else than the Siegel series ag(s +n +1/2, x), and thus

I
L = HL(S+n+l/2 —i+1,x)as(s+n+1/2,x).
i=1

Finally, it is easy to see that I, = ¢~ ("™1F+mn)l and that by the equation (25) again,
2n

Iy = ] L(s +n—1/2 =i + 1) x(o () ()~
=1

Proof of Theorem 7.6. By Lemma 7.8,

2n41—1 -1
L(& x,8) = as(s +1/2,x) " L(s +1/2,x) 7" ( IT zs+n+1/2- @x))
=1
n l
JJL@s+2n+1—2i ) [[L(s+n+1/2—i+ 1, x)as(s +n+1/2,x)
=1 =1
2n
Tlee+n-12-i410 [ vinpalo)selo)dg
i=1 2\G
= as(s+1/2,X) 'L(s +1/2,x) " [ L(2s + 2n + 1 — 2i,x*)
=1

(s + 4 1/2,)as(s +n+1/2,%) /Z e @0(o)ds

as(s+n+1/2,x) L(s +n+1/2,x) T ;2
— L(2 2 -2
as(s+1/2,x) L(s+1/2,x) }:[1 SR e

: / Vs+n+l/2,x(g)¢£(g)dg‘
Z\G

If we now plug in the expression (24) for the Siegel series, we obtain

[1/2] c 2
s+n—+1/2, iey L(2s +1— 24, x

L(2s+2n+1—2i,x%)
9s(s +1/2,X)  T1Y2 L(2s + 2n + 1 — 2i,x?) 131

. / Vs+n+l/2,x(g)¢§(g)dg
Z\G
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[n+1/2]
gs(s +n+1/2,x) -2 /
= L(2s +2n + 1 — 2i, Vein dg,
95(s +1/2,%) iz[ll/_2[]+1( X°) net +1/2x(9)P¢(g)dg
which finishes the proof. O

Given a cusp form 0 # f € Sk g(D,v) we can define an action of an element ¢ in the
Hecke algebra X by

(£ % 0)(g) = /Z S ERIE

If now f is a common eigenform for all ¢ € X, that is, f x ¢ = A¢(¢)f for all ¢, then
we obtain a C-algebra homomorphism Af : X — C. Thanks to [14, Theorem 4.15] we
know that this homomorphism is of the form

Ae(@) = Age (@)
for some character & € Xo(7T'), and thus, as it is explained in [3, Lemma 5.4],
fxgo=1T -1, forevery a € A
Note here that since Dd,,(7,)D = Dd,(r;')D, we obtain
B(éf? X S) = DP(37 f? X)
In this way we can conclude Theorem 7.1 in the case when v is a good prime by taking

ppi = &i(m) if & = (&1,- .., &n).

7.2. The bad places. We now consider the case of (p,c) # 1. If (p,e) # 1, then
there is nothing to show, because in this case each Hecke operator is just the identity.
Hence we consider the case of (p,e~!c) # 1. In this section we set E := GL,(0) and

S = S(b71) := Sym,(F) N M, (b, 1).

First we work out the decomposition of the double cosets Ddiag[é ,€]D. Recall that
we write D = CD with C = C,u[o,b!,b7!] ¢ H and D = D,[b~!,bc] C G. By [24,
Lemma 19.2] we know that

Ddiaglé, D = | | D (d Cﬁf) ,
db
where d € E'\ E€E and b € §/%dSd, and thus

Ddiag[¢, §]D = CDdiagl¢, {|DC =| | D (‘Z ‘Z’) C.
d,b
d db

Observe that for elements (A, p, k) € C and ( J

) as above we have

<d ‘Z’) O 1, 1) = (N, (—Ab + )d ™, ke 4 Nl (= \b+ 1) — N (d ‘3’) .

In particular,

(26) Ddiaglé, 6D = || D(0,u,0) (Ci ij’)

db,u
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where d € E\ EEE, b€ §/'dSd and p € My, (b, 1)d™ /M, (b, 1h).
We will show that the set DXD, with X = {diag(¢,€) : £ € Mu(0,) N GLy(F,)} is

closed under multiplication. For Ddiag[él-, &|D = lei7bi7Mi(O’ (i, 0) <di dzlbl>, 1=1,2,
7

we have

Ddiag[¢1, &) Ddiag[és, £2) D
- U om0 (") om0 (® )

d1,b1,p1,d2,b2, 12

di dib dy dob
= U D(o,m,O)<1 ;1><2 §2><0,u2d2,0)
1 2
di,b1,p1,d2,b2, 12

.5 1 by + 'dobyid
= |_| D(Ovl'Ll?O)dlag[dldQ;dldﬂ ( 2 12 ! 2) (07/1’2d270>

d1,b1,p1,d2,b2, 12

.5 1 by +dabyd
= U Ddlag[dldg,d1d2]<o,u1d1d2,o>( 2+1“2) (0, pzds, 0).

dy,b1,p1,d2,b2,02

1 by + 'dabyds

Hence, because (0, p1d1da,0), (0, pade,0) € C, ( 1

> € D and Czlcig = 62;672,
we have shown that

Ddiag|;, &) Ddiag[éa, &]D € DXD.

We define the Hecke algebra X := X, for v|e !¢ to be the algebra generated by the
double cosets DX D.

In order to define the Satake parameters associated to an eigenform of this algebra we
need to define an injective algebra homomorphism w : X — Qlt1,...,t,]. We will do
this by reducing everything to the theory of GL,, very much in the spirit of Shimura
in [24, Theorem 19.8].

Given an element o
Ddiaglé, €D = | | (0,11,0) (d db)
) ) Y d Y
d,b,u
where d € E\ EEE, b € §/'dSd and p € My, (b1 )d ™t /M, (b, 1), we set

o (0.0 (1 9 ) s= (o)

where wy is the classical map of the spherical Hecke algebra of GLj, defined as wo(Ed) :=
[Ti=, (") if an upper triangular representative of Ed has the diagonal entries
w4, w2 .., 7 with e; € Z. Further, let

w(Ddiagl¢, §|D) == ) _wo <<o,u,0> (‘i ‘Z’)) :

d.b,u
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An identical argument to the one in [23, Proposition 16.14] shows that w : X —
Q[ItE, 15, .., 5] is an injective algebra homomorphism.

For a finite unramified character x and for s € C consider the formal series
B(x;s):= Y (Ddiagl¢,&]D)x(det(€))N(det(€)) ™
¢CE\B/E

where B := GL,,(F) N M, (0). Then, if we define
wB(x,s)) = Y, w(Ddiagl¢,&D)x(det(¢))N(det(£))

¢€E\B/E
we have that
w(B(x,5)) = > wo(Ed)|det(d)| " "x(det(d))N(det(d))*
deE\B

Hence, by an argument similar to the one in [24, Theorem 19.8], we get

n

w(B(x,s)) = | [(1 = ¢" tix(m)g™*) " € Q[ltr, - .-, ta]]-

=1

Now [24, Lemma 19.9] states that if we have a Q-linear homomorphism A: X — C which
maps the identity element to 1, then there exist Satake parameters ui, ..., u, € C such
that

n

3" A(Ddiaglé, €]D)x(det(€))N(det(€))~* = [T(X — " pix(x)a )~

¢€E\B/E i=1

or, equivalently,

n

Y A(Ddiaglé, & D)x(det(€))N (det(€)) "¢+ D = TT(1 = ¢ Ppix(m)q )~

¢€E\B/E i=1

as an equality of formal series in C[[¢™*]]. Hence, if we take as A the homomorphism
obtained from the eigenform f and let p; := piq~ /2, we establish the rest of Theorem
7.1, as in this case

Dy(s,f,x) = > AMDdiagl¢, & D)x(det(&))N(det(€)) "

€€E\B/E

7.3. A y-twisted L-function. To an eigenform f € S} ¢(D, 1)) we can associate yet
another L-function. It appears naturally in the doubling method when the form f has
a non-trivial nebentype. For a character x of conductor § we define

(s,£,x) HLp P)(/ ) (mp) N (p)~7)

= II )y ®NE™) | [T eNE) ™) ],

(p,e)=1 ple
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where . = Hv‘c Yy, T € 0p is a uniformizer of the ring of integers oy, and the factors
Ly(X) are as in Theorem 7.1. We also define the series

Dy(s.£,x) : ZA (a")N(a) ™,
where for an ideal a with prime decomposition Hp p™ we put a’ := H(p&):l p™. Then:

Dy(s,f,x) = HDpstwHDpsfx)
(pye)= ple

In particular, by Theorem 7.1,

Ly(x: 8)Dy(s +n+1/2,£,x) = Ly (s, £, %),
where £4(x,s) = [[(p 0=1 Lo(x¥, s), and
[T, Ly (2s + 2n — 2i, (x¥)?) ifl € 2Z
[T, Ly(2s +2n — 2i + 1, (x¢)?) ifl €27
Finally, for any given integral ideal ¢ we define the function

Lyg(s.£,x) = ] LoOx* (1) (/) (mp) N (0) =),

(pr)=1
that is, we remove the Euler factors at the primes which divide g.

SP(Xwa 8) = GP(va S) {

7.4. The global Hecke algebra. Now let X := &), X, be the global Hecke algebra.
Since every local Hecke algebra X, can be embedded in a power series ring (for the
good places this has been established in [14, Theorem 4.14] and for the bad places
above), and thus is commutative, we can conclude that the global Hecke algebra X is
also commutative. Moreover, if T}, is the Hecke operator where 7, = 1,, at v|c, then
< [Ty g >=<f,9|Try > .
Indeed, this follows from the fact that < f|gra, glgrax >=< f,g > for any o € G and
that for any r as above we have
Ddiag[7, 7| D = CDdiag[F, | DC = CDdiag['r,7'|CD = Ddiag[’r,r | D,

where the second equality follows from [23, Remark on page 89]. In particular, it
follows that the Hecke operators T'(a) with (a,c¢) = 1 are normal, and thus can be
simultaneously diagonalized.

We finish this section by obtaining a result which will be useful for our later consider-
ations. We first recall that we have defined f¢(z) = f(—%). Now set € := diag[l,,, —1,]
and define

(27) 6(()\, K, 5)7)6 = ()\a —H, _5)676'
We will check that this is a group automorphism of the Jacobi group. For any ~; =
(A1, p1, k1)gy - and vy = (Ag, 2, K2)g2, where g1 = (ﬁ; Zi) and go = (ij Zﬁ) we have

€ (7172) € = €((A1 + A2a1 + pizcr, iy + Aaby + padi, k1 + Ko — Aalus + M{(Aaby + pads)
+ (/\Qal + ,u261)t(>\gb1 + ,ugdl) + ()\le + Mzdl)t)\l)gflgz)e
= (A1 + Aoay + pzcr, —(p1 + Aoby + pady), — (k1 + K2 + M Naby + pady)
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+ (Aaay + pacy)(Aabr + padi) — Ao'ua + (Aabr + padi)A1))egy gae.
On the other hand,

e(v1)e= (M1, —p1, —k1)egy e and  e(vy)e = (N2, —p2, —ra)ege,
that is,
(e(v1)e)(e(v2)€) = (A1, —p1, —k1)egy ' e(Aa, —pz, —rz2)egae.
Now note that (eg; 'e)™! = egre = ( a —b ), and so

—c1 di
A1y =1, —k1)egy ' e(Na, —pz, —rz)egae
= (A1 + A2ar + (—p2)(—cr), (—p1) + Ao(=b1) + (—p2)di,
(=#1) + (=r2) + (haa1 + (—p2)(—c1)) (N2 (=01) + (—p2)dr) — Ao'(—p2)
+ M (A2 (=01) + (—p2)dr) + (Aa(=b1) + (—p2)di)Ar)egy ' gae,
which shows that the map is a group automorphism of the group G".

Proposition 7.9. Let v = (A, u, k)Y € G. Then

(flr,s7) = [k, s€7€E-
Moreover, if f is an eigenform with f|Ty(a) = Xa)f for all fractional ideals a prime

to ¢, then sois f¢. In particular, f|Ty(a) = Xa)f¢ and Ly (s, f,x) = Ly (s, £, X).

Proof. Write v = (\, i, k) (CC‘ g), so that eye = (A, —u, —K) ( 2 ) Then

(flr.sv)(2) = det(er + d)F f((ar + b)(er + d) " wler +d) 71 + Mar +b)(er +d) ™! + p)
ea(—tr (Sk) + tr (S[w](er 4 d)"te) — 2tr (SN, w)(er 4+ d) ™) — tr (S[A\](a7 4 b)(er +d) 1) 7L,

and so

(flr,s7)(2) =
—2tr (S(\, —
a(—7)

(
(
(=7
(=

((
((a
- det d) Feq(tr (Sk) — tr
+tr (SN (—ar 4 b)(—er +d) !
On the other hand
fCr.seve = det(—cr + d) Fea(tr (Sk) + tr (S[w](—er + d) " (—c))
—2tr (S(\, w)(—er +d) ™) — tr (SN (ar — b)(—cr +d)~ 1) 7!
~f(=(ar = b)(—er +d) !, —(w(—cm + d)~t + XNaT — b)(—eT +d) =1 — p))
= f((a(=7) + b)(c(=7) + ) , —w(c(=T) +d)~" + Aa(=7) +b)(c(=7) +d)~" + p))
det(—ct + d) Feqa(tr (Sk) + tr (S[w](—cr + d) "L (=c)) — 2tr (S(\, w)(—cr +d) 1)
—tr (S[A](aT — b)(—cr +d)~ 1) 71,

which establishes the first statement of the proposition.

f
=/

C
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Now assume that f is an eigenform of T'(a) with eigenvalues A(a) for all integral ideals
a. Because the map (27) is a group automorphism, we see that for any r € Q(e) if
G"(F) N Ddiag[r,r]D = ][, I'y, then also G"(F) N Ddiag[F,r|D = [], Teye. This
means that f¢|T,, = (f|Tr)¢. In particular,

f\Ty(a) = (f|Ty(a)® = (Ma)f)* = Aa) f©
for all integral ideals a. However, since 0 # f, then < f, f > 0 and thus the equality

AMa) < f, [ >=< f|Ty(a), f >=< [, f|Ty(a) >=<f, f > A(a)
implies that the eigenvalues \(a) are totally real. The last statement regarding the
L-functions is now obvious. (I

8. ANALYTIC PROPERTIES OF SIEGEL-TYPE JACOBI EISENSTEIN SERIES

In the previous section we introduced the standard L-function attached to a Siegel-
Jacobi eigenfunction. Our first aim is to study its analytic properties using the identity
(22). However, in order to do this we need to establish first the analytic properties of
the Siegel-type Jacobi Eisenstein series with respect to the parameter s. This is the
subject of this section. More precisely, we will establish the analytic continuation and
detect possible poles of this Eisenstein series. The main idea of our method goes back
to Bocherer [4], which was further extended by Heim in [11], and its aim is to relate
Jacobi Eisenstein series of Siegel type to symplectic Eisenstein series (of Siegel type).
We extend their results to include level, character and - more importantly - we deal
also with the case of totally real field. This last generalization requires development of
some new techniques in case the class number is not trivial. In this section the Jacobi
FEisenstein series is denoted by a bold E, and the symplectic by a normal E.

We start with the following lemma, which gives us good representatives for the sets
(P" N ¢T¢ 1Y) \ CT, where ¢ € Sp,(F), and T is a congruent subgroup of the form
H x Po(b, C).

Lemma 8.1. A set of representatives for the left cosets (P™ N (T¢Y) \ (T is given by
(>‘7 07 O)ry) A€ Ml,n(o)v AS PN CFO(bv C)Cil \ Crﬂ(ba C)-

Proof. First note that (T' = ((H xT(b,¢)) = Hx(Ty(b, ¢) and, similarly, P"N¢T¢(! =
P"N(H x(To(b,c)¢™1), which is nothing else than the set (HFNH)x (PN¢To(b, ¢)¢h).
Now, since

(PN ¢To(b,e)¢")H = H(P N (To(b, )¢,
a set of representatives for the cosets is given by a product of representatives for (Hj N
H)\ H and for (P N (To(b,c)¢1) \ ¢(To(b,c). This is precisely the statement of the
lemma. Il

Now recall the expression (11) for an Eisenstein series of Siegel type:
B(zs) = 3 N@O)® 3 xh16() s,
ez YEQ¢

where Q¢ = (P 1 ¢To(b,¢)¢™1) \ (To(b, c).
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We set E¢(z,s) := Z’YGQC x[1)6(2)*~*/2|}. 57. Clearly, the analytic continuation of

E(z,s) and its set of possible poles would follow by establishing such a result for
all the E¢(z,s),as ( € Z.

If we write v = hg and z = (7, w), then
Ec(z5) =Y x[W6(2) sy = xIWJis(y.2)o(gr) 2.
vEQ¢ vEQ¢
Further, by Lemma 8.1,
Ec(z5) = Y xlgli(g,7)"6(g7)* " Pea(—tr (S[w](cy + dyg) "¢y))
9€Q¢
D ea(tr (ASw(cym +dg) ) + tr (S[\g - 7).
AEMl’n(O)
For a lattice L in M, (F') we define the Jacobi theta series
O5..(2) = OgL(r,w) := Y ea(2tr (ASw) + tr (S[A]7)).
A€eL

Recall (Lemma 4.2) that the elements ¢ may be selected in the form diag[1,,—1,a¢, 1n—1, ag_l].
In particular, for an element g € Q¢ of the form g = (g1,

cgT +dg = (cc(917) +d¢)(cg, 7+ dg,) = (1%1 af! ) (cg T +dg,)
and
g-7T=CT= (1"71 a<> (g1-7) (1"*1 ac)'
That is, we may write

Y. eal2tr(ASw(eyr +dg) ") +tr (S[Ng - 7)) = Osa,, (91 - T, w(cg, T +dg,) ),
)\EMlm(U)

where Ay, = M; (o) (1”‘1 ac

ln—1
) and g = (g1. Moreover, because ¢, = ( " a—l) Cqr
¢

ea(tr (S[w](cym + dg)ilcg)) = ea(tr (S[w](cg, 7 + dg1)7lcgl))-
Hence,

Ec(z,5) = Y Xlglilg,m)Fa(gm)* M 2ea(—tr (S[w](cg, T + dg) " e4,))Os . (912).
9€Q¢

We now set 'Y := Sp, (F) N DY, where D? := D[b~!,b], if | is even, and DY :=
D=1, 6] N D[2071,20] if I is odd. For v € T?, 7 € H? let j(v,7)"/? := h(y,7), where h
is the half-integral factor of automorphy as defined for example in [24, page 180]. Then
for I odd and v € T'? we have

0,2 = hy, 1) (r, ).

Therefore it makes sense to define

O5Aa (250727 = h(y,7) " g9 (7, Z)_1@S,Aa< (v2), ~ver?
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In fact, for a sufficiently deep subgroup I, of finite index in I'g(b,¢)) N D? we have
that (see [24])

@S’Aai (Z) = ws(gl)@&[\a( (Z), for all g1 € F“(’

where g is the Hecke character of F' corresponding to the extension F(det(25)Y?)/F
if I is odd, and to the extension F((—1)"*det(25)'/?)/F if | is even.

Moreover, for every g € Q¢ such that g = (g1, g1 € I'o(b, ¢), we have
X9l (g, 7) *8(g7)* M 2ea(—tr (S[w](cg, ™ + dgy) " eq,))Os ., (912)
= Npjglac)"*vs(ac)dlglilg. )~ <k_l/2)5(97)5_k/2(®S,Aa< (2)l5,/291);
where ¢ := x¥g, and we have used the fact that

39, 7) = 3(Co1,7) = 5(C, 91 7)j(91,7) = Npyglac) ™ igr, 7).

In particular, if we set Q’C := (T, we obtain

E¢(z,5) = Npjo(a)Pus(ag) Y XDI(E(rs = 1/49)Osa,,(2))|s w7,
¥ETa \To(b,c)

where E¢(7,s) = deQg dlgli(g, )" B2 §(gr)s—k/2+/4 is a symplectic Eisenstein se-

ries of Siegel type of weight k — [/2. Since the above sum is finite, it follows that the
series E¢(z,s) has poles at most at the same places where E¢(7,s — [/4) may have.

Hence our focus now moves to detect the poles of the series E¢(7,s). Series of this form
appear as summands of the classical (i.e. symplectic) Siegel Eisenstein series of some
(perhaps half-integral) weight k£ and character y, namely

E(r,x,8) = E(r,5) = Y N(a(¢))* > x[16(r)* ™|,
ez YER,

where

Be(r,x,8) = Ec(r,8) == > X[V6(7)" "2 |y.
'YERC

The analytic properties of F(7,s) are well known, and thus we may use them to derive
similar properties for E¢(7,s).

We will use discrete Fourier analysis on the class group CI(F) of F. Recall that
CI(F) =2 A;/F*U, where U = FX T], 0. Moreover, we may pick the representatives
a(¢) for CI(F) in such a way that the (’s form the set of representatives for the set Z
(see [22, Lemma 3.2]).

Note that for any character x and any character ¢ of CI(F),

E(r,xt,8) = Y _W(QON(@(¢)* Y x6(r) ey =Y w(QON(a(Q)* Ec(r, 5),

cez ~ER,: cez
that is, for every character ; of CI(F )
(r.x¥i8) = Y i QON(a(0) > Ee(r,5), i=1,2,...,cl(F),

ez
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where cl(F) denotes the cardinality of CI(F'). Since the characters 1; are linearly
independent over the group CI(F'), we can solve the linear system of equations with
respect to the unknowns N(a(¢))*E¢(7,s). In particular, the analytic properties of
E¢(7,s) can be read off from the ones of E(7, x4, s),i =1,2,...,cl(F). Hence, since

E((z,5) = Npjg(@)? Y (Be(r,s— 1/4)Os,n, (2))|575
’VGFGC\Fo(b,C))

we see that the analytic properties of E can be obtained from those of E(7, xt;, s) for
the various 1;’s. To do that we will employ the following theorem of Shimura [24] on
the analytic properties of symplectic Siegel type Eisenstein series, where

T, (s) := 7"~ 1/4HI‘ —7/2).

Theorem 8.2 (Shimura, Theorem 16.11 in [24]). For a weight k € 1Z2 we define

vEa
where
(T (s+ 2 — [242]) Tu(s+ %) ifn/2<h€Z nc2L,
Tp(s+2) ifn/2 <h€Z, nc2Z+1,
Dopir(s + B T2 T(2s — i) if0<h<n/2 hez,
V(s h) = D (s+ 5t = [240=2]) T (s + h/2)  ifn/2<h&Z, ne2Z+1
2 4 n 9 )
(s +h/2) ifn/2<heZ, ne?2Z,
(Ponga(s + BT h  T@s —i—3) if0<h<n/2, h¢Z

We also set E(s) := G(s)A} (s, X)E(z, x; s), where
n (s.y) = 4 D250 17 Lo(4s — 26,2 if k e 22,
RS XTA T2 L ogs — 20 41,32 if kg 22

The function E(s) has a meromorphic continuation to the whole of C and is entire if
X2 # 1. If x> = 1, we distinguish two cases:

(1) if x> =1 and ¢ # 0. Set m := minyca{ky,}. Then if m > n/2, the function E(s)
has no poles except for a possible simple pole at s = (n + 2)/4, which occurs
only if 2|ky| —n € 4Z for every v such that 2|ky| > n. If m < n/2, then £ has
possible poles, which are all simple, in the set

o  J{i/2:5€Z,[(n+3)/2] <j<n+1-m} if k € 72,
g {2 +1)/4:j€Z,1+[n/2) <j<n+1/2—m} ifk¢Z"

(2) if x>=1,c=o0, and k € Z2. In this case each pole, which is simple, belongs to

the set of poles described in (1) or to
S =1{j/2:j€2,0<j<[n/2},

where j = 0 is unnecessary if x # 1.
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We can now state a theorem regarding the analytic properties of the Eisenstein series
E(z,,s), which extends a previous theorem due to Heim [11, Theorem 4.1]. Recall
that 1g is the Hecke character of F corresponding to the extension F(det(25)Y/?)/F if
I is odd, and to the extension F((—1)*det(25)'/2)/F if | is even.

Theorem 8.3. With notation as above, let

8(8) = gk—l/2,n<3 - 1/4) Zfl/2,c(8 - l/47 XwS)E(27X7 S)'

The function € has a meromorphic continuation to the whole of C, and its poles are
caused by the functions

Azfl/zc(s - l/47 X¢5) i —
Ry s~ Udxost)’ | 0T

These poles may appear only when F has class number larger than one and supp(c) #
supp(cond(xs)). More precisely:

(1) Assume that x*¥? # 1 for alli=1,...,cl(F). Then E(s) has no extra poles.
(2) Assume that there exist 1; such that x*¢? = 1. Then we consider the following
cases.
(a) ¢ # 0. Set m := minyea{ky, — /2}. If m > n/2, then the function E(s)
has no extra poles except for a possible simple pole at s = (n+2)/4, which
occurs only if 2|k, — /2| — n € 4Z for every v such that 2|k, — /2| > n.
If m < n/2, then all possible poles of € are simple and belong to the set

(1)
Sklij2
(b) ¢ =0, and k—1/2 € Z*. In this case each extra pole is simple and belongs

to the set described in (a) or to

S =1/2:5 € 2,00<j <[/},

cl(F).

where j = 0 is unnecessary if xy # 1.

Before we proceed to the proof of the theorem we recall the following fact regarding
zeros of Dirichlet series. For a Hecke character ¥ of F and an integral ideal ¢ we
considered the series

Le(s,v) == [J(1 = w(@)N(a) ") L(s,9)
qle
with functional equation
TIT(Gs +t0)/2)L(s, ) = Wb, 9) [ T((1 = 5+ ) /2) L(1 = s,9),

where W (1), s) is a non-vanishing holomorphic function, and ¢, € {0,1} is the infinite
type of the character. It is well known that if ¢ # 1, then L(s, 1) # 0 for Re(s) > 1,
and [ ca I'((s + ky)/2)L(s,1)) is entire. If ¢p = 1, then this function is meromorphic
with simple poles at s =0 and s =1, and L(s, %) # 0 for Re(s) > 1.

The absolute convergence and the functional equation imply that if two non-trivial
characters 11 and 19 have the same infinite type, then the zeros of L(s, 1) and L(s, 1)
as well as their orders are the same at the integers of the real axis. Namely, for any
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0<mé€Z, L(—m,1) = L(—m,19) = 0 if and only if there exists v € a such that
P1(xy) = Yo(xzy) = sgn(zy)™. Moreover, the order of the zero equals precisely the
number of places where this is happening. In particular, the function

Le(s, 1) _ 11 (1 —=91(q)N(a)~%) | L(s,¢1)
Le(s,92) (1 —t2(q)N(q)=%) | L(s,¢2)

A= (N(@)~*)
ale (T—y2(q)N(q)~*)

qle

may have poles only at the integers where [] has poles.

If the characters ¢; = 1 and o have trivial type at infinity, then the same argument
as above shows that the function
LC (87 1/}1)

LC (Sv 1/}2)
may have poles at the integers where the function Hq| . %

ever, this time there may be an additional zero also at s = 0. This is because at this
point the order of vanishing of L(s, 1) is smaller by one from the order of vanishing of

L(S, wg)

Proof of Theorem 8.3. First note that since 1);’s are the characters of CI(F) = A5 /F*U,
where U = F* [], 0., their signature is trivial, that is, 1;(z) = 1 for all z € F}. In
particular, the characters x¢s and x1gt;, i = 1,...,cl(F), have the same signature
at infinity. The discussion above implies that the functions A}_, /2, (s —=1/2,x1bs) and

has poles. How-

AZ—1/2 (8 =1/2,xv¥sv;) have the same zeros on the integers at the real line, and the

AL ol — /4, xi0s)
Azfl/zc(s - l/47 X¢S¢z)

may have poles in cases indicated in the theorem. However, then (Theorem 8.2) the
series

AR 12,008 = 1/4, x¥s)
AZ,l/gyc(S —1/2, xsvi)

does not have any more poles unless sziz = 1 for some %, in which case the poles are
as described in the theorem. O

ratio

Gr—1/2n(s — U4)AZ—1/2,¢(5 —1/4, x2bsi) E(T, xtbirhs, s — 1/4)

Remark 8.4. The analytic properties of Jacobi Eisenstein series presented in Theorem
8.3 were obtained from the well-studied symplectic Eisenstein series via establishing
the link between these two kinds of Eisenstein series. However, perhaps one could also
try to use the results of Arakawa in [2] on the Fourier coefficients of Jacobi Eisenstein
series.

9. ANALYTIC CONTINUATION OF THE STANDARD L-FUNCTION

We are now ready to establish two main theorems regarding the analytic properties of
the standard L-function and the Klingen-type Jacobi Eisenstein series. The approach
taken here can be regarded as an extension from the symplectic to the Jacobi setting
of the method utilized in [22].
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We keep the notation introduced at the beginning of section 7 and additionally we
define groups

D' = {(\ p,x)z € Clo,b 67 D[b ¢, be] : (ap — 1)y € My (e,) for every vle},
=G"(F)nD
and
R(e,) i= {diagld,q] : 4 € Q¢), v € Ma(cy) for every vle~c}.
For diag[q, q] € R(e,c) and f € M} ¢(T',¢), in a manner similar to f|T},y, we define

(28) f|Uq,w = Z ¢c(det(a6)c)_1f‘k,5ﬂa

BeB

where B C G™(F) is such that G"(F) N Ddiag|g,q|D’ = [Igep I'B. As in section
7, if we write f|U, . for the adelic Jacobi form associated to f|U,, (with g = 1) and
Ddiag|G,q| D’ = HﬂeB Dpj with B C Gy, then

(£]Ug,0) (= Z Ye(det(ag).) " H(zB71), r € G"(A).
BeB

For the rest of this section we assume that f € S s(T',9) is a non-zero eigenfunction
of Ty (a) for every a with eigenvalues A(a). Note that T (a) # 0 only if a is coprime to
e.

We start with a version of [22, Lemma 6.2] for Hecke operators in our Jacobi setting.

Lemma 9.1. Let h be an element of A} such that its corresponding ideal is ¢ e and
hy = 1 for v { e tc. Then Uy = T, 4Un1, .y for every r € Q(e). Moreover, for
fe MQS(I‘,@D) we have f|Th1, » 7# 0 only if f|Up1, 4 # 0.

Proof. To prove the first statement it suffices to show that

D("'7, )D'=D(",)D-D (", D

hl,
This may be done place by place. As we established in (26),
Ty _ d db
D, < m) D, = d|7| D, (0, 11,0) ( d)
b 7#

at each place v|c, where d € GLy,(0,)\GLy(0,)7,GLy(0,), b € Symy, (b, 1) /'dSym., (b 1)d
and pu € My ,(by1)d™t /M, (b, 1). Using the same argument and a double coset decom—
position for Symplectlc groups, we get

h;lfv ch Czlbl
DU < > |_| D 0 Ul) < dl ’
dy,b1,01
where d; € GLy,(0,)\GLy(0,)hyroGLy,(0,), b1 € Symy, (b, ey)/!d1Sym, (b, 1)d; and
v1 € My, (b Y)dy I/Mln 1. In particular, if we take 7 = 1,, and a coset decom-

position over ds, by, va, then we can take do = h,l, and it is easy to see that the
set

s —1 -1
{(0,12,0) (7 ) (0,2, 0) (1 ) < 1w, by b, )
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-1 hi'd hy td(ba+h2b) Y .
= {(0, p + vod ,0)( (hfju)),ﬂ,vz,b,bg,d}
represents D, \(D ("' o) D)o for each vle.

To prove the second statement we use Proposition 3.4. We recall that the Siegel-Jacobi
modular form f and its adelic counterpart are related by f(y) = Ji s(y,%0) " f(y - %0),
for every y € Ga. Moreover, recall that the symmetric space H, ; is contained in

{y -0 : y € Gu of the form (A, 11, 0) (qchq>}_

For an « of the form (0,v,0) (h711" }};b), with v, = 0, byg = 0, and y € G(A) such
that y, = (0,0,0)12, and y, as above, we have

— -1(_ oq
ya~ = (A 1,0)(0, ~hw'q,0) ("' (ZreD )

—abtoto h—15
= (= b, —hag'y — 'l (P PR

and thus by the expansion (6),
f(ya_l) = Z c(t,r; hq, Nea(tr (to — tqbtq))eA(tr(tr()\J —\gblg+p— hv tq))) =

t,r

Zc(tar;th )\) Hev(tr(_t(hbv th)) Hev tl" —hyvy qy))) ea(tr (ta—i—tr()\a—l—,u))).

t,r vlc vlc

Hence,

f|Th1nﬂﬁ(y) = Z@DC(hC)nZ (t,r;hg, \) Hev (tr (—tquby qU + 7"( hyvy t(Jv)))
t,r

vlc
ea(tr (to + r(\o + ),

where b € [, Symn(by B /h2Sym, (b, 1), and v € [ Lo Min(by Yhyt/My,(b,1). That
is, if we write c¢(f|Th1,,u;t, 71, A) for the (¢,7)-coefficient of £|T},1,, 4, we have

C(f’Thln,w; t7 riq, )\) = wC(hc)n Z H ev(tr (_tQUbU tQU + tr(_hvyv tQU)))

b,v vle

Therefore, if

en(tr (‘gtgh™2Sym,(b™1))) =1 and en(tr(y ter,n(bfl))) =1,
then

(][ T3t 73 0, ) = N (e )" g (he)e(t v ha, V),

otherwise ¢(f|Th1,, 4:t, 759, A) = 0.
Arguing exactly in the same way we can also conclude that if both

en(tr (‘gtgh™2Sym,(671¢))) =1 and ey(tr(Y ter’n(bfl))) =1,
then

e(f|Un1, it 70, A) = N (7o) D2y (he) et i b, V),

otherwise c(f|Up1, ;¢ 759, A) = 0, where we write c(f|Up1,, 4;t,7;¢,A) for the (t,r)-
coefficient of f|Up1,, -
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Hence, if £|Up1, 4 = 0, then c(f|Up1, ;t,79,A) = 0 for all ¢,r. In particular, if
for a pair ¢,r both ep(tr (‘gtgh=2Sym, (b7 1c))) = 1 and en(tr (‘grM;,,(671))) = 1,
then c(t,7;hg, \) = 0 and hence also ¢(f|Th1,, 4;t,7;¢,A) = 0. If on the other hand
for a pair t,7 either ey(tr (‘gtgh=2Sym,(b71c))) # 1 or en(tr (‘girM;,,(b71))) # 1,
then also either ey (tr (‘gtgh=2Sym,(b71))) # 1 (since Sym,,(b=1c) C Sym,(b=1) ) or
en(tr (‘g'rM;,(b71))) # 1, which also implies that c(f|Th1, v;t,7;¢, A) = 0. Therefore
£ T}, = 0. O

We now fix uniformizers m, € 0, for every finite place v in the support of e. Then for a

fractional ideal t we pick ¢t € A, such that t is the ideal corresponding to the idele ¢,

and at every place v|e we have t, = morde (t), where ord,(-) is the usual valuation at the

place v. Further, we set 7 := 1ydiag[t—'1,,t1,] and define an isomorphism
I M7 o(D ) = MR g(v7' D7), f|I(z) == ¢({")f(zm") (z € G"(A)).
Lemma 9.2. The map I has the following properties:

(1) it is independent of the choice of t,
(2) it commutes with the operators T, and Uy y,
(3) (f|1)¢ = f¢|I, where f is the Siegel-Jacobi form corresponding to f.

Proof. (1) If ¢ € A} is another idele that corresponds to the ideal t, then t = #'
for some I € [], ¢y, 0

YA (zT ) = (1)) f (zdiag[t' 1, t' 1, ]diag[l1,, 1" 1,]15)
= p(t"™)f(zdiag[t'L,, ' 1,]15),
where we have used the fact that diag[i1,,l='1,] € D since I, = 1 if vle.
(2) This follows from direct computation, e.g. in case of T} y:
77! Ddiag[F, 7| D = Ddiag[F, 7| D¢t 1,
where
D¢ :={(\p, k)€ Ottt oD et? bet™2): (az — 1n)y € My (ey) for vle}.

(3) By strong approximation we may write 7 = yd for some v € G(F) and d € D.
We moreover notice that since T has no Heisenberg part we may take v =
v € G(F) — G(F), and d € D — D. Furthermore, for € := diag[l,, —1,],
eTe ! = eye lede™! as elements of G(F). Note that ede™! € D and eTe™! = 7.
Clearly, without loss of generality we may assume that ¢ = 1. Then (f|[)¢ =
(fle.sv)¢ = fClesevet = f¢|I;, where for the second equality we have used
Proposition 7.9.

O

Let x be a Hecke character as in subsection 4.1 and assume that x = 1) on Hv’f@ 0.
Then S,?’S(D,w) = S,ﬁ s(D, x) since the nebentype depends only on the finite places
that divide ¢ and is trivial on places that divide ¢ (det(ay) = 1 mod e, for hg € D).
Moreover, the Hecke operators are related via:

(/%) (@)w* (a)Typ(a) = x* () Io(a), (/)" (7 €)" Unt,i = Untys
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where o’ := [Toe av. Put 7 := 1y diag[f 11n,c91 | with 6 as in Lemma 5.3. Then the

set Y, is equal to the set (7~ 'DR(e,¢)D'T), at every place v. Put
Ag) :== (G"(F)nT~'D7)\ ( ynGr[[¢="'D(7,) D/‘T)v> :
veh
For f € S¢ o(T',¢) such that f|Ty(a) a)f and for D defined as in (21) we have:
D(z,s, fI) = Y €)X (4 ))Xc(det(af))_l(f|Ib)|k,S£(Z)
ey
= > Z (det(g)o)~*x* (] [ (det(g)o)w)xe(det(ag)) ™ (116)|k.s8(=)
geR(e,c) BEA(g vfe
ety ”SZN (FI2) | T (@)U, 0 (2)

_ "SZN *(/)* ()¢ (@)M@) f[Un, i Lo (2)-

Joining the above formula for D(z, s, f|I,) together with (22), after setting f¢|I, for f
there, we obtain

N(be™"e)*"xn(0) " (= 1)~ 2vol(A) < (Ely,sp)(diaglzr, 22, 5), (f|To) (2) >
= vecs k(s = k/2)E(21, 5 (flUn1, x o) kst ) D N (@)™ (x/9)*(a)3* (@) A(a),

where we have used the fact that (f¢[Ip)¢ = f|p.

After multiplying both sides of the above equation with Gy_; /2 4 (5 — l/4)AZ+;72 (5=

l/4,xvs) with notation as in Theorem 8.3 and setting £(z,s) = Gip_i/2nim(s
l/4)AZ+lr72 (s =1/4,x¢s)E(z, s), we obtain
N (Be6)25 xu(6) (=)™ M Duol(A) < (Ely sp) (dinglz1, 2], ), (F1T6)(22) >

= vecs k(s — k/2)Gk_1/2,n1m(s — /A E (21, 5; (f|Un1, xTo) k575 ")

AT (s = 14 xbs) ZN 2 (x /) (@)t (@) A(a),
where we recall that

[(n+m)/2] .
n 2s —1/2, xv L —1-2i,x%) ifle2z,
A (8, x0s) = { 4 s iz ot :

[l D2 (45 — 1—22+1,x) if 1 ¢ 27.

By the discussion in subsection 7.3, we have that

Sy 25 = —1/2) Y N(a) 7% (x/4)" ()" (") A(@) = Ly (25 —n — 1/2,£,x¢™")

with L4(x¥ 1,25 —n —1/2) = [Lp,0=1 €p(x, 25 —n —1/2), where

[T, Lp(4s — 1 — 2i,x?) if | € 27,

iy ,28) =G ,2s—n—1/2
p(X S) p(X s§—n /){HzlzlLP(4S_l_2l+17X2) 1fl¢QZ
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That is, we obtain
N(be ™ ¢) xn(0) " (—1)" 2ol (A) < (E|k,sp)(diag[z1, 22, ), (f[1s)(22) >
= veCs k(s — k/2)Gk_1/2,n1m(s — 1/A)E (21, 8; (f|Un1, 5 o) lk,57 ")

(29) CG(x,25 —n —1/2)  Ly(2s —n —1/2,f,x¢ ™)
{ (25 — 1/2, xtbs) [T Lo (4s — 1 - 26, x2) if L € 22,
1 m a2 L (s — 1 — 20 4+ 1,x2) if 1 ¢ 27,
where we have set
(30) G(x,2s—n—1/2) = H Gp(x,2s —n—1/2).
(p,e)=1

In particular, if m = n, we obtain
N(be " e)® ™y (0) " (—1)" " Puol(A) < (E|k,sp)(diaglz1, 22], 5), (f[T6) (22) >
(1) = vecsr(s — k/2)Gu1/2.20(s — 1/ (f|Un1,xLo) k,smn ' G(x, 25 —n — 1/2) 7"

1 Le(2s —1/2,xg), if 1 € 2Z
cLy(2s —n—1/2,f 1 ¢ ’ ’ ’
p(2s —n—1/2,8,x¢ ){1, it 1¢27.

We are now ready to prove our first main theorem regarding the analytic properties of
the function Ly (s, f, x), which should be seen as an extension of the Theorem 6.1 in
[22] to the Siegel-Jacobi setting.

Theorem 9.3. Let £ € S ¢(D,) be a Hecke eigenform of index S which satisfies
the M; condition for every prime p 1 ¢. Moreover, let ¢ be a Hecke character of F of

conductor f4 such that ¢a(x) = sgn(za)k. Write x for the product of all primes ideals p
in the support of ¢~ ‘¢ such that f|Tr,1,,0 = 0. Then the function

LC(S + n7¢¢w3)7 Zf l e 227

ATﬁ:?(S? f7 ¢) = La(S, k)LTﬁ,P(S? f7 ¢) ' {1 ’Lf l ¢ 27,

where
La(s, k) := csr((s +n—k)/2+1/4)Gy1/2.20((5 +71)/2)
has a meromorphic continuation to the whole complex plane. More precisely, the poles

are exactly the poles of the Eisenstein series E((s+mn+1/2)/2) as described in Theorem
8.3 plus the poles of the function G(x, s+ n).

Proof. The theorem follows now from equation (31) and Theorem 8.3 arguing similarly
to the proof of [22, Theorem 6.1]. Assume first that f,|e, which is equivalent to ¢, (0, ) =
1 (i.e. ¢, is unramified) for all v that do not divide ¢ and that f4|c. Then we can use
the equation (31) with x := ¢1. We obtain the statement of the theorem by observing
that the function Ly (s, f, ¢) may be obtained by changing e to e Hv\; ¢, and employing
Lemma 9.1. This guarantees that the equation (31) is not trivial (0=0) and hence we
can read off the analytic properties of Ly (s, f, $) from those of £.

We also give the proof of the general case by repeating the idea which was used to show
[22, Theorem 6.1]. Set ¢ := ¢Nf, and decompose ¢ = ¢%e! with (¢, ¢!) = 1, such that

¢ = ¢ for every v|erfs, and ¢J = o, otherwise. Then if D" denotes the group D with
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¢?,¢% in place of c and e, f € Sg}S(DO,lﬁ) = Z,S(DO»X)- In particular, we can apply
the argument of the previous paragraph with x := ¢ and the group D° to conclude
the proof. O

Remark 9.4. The proof above indicates the significance of considering in the whole
paper the case of a non-trivial ideal e¢. Indeed, let us consider a cusp form f €
Sp (Db, be],9), that is with ¢ = o, and assume for simplicity that r is trivial.
Méreover, consider a Hecke character ¢ whose conductor f, - again, for simplicity - is
prime to ¢. Then ¢ = ¢y and ¢® = f4, and thus we need to consider non-trivial ¢ even
if we start with a form of trivial one.

Now we can also prove a theorem regarding the analytic continuation of the Klingen-
type Jacobi Eisenstein series attached to a form f in the case of ¢ = ¢.

Theorem 9.5. Let f € Sg7S(F) be a Hecke eigenform with T = D N G where we
take ¢ = ¢ (i.e., in particular ¢ = 1) and let x be a Hecke character of F such that
Xa(z) = sgn, (z)*. Then the Klingen-type Eisenstein series

8(27 S fa X) = CS,k(S - k/Q)gk—l/Q,n-i-m(S - l/4)A(Sa fa X)E(Zv S5 f7 X)7

where

A(s. f.x)=L(2s-n—1/2, f,><>{ (25— 12, x0s) [TV P Lelds — 1= 2i,%), L€ 2z,

L2 L (s — 1 — 20+ 1,53), 1 ¢ 27,

has a meromorphic continuation to the entire complex plane.

Proof. We need to rewrite the equation (29). First note that since ¢ = ¢, we have
Uni,x = 1. Now we extend an argument in [23, page 569] to the Siegel-Jacobi case.
Observe that for every finite place v we have Y, = n,,D,R,(c)D,n;,; . Further, con-
sider the isomorphism

Sks(D) = SI?,S(b)a £ £l sm,,

where D := C[b~%, 0,67 D[be,b~1c]. Note that since ¢ = ¢ we do not have any
nebentype (i.e. ¥ = ) Now note that for any g € R(c)

n,DgDn;,;' = DgD,

and hence we can conclude that (f|Ty)|x,sm, = (f\hsnn)]if\;, where T; denotes the

Hecke operator defined with respect to the group D. Putting all these observations
together we see that the equation (29) can be also written as

G(x,25 —n —1/2)N(be ™ )*"*xu(0) 7" (~1)""*/Dwol(4)
< (Elr,sp)(diaglz1, 22], 5), (fr,51m,)(22) >
(32) = veCs k(s = k/2)Gi_i/2nem(s — U/4)A(s, f,x)E(21, 55 f),
where, recall, G(x, 2s —n —1/2) is meromorphic on C. In particular, we can extend the
Klingen-type Eisenstein series to the whole of C with respect to variable s by using the

analytic properties of the Siegel-type Eisenstein series. Moreover, we can read off the
various poles from this expression. O
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10. ALGEBRAICITY OF SPECIAL L-VALUES

In the previous section we proved results on the analytic continuation of the standard
L-function attached to a Siegel-Jacobi eigenfunction f. Assuming that one can define
a sensible algebraic structure on the space of Siegel-Jacobi modular forms, it is natural
to ask whether a “Deligne’s Conjecture”-style result may hold for some values of the
standard L-function, which are often called special L-values.

As we indicated in the introduction, this is indeed the case for Siegel modular forms,
as shown for example in [26, 24]. Indeed, by using the theory of canonical models for
the Siegel modular varieties (as it is explained in [24, Chapter 2]), one can define an
algebraic structure on the space of Siegel modular forms, and for an algebraic eigen-
function establish algebraicity results for the special L-values of the attached standard
L-function (see for example Theorem 28.8 in [24]). Furthermore, one can, conjecturally,
attach a motive to such a Siegel modular form, such that the associated motivic L-
function can be identified with the standard L-function (see for example [27]). Then
the special values of the standard L-function can be identified with the critical values
of the motivic L-function and then the algebraicity results can be seen in the light
of Deligne’s Period conjectures [8] (up to the difficult issue of comparing motivic and
automorphic period).

The main aim of this section is to establish results indicating that the picture described
above holds also for Siegel-Jacobi forms. That is, we will establish results towards the
algebraicity of special L-values of Siegel-Jacobi modular forms. The starting point of
our investigation is the paper of Shimura [19], where the arithmetic nature of Siegel-
Jacobi modular forms is studied. We should remark right away that the paper of
Shimura is written for F' = Q, but it is not very hard to see that almost everything
there can be generalized to the situation of any totally real field F'. Indeed, in what
follows, whenever we state a result from that paper, we will always comment on what
is needed to extend it to the case of a totally real field.

In this section we change our convention: we will write f (instead of f) for Siegel-Jacobi
modular forms, f will still denote the corresponding adelic form, and f will be used for
other types of forms.

10.1. Arithmetic properties of Siegel-Jacobi modular forms. For a congruence
subgroup I of G(F) and a subfield K of C we define the set

Mp (T, K) == {f € Mi's(T,¢) : f(r,w) = > _c(t,r)ealtr (tr + rw)), c(t,r) € K};

the subspace S} ¢(T', 1, K) consisting of cusp forms is defined in a similar way. More-
over, we write M}!¢(K) for the union of all spaces My g(T'1(b,¢), K) for all integral
ideals ¢ and fractional ideals b, where I'1 (b, ¢) := G™(F') N D1(b,¢), and

Dy(b,¢) :={(\, p,x)z € Clo,b7 1,671 D[b 7 e, be] : (az — 1)y € My (e,) for every vle}.

For an element o € Aut(C) and an element k = (k,) € Z* we define k7 := (ky,) € Z?,

where vo is the archimedean place corresponding to the embedding K SCcS C, if
is the embedding in C corresponding to the archimedean place v.



64 THANASIS BOUGANIS AND JOLANTA MARZEC

Proposition 10.1. Let k € Z2, and let ® be the Galois closure of F in Q, and ®, the
subfield of ® such that

Gal(®/Py,) := {0 € Gal(®/F) : k° =k}.
Then M &(C) = Mj'4(®y) @, C.

Proof. If F = Q, this is [19, Proposition 3.8]. A careful examination of the proof [19,
page 60] shows that the proof is eventually reduced to the corresponding statement
for Siegel modular forms of integral (if  is even) or half-integral (if [ is odd) weight.
However, in both cases the needed statement does generalize to the case of totally real
fields, as it was established in [24, Theorems 10.4 and 10.7]. O

Given an f € M 5(C), we define
fulr,w) == ea(Sw(r — 7))~ w) f (7, w)

and write Q? for the maximal abelian extension of Q. Moreover, for k € %Za such that
ky — % € Z for all v € a we write M;® for the space of Siegel modular forms of weight k,
and of any congruence subgroup, and M (K') for those with the property that all their
Fourier coefficients at infinity lie in K (see for example [24, Chapter 2] for a detailed
study of these sets).

Proposition 10.2. Let K be a field that contains Q* and ® as above. Then

(1) f € M{¢(K) if and only if f.(1,vQ,) € Mp(K), where Q; := {1 1,), and
v E Ml72n(F).
(2) For any element v € Sp,(F) — G"(F) and f € M} 4(K), we have

Fle,sv € Myl g(K).
Moreover, if K contains the values of the character v, then if f € MﬁS(I‘, v, K),
it follows that f|T, € M} ¢(T',v, K) for any r € Q(e).

Proof. If F = Q, this is [19, Proposition 3.2]. It is easy to see that the proof generalizes
to the case of any totally real field. Indeed, the first part of the proof is a direct
generalization of the argument used by Shimura. The second part requires the fact
that the space M;'(K) is stable under the action of elements in Sp,,(F'), which is true
for any totally real field, as it is proved in [24, Theorem 10.7 (6)]. The last statement
follows from the definition of the Hecke operator T;. . O

For a symmetric matrix S € Sym(F), h € M;,(F') and a lattice L C M;,(F) we
define the Jacobi theta series of characteristic h by

1
Os,Ln(T,w) = ea(tr (SG @+ h)r(@+h) + (2 + h)w))),
xeL
Theorem 10.3. Assume that n > 1 or F # Q, and let K be any subfield of C.
Let A € GLy(F) be such that AS'A = diag[si,...,s)], and define the lattices Ay =
AM;,(0) C My, (F) and Ay = 2diag[sy’, ..., s; |Mn(0) C My, (F). Then there is
an isomorphism
o Mig(K)= @ My, (K)
heAi /A2
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given by f > (fn)y, where the fr, € M} 1/2( ) are defined by the expression

= > [u(7)Oaspn(T,w).

hEAl/AQ

Moreover, under the above isomorphism,

o P Sppn(K) | CSps(E).
hEAl/AQ

Remark 10.4. We remark here that the assumption of n > 1 or F' # Q is needed to
guarantee that the fj’s are holomorphic at the cusps, which follows from the Koécher
principle. However, even in the case of F' = Q and n = 1, if we take f to be of trivial
level, then the f;’s are holomorphic at infinity (see for example [9, page 59]).

Proof of Theorem 10.3. The first statement is [19, Proposition 3.5] for F' = Q and it
easily generalizes to the case of any totally real field. We explain the statement about
cusp forms.

Consider first expansions around the cusp at infinity. Fix h € A1/A2 and let fj(7) =
> i,50 C(t2)ea(tr (t27)). It is known that Fourier coefficients c(t1,7) of a Jacobi theta
series

O25,A0,1 (T, W) = ZC(tl»T)ea(tr (t17))ea(tr (‘rw))

t1,r

are nonzero only if 4t; = rS~1% (see [28, p. 210]). Hence, the coefficients of

fa(T)Oas ap (T w) = ( > c(tl,r)c(t2)> ea(tr (t7))ea(tr (rw))

t,r t1+ta=t

are nonzero only if 4t = 4(ty + t3) = rS~'% + 4ty > rS~'%. This means that the
function f,(7)Oag a,.1 (T, w) satisfies cuspidality condition at infinity.

Now let v be any element in Sp,,(F). The first statement in the Theorem states that
for every hy € Ay/Ay there exist fp, n, € M,?_Z/Q(K), ho € A1/Ag, such that

28,42, |k, (T; W) thl he (T)O25,A,hs (T, W)

Hence, for some cusp forms fp,, € S}, /2(K ),

Flesvy(m,w) = thl\w thl ha (T)©25 Ay 1y (T, W)

_Z th1|k7 ) fr1ha (T) | ©28 0,1y (T, W),
ho

The same argument as used for the cusp at infinity implies that the functions f| sy(7, w)
and Dy, fy [kY(T) fry,ny (7) are cuspidal. This finishes the proof. O
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Note that the above theorem does not state that ®~—* (GahEAl/AQ SQ_Z/Q(K)) = S} o(K).
For this reason we make the following definition.

Property A. We say that a cusp form f € S} o(K) has the Property A if

P siipK

hEAl/AQ

Examples of Siegel-Jacobi forms that satisfy the Property A:

(1) Siegel-Jacobi forms over a field F of class number one, and with trivial level, i.e.
with ¢ = 0. Note that in this situation there is only one cusp. Then, keeping the
notation as in the proof of the theorem above we need to verify that if f(r,w) =
> ce(tr)ea(tr (t7))ea(tr (frw)) with 4t > rS~'% whenever c(t,r) # 0, then
the f, have to be cuspidal. Observe first that if hy,ho € A1/Ag are differ-
ent, Oasayh, (T,w) = 32, . c1(t,r)ea(tr (t7))ea(tr (rw)), and Ogg Ay h, (T, w) =
>t C2(t r)ea(tr (t7))ea(tr ( brw)), then there is no r such that at the same time
c1(t,r) # 0 and co(t,7) # 0. Indeed, if it was not the case then there would be
A1, Ay € Ay such that b = 25()\1 + hl) and fr = 25()\2 + hg), that is, Ay + b1 =
Ao 4 ho or, equivalently, hy — ho € As; contradiction. Hence, for any given r
there is a unique h € A1/As such that Oag 4, 5 has a nonzero coefficient c¢(t,r).
This means that there exists a unique h such that cg(¢,r) is the Fourier coeffi-
cient of f,(7)O25 . n(T,w) = 324 . 324 1y, (b1, 7)c(t2)ea(tr (E7))ea(tr ( rw)).
But then rS~r < 4t = 4(t; + tg) = S~ 4+ 4ty and so ty > 0, which proves
that fp is cuspidal.

(2) Siegel-Jacobi forms of index S such that det(2S) € 0%, as in this case the
lattices A1 and As from Theorem 10.3 are equal.

(3) Siegel-Jacobi forms of non-parallel weight, that is, if there exist distinct v,v" € a

such that k, # k. Indeed, in this case M 1/2( ) = Si_ l/2( ) for all h €
Ay /Ao (see [23, Proposition 10.6]).

Let us now explain the significance of the Property A. Recall first that we have defined
a Petersson inner product < f,g > when f,g € M}’ ¢(K) and one of them, say, f is
cuspidal. If f satisfies the Property A, then we claim that

< f,g>=N(det(9))™* > < fa,gn>.
heA1 /A2
Indeed, as in [28, Lemma 3.4],
< f,g9 >= N(det(4S)) ™ ?vol(A / > ful)gn(r) det(Im(r))F /2= gr,
heA1 /A2

where A = I'\H2 and a congruence subgroup I" is deep enough. We obtain the claimed
equality after exchanging the order of integration and summation. This can be done
exactly because each fj, is cuspidal, which makes each individual integral well defined.

Lemma 10.5. Assume thatn > 1 or F' # Q and that f € SZ}S(@) satisfies the Property
A and one of the following two conditions hold:

(i) there exist v,v' € a such that k, # ky;
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(ii) k = pa = (u,...,pn) € Z2, with p € Z depending on n and F in the following
way:
n>2 n=2,F=Q n=2F+#Q n=1
w>3n/2+1/2 w>3 > 2 w>1/2

Then for any g € Ml 5(Q) there ezists g := q(g) € S,?S(@) such that
<f,9>=<f,9>.

Proof. There is nothing to show in the case of non-parallel weight, since as it was
mentioned above there is no (holomorphic) Eisenstein part in this case. In the parallel
weight case, since f has the Property A, < f,g >= N(det(4S))"™/? Zh€A1/A2 <

fn,gn >. Let q : MI?—Z/Q(@) — 5271/2(@) be the projection operator defined in [24,
Theorem 27.14]. Then, if we put g, := q(gp) for all h € Ay /A9, it follows that

< f,9>=N(det(d9))™2 Y < fu,gn >= N(det(45)) ™ > < fuGn >
heA1/Az heAi/A2

In particular, if we set g :== ®((gn)n), we obtain the statement of the lemma. O

We consider now a non-zero f € SQ7S(F, Q) with T' := G N D, where
D :={(\p,k)x € Clo,b" 67 Db cp,bey] i (az—1,)y € Mp((cy)y) for every vley}.

We assume that f is an eigenfunction of the operators T'(a) for all integral ideals a,
write f|T(a) = A(a)f and define the space

V(f)=A{f € Sis(T,Q) : fIT(a) = A(a)f for all a}.
For simplicity, from now on we will only consider the case of ¢y = ¢g, but our arguments
can be easily generalized to the more general case of ¢y # ¢y. We are now ready to
state the main theorem of this section on algebraic properties of

Le(2s — 1/2,xtbg) if | € 27,

A(s,f,x)=L(2S—n—l/2afv><){1 if 1 ¢ 27.

Theorem 10.6. Assume n > 1 or F' # Q. Let x be a Hecke character of F' such

that xa(7) = sgng(x)*, and 0 # f € Sis(I,Q) an eigenfunction of all T'(a). Set
W= miny, k, and assume that

(1) w>2n+1+1, _
(2) Property A holds for all f € V(f),
(3) ky = ky mod 2 for all v, € a.
Let o0 € Z be such that
(1) 2n+1—(k, —1/2) <o —1/2<k,—1/2 for allv € a,
(2) |o— 5 — 2| 4 25l (g, —1/2) € 2Z for all v € a,
(3) ky >1/24+n(1+ky—1/2—]oc—1/2—(2n+1)/2| — (2n+1)/2) for allv € a,

but exclude the cases

(1) o=n+1+1/2, F =Q and x*v? =1 for some 1,
(2) o =1/2, ¢ =0 and xs; =1 for some 1;,
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(3) 0<o—1/2<n,c=0 and x\*¥? =1 for some ;.
(4) o <1+ mn in case F has class number larger than one.

Under these conditions

A(o/2 _
MGQ,
meo < f, f >
where
ey =13 (ky—l+0)—de, = n2+n—a+l/2, if 20 ~1 €27 and o > 2n +1/2,
vEa n-, otherwise.

This theorem will be proved at the end of this section. We first need to introduce the
notion of nearly holomorphic Siegel-Jacobi modular forms N,"¢(T) for r € Z2.

10.2. Nearly holomorphic Siegel-Jacobi modular forms.

Definition 10.7. A C* function f(7,w) : H,; — C is said to be a nearly holomorphic
Siegel-Jacobi modular form (of weight k& and index S) for the congruence subgroup T’
if

(1) f is holomorphic with respect to the variable w and nearly holomorphic with

respect to the variable 7, that is, f belongs to the space N” (Hfl) for some r € N
defined in [24, page 99];

(2) flr,sy = f forallyeT.
We denote this space by N;"¢(T') and write N, := [Up N, ’¢(T") for the space of all
nearly holomorphic Siegel-Jacobi modular forms of weight &£ and index S.

We note that if f € N:’g, then f,(r,v Q,) € N,?’T, the space of nearly holomorphic
Siegel modular forms, where recall Q. := (7 1,), and v € M 2, (F). Below we extend
Theorem 10.3 to the nearly-holomorphic situaton.

Theorem 10.8. Assume that n > 1 or F # Q. Let A € GLy(F) be such that
AS'A = diag[s1, ..., s, and define the lattices Ay := AM; ,(0) C M, (F) and Ay :=
2diag[s; !, ..., s |Myn(0) C My, (F). Then there is an isomorphism

N = DN,
heA1 /A2

gwen by f — (fn);, where the f, € N, k l/2 are defined by the expression

Z fr(T)O25 0, 1 (T, w).

hEAl/AQ

Proof. Given an f € N,"g, the modularity properties with respect to the variable w
show that (see for example [19, proof of Proposition 3.5]) we may write

> ful)Oasapn(T w)
hGAl/AQ

for some functions fp,(7) with the needed modularity properties. In order to establish
that they are actually nearly holomorphic one argues similarly to the holomorphic case.
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Indeed, a close look at the proof of [19, Lemma 3.4] shows that the functions f; have the
same properties (real analytic, holomorphic, nearly holomorphic, meromorphic, etc.)
with respect to the variable 7 as f(7,w), since everything is reduced to a linear system
of the form

f(r,w;) = Z In(T)O2s a0 n(Tyws), @ =1,...,8A1/As,
hEAl/AQ

for some {w;} such that det(©ag a, 1(7,w;)) # 0. In particular, after solving the linear
system of equations we see that the near holomorphicity of f, follows from that of f
since the ©ag A, 1 (7, w;) are holomorphic with respect to the variable 7. O

The above theorem immediately implies the following.

Corollary 10.9. For a congruence subgroup T, N,?;(I‘) is a finite dimensional C
vector space.

Proof. The theorem above states that N, ¢(T') = @, N, /o(I'n) for some congruence

subgroups I'y, which are known to be finite dimensional (see [24, Lemma 14.3]). g

Given an automorphism o € Aut(C) and f € N,"g, we define

= Y f7(1N)O25a,4(T,w),
heA1 /A2

where f; € l? 12 and f7 is defined as in [24, page 117]. Also, for a subfield K
of C, define the space N:g(K) to be the subspace of N:Sr such that CD(N;;g(K)) =
Dren, /s N,?_l/2(K). In particular, f € N,?g belongs to N:g(K) if and only if f7 = f
for all 0 € Aut(C/K). Moreover, if K contains the Galois closure of F' in Q and Q%,
then Nyg = Np'g(K) @5 C as the same statement holds for N;™, . Similarly it follows
that if f € N,Zg(@), then fl sy € N6(Q) for all ¥ € G(F). At this point we also
remark that for an f € M;'¢ we have that f¢ defined before is nothing else than f*
where 1 # p € Gal(C/R) i.e. complex conjugation.

We now define a variant of the holomorphic projection in the Siegel-Jacobi case. We
define a map p: N;'¢(Q) — M ¢(Q) whenever k, > n+r, for all v € a by

P =p| D f(MOwsnn(rw) ]| = Y B(fu(1)O25a,n (T, w),

hEAl/AQ h€A1/A2

where p: N,"", /2((@) - M, /2(@) is the holomorphic projection operator defined for

example in [24, Chapter III, section 15].

Lemma 10.10. Assume n > 1 or F' # Q and that f € Sy g satisfies the Property A,
and ky, > n+ry for allv € a. Then for any g € N;""(Q),

< f,g>=<f,p(g) >
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Proof. This follows from the fact that the above property holds for nearly holomorphic
Siegel modular forms, and the fact that the Property A allows us to write the Peters-
son inner product of Siegel-Jacobi forms as a sum of Petersson inner products Siegel
modular forms, in a similar way as we did in the proof of Lemma 10.5. U

Further, we define the operator

o._ b k not parallel,
L qop, k parallel.

We now state a theorem regarding the nearly holomorphicity of Siegel-type Jacobi
FEisenstein series. The notation below follows the one used in section 8, where the ana-
lytic properties were investigated. In particular, the characters v; below are characters
of the Hilbert class field extension of F.

Theorem 10.11. Consider the normalized Siegel-type Jacobi-Eisenstein series
D(s) := D(z, sk, x) = Nj_y )9 (s = 1/4,x03)E(z, X, 5).
Let u € Z be such that

(1) n+1—(ky, —1/2) <p—1/2<k,—1/2 for allv € a, and
(2) |p—1/2 - 2 — g, +1/2 € 2Z,

but exclude the cases

(1) p= ”TH—I—Z/Z, F =Q and x*¢? =1 for some 1,
(2) w=1/2, ¢ =0 and xs; =1 for some 1;,

(3) 0<p—1/2<n/2, c=0 and x\*v? =1 for some 1);.
(4) uw <l+mn if F has class number larger than one.

Then
D(u/2) € T Ny5(@),
where
nlhopit?) ifu="2+5 F=Qx*=1,
r={k ifn=1lp=2+5F=0Qxvs=1,
2k -5 —|p—5—"Ha—2Ha) otheruwise.

Moreover, 3 =45 ca(ky — 1+ p) — de, where

2
e — [@]_M‘f‘% Z'f2,u—l+n€2Z,M2n+é’
[%] otherwise.

Proof. The proof is similar to the proof of Theorem 8.3. As in there, we can read
off the nearly holomorphicity of the Jacobi Eisenstein series from the classical Siegel
Eisenstein series; to be more precise, from the series E(z,s—1/4; xsti, k—1/2), where
1;’s vary over all the Hilbert characters. Indeed, the series

A C(M/Q—l/ll, XY )
Ank /1/27(,u/2 —1/4 stf/,.) Z#/m:(ﬂ/? —1/4, x¥si)E(z, 8 — 1/4; x¥si, k —1/2)
k—1/2,c ’ i
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has the same algebraic properties as the normalized series
AR 1o, (1)2 = 1/ 4, x5 Bz, 5 — 14 xtsibi, k — 1/2),

k 1/2, ((U/Q l/4 X"l’S)

if we exclude the cases where the factor VY (T e Y

) has a pole. Therefore all

we need to check is that
Ak l/z(ﬂ/z l/4 st) —

Akil/2(,u/2 l/4 X¢S¢z>

This should follow from the general Bellinson conjectures for motives associated to
finite Hecke characters over totally real fields (see for example [18]). However this is
not known in general, and hence we are forced to set the condition p > n +1 in case F’
has class number larger than one, in which case we obtain values whose ratio is known
to be algebraic, since we are then considering critical values. O

Lemma 10.12. Consider the embedding
A Mg X Hing = Hyg, (T1,w1) X (12, w2) — (diag[ri, ], (w1 wa)),
where N := m +n. Then

A (NN @) € Nig(@) og N5 @

Proof. The proof of this lemma is identical to the Siegel modular form case (see [24,
Lemma 24.11]). Let f € N, év g (TN, Q) for a sufficiently deep congruence subgroup I'V.
Note that the function g(z1,22) := A*f(z) is in N"{(T'") as a function in z; and in
N ,zn ér (') as a function in 2, for appropriate congrue;ace subgroups I'" and I'"*. Hence,
by Corollary 10.9 and the fact that N,?g = Nnr(Q) ®g C, for each fixed 21 we may

write
21, 22 E gz Z1

where g;(z1) € C, and h; € N Z;((@) form a basis of the space. The general argument
used in [24, Lemma 24.11], which is based on the linear independence of the basis h;,
shows that the functions g;(z1) have the same properties as the function g when viewed
as a function of the variable z;. Hence, g, € N ,? ¢ Now, for any o € Aut(C/Q),

g(z1,22) = g7 (21, 22) Zgz z1)h] (22) Zg, z1)h

Hence, g7 (z2) = g,(22) for all 0 € Aut(C/Q), and thus g, € Nk”s((@). O

We can now establish a theorem, which is the key result towards Theorem 10.6.

Theorem 10.13. Assumen > 1 orF # Q. Let0 # f € S};S(F,@) be an eigenfunction
of T'(a) for all integral ideas a with (a,cp) = 1. Define p := minyea {ky} and assume
that

(1) p>2n+1+1,

(2) Property A holds for all f € V(f),
(3) ky = ky mod 2 for all v,v' € a.

(4) ky >1/2+n(1+ky, — p) for allv € a.
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Then for any g € M,?S(@),
<f9>_5

75> 0

Proof. By Lemma 10.5 it suffices to prove this theorem for g € Sy s(Q).

By the discussion in subsection 7.4 where it was shown that the Hecke operators
are normal and Proposition 10.2 which states that the Hecke operators T'(a) preserve
i (', Q), we have a decomposition

SI?,S(I‘a@) = V(f) ® Ua
where U is a Q-vector space orthogonal to V(). Therefore, without loss of generality,
we may assume that g € V(f).

Now consider a character x of conductor f, # o such that yq(z) = sgng(z)¥, x # 1
and G(x, u—n—1/2) € Q~, where G(x, u—n—1/2) is as in equation (30). The existence
of such a character follows from the fact that G(x, 2s —n —1[/2) is the ratio of products
of finitely many Euler polynomials. We now use a slightly different version of equation
(31), i.e. before multiplying by the factor Gy_; /2 2,(s —1/4), where we take ¢ = cy Ny,
¢ = ¢ and n = m, and evaluate it at s = p/2. Moreover, thanks to Proposition 7.9 if
f € V(f), then so is e V(f) and their L-functions agree. In particular, we obtain
the following equality up to some non-zero algebraic number:

AR 10 (1/2 = 1/4, x9bs)vol (A) < (Elxsp)(diag[z1, 2], 11/25 X), (£ Ik.sm,) (22) >
= W e n(1/2 — k/2)A()2, £)F (1),
where, recall,

(=172, x0s) TT ) Le(2u — 1 — 2, x?) if | € 2Z,
Ak /2, (w2 =1/4, x¢s) == {H[ 2n+1)/2 Le(@p—1—2i+1 X2) it ¢ 27
and

L (2s —1/2,xvg) ifl € 2Z,
1 if | € 27.

By Theorem 10.11, Ai"l/Qc(u/Q —1/4, x¥s)E(z,1/2;x) € WBN]?%«(@) for 8 € N, and
hence the same holds for

AZ 0 (/2 = 1/4, x05) E (2, 11/2; )|k, 5P-

A(s,f,x):=L(2s—n—1/2,f,x) {

In particular,

7PN (12 = 1/4, x05) (Elk sp) (diaglz1, 22], 11/25 X) Zfz (21)g,(22),

where f;,g, € NI'4(Q) by Lemma 10.12. Moreover, vol(A) = 7%Q*, where dy is

the dimension of H? since the volume of the Heisenberg part is normalized to one.
Furthermore,

— 1
csk(p/2 —k/2) e m°Q", § e 2
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Altogether we obtain

3 fi) < g1(ea) 0(ea) 5= T AN, £ 0F (),

where g := (}C]hgnn)c € S,?S(@) Considering the Fourier expansion of f,’s and f,
and comparing any (r,t) coefficients for which ¢(r,¢; fc) # 0, we find that

X
<3 Qiragi(z),g(z) >= T w0 SN ()2, £,x) #0

for some «;,: € Q, where the non-vanishing follows from Corollary 7.3. Setting
hri(z2) := 3, @ir19i(22) € Nil5(Q), we obtain
< hpa(z2),g(z2) >= 0 20 HIA(/2, £,3) # 0
or,
~ ~ X
< po(h‘ )(22)7 f(ZQ) >= © 7r6_d0+/8A(/~L/27 f7 X) 7é 07

That is, the forms, or rather their projections to V'(f), ftm = pO(Rrtlk.sm,) € S,?S(@)
for the various (r,t) span the space V(f) over Q and

<hn, e 9PN /2, £,)Q

That is, for any g € V(f) we have < g, f >€ 7r5_d0+BA(,u/2,f,X)@X. In particular,
the same holds for g = f, and that concludes the proof. O

Proof of Theorem 10.6. We follow the same steps as in the proof of Theorem 10.13 but
this time we set s = 0/2. In exactly the same way as above we obtain

< hp(20), F(z2) >= @ 10 DHBA (02, £,%),

for some h,: € N 5(Q). Thanks to Theorem 10.13 the proof will be finished after
dividing the above equality by < f, f > if we make the powers of 7 precise. Recall
that

n(rt1/2 T [15 T(0/2 + ky — l/2 —(+1)/2-9/2) _ g% _anm+1)2
1= T(o/2 + ky —1/2 —i/2)

vea

Hence, § = dn(n + 1)/2. However, this is also equal to the dimension of the space HZ,
which we denoted by dg. We are then left only with 8, which is provided by Theorem

10.11; namely,
B:nZ(kv—l—i-a)—de,
vEa
where e :=n? +n— o +1/2if 20 — 1 € 2Z and ¢ > 2n + /2, and e := n? otherwise.
This concludes the proof of the theorem. O
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