
On Special L-Values attached to Siegel Modular
Forms.

Thanasis Bouganis

Abstract In his admirable book “Arithmeticity in the Theory of Automorphic
Forms” Shimura establishes various algebraicity results concerning special values
of Siegel modular forms. These results are all stated over an algebraic closure of
Q. In this article we work out the field of definition of these special values. In this
way we extend some previous results obtained by Sturm, Harris, Panchishkin, and
Böcherer-Schmidt.

1 Introduction

Special values of L-functions play a central role in Iwasawa theory since they are
indispensable for the formulation of the Main Conjectures. It is precisely this infor-
mation which is encoded in the interpolation properties of the p-adic L-functions.
The first step to construct these p-adic L-functions is to show that the L-functions un-
der consideration evaluated at “critical” points have particular algebraic properties.
These properties are usually described by Deligne’s conjectures. In this article we
address this kind of questions for L-functions associated to Siegel modular forms.

This article grew out of the author’s effort to read carefully the book of Shimura
“Arithmeticity in the Theory of Automorphic Forms” ([23]) which means to do also
the “exercises” left by Shimura to the reader. One of them is related to the algebraic-
ity of various special values of Siegel modular forms (see page 239, Remark 28.13
in (loc. cit.)). As Shimura points out the results left as exercises should follow by
using the various techniques and results obtained in his book and various papers of
him. This is indeed the case since most ideas of this article can be found in the vari-
ous works of Shimura, which of course in turn requires some familiarity with them.
In any rate we believe that it is useful to have the results worked out in this paper
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documented in the literature, and for this reason we decided to write this article. In
this paper we consider the special values of Siegel modular forms of integral weight.
In [5], the continuation of this article, we consider also special L-value attached to
half-integral weight Siegel modular forms.

Let us point out some results in this article that we believe deserve special men-
tion. The first is the reciprocity law of the action of the Galois group on half-integral
weight Eisenstein series. For integral weight Eisenstein series one can find the reci-
procity laws in the book of Feit ([8]) (if not in the form that it is needed for our
purposes). However to the best of our knowledge the reciprocity for half integral
Eisenstein series has not been worked out for Siegel modular forms. Another inter-
esting result is the definition of the period Ωf appearing in Theorem 12. These kind
of periods have been first considered by Sturm and Harris [25, 11] (and later also by
Panchishkin), based on an idea of Shimura. We follow the ideas of Sturm in defining
them but using some new results of Shimura we are able to improve in some cases
the bounds on the weight of the Siegel modular forms that the results are applica-
ble. Also the fact that we use the more precise form of the Andrianov-Kalinin type
identity proved by Shimura, we can obtain slightly finer results, since we need to
remove less Euler factors of the L-function.

This paper is organized as follows. In section two we have a very brief introduc-
tion to Siegel modular forms. Then we move to section three where after presenting
various results of Shimura with respect the theory of theta series and Eisenstein se-
ries for the symplectic group, we prove the various reciprocity laws of the action
of the absolute Galois group on the Eisenstein series. Some of the result have al-
ready appeared in [25] and [8], and we use ideas of these works. For the case of
half integral weight Eisenstein series we prove the reciprocity inspired by an idea
of Shimura. In section 4 we introduce the L-functions which are considered in this
paper. All the material of this section is from Shimura’s book. In section 5 we also
present the work of Shimura on the generalization of the so-called Adrianov-Kalinin
type identity. However for our purposes we use an integral expression that it is not
in the book [23] but in a paper of Shimura [20]. The use of this integral expression
will lead to study slightly different L-functions than in the ones studied in the book
of Shimura (we explain more later on this). Also in this section all the material is
taken from works of Shimura. In section 6 we define the periods that we will use
to obtain the good reciprocity laws. The idea of defining this periods as values of
an L-function goes back to Shimura, and have been used by Sturm [25], Harris [11]
and Panchishkin [17] in the case Siegel modular forms over the rationals and of even
degree. We also note that we obtain a slightly different results than in these works,
partly because we use some newer results of Shimura that were not available when
these works were written. In the following section we present the various results
on the field of rationality of the various special functions properly normalized and
in some cases we provide some reciprocity results. Finally we finish this work by
briefly discussing yet another method for considering the same questions as in this
paper, namely the doubling method.

One last remark with respect to the notation used in this article. Since we are us-
ing as our main reference the book of Shimura [23] we decided to keep, the anyway
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excellent, notation used by him. In particular if some times we use some notions not
defined in this paper the reader will find the exact same notation also in the refer-
ence. This allows to keep the length of this article reasonable since we do not need to
introduce all the mathematical notions used here. We finally remark that our choice
to use the notation as in Shimura’s book leads us to write Z(s, f) for the L-functions
attached to a Siegel modular form f instead of the more standard L(s, f).

2 Siegel Modular forms

2.1 Integral weight Siegel modular forms

In this section we introduce the notion of a Siegel modular form (classicaly and
adelically). We follow closely the book of Shimura [23].

For a positive integer n ∈ N we define the matrix ηn :=
(

0 −1n
1n 0

)
and for any

commutative ring A with an identity the group Spn(A) := {α ∈ GL2n(A)|tαηnα =
ηn}. The group Spn(R) acts on the Siegel upper half space Hn := {z ∈ Cn

n|tz =

z, Im(z) > 0} by linear fractional transformations, that is for α =

(
aα bα

cα dα

)
∈

Spn(R) and z ∈ Hn we have α · z := (aα z+ bα)(cα z+ dα)
−1 ∈ Hn. Moreover if

we define µα(z) := µ(α,z) := cα z+dα then we have

µ(βα,z) = µ(β ,αz)µ(α,z), α,β ∈ Spn(R),z ∈Hn

Let now F be a totally real field of degree d := [F : Q] and write g for its ring
of integers. We write a for the set of archimedean places of F , h for the finite ones
and we set G := Spn(F). We write GA for the adelic group and we decompose
GA = GhGa where Ga := ∏v∈a Gv and Gh := ∏v∈h Gv. For two fractional ideals a
and b of F such that ab⊆ g, we define the subgroup of GA,

D[a,b] :=
{

x =
(

ax bx
cx dx

)
∈ GA|ax ≺ gv,bx ≺ av,cx ≺ bv,dx ≺ gv,∀v ∈ h

}
,

where we use the notation “≺” of Shimura, x≺ bv meaning that the v-component of
x is a matrix with entries in the ideal bv. We will mainly consider groups of the form
D[b−1,bc] for a fractional ideal b and an integral ideal c. Strong approximation for G
implies that GA = GqD[b−1,bc] for any b,c and q ∈ Gh. We define Γ q(b,c) := G∩
qD[b−1,bc]q−1. Given a Hecke character ψ of F with ψv(a) = 1 for all a∈ g×v , v∈ h
such that a−1∈ cv we define a character on D[b−1,bc] by ψ(x) = ∏v|c ψv(det(dx)v)

and a character which we still denote ψ on Γ q by ψ(γ) := ψ(q−1γq).
We now write Za := ∏v∈aZ and H := ∏v∈aHn. For a function f : H → C and

an element k ∈ Za we define
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( f |kα)(z) := jα(z)−k f (αz), α ∈ G, z ∈H .

Here we write z = (zv)v∈a with zv ∈ Hn and αv ∈ Spn(R) and define jα(z)−k :=
∏v det(µαv(zv))

−kv . Let now Γ be group of the form Γ q, q ∈ Gh as above and ψ a
Hecke character. Then we define

Definition 1. A function f : H → C is called a Siegel modular form for the con-
gruence subgroup Γ of weight k ∈ Za and Nebentypus ψ if

1. f is holomorphic,
2. f |kγ = ψ(γ) f for all γ ∈ Γ ,
3. f is holomorphic at cusps.

The last condition is needed only if F =Q and n = 1. Then it is the classical condi-
tion of elliptic modular forms being holomorphic at cusps. The above defined space
we will denote it by Mk(Γ ,ψ). As it is explained in [23, page 33] for an element
f ∈Mk(Γ ,ψ) and an element α ∈ G we have a Fourier expansion

( f |kα)(z) = ∑
h∈S+

cα(h)en
a(hz),

where S+ is the set of n by n symmetric matrices with entries in F which are positive
semi-definite at every real place v ∈ a and en

a(x) = exp(2πi∑v∈a tr(xv)). An element
f ∈ Mk(Γ ,ψ) is called a cusp form if cα(h) 6= 0 for some α ∈ G implies hv is
positive definite for all v ∈ a.

We now turn to the adelic Siegel modular forms. Let D be a group of the form
D[b−1,bc] and ψ a Hecke character of F .

Definition 2. A function f : GA→ C is called adelic Siegel modular form if

1. f(αxw) = ψ(w) jk
w(i)f(x) for α ∈ G, w ∈ D with w(i) = i,

2. For every p ∈ Gh there exists fp ∈ Mk(Γ
p,ψp), where Γ p := G∩ pDp−1 and

ψp(γ) = ψ(pγ p−1) such that f(py) = ( fp|ky)(i) for every y ∈ Ga.

We write Mk(D,ψ) for this space. Strong approximation theorem for Spn gives
Mk(D,ψ)∼= Mk(Γ

q,ψq) for any q ∈ Gh. We define the space of automorphic cusp
form Sk(D,ψ) to be the subspace of Mk(D,ψ) that is in bijection with Sk(Γ

q,ψ)
for any q ∈ Gh in the above bijection. We may also sometimes write Mk(b,c,ψ)
for Mk(D,ψ). Similarly we may write Mk(b,c,ψ) for Mk(Γ ,ψ) where Γ = G∩
D[b−1,bc], i.e q = 1.

2.2 Half-integral weight Siegel modular forms

Even though we will consider only algebraicity results for integral weight Siegel
modular forms, in many case we will need to use half-integral weight modular
forms. We denote by MA the adelized metaplectic group sitting in the exact se-
quence 0→ T→ MA → GA → 0. The last projection we denote by pr. We write
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Cθ for the theta group defined for example in [20, page 536] and Γ θ = G∩Cθ .
We also define the group M = {x ∈ MA|pr(x) ∈ PACθ}, where P is the standard
Siegel parabolic subgroup of G. Thanks to a canonical lift we may consider G as a
subgroup of MA and hence also Γ θ a subgroup of M. For an element σ ∈M and
z ∈H we write hσ (z) for the holomorphic function defined by Shimura. By a half
integral weight k ∈ 1

2Z
a we mean a tuple (kv)v∈a so that kv ∈ Z+ 1

2 for all v ∈ a. For
such a k we define the factor of automorphy

jσ (z)k := hσ (z) jpr(σ)(z)
[k].

Then the definition of half integral weight modular forms, with congruence sub-
group Γ ≤ Γ θ is the same as in integral case but using the new factor of automor-
phy. One may define also adelic automorphic forms, we refer to Shimura [23, page
166] for this.

3 Theta and Eisenstein Series

3.1 Theta series

Following Shimura (see page 270 in [23]) we set W = Fn
n and we let S (Wh) denote

the space of Schwartz-Bruhat functions on Wh. Let τ be an n by n symmetric matrix
with entries in F such that τv > 0 for all v ∈ a. For an element λ ∈S (Wh) and an
element µ ∈ Za such that 0≤ µv ≤ 1 for all v ∈ a we define

θ(z,λ ) = ∑
ξ∈W

λ (ξh)det(ξ )µ ea(tr(t
ξ τξ z)), z ∈H .

It is shown in the appendix of [23] that this is an element of Ml with l := µ + n
2 a.

Moreover it is also shown that if µ 6= 0 then θ(z,λ ) is actually a cusp form. We now
introduce some extra notation following [23, Appendix A3.18]. We set

R = ∏
vh
(gv)

n
n, Ev = GLn(gv), R∗ = RWa ⊂WA.

We let ω be now a Hecke character of F of conductor f such that ωa(−1)n =
(−1)n∑v µv . Let now r be an element of GLn(F)h and define

θ(z) := ∑
W∩rR∗

ωa(det(ξ ))ω∗(det(r−1
ξ )g)det(ξ )µ en

a(
t
ξ τξ t),

where for a Hecke character ψ we denote by ψ∗ the corresponding ideal character.
Then Shimura proves the following proposition

Proposition 1 (Shimura). Let ρτ be the Hecke character of F corresponding to the
extension F(c1/2)/F with c = (−1)[n/2]det(2τ); put ω ′ = ωρτ . Then there exist a
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fractional ideal b and an integral ideal c, such that the conductor of ω ′ divides c,
D[b−1,bc]⊂ D[2d−1,2d] if n is odd, and

θ(γz) = ω
′
c(det(aγ)) jl

γ(z)θ(z), γ ∈ G∩D,

where D = {x∈D[b−1,bc]. Moreover, if β ∈G∩diag[q, q̂]C with q∈GLn(F)h, then

jl
β
(β−1z)θ(β−1z) = ω

′(det(q))−1
ω
′
c(det(dβ q))|det(q)|n/2

A ×

∑
ξ∈W∩rR∗q−1

ωa(det(ξ ))ω∗(det(ξ r−1q)g)det(ξ )µ en
a(

t
ξ τξ z).

In particular, let x and t be fractional ideals of F such that tg2τg∈ x for every g∈ rgn
1

and th(2τ)−1h ∈ 4t−1 for every hr̂gn
1 and write h for the conductor of ρτ . Then we

can take

(b,c) =

{
(2−1dx,h∩ f∩ x−1f2t), if n is even;
(2−1da−1,h∩ f∩4a∩af2t), if n is odd.

,

where a= x−1∩g.

3.2 Eisenstein series

We follow Shimura [23, pages 131-132] and define various Eisenstein series of
Siegel type. Let k ∈ 1

2Z
a be a weight, b a fractional ideal of F , c an integral ideal in

F and a Hecke character χ of F with infinity type χa(x) = x`a|xa|−`, and

χv(a) = 1, if v ∈ h, a ∈ r×v , and a−1 ∈ rvcv, ∀ v ∈ h.

When k is half integral we also assume that D[b−1,bc] ⊂ D[2d−1,2d], where d the
different ideal of F . Following the notation of Shimura we now define in the case of
k ∈ Za

D̃ = D[b−1,bc],

and otherwise
D̃ = {x ∈MA|pr(x) ∈ D[b−1,bc]}.

Write P = {x ∈ G|cx = 0} for the standard Siegel parabolic. We then define a func-
tion µ on GA or MA by

µ(x) = 0, if x 6∈ PAD̃,

µ(x) = χh(det(dp))
−1

χc(det(dw))
−1 jk

x(i)
−1| jx(i)|k,

if x = pw with p ∈ PA and w ∈ D̃. Then for a pair (x,s) ∈ GA×C if k ∈ Za or in
MA×C otherwise, we define the Eisenstein series (for the function ε below we refer
to Shimura’s book)
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EA(x,s) = EA(x,s; χ, D̃) = ∑
α∈P\G

µ(αx)ε(αx)−s.

We will need one more type of Eisenstein series. We define the element ζ ∈
Sp(n,F)A by

ζa = 1, ζh =

(
0 −δ−11n

δ1n 0

)
,

where δ ∈F×h such that δg= d. We further fix an element ζ̃ ∈MA such that pr(ζ̃ ) =
ζ and h(ζ̃ ,z) = 1. Then we define the Eisenstein series

E∗A(x,s) = χ(δ )−n×
{

EA(xζ ,s), k ∈ Za ;
EA(xζ̃ ,s), otherwise.

Finally we define the Eisenstein series

DA(x,s) = E∗A(x,s)×

{
Lc(2s,χ)∏

[n/2]
i=1 Lc(4s−2i,χ2), k ∈ Za;

∏
[(n+1)/2]
i=1 Lc(4s−2i−1,χ2), k 6∈ Za;

,

Write S = {x ∈ Fn
n |tx = x}. Then the q-expansion of E∗A(x,s) is given by

E∗A

((
q σ q̂
0 q̂

)
,s
)
= ∑

h∈S
c(h,q,s)en

A(hσ),

where q ∈ GLn(F)A and σ ∈ SA. We now define the Eisenstein series on (z,s) ∈
H ×C by

E∗(x(i),s) = jk
x(i)E

∗
A(x,s),

and similarly we define D(z,s and D∗(z,s). When we want to indicate the depen-
dence on the various input data we will write E(z,s;k,χ,c) for E(z,s) or in case
we want also to indicate the dependency on b we will write E(z,s;k,χ,Γ ), where
Γ = G∩D[b−1,bc]. We now note the q-expansion

E∗(z,s) = ∑
h∈S

det(y)−ka/2c(h,q,s)en
a(hx),

where qh = q1 and qa = y1/2. For the coefficients c(h,q,s) we have the following
propositions of Shimura [23, Proposition 16.9, 16.10, 17.6],( for notation not intro-
duced here we refer to (loc. cit)).

Proposition 2 (Shimura). Suppose that c 6= g and det(qv)> 0 for every v∈ a. Then
c(h,q,s) 6= 0 only if (tqhq)v ∈ (db−1c−1)vS̃v for every v ∈ h. In this case

c(h,q,s) =Cχh(det(−q))−1|det(q)h|n+1−2s
A |DF |−2ns+3n(n+1)/4N(bc)−n(n+1)/2×

det(y)sa
Ξ(y;h;sa+ k/2,sa− k/2)αe

c(ε
−1
b ·

tqhq,2s,χ),
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where C = 1 and e = 0 if k ∈Za, and C = e(n[F : Q]/8) and e = 1 if k 6∈Za; εb ∈ F×h
such that εbg = b−1d if k ∈ Za, and εb = 1 otherwise; DF is the discriminant of
F.The function Ξ(g;h;α,β ) = ∏v∈a ξ (yv,hv;αv,βv) is given in [23, page 140].

Proposition 3 (Shimura). Consider q and h such that c(h,q,s) 6= 0. Set r = rank(h)
and let g ∈ GLn(F) such that g−1hg = diag[h′,0] with h′ ∈ Sr. Let ρh be the Hecke
character corresponding to F(c1/2)/F where c = (−1)[r/2]det(2h′), if r > 0; let
ρh = 1 if r = 0. Then

α
e
c(ε
−1
b ·

tqhq,2s,χ) = Λc(s)−1
Λh(s)∏

v∈c
fh,q,v

(
χ(πv)|πv|2s+e/2

)
,

where

Λc(s) =

{
Lc(2s,χ)∏

[n/2]
i=1 Lc(4s−2i,χ2), if k ∈ Za;

∏
[(n+1)/2]
i=1 Lc(4s−2i+1,χ2), otherwise.

Λh(s) =

{
Lc(2s−n+ r/2,χρh)∏

[(n−r)/2]
i=1 Lc(4s−2n+ r+2i−1,χ2), if k ∈ Za;

∏
[(n−r+1)/2]
i=1 Lc(4s−2n+ r+2i−2,χ2), otherwise.

Here fh,q,v are polynomials with coefficients in Z, independent of χ . For the finite
set c see [23].

For a number field W we follow Shimura and write N r
k (W ) for the space of W -

rational nearly holomorphic forms of weight k (see [23, page 103 and page 110] for
the definition). The theorem below is due to Shimura [23, Theorem 17.9].

Theorem 1 (Shimura). Let Φ be the Galois closure of F over Q and let k ∈ 1
2Z

a

with kv ≥ (n+ 1)/2 for all v ∈ a and kv− kv′ ∈ 2Z for every v,v′ ∈ a. Let µ ∈ 1
2 Z

with n+ 1− kv ≤ µ ≤ kv and |µ − n+1
2 |+

n+1
2 − kv ∈ 2Z for all v ∈ a. Exclude the

cases

1. µ = (n+2)/2, F =Q and χ2 = 1,
2. µ = 0, c= g and χ = 1,
3. 0 < µ ≤ n/2, c= g and χ2 = 1.

Then D(z,µ/2;k,χ,c) belongs to πβ N r
k (ΦQab), where r = (n/2)(k−|µ− (n+

1)/2|a− n+1
2 a) except in the case where n = 1, µ = 2, F = Q, χ = 1 and n > 1,

µ = (n+ 3)/2, F = Q, χ2 = 1. In these two case we have r = n(k− µ + 2)/2.
Moreover we have that β = (n/2)∑v∈a(kv +µ)− [F : Q]e where

e =
{
[(n+1)2/4]−µ, if 2µ +n ∈ 2Z and µ ≥ λ ;[
n2/4

]
, otherwise.

For an element p∈Za and a weight q∈ 1
2Z

a we write ∆
p
q for the differential oper-

ators defined by Shimura in [23, page 146]. In particular we have ∆
p
q N t

q (ΦQab)⊂
πn|p|N t+np

q+2p (ΦQab). Moreover for any f ∈N t
q (ΦQab) and any σ ∈Gal(ΦQab/Φ)

we have that
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π
−n|p|

∆
p
q ( f )

)σ

= π
−n|p|

∆
p
q ( f σ ) (1)

Let µ ∈ 1
2Z and k ∈ 1

2Z
a be as in the theorem above. If µ ≥ (n + 1)/2 then

Shimura shows that [23, page 146]

∆
p
µaD(z,µ/2; µa,χ,c) = cp

µa(µ/2)(i/2)n|p|D(z,µ/2;ka,χ,c), (2)

where p = (k−µa)/2. Here cp
µa(µ/2) ∈Q×. If µ < (n+1)/2 then we have

∆
p
νaD(z,µ/2;νa,χ,c) = cp

νa(µ/2)(i/2)n|p|D(z,µ/2;ka,χ,c), (3)

where ν = n+1−µ , p = (k−νa)/2 and again cp
νa(µ/2) ∈Q×.

The following lemma is immediate from the above equations,

Lemma 1. Assume there exists A(χ),B(χ) ∈ Qab and β1,β2 ∈ N such that for all
σ ∈ Gal(Qab/Q)(

D(z,µ/2; µa,χ,c)
πβ1A(χ)

)σ

=
D(z,µ/2; µa,χσ ,c)

πβ1A(χσ )
, µ ≥ (n+1)/2

and (
D(z,µ/2;νa,χ,c)

πβ2B(χ)

)σ

=
D(z,µ/2;νa,χσ ,c)

πβ2B(χσ )
, µ ≤ (n+1)/2.

Then we have for µ ≥ (n+1)/2 that(
D(z,µ/2;k,χ,c)
πβ1+n|p|in|p|A(χ)

)σ

=
D(z,µ/2;k,χσ ,c)

πβ1+n|p|in|p|A(χσ )
, p = (k−µa)/2 ∈ Za,

and for µ ≤ (n+1)/2 that(
D(z,µ/2;k,χ,c)
πβ2+n|p|in|p|B(χ)

)σ

=
D(z,µ/2;k,χσ ,c)

πβ2+n|p|in|p|B(χσ )
, ν = n+1−µ p = (k−νa)/2 ∈ Za,

We will be interested in algebraicity statements of the Eisenstein series of weight
sufficient large it is enough to study the effect of the action of the Galois group of
the full rank coefficients. More precisely we have the following lemma.

Lemma 2. Let f (z) = ∑h∈S c(h)en
a(hz) ∈Mka(Qab) with k ≥ n/2. Assume that for

an element σ ∈ Gal(Qab/Q) we have c(h)σ = ac(h) for all h with det(h) 6= 0 for
some a ∈ C. Then c(h)σ = ac(h) for all h ∈ S. In particular f σ = a f .

Proof. We obviously have f σ ∈Mka(Qab). We consider g := a f − f σ ∈Mka(Qab).
We note that the form g has non-zero Fourier coefficients only for h ∈ S with
det(h) = 0. But then by [23, Proposition 6.16] we have that g = 0. ut

We now want to consider the action of Gal(Qab/Q) on the Eisenstein series.
We first consider the holomorphic ones. That is, we consider the following two
Eisenstein series
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1. D(z,k/2;ka,χ,c) ∈ πβ Mka(Qab) for k ≥ n+1
2 ,

2. D(z,µ/2;ka,χ,c) ∈ πβ Mka(Qab) for k := n+1−µ and µ ≤ n+1
2 ,

where β is determined by Theorem 1. Note here that we take the field of definition
to be Qab, i.e. the extension Φ does not appear. For this we refer to [23, Theorem
17.7].

In the following lemma we collect some properties that we will need concerning
the functions Ξ(y,h;α,β ) = ∏v∈a ξ (y,h;α,β ).

Lemma 3. Let h ∈ S with det(h) 6= 0 and y ∈ Sa
+(R). Then we have for k ∈ 1

2Z we
have

Ξ(y,h;k,0) = 2d(1−(n+1)/2)i−dnk(2π)dnk
Γn(k)−dN(det(h))k−(n+1)/2en(iyh)

and for µ := n+1− k we have

Ξ(y,h;(n+1)/2,(µ− k)/2) = i−nk2−(dn(µ−k))/2
π

dn(n+1)/2
Γn(

n+1
2

)−d×

∏
v∈a

det(yv)
−( µ−k

2 )en(iyh)

Proof. The first statement is in [23, Equation 17.12]. For the second we have
Ξ(y,h;(n+1)/2,µ/2−k/2)=∏v∈a ξ (yv,hv;(n+1)/2,µ/2−k/2), where the func-
tion ξ (·) is given in [23, page 140]. By Shimura [19, Equation 4.35K] we have that
ω(2πyv,hv;(n+1)/2,µ/2− k/2) = 2−n(n+1)/2ev(iyvhv). We conclude that

ξ (yv,hv;(n+1)/2,µ/2− k/2) = i−nk2−(n(µ−k))/2
π

n(n+1)/2
Γn(

n+1
2

)−1×

det(yv)
−( µ−k

2 )ev(iyvhv),

where we have used the fact that δ−(hvyv) = 1 (the product of the negative eigenval-
ues of hvyv). Indeed we have that δ−(hvyv) = δ−(y

1/2
v hv

ty1/2
v ). But the last quantity

has the same number of negative eigenvalues as the matrix hv, but hv > 0. ut

We will need the following Theorem (for a proof see [22, Theorem A6.5]).

Theorem 2. Let F be a totally real field, and let ψ be a Hecke character of F with

ψa(b) = ∏v∈a

(
bv
|bv|

)k
, with 0 < k ∈ Z. For any integral ideal c of F put

Pc(k,ψ) := g(ψ)−1(2πi)−kd |DF |1/2Lc(k,ψ),

where d = [F : Q] and g(ψ) is a Gauss sum (defined [22, page 240]). Then
Pc(k,ψ) ∈Q(ψ) and for every σ ∈ Gal(Q(ψ)/Q) we have

Pc(k,ψ)σ = Pc(k,ψσ ).

We also summarize in the following lemma some more properties of Gauss sums.
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Lemma 4. Let χ and ψ be two finite order Hecke characters of F and σ ∈
Gal(Qab/Q) we have

1. g(χ)σ = χ∗(qg)−1g(χσ ) where 0 < q ∈ Z so that e(1/N(f))σ = e(q/N(f)) ,
where f denotes the conductor of χ .

2.
(

g(χψ)
g(χ)g(ψ)

)σ

= g(χσ ψσ )
g(χσ )g(ψσ ) .

3. If χ is a quadratic character then g(χ) = imN(f)1/2 where m is the number of
archimedean primes where χv 6= 1.

We remark here that if we pick an element t ∈ Z×h so that e[t,Q]
h = eh(t−1x) for

x ∈Q/Z then we have that we can pick the q ∈ Z above so that rtp−1 ∈ N(f)Zp for
every prime p. Then we also obtain that χ∗(qq) = χf(t).

3.3 Eisenstein series of integral weight.

We first consider the integral weight case. As we mentioned in the introduction these
results can be found in a slightly different form in the book of Feit [8]. We also men-
tion that results of this kind have been obtained by Siegel, Harris, and Sturm, at least
in the absolute convergence case. For completeness, and because of some notation
and normalization issues, we partly reproduce these results here.

We start with the following proposition.

Proposition 4. For the Eisenstein series

D(z,k/2;ka,χ,c) = Lc(k,χ)
[n/2]

∏
i=1

Lc(2k−2i,χ2)E(z,k/2;ka,χ,c)

with k ≥ n+1
2 we have that π−β D(z,k/2;ka,χ,c) ∈ Mka(Qab) and for all σ ∈

Gal(Qab/Q) we have that(
D(z,k/2;ka,χ,c)

πβ P(χ)

)σ

=
D(z,k/2;ka,χσ ,c)

πβ P(χσ )
, σ ∈ Gal(Qab/Q),

where β = kd +∑
[n/2]
i=1 (2k− 2i) and P(χ) := g(χ)(i)kd

|DF |1/2

(
∏

[n/2]
i=1 (i)(2k−2i)d

)
g(χ2[n/2])

|DF |b(n)
, with

b(n) = 1/2 if [n/2] odd and 1 otherwise.

Proof. We observe that we have that 2k−2i > 0 for all i = 1 . . . [n/2]. By definition

we have that χa(b) = ∏v∈a

(
bv
|bv|

)k
. By Theorem 2 above we have for

A(χ) :=
|DF |1/2Lc(k,χ)

g(χ)(2πi)kd

[n/2]

∏
i=1

|DF |1/2Lc(2k−2i,χ2)

g(χ2)(2πi)(2k−2i)d
∈Qab



12 Thanasis Bouganis

and for all σ ∈ Gal(Qab/Q) we have A(χ)σ = A(χσ ). Using Lemma 4 we may
define the quantity

B(χ) =
|DF |1/2Lc(k,χ)

g(χ)(2πi)kd

(
[n/2]

∏
i=1

Lc(2k−2i,χ2)

(2πi)(2k−2i)d

)
|DF |b(n)

g(χ2[n/2])
,

where b(n) = 1/2 if [n/2] is odd and 1 otherwise. Then we have B(χ)σ = B(χσ ).
By [8, Theorem 15.1] we have E(z,k/2;ka,χ,c)σ = E(z,k/2;ka,χσ ,c) for all σ ∈
Gal(Q(χ)/Q). In particular we conclude that(

D(z,k/2;ka,χ,c)
πβ P(χ)

)σ

=
D(z,k/2;ka,χσ ,c)

πβ P(χσ )
, σ ∈ Gal(Qab/Q),

where β = kd +∑
[n/2]
i=1 (2k−2i) and P(χ) := g(χ)(i)kd

|DF |1/2

(
∏

[n/2]
i=1 (i)(2k−2i)d

)
g(χ2[n/2])

|DF |b(n)
. ut

Now we turn to the Eisenstein series

D(z,µ/2;ka,χ,c) = Lc(µ,χ)
[n/2]

∏
i=1

Lc(2µ−2i,χ2)E(z,µ/2;ka,χ,c),

and

D∗(z,µ/2;ka,χ,c) = Lc(µ,χ)
[n/2]

∏
i=1

Lc(2µ−2i,χ2)E∗(z,µ/2;ka,χ,c),

where we take µ ≤ n+1
2 , and k = n+1−µ .

We now prove

Lemma 5. Let β ∈ N as in Theorem 1 so that π−β D(z,µ/2;ka,χ,c) ∈Mka(Qab).
Then we have that also π−β D∗(z,µ/2;ka,χ,c) ∈Mka(Qab). Moreover for every
σ ∈ Gal(Qab/Q) we have the reciprocity law(

D∗(z,µ/2;ka,χ,c)
πβ i−dnk|DF |−nµ+3n(n+1)/4

)σ

=
D∗(z,µ/2;ka,χσ ,c)

πβ i−dnk|DF |−nµ+3n(n+1)/4 .

Proof. The first statement i.e. that π−β D∗(z,µ/2;ka,χ,c) ∈ Mka(Qab) follows
from [23, Lemma 10.10]. Moreover by Lemma 2 it is enough to establish the action
of Gal(Qab/Q) on the full rank coefficients. By Proposition 2 and Lemma 3 we have
that the hth Fourier coefficient c(h,χ) of π−β D∗(z,µ/2;ka,χ,c) with det(h) 6= 0 is
equal to

i−dnk2−(dn(µ−k))/2
n

∏
j=0

Γ (
n+1

2
− j/2)−d |DF |−nµ+3n(n+1)/4N(bc)−n(n+1)/2×

∏
v∈c

fh,v (χ(πv)|πv|µ)×
{

Lc(µ−n/2,χρh), n even ;
1, n odd.
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If n is odd we have(
c(h,χ)

i−dnk|DF |−nµ+3n(n+1)/4

)σ

=
c(h,χσ )

i−dnk|DF |−nµ+3n(n+1)/4 .

Now we take n = 2m even. The character χρh has infinity type (χρh)a(b) =

∏v∈a

(
bv
|bv|

)1−µ+m
since the character ρh is the non-trivial character of the extension

F(c1/2)/F with c := (−1)mdet(2h) and det(h)>> 0 as h is positive definite for all
real embeddings of F . Since 1− µ +m > 0 we have by [23, Theorem 18.12] that
L(1− (1−µ +m),(χρh)

σ ) = L(1− (1−µ +m),(χρh))
σ for all σ ∈Gal(Qab/Q).

Hence we conclude also in the case of n even that(
c(h,χ)

i−dnk|DF |−nµ+3n(n+1)/4

)σ

=
c(h,χσ )

i−dnk|DF |−nµ+3n(n+1)/4 .ut

We now prove the following lemma

Lemma 6. Assume that (π−β D∗(z,µ/2;ka,χ,c))σ = aπ−β D∗(z,µ/2;ka,χσ ,c) for
σ ∈ Gal(Qab/Q) a ∈Q×ab. Then

(π−β D(z,µ/2;ka,χ,c))σ = bπ
−β D(z,µ/2;ka,χσ ,c)

where b = χ(qg)−na, where 0 < q ∈ Z such that e(1/N(c))σ = e(q/N(c)).

Proof. We use an argument due to Feit [8] and Sturm [25, Lemma 5] first introduced
by Shimura in the case of n = 1. We will need the reciprocity law of the action of
the group G+×Gal(Q/Q) defined by Shimura in [23, Theorem 10.2]. We use the
notation of Shimura in this theorem. Let t be an idele of F and as in Shimura we

define ı(t) :=
(

1 0
0 t−1

)
. For a σ ∈ Gal(Qab/Q) we define the element (ı(t),σ) ∈

G+×Gal(Q/Q) where t ∈Z×h corresponds to σ by class field theory and we extend
σ to an element of the absolute Galois group. Moreover we may consider also ζh ∈
SpA as an element of G+×Gal(Q/Q) by taking (ζh,1). Then we have that

(ı(t),σ)(ζh,1)(ı(t−1),σ−1)(ζ−1
h ,1) =

((
t 0
0 t−1

)
,1
)

In particular we have

π
−β D(z,µ/2;ka,χ,c)(ı(t),σ)(ζh,1)(ı(t−1),σ−1)(ζ−1

h ,1) =

π
−β D(z,µ/2;ka,χ,c)|k

(
t 0
0 t−1

)
= χc(t)n

π
−β D(z,µ/2;ka,χ,c)

But then

(π−β D(z,µ/2;ka,χ,c))σ = π
−β D(z,µ/2;ka,χ,c)(ı(t),σ) =
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π
−β D(z,µ/2;ka,χ,c)(ı(t),σ)(ζh,1)(ı(t−1),σ−1)(ζ−1

h ,1)(ζh,1)(ı(t),σ)(ζ−1
h ),1) =

χc(t)n
((

π
−β D(z,µ/2;ka,χ,c)|k(ζh

)σ)
|kζ
−1
h ) = χc(t)naπ

−β D(z,µ/2;ka,χσ ,c).

(4)
ut

We can now establish the following corollary

Corollary 1. For the Eisenstein series D(z,µ/2;ka,χ,D) we have(
D(z,µ/2;ka,χ,c)

πβ g(χn)i−dnk|DF |−nµ+3n(n+1)/4

)σ

=
D(z,µ/2;ka,χσ ,c)

πβ g((χn)σ )i−dnk|DF |−nµ+3n(n+1)/4 ,

for all σ ∈ Gal(Qab/Q).

Proof. This follows immediately by combining Lemma 4 ((i) and (ii)), and the last
two lemmas. ut

3.4 Eisenstein series of half integral weight.

Now we consider the case of half-integral weight. We will need the theta series
θ(z) := ∑a∈gn ea(

taza/2) ∈M 1
2 a(Q,φ), where the quadratic character φ of Γ θ is

defined by hγ(z) = φ(γ) ja
γ (z) for γ ∈ Γ θ . Note that this is the series θF defined

in [23, page 39, equation 6.16] by taking in the equation there, using Shimura’s
notation, u = 0 and λ the characteristic function of gn ⊂ Fn. Note in particular that
since we are taking u = 0 we have that φF = θF . In particular Theorem 6.8 in (loc.
cit) gives the properties of the series θ . We now prove the following lemma.

Lemma 7. For the theta series θ(z) and for σ ∈ Gal(Q/Q) we have that(
θ | 1

2a
(ζh

)σ

| 1
2 aζ
−1
h = θ

Proof. This follows immediately after observing that ζh ∈Cθ and from Theorem 6.8
(4) in [23]. Indeed since θ is invariant under Γ θ = G∩Cθ we have that θ | 1

2 aζh =

θ 1
2 aζ
−1
h = θ . Since θ ∈M 1

2 a(Q), we conclude the proof. ut

Proposition 5. Let λ be equal to k or µ . Let β (λ ) ∈ N so that

π
−β (λ )D∗(z,λ/2;ka,χ,c) ∈Mka(Qab).

Let σ ∈ Gal(Qab/Q and assume(
π
−β (λ )D∗(z,λ/2;ka,χ,c)

)σ

= α(λ )π−β (λ )D∗(z,λ/2;ka,χσ ,c), k = n+1−µ,
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for some α(λ ) ∈Q×. Then we have π−β (λ )D(z,λ/2;ka,χ,c) ∈Mka(Qab) and(
π
−β (λ )D(z,λ/2;ka,χ,c)

)σ

= βπ
−β (λ )D(z,λ/2;ka,χσ ,c)

where β = (χφ)c(t)nα(λ ).

Proof. The fact that π−β (λ )D(z,λ/2;ka,χ,c)∈Mk(Qab) follows from [23, Lemma
10.10]. The rest of the proof was inspired by the proof of Theorem 10.7 in [23].
We write D(χ,λ ) for π−β (λ )D(z,λ/2;ka,χ,c). Let k′ = k+ 1

2 ∈ Z. Then we note
that θD(χ,λ ) ∈Mk′a(Qab) and for a σ ∈ Gal(Qab/Q) we have θD(χ,λ )σ =
(θD(χ,λ ))σ . Since θD(χ) is of integral weight we can apply the reciprocity-laws
as before. Writing t ∈ Z×h corresponding to σ we have

(θD(χ,λ ))σ = (θD(χ,λ ))((ı(t),σ)(ζh,1)(ı(t−1),σ−1)(ζ−1
h ,1))((ζh,1)(ı(t)σ)(ζ−1

h ,1))

=

(
(θD(χ,λ ))|k′

(
t 0
0 t−1

))(ζh,1)(ı(t),σ)(ζ−1
h ,1)

= (φ χ)c(t)n ((θD(χ)|k′aζh)
σ )k′a ζ

−1
h =

(φ χ)c(t)n
(

φ(ζ0)
(

θ | 1
2 aζh

)σ

(D(χ,λ )|kaζh)
σ
)
|k′aζ

−1
h =

φ(ζ0)φ(ζ0)
−1
((

θ | 1
2 aζh

)σ

| 1
2 aζ
−1
h

)(
(D(χ,λ )|kaζh)

σ
)
|kaζ

−1
h =

(φ χ)c(t)n
α(λ )θD(χσ ,λ ).

For the element ζ0 we refer to [23, page 132]. The last equation follows from the last
Lemma. However the previous equations deserve a comment. Note that for f1, f2 ∈
M 1

2 a and γ ∈ Γ θ we have that ( f1 f2)|aγ = φ(γ)( f1| 1
2 aγ)( f2| 1

2 aγ) since hγ(z)2 =

φ(γ) ja
γ (z).

So we obtain that θD(χ,λ )σ = (φ χ)c(t)−nαθD(χσ ). Since θ is not a zero divi-
sor in the formal ring of the Fourier-expansion (see [23, page 74]) we conclude the
proof. ut

We now establish also in the case of half-integral weight that

Proposition 6. Let β1 ∈ N so that π−β1D∗(z,k/2;ka,χ,c) ∈Mka(Qab). Let σ ∈
Gal(Qab/Q) Then for n even we have(

π−β1 D∗(z,k/2;ka,χ,c)
i−dnkC|DF |nk/2+3n(n+1)/4

)σ

=
π−β1D∗(z,k/2;ka,χσ )

i−dnkC|DF |nk/2+3n(n+1)/4

and for n odd(
π−β1D∗(z,k/2;ka,χ,c)

i−dnkC|DF |nk/2+3n(n+1)/4g(χ)|DF |1/2(2i)−(k−n)db([n/2])

)σ

=
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π−β1D∗(z,k/2;ka,χσ )

i−dnkC|DF |nk/2+3n(n+1)/4g(χσ )|DF |1/2(2i)−(k−n)db([n/2])
,

where b(m) = id if m is m is odd and 1 otherwise.
Let now β2 ∈ N so that π−β2D∗(z,µ/2;ka,χ,c) ∈Mka(Qab). Then we have(

π−β2D∗(z,µ/2;ka,χ,c)
i−dnkC|DF |−n(n+1−k)+3n(n+1)/4

)σ

=
π−β2D∗(z,µ/2;ka,χσ ,c)

i−dnkC|DF |−n(n+1−k)+3n(n+1)/4 ,

where k = n+1−µ .

Proof. Arguing as before, it is enough to consider the action of σ on the full rank
coefficients. We consider an h with det(h) 6= 0. Then we have that the hth Fourier
coefficient c(h,χ) of π−β1 D∗(z,k/2;ka,χ,c) is equal to

2d(nk+1−(n+1)/2)i−dnk

(
n−1

∏
j=0

Γ (k− j/2)

)−d

N(det(h))k−(n+1)/2C|DF |nk/2+3n(n+1)/4×

N(bc)−n(n+1)/2
∏
v∈c

fh,v

(
χ(πv)|πv|k+1/2

)
×
{

π−d(k−n/2)Lc(k−n/2,χρh), n odd ;
1, n even.

We now note that if n is even we have that k − (n + 1)/2 ∈ Z and hence
N(det(h))k−(n+1)/2 ∈Q×. Then we conclude that(

c(h,χ)
i−dnkC|DF |nk/2+3n(n+1)/4

)σ

=
c(h,χσ )

i−dnkC|DF |nk/2+3n(n+1)/4 .

In the case where n is odd we have that

Pc(k−n/2,χρh)
σ = Pc(k−n/2,χσ

ρh), ∀σ ∈ Gal(Qab/Q),

with

Pc(k−n/2,χρh) := g(χρh)
−1(2πi)−(k−n/2)d |DF |1/2Lc(k−n/2,χρh)

We have g(χρh)
σ

g(χσ ρh)
= g(χ)σ g(ρh)

σ

g(χσ )g(ρh)
. Moreover we have that

g(ρh)
σ

g(ρh)
=


√

N(2det(h))
σ

√
N(2det(h))

, if [n/2] even;(
iσ
i

)d √N(2det(h))
σ

√
N(2det(h))

, otherwise.

In particular since det(h) ∈ F+ we have(√
N(2det(h))−1g(ρh)

)σ

√
N(2det(h))−1g(ρh)

=

{
1, if [n/2] even;(

iσ
i

)d
, otherwise.
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For n odd we have that k− (n+1)/2 is half integral. Hence we conclude that(
c(h,χ)

i−dnkC|DF |nk/2+3n(n+1)/4g(χ)|DF |1/2(2i)−(k−n)db([n/2])

)σ

=

c(h,χσ )

i−dnkC|DF |nk/2+3n(n+1)/4g(χσ )|DF |1/2(2i)−(k−n)db([n/2])
,

where b(i) = id if [n/2] odd and 1 otherwise.
Now we turn to the Eisenstein series D∗(z,µ/2;ka,χ,c). The Fourier coefficient

c(h,χ) of π−β2D∗(z,µ/2;ka,χ,c) for det(h) 6= 0 is equal to

i−dnk2−dn(µ−k)/2C|DF |−n(n+1−k)+3n(n+1)/4
n−1

∏
j=0

Γ (
n+1

2
− j/2)−dN(bc)−n(n+1)/2×

∏
v∈c

fh,v

(
χ(πv)|πv|n+1−k+1/2

)
×
{

Lc(n/2+1− k,χρh), n odd ;
1, n even.

Since we are taking k ≥ n+1
2 we have that Lc(n/2+ 1− k,χρh) ∈ Q. Hence after

observing that n+1− k+1/2 ∈ Z we conclude that

(
c(h,χ

i−dnkC|DF |−n(n+1−k)+3n(n+1)/4

)σ

=
c(h,χσ

i−dnkC|DF |−n(n+1−k)+3n(n+1)/4 ut

We can now conclude

Proposition 7. Let β1 ∈ N so that π−β1D(z,k/2;ka,χ,c) ∈ Mka(Qab). Let σ ∈
Gal(Qab/Q) Then for n even we have(

π−β1D(z,k/2;ka,χ,c)
g(χφ)ni−dnkC|DF |nk/2+3n(n+1)/4

)σ

=
π−β1D(z,k/2;ka,χσ )

g(χσ φ)ni−dnkC|DF |nk/2+3n(n+1)/4

and for n odd(
π−β1D(z,k/2;ka,χ,c)

g((χφ)n)i−dnkC|DF |nk/2+3n(n+1)/4g(χ)|DF |1/2(2i)−(k−n)db([n/2])

)σ

=

π−β1D(z,k/2;ka,χσ )

g((χn)σ φ)i−dnkC|DF |nk/2+3n(n+1)/4g(χσ )|DF |1/2(2i)−(k−n)db([n/2])
,

where b(m) = id if m is m is odd and 1 otherwise.
Let now β2 ∈ N so that π−β2D∗(z,µ/2;ka,χ,c) ∈Mka(Qab). Then we have(

π−β2D(z,µ/2;ka,χ,c)
g(χφ n)i−dnkC|DF |−n(n+1−k)+3n(n+1)/4

)σ

=
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π−β2D(z,µ/2;ka,χσ ,c)

g(((χφ)n)σ )i−dnkC|DF |−n(n+1−k)+3n(n+1)/4 ,

We now remark that the above proposition and Lemma 1 give a complete de-
scription of the reciprocity laws of the Eisenstein series which we are considering.
We summarize all the above in the following Theorem.

Theorem 3. Let k ∈ 1
2Z

a with kv ≥ (n+1)/2 for every v ∈ a. Let µ ∈ 1
2Z such that

n+ 1− kv ≤ µ ≤ kv and |µ − (n+ 1)/2|+(n+ 1)/2− kv ∈ 2Z for all v ∈ a. Then
with a β ∈ N as in Theorem 1 we have

π
−β D(z,µ/2;k,χ,c) ∈N r

k (ΦQab),

and for every σ ∈ Gal(ΦQab/Φ) we have(
π−β D(z,µ/2;k,χ,c)

ω(χ)

)σ

=
π−β D(z,µ/2;k,χσ ,c)

ω(χσ )
,

where ω(χ) is given as follows:

1. if k ∈ Za, µ ≥ (n+1)/2:

ω(χ) = in|p|g(χ)iµd+2µ[n/2]−[n/2]([n/2]+1)d |DF |−b(n)g(χ2[n/2]),

where p := (k−µa)
2 and b(n) = 0 if [n/2] odd and 1/2 otherwise.

2. if k ∈ Za, µ < (n+1)/2:

ω(χ) = in|p|g(χn)i−dnν |DF |−nµ+3n(n+1)/4,

where ν := n+1−µ and p := k−νa
2 .

3. if k 6∈ Za and µ ≥ (n+1)/2:

a. if n is even
ω(χ) = in|p|g(χn)i−dnkC|DF |nk/2+3n(n+1)/4,

b. if n is odd

ω(χ)= in|p|g(χn
φ)i−dnkC|DF |nµ/2+3n(n+1)/4g(χ)|DF |1/2(2i)−(µ−n)db([n/2]),

where p := (k−µa)
2 and b(m) = id if m is m is odd and 1 otherwise and

4. if k 6∈ Za and µ < (n+1)/2:

ω(χ) = in|p|g(χφ)ni−dnνC|DF |−n(n+1−ν)+3n(n+1)/4,

where ν := n+1−µ and p := k−νa
2 .

In particular we have that
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π−β D(z,µ/2;k,χ,c)
ω(χ)

∈N r
k (Φ(χ)),

where Φ(χ) is the finite extension of Φ obtained by adjoining the values of the
character χ .

4 The L-function attached to a Siegel Modular Form

We start by discussing the Hecke algebras that we consider in this work. We follow
closely Chapter V in [23]. As before we fix a fractional ideal b of F and an integral
ideal c. We write C for D[b−1,bc] Moreover we define

E = ∏
v∈h

GLn(gv), B = {x ∈ GLn(F)h|x≺ g}, X=CQC, Q = {diag[r̂,r]|r ∈ B}.

We write R(C,X) for the Hecke algebra corresponding to the pair (C,X) and for
every place v ∈ h we we write R(Cv,Xv) for the local Hecke algebra at v and hence
R(C,X) =

⊗
vR(Cv,Xv). We now consider the formal Dirichlet series with coef-

ficients in the global Hecke algebra defined by T = ∑C\X/C CξC[νb(ξ )] and its
local version at v ∈ h defined as Tv = ∑Cv\Xv/Cv CvξCv[νb(ξ )]. Here νb(ξ ) is de-
fined by det(q)g where q ∈ B such that ξ ∈ D[b−1,b]diag[q−1,q∗]D[b−1,b]. We
have that T = ∏vTv. Moreover if we define for an integral g-ideal a the elements
T (a) ∈R(C,X) and Tv(a) ∈R(Cv,Xv) for v ∈ h by

T (a) = ∑
ξ∈X,νb(ξ )=a

CξC, Tv(a) = ∑
ξ∈Xv,νb(ξ )=a

CvξCv

then we have that T=∑a T (a)[a]. For an element f∈Mk(C,ψ) we have an action of
the Hecke algebra R(C,ψ) (see [22]). We denote this action by f|CξC for an element
CξC ∈R(C,ψ). Assume now that for such an f 6= 0 we have f |T (a) = λ (a)f with
λ (a) ∈ C for all integral g-ideals. Then Shimura shows that there exists λv,i ∈ C
such that

L ·∑
a

λ (a)[a] = ∏
v∈h

Zv,

where the factors Zv are given by

Zv =

{
(1−N(p)n[p])−1

∏
n
i=1

(
(1−N(p)nλv,i[p])(1−N(p)nλ

−1
v,i [p])

)−1
, if v - c;

∏
n
i=1(1−N(p)nλv,i[p])

−1, otherwise.

and L := ∏p-c(1− [p])∏
n
i=1
(
1−N(p)2i[p]2

)−1, where the product is over the prime
g-ideals prime to c. For a Hecke character χ of F of conductor f we put

Z(s, f,χ) := ∏
v∈h

Zv
(
χ
∗(q)N(q)−s) , (5)
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where Zv (χ
∗(q)N(q)−s) is obtained from Zv by substituting χ∗(p)N(p)−s for [p].

We will need another L-function which we will denote by Z′(s, f,χ) and we define
by

Z′(s, f,χ) := ∏
v∈h

Zv
(
χ
∗(q)(ψ/ψc)(πq)N(q)−s) , (6)

where πq a uniformizer of Fq. We note here that we may obtain the first from the
second up to a finite number of Euler factors by setting χψ−1 for χ .

5 The Rankin-Selberg Method

We now explain the integral representation of the zeta function introduced above
due to Shimura. Everything in this section is taken from [23, paragraph 20 and 22]
as well as [20].

We write L for the set of all g-lattices in Fn
1 . We set L0 := gn

1 and we remark that
for an element L ∈L we can find an element y ∈ GLn(F)h such that L = yL0. For
an element τ ∈ S we define

Lτ := {L ∈L |`∗τ` ∈ bd−1, ∀` ∈ L}.

Let f ∈Mk(C,ψ), τ ∈ S+ and q ∈ GLn(F)h. Following Shimura we define the fol-
lowing two formal Dirichlet series

D(τ,q; f) := ∑
x∈B/E

ψc(det(qx))|det(x)|−n−1
F c(τ,qx; f)[det(x)g], (7)

and
D′(τ,q; f) := ∑

x∈B/E
ψ(det(qx))|det(x)|−n−1

F c(τ,qx; f)[det(x)g]. (8)

We note that the second is obtained from the first one by setting (ψ/ψc)(t)[tg] for
[tg], t ∈ F×h in D(τ,q; f) and multiplying by (ψ/ψc)(det(q)). We define the series

L0 = ∏
v-c

(
[(n+1)/2]

∏
i=1

(1−N(p)2n+2−2i[p]2)

)−1

.

Then we have

Theorem 4 (Shimura). Let 0 6= f ∈Mk(C,ψ)) and such that f|T (a) = λ (a)f for
every a. Then for τ ∈ S+∩GLn(F) and L = qL0 with q ∈ GLn(F)h we have

D(τ,q; f)L0 ∏
v∈b

gv[p]∏
v-c

hv([p])
−1 =

∏
v∈h

Zv ∑
L<M∈Lτ

µ(M/L)ψc(det(y))[det(q∗ŷg]c(τ,y; f).
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Assume now that kv ≥ n/2 for some v ∈ a. Then there exists τ ∈ S+ ∩GLn(F) and
r ∈ GLn(F)h such that

0 6= ψc(det(r))cf(τ,r)∏
v∈h

Zv = D(τ,r; f) ·L0 ∏
v-c

hv([p])
−1 ·∏

v∈b
gv([p]).

For the definitions of gv(·) and hv(·) we refer to [23]. Now given a Hecke character
χ of F , τ ∈ S+ and r ∈ GLn(F)h we define a Dirichlet series as follows:

D′r,τ(s, f,χ) := ∑
B/E

ψ(det(rx))χ∗(det(x)g)cf(τ,rx)|det(x)|s−n−1
F . (9)

This series is obtained from the series in Equation 8 by putting χ∗(tg)|tg|sF for
[tg]. In particular we have the equation

D′r,τ(s, f,χ)Λc

(
2s−n

4

)
∏
v∈b

gv(χ(ψ/ψc)(πv)|πv|s) = (10)

Z′(s, f,χ)(ψ/ψc)
2(det(r))×

∑
L<M∈Lτ

µ(M/L)(ψ2
c/ψ)(det(y))χ∗(det(r∗ŷ)g)|det(r∗ŷ|sF c(τ,y; f),

where for an integral ideal a we write

Λa(s) =

{
La(2s,ρτ ψχ)∏

n/2
i=1 La(4s−2i,ψ2χ2), if n is even;

∏
(n+1)/2
i=1 La(4s−2i+1,ψ2χ2), n is odd.

,

Given χ as above we write f for the conductor of χ . We define t ′ ∈ Za by

(ψχ)a(x) = x−t ′
a |xa|t

′
.

and µ ∈ Za by the conditions 0≤ µv ≤ 1 for all v ∈ a and µ− [k]− t ′ ∈ 2Za.
We now define a weight l and a Hecke character ψ ′ of F by l = µ +(n/2)a and

ψ ′ = χ−1ρτ , where ρτ is the Hecke character of F corresponding to the extension
F(c

1
2 )/F with c := (−1)[n/2]det(2τ). Let us write θχ ∈Ml(C′,ψ ′) for the theta

series associated to the data (χ−1,µ,τ,r) in section 2. Write C′ = D[b′−1,b′c′]} and
define e := b+b′. Then we have (see [20, page 572]),

Theorem 5 (Shimura).

(4π)−n(su+(k+l)/2)(
√

DF N(e)−1)n(n+1)/2
∏
v∈a

Γn(s+(kv+lv)/2)D′r,τ(2s+3n/2+1; f,χ)=

|det(r)|−2s−n/2
F det(τ)+(k+µ+nu/2)/2+su×∫

Φ

f (z)θχ(z)E(z, s̄+(n+1)/2,k− l,εψχρτ ,Γ ′)δ (z)kdz,
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where Φ := H /Γ ′ and Γ ′ := G∩D[e−1,eh], where h = e−1(bc∩b′c′). here ε = 1
if n is even and it is the non-trivial character of F((−1)

n
2 )/F otherwise.

In particular using the equation 10 we obtain

Theorem 6 (Shimura).

Z′(s, f,χ)∏
v∈a

Γn

(
s−n−1+ kv +µv

2

)
×

(ψ/ψc)
2(det(r)) ∑

L<M∈Lτ

µ(M/L)(ψ2
c/ψ)(det(y))χ∗(det(r∗ŷ)g)|det(r∗ŷ)|sF c(τ,y; f)=

(
D−1/2

F N(e)
)n(n+1)/2

(4π)n||s′u+λ ||det(τ)s′u+λ |det(r)|n+1−s
A ×

∏
v∈b

gv((ψ/ψc)(πv)χ
∗(πvg)|πv|s)(Λc/Λh)((2s−n)/4)vol(Φ)< f ,θχ D((2s−n)/4)>Γ ′ ,

where s′ = (2s−3n−2)/4 and for an integral ideal a of F,

Λa(s) =

{
La(2s,ρτ ψχ)∏

n/2
i=1 La(4s−2i,ψ2χ2), if n is even;

∏
(n+1)/2
i=1 La(4s−2i+1,ψ2χ2), n is odd.

,

and
D(s) = Λh(s)E(z, s̄;k− l,ε,ρτ ψχ,Γ ′).

We have normalized the Petersson inner product as follows

< f ,θχ D((2s−n)/4)>Γ ′=
1

vol(Φ)

∫
Φ

f (z)θχ(z)D(z,(2s−n)/4)δ (z)kdz.

In particular there exists (τ,r) with c(τ,r; f) 6= 0 such that

Z′(s, f,χ)∏
v∈a

Γn

(
s−n−1+ kv +µv

2

)
ψc(det(r))c(τ,r; f) = (11)

(
D−1/2

F N(e)
)n(n+1)/2

(4π)n||s′u+λ ||det(τ)s′u+λ |det(r)|n+1−s
A ×

∏
v∈b

gv((ψ/ψc)(πv)χ
∗(πvg)|πv|s)(Λc/Λh)((2s−n)/4)vol(Φ)< f ,θχ D((2s−n)/4)>Γ ′ .

We note here that vol(Φ) ∈ πn(n+1)/2Q×.

6 Petersson Inner Products and Periods

In this section we define some archimedean periods that we will use to normalize
the special values of the function Z′(s, f,ψ). The idea of defining these periods is
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due to Sturm [25] (building on previous work of Shimura), who considered the case
of n even and F =Q. However one should notice also the difference on the bounds
of the weights that we impose. In what it follows we will call a Hecke operator T (a),
relative to the group C = D[b−1,bc], as “good” if a is prime to c

Theorem 7. Let f∈Sk(c,ψ) be an eigenform for all the “good” Hecke oparators of
C. Let Φ be the Galois closure of F over Q and writeΨ for extension of Φ generated
by the eigenvalues of f and their complex conjugation . Assume m0 := minv(kv) >
[3n/2+1]+2. Then there exists a period Ωf such that for any g ∈Sk(Q) we have(

< f,g >

Ωf

)σ

=
< fσ ,gσ ′ >

Ωfσ

,

for all σ ∈ Gal(Q/Φ), where σ ′ = ρσρ . Moreover Ωf depends only on the eigen-
values of f and we have <f,f>

Ωf
∈Ψ×.

Remark 1. As we remarked above, a theorem of this form has been firstly proved by
Sturm [25], when F =Q and n is even. A similar theorem appears also in the work
of Panchishkin [17]. It is also important to notice that in Panchishkin’s theorem one
can take also g not cuspidal. However for this he has to take the weight big enough
in order to be in the range of absolute convergent for the Eisenstein series (see the
Theorems after the proof). Our proof is modelled on that of Sturm [25, Theorem 3]
and of Shimura [23, Theorem 28.5]. Maybe one should here remark that one of the
differences with the proof here in comparison with the one of Sturm is that we use
the identity (10) and not the Andrianov-Kalinin identity used by Sturm. Finally since
we are using a stronger theorem of Shimura with respect to the absolute convergence
of the function Z(s, f,χ) we also obtain better bounds for the weights. Finally we
remark the slightly larger bound on m0 than in Shimura [23, Theorem 28.5]. The
reason for this is the above mentioned problem with the Eisenstein spectrum (i.e.
separate it rationally from the cuspidal part).

Proof. We write {λ (a)} for the system of the eigenvalues of f (with respect to the
“good” Hecke operators) and we define V := {h ∈ Sk(c,ψ)|h|T (a) = λ (a)h}.
Then as in Shimura we define V (Ψ) = V ∩Sk(c,ψ;Ψ). By [10] we have that
the space V (Ψ) is preserved by the operators T (a). Moreover the “good” Hecke
operators generate a ring of semi-simple Ψ -linear transformations hence we have
V = V (Ψ)⊗Ψ C and Sk(C,Ψ) = V (Ψ)⊕U , with U a vector space over Ψ

which is stable under the action of the “good” Hecke operators. Since an eigen-
form in U ⊗Ψ C which is not contained in V must be orthogonal to it we have that
the above decomposition is orthogonal with respect to the Petersson inner product.

We now pick an integer σ0 so that 3n/2+1 < σ0 < m0 and m0−σ0 6∈ 2Z. Note
that this is always possible thanks to our assumption m0 > [3n/2+1]+2. Then we
define µ ∈ Za by the conditions 0≤ µv ≤ 1 and σ0−kv +µv ∈ 2Z for all v ∈ a. Our
choice of σ0 implies in particular that there exists an v ∈ a so that µv 6= 0. We put
t ′ := µ− k. We now pick a quadratic character χ of F so that (ψχ)a(x) = xt ′

a |xa|−t ′

and of conductor f such that c|f. Note that such a character can be obtained as the
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non trivial character of the quadratic extension F(
√

∆) by picking the sign of ∆ ∈ F
properly at v ∈ a and ∆ with non trivial valuation at all primes that divide c. The
existence of such a ∆ follows from the approximation theorem for F . As in Shimura
[23, page 236] we define l := µ +(n/2)a and ν = σ0− (n/2). Then ν ≥ (n+1)/2
and 0≤ k− l−νa∈ 2Za. We consider the theta series θχ with respect to our choices
of χ and µ . By Theorem 6, after evaluating at s = σ0 we obtain

Z′(σ0, f,χ)∏
v∈a

Γn

(
σ0−n−1+ kv +µv

2

)
(ψ/ψc)

2(det(r))×

∑
L<M∈Lτ

µ(M/L)(ψ2
c/ψ)(det(y))χ∗(det(r∗ŷ)g)|det(r∗ŷ)|σ0

F c(τ,y; f) =

(
D−1/2

F N(e)
)n(n+1)/2

(4π)n||s′0u+λ ||det(τ)s′0u+λ |det(r)|n+1−σ0
A (Λc/Λh)(ν/2)×

∏
v∈b

gv((ψ/ψc)(πv)χ
∗(πvg)|πv|σ0)vol(Φ)< f ,θχ D(ν/2,ερτ ψχ)>Γ ′ ,

where s′0 = (2σ0−3n−2)/4. We now note (see [23, page 237]) that

∏v∈a Γn

(
σ0−n−1+kv+µv

2

)
vol(Φ)

∈ π
n|| k−l−νa

2 ||−n||k||+dεQ×

where ε = n2/4 if n even and (n2−1)/4 otherwise. We now write δ for the rational

part of
∏v∈a Γn

(
σ0−n−1+kv+µv

2

)
vol(Φ) . We now take β ∈N so that π−β D(ν/2)∈N p

k−l(ΦQab)

with p = k−l−νa
2 and we set γ := n|| k−l−νa

2 || − n||k||+ dε − n||s′0u+ λ || − β . We
further set

B(χ,ψ,τ,r, f) := δ (ψ/ψc)
2(det(r))×

∑
L<M∈Lτ

µ(M/L)(ψ2
c/ψ)(det(y))χ∗(det(r∗ŷ)g)|det(r∗ŷ)|σ0

F c(τ,y; f),

and
C(χ,ψ,τ,r) := (N(e))n(n+1)/2 |det(r)|n+1−σ0

A ×

∏
v∈b

gv((ψ/ψc)(πv)χ
∗(πvg)|πv|σ0)(Λc/Λh)(ν/2).

We then have for every σ ∈ Gal(Q/Φ) that

B(χ,ψ,τ,r, f)σ = B(χσ ,ψσ ,τ,r, fσ ) and C(χ,ψ,τ,r)σ =C(χσ ,ψσ ,τ,r).

We now note the equalities

< f ,θχ D(ν/2,ερτ ψχ)>Γ ′=

< f ,p(θχ D(ν/2,ερτ ψχ))>Γ ′=< f ,TrΓ

Γ ′(p(θχ D(ν/2,ερτ ψχ)))>Γ ,
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where p : R p
k →Sk is Shimura’s holomorphic projection operators [23, Proposition

15.6](note that θχ D(ν/2) ∈R p
k since θχ is a cusp form) and TrΓ

Γ ′ : Sk(Γ
′,ψ)→

Sk(Γ ,ψ) is the usual trace operator attached to the groups Γ ′ ≤ Γ . Moreover, since
θχ π−β D(ν/2) ∈N p

k (ΦQab), we may consider the action of σ ∈ Gal(ΦQab/Φ).
Then

p(θχ π
−β D(ν/2,ερτ ψχ))σ = p(θ σ

χ (π−β D(ν/2,ερτ ψχ))σ ),

and,
TrΓ

Γ ′(θχ π
−β D(ν/2,ερτ ψχ))σ = TrΓ

Γ ′(θ
σ
χ D(ν/2,ερτ ψχ)σ ),

where in the last equation the last trace is from the space Sk(Γ
′,ψσ ) to Sk(Γ

′,ψσ ).
The equivariant property of the holomorphic projection operator is shown in Propo-
sition 15.6 of (loc. cit.) and the one of the trace is exactly as in Sturm where he
considers the case of F =Q, but the arguments is valid also for general F since the
strong approximation theorem also hold for the group Spn(F), the essential argu-
ment in his proof. We make this more formal in the lemma following this proof.

Keeping now the character χ fixed we know that for any given f ∈ V there exists
(τ,r) such that

B(χ,ψ,τ,r, f) = δψ(det(r))c(τ,r; f) 6= 0.

We note here that the same pair (τ,r) can be used for the form fσ , as it follows from
the proof of Theorem 20.9 in [23]. As in Shimura we write G for the set of pairs
(τ,r) for which such an f exists. From the observation above the set G is the same
also for the system of eigenvalues λ (a)σ , for all σ ∈ Gal(Q/Φ). In particular for
such an (τ,r)

0 6= π
γ Z′(σ0, f,χ)δψ(det(r))c(τ,r; f) = (12)(

D−1/2
F N(e)

)n(n+1)/2
(4)n||s′0u+λ ||det(τ)s′0u+λ |det(r)|n+1−σ0

A ×

∏
v∈b

gv((ψ/ψc)(πv)χ
∗(πvg)|πv|σ0)(Λc/Λh)(ν/2)< f ,θχ π

−β D(ν/2,ερτ ψχ)>Γ ′ .

The fact that Z′(σ0, f,χ) 6= 0 is in principle [23, Theorem 20.13]. Indeed in page 183
of (loc. cit) Shimura first proves the non-vanishing of Z′(σ0, f,χ) for any character
χ with µ 6= 0, as it is the case that we consider. Further we note that this in particular
implies also that C(χ,ψ,τ,r) 6= 0 for all (τ,r) ∈G.

We now define an element gτ,r,ψ ∈Sk(Γ ,ψ;ΦQab) by

gτ,r,ψ = π
−β TrΓ

Γ ′

(
p(θχ π

−β D(ν/2,ερτ ψχ))
)
,

and define the space W to be the space generated by gτ,r,ψ for (τ,r) ∈ G. We now
consider the case n even or odd separately.

The case of n even: In this case we have that ε is the trivial character. We now
claim that there exists an Ωf ∈ C× such that any f ∈ V and any gτ,r,ψ(

< f,gτ,r,ψ >

Ωf

)σ

=
< fσ ,gσ ′

τ,r,ψ >

Ωfσ

,
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where σ ′ = ρσρ . First we observe that

gσ ′
τ,r,ψ =TrΓ

Γ ′

(
p(θχ π

−β D(ν/2,ερτ ψχ))
)σ ′

=TrΓ

Γ ′

(
p(θ σ ′

χ (π−β D(ν/2,ερτ ψχ))σ ′
)
=

TrΓ

Γ ′

(
p(θχ(π

−β D(ν/2,ερτ ψχ))σ ′
)
,

where the last equality follows from the fact that χ is a quadratic character. We now
recall that D(ν/2,ρτ ψχ) = D(z,ν/2;k− l,ρτ ψχ,Γ ) and we have seen that(

π−β D(z,ν/2;k− l,ρτ ψχ,Γ )

P(ρτ ψχ)

)σ ′

=
π−β D(z,ν/2;k− l,ρτ ψχ

σ ′ ,Γ )

P(ρτ ψχ
σ ′)

,

where P(ρτ ψχ)= in|p|g(ρτ ψχ)(i)νd

|DF |1/2

(
∏

[n/2]
i=1 (i)(2ν−2i)d

)
g(ψ2[n/2])

|DF |b(n)
, with p= k−l−νa

2 . We con-
clude that

gσ ′
τ,r,ψ =

P(ρτ ψχ)σ ′

P(ρτ ψ
σ ′

χ)
TrΓ

Γ ′

(
p(θχ π

−β D(ν/2,ερτ ψ
σ ′

χ))
)
=

P(ρτ ψχ)σ ′

P(ρτ ψ
σ ′

χ)
gτ,r,ψσ .

We set R(ψ) := in|p|(i)νd

|DF |1/2

(
∏

[n/2]
i=1 (i)(2ν−2i)d

)
g(ψ2[n/2])

|DF |b(n)
. We now consider the ratio

g(ρτ ψχ)σ ′

g(ρτ ψ
σ ′

χ)
=

g(ρτ)
σ ′

g(ρσ ′
τ )

g(ψ)σ ′

g(ψσ ′)

g(χ)σ ′

g(χσ ′)
.

We recall that ρτ is the non-trivial character of the quadratic extension F(
√

c)/F
with c = (−1)[n/2]det(2τ). Since we are considering τ > 0 we have that

g(ρτ)
σ ′

g(ρσ ′
τ )

=


√

2det(τ)
σ ′

√
2det(τ)

, if [n/2] even;(
iσ
′

i

)d √N(2det(τ))
σ ′

√
N(2det(τ))

, otherwise.

Putting all these together we conclude that

gσ ′
τ,r,ψ =

g(ρτ)
σ ′

g(ρσ ′
τ )

g(ψ)σ ′

g(ψσ ′)

g(χ)σ ′

g(χσ ′)

R(ψ)σ ′

R(ψσ ′)
gτ,r,ψσ

For any gτ,r we have

(4)−n||s′0u+λ ||Dn(n+1)/4
F π

γ Z′(σ0, f,χ)B(χ,ψ,τ,r, f) =

det(τ)s′0u+λC(χ,ψ,τ,r)< f,gτ,r >Γ .

For any (τ,r) ∈G we have seen that C(χ,ψ,τ,r) 6= 0. We obtain
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< f,gτ,r >Γ

(4π)−n||s′0u+λ ||Dn(n+1)/4
F Z′(σ0, f,χ)

= det(τ)−(s
′
0u+λ ) B(χ,ψ,τ,r, f)

C(χ,ψ,τ,r)
.

For any σ ∈ Gal(Q/Q) we have then(
< f,gτ,r,ψ >Γ

(4)−n||s′0u+λ ||Dn(n+1)/4
F πγ Z′(σ0, f,χ)

)σ

=

(
det(τ)−(s

′
0u+λ ) B(χ,ψ,τ,r, f)

C(χ,ψ,τ,r)

)σ

=

(det(τ)−(s
′
0u+λ ))σ B(χσ ,ψσ ,τ,r, fσ )

C(χσ ,ψσ ,τ,r)
=

(det(τ)−(s
′
0u+λ ))σ

det(τ)−(s
′
0u+λ )

< fσ ,gτ,r,ψσ >Γ

(4π)−n||s′0u+λ ||Dn(n+1)/4
F Z′(σ0, fσ ,χ)

.

We remark that s′0u+λ = 2σ0−3n−2
4 u+ k+µ+ n

2 u
2 = σ0u+k+µ

2 − n+1
2 u. By our choice

of σ0 we have that σ0u+ k+ µ ∈ 2Za. We obtain that (det(τ)−(s
′
0u+λ ))σ

det(τ)−(s
′
0u+λ )

= (det(τ)
1
2 a)σ

det(τ)(
1
2 a)

Now we note that since det(τ) is totally positive we have(
g(ρτ)σ ′

g(ρσ ′
τ )

)−1
(det(τ)

1
2 a)σ

det(τ)(
1
2 a)

=

{
1, if [n/2] even;(

iσ
′

i

)d
, otherwise.

We have seen that

gτ,r,ψσ =

(
g(ρτ)

σ ′

g(ρσ ′
τ )

g(ψ)σ ′

g(ψσ ′)

g(χ)σ ′

g(χσ ′)

R(ψ)σ ′

R(ψσ ′)

)−1

gσ ′
τ,r,ψ .

and hence (
< f,gτ,r,ψ >Γ

(4)−n||s′0u+λ ||Dn(n+1)/4
F πγ Z(σ0, f,χ)

)σ

=

(
g(ρτ)σ ′

g(ρσ ′
τ )

g(ψ)σ ′

g(ψσ ′)

g(χ)σ ′

g(χσ ′)

R(ψ)σ ′

R(ψσ ′)

)−1
(det(τ)

1
2 a)σ

det(τ)(
1
2 a)
×

< fσ ,gσ ′
τ,r,ψ >Γ

(4)−n||s′0u+λ ||Dn(n+1)/4
F πγ Z′(σ0, fσ ,χ)

,

or equivalently(
< f,gτ,r,ψ >Γ

(g(ψ)g(χ)R(ψ))−1 B(n)4−n||s′0u+λ ||Dn(n+1)/4
F πγ Z′(σ0, f,χ)

)σ

=
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< fσ ,gσ ′
τ,r,ψ >Γ(

g(ψσ ′)g(χ)R(ψσ ′)B(n)
)−1

4−n||s′0u+λ ||Dn(n+1)/4
F πγ Z′(σ0, fσ ,χ)

.

where B(n) = id if [n/2] is odd and 1 otherwise. Hence we define

Ωf := (g(ψ)g(χ)R(ψ))−1 B(n)4−n||s′0u+λ ||Dn(n+1)/4
F π

γ Z′(σ0, f,χ)

The case of n odd: We now repeat the considerations above but with the half-
integral weight Eisenstein series.(

π−β D(z,ν/2;k− l,εχψρτ ,c)

g(ερτ ψχφ)nin|p|i−dnνC|DF |nν/2+3n(n+1)/4g(ερτ ψχ)|DF |1/2(2i)−(ν−n)db([n/2])

)σ ′

=

π−β D(z,ν/2;k− l,(εχψρτ)
σ )

g((εχψρτ)σ ′φ)nin|p|i−dnνC|DF |nν/2+3n(n+1)/4g((εχψρτ)σ ′)|DF |1/2(2i)−(ν−n)db([n/2])
,

where b(m) = id if m is m is odd and 1 otherwise. We set P(εχψρτ) equal to

g(ερτ ψχφ)nin|p|i−dnνC|DF |nν/2+3n(n+1)/4g(ερτ ψχ)|DF |1/2(2i)−(ν−n)db([n/2])

and as before we have

gσ ′
τ,r,ψ =

P(ερτ ψχ)σ ′

P(ερτ ψ
σ ′

χ)
gτ,r,ψσ .

We consider the ratio

(g(ερτ ψχφ)ng(ερτ ψχ))σ ′

g(ερτ ψ
σ ′

χφ)ng(ερτ ψ
σ ′

χ)
=

(
g(ε)σ ′

g(ε)

)n+1(
g(ρτ)

σ ′

g(ρτ)

)n+1(
g(ψ)σ ′

g(ψσ ′)

)n+1(
g(χ)σ ′

g(χ)

)n+1(
g(φ)σ ′

g(φ)

)n

.

Since n+1 is even and ρτ ,χ,ε are quadratic characters we get that(
g(ε)σ ′

g(ε)

)n+1

=

(
g(ρτ)

σ ′

g(ρτ)

)n+1

=

(
g(χ)σ ′

g(χ)

)n+1

= 1.

We set R := in|p|i−dnνC|DF |nν/2+3n(n+1)/4|DF |1/2(2i)−(ν−n)db([n/2]), and then
we have

gσ ′
τ,r,ψ =

(
g(ψ)σ ′

g(ψσ ′)

)n+1(
g(φ)σ ′

g(φ)

)n
Rσ ′

R
gτ,r,ψσ .
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By the same calculations as in the case of n even, by no noticing that s′0u+λ ∈Za

we obtain For any σ ∈ Gal(Q/Q) we have then(
< f,gτ,r,ψ >Γ

4−n||s′0u+λ ||Dn(n+1)/4
F πγ Z′(σ0, f,χ)

)σ

=
< fσ ,gτ,r,ψσ >Γ

4−n||s′0u+λ ||Dn(n+1)/4
F πγ Z′(σ0, fσ ,χ)

.

Hence we conclude < f,gτ,r,ψ >Γ(
g(ψ)

n+1
g(φ)

n
R̄
)−1

4−n||s′0u+λ ||Dn(n+1)/4
F πγ Z′(σ0, f,χ)


σ

=

< fσ ,gτ,r,ψσ >Γ(
g(ψσ ′)

n+1
g(φ)

n
R̄
)−1

4−n||s′0u+λ ||Dn(n+1)/4
F πγ Z′(σ0, fσ ,χ)

.

So for n odd we define

Ωf :=
(

g(ψ)
n+1

g(φ)
n
R̄
)−1

4−n||s′0u+λ ||Dn(n+1)/4
F π

γ Z′(σ0, f,χ).

By W ′ we define the space generated by the projection of W on V . By definition
W ′ = V . Indeed for any element g∈ V there exists h∈W ′ such that < g,h >Γ 6= 0,
simply by taking the projection of the corresponding gτ,r to W ′. So the C span of
gτ,r with τ,r ∈G is equal to V . Since gτ,r have algebraic coefficients we have that
the Q-span is equal to V (Q). We can now establish the theorem for any g ∈ V (Q)
since after writing g=∑ j c jgτ j ,r j ,V ∈V (Q), where gτ j ,r j ,V is the projection of gτ j ,r j

to V , we have

(
< f,g >

Ωf

)σ

= ∑
j

c j
σ

< fσ ,gσ ′
τ j ,r j ,V

>

Ωfσ

=
< fσ ,gσ ′ >

Ωfσ

We now take any g ∈Sk(Γ ,ψ;Q). We write g = g1 +g2 with g1 ∈ V and }2 ∈
V ⊥. Then we have that(

< f,g >

Ωf

)σ

=

(
< f,g1 >

Ωf

)σ

=
< fσ ,gσ ′

1 >

Ωfσ

=
< fσ ,gσ ′ >

Ωfσ

where the last equality follows from the fact that < f,g >= 0 implies that <
fσ ,gσ ′ >= 0. It is enough to show this for g an eigenform for all the good Hecke
operators in an L-packet different from that of f’s. That is, there exists an ideal a
with (a,c) = 1 so that T (a)f = λff and T (a)g = λgg such that λf 6= λg. But then we
have

λ
σ
f < fσ ,gσ ′ >=< T (a)fσ ,gσ ′ >=

< fσ ,T (a)gσ ′ >=< fσ ,λ σ ′
g gσ ′ >=< fσ ,gσ ′ > λ

σ
g
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and hence we conclude that < fσ ,gσ ′ >= 0. Here we have used the facts that the
good Hecke operators are self adjoint with respect to the Petersson inner produt, and
that their Hecke eigenvalues are totally real (for both facts see [23, Lemma 23.15]).

Finally taking g equal to f we obtain that Ωf is equal to < f, f > up to a non-zero
element in the the Galois closure of the field generated by the Fourier coefficients
of f (note that it also contains the eigenvalues). ut

We now give a proof of the equivariant property of the trace that we used in the
proof of the theorem. The proof follows the proof given by Sturm [25, Lemma 11]
extended to the totally real field situation.

Lemma 8. With notation as in the proof of the above theorem we have for any f ∈
Sk(Γ

′,ψ;Qab)

TrΓ

Γ ′( f )σ = TrΓ

Γ ′( f σ ), σ ∈ Gal(ΦQab/Φ).

Proof. Thanks to the strong approximation for Spn(F) we may work adelically. We
write D and D′ for the corresponding to Γ and Γ ′ adelic groups (i.e. Γ = G∩D).
We fix elements {gi} ⊂ Dh so that D =

⋃
D′gi. For t ∈ Z×h corresponding to σ |Qab

we note that (
1n 0
0 t−11n

)
gi

(
1n 0
0 t1n

)
∈ Spn(A)h

and hence by strong approximation we can find elements ui ∈ D′ with f |ui = f
(i.e. ψ(ui) = 1) and wi ∈ Spn(F) so that(

1n 0
0 t−11n

)
gi

(
1n 0
0 t1n

)
= uiwi.

We moreover note that wia = ui
−1
a . Now we claim that since the gi’s form a set of rep-

resentatives of the classes of D′ in D, the same holds for
(

1n 0
0 t−11n

)
gi

(
1n 0
0 t1n

)
,

and hence also for wi since ui ∈ D′. Indeed since t ∈ Z×h ↪→ F×h we have that(
1n 0
0 t−11n

)(
a b
c d

)(
1n 0
0 t1n

)
=

(
a tb

t−1c d

)
∈ D[a,b]

if
(

a b
c d

)
∈D[a,b], for some fractional ideals a,b with ab⊆ g. In particular we have

that ı(t)giı(t−1) ∈ D. We claim that D =
⋃̇

iD
′ı(t)giı(t−1). Indeed let d ∈ D. Then

ı(t−1)dı(t) ∈D and hence there exists d′ ∈D′ such that ı(t−1)dı(t) = d′g j for some
j. Or equivalently d = ı(t)d′g jı(t−1) = ı(t)d′ı(t−1)ı(t)g jı(t−1), which establishes
our claim since ı(t)d′ı(t−1)ı(t) ∈ D′.

We now consider the elements (ı(t),σ),(wi, id),(gi, id)∈ G+×Gal(Q/Q). Then
we have

(TrΓ

Γ ′( f σ ))σ−1
= (∑

i
ψ(gi)

σ f σ |kgi)
σ−1

=
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∑
i
(ψ(gi) f )((ı(t),σ)(gi,1)(ı(t−1),σ−1)) = ∑

i
ψ(gi) f (uiwi,1) = ∑

i
ψ(gi) f |kwi.

The proof of the lemma is now completed after observing that ψ(gi) = ψ(wi). ut

We also mention here the following theorem of Garrett [10].

Theorem 8 (Garrett). Let k > 2n+1 and f,g∈Ska. Take f an eigenform for almost
all Hecke operators. Then for all σ ∈ Aut(C/Q), we have(

< fρ ,g >

< fρ , f >

)σ

=
< fσρ ,gσ >

< fσρ , fσ >

In particular if we take f,g∈Ska(Q), and take f with totally real Fourier coefficients
then we have that <fρ ,g>

<fρ ,f> ∈Q and(
< f,g >

< f, f >

)σ

=
< fσ ,gσ >

< fσ , fσ >
, σ ∈ Gal(Q/Q).

We note that if we combine the above result of Garrett with the following result
of Harris on the Eisenstein spectrum

Theorem 9 (Harris). Let k > 2n+1 and write Eka for the orthogonal complement
of Ska in Mka (the Eisenstein series). Define Eka(Q) := Mka(Q)∩ Eka. Then we
have

Mka(Q) = Eka(Q)⊕Ska(Q).

Proof. This follows from the work of Harris [12]. Indeed in general we have that
(see [23, Theorems 27.14, and 27.16])

Mka(Q) = Eka(Q)⊕Ska(Q)

and Eka(Q) = ⊕n
r=0E

r
ka(Q) where E r

ka the space of Klingen type Eisenstein series
associated to a parabolic group Pr stabilizing an isotropic space of dimension r.
Harris has shown that in the case of weight as above (i.e. the absolute convergence
situation) we have that E r

ka(Q) = E r
ka(Q)⊗QQ. ut

Now this theorem allows us to take g ∈Mka in Theorem 8.

7 Algebraicity results for Siegel Modular Forms over totally real
fields

In this section we present various results regarding special values of the function
Z′(s, f,χ), with f ∈ Sk(b,c,ψ), an eigenform for all Hecke operators. We remind
that we have also considered the function Z(s, f,χ). The two coincide when the
Nebentypus of f is trivial. Indeed if we write Zv(χ

∗(πvg)|πv|s) for the Euler factor
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of Z(s, f,χ) at some prime v ∈ h then the corresponding Euler factor of Z′(s, f,χ) is
equal to Zv((ψ/ψc)χ

∗(πvg)|πv|s). We note the equation

Z′(s, f,χψ
−1) = Zc(s, f,χ),

where the sub-index on the right hand side indicates that we have removed the Euler
factors all primes in the support of c. In particular if we take the character χ trivial
(may not primitive) at the primes dividing c then we have that the two functions are
the same.

We start by stating a result of Shimura [23, Theorem 28.8]. We take an f ∈
Sk(C;Q), where

C = {x ∈ D[b−1c,bc]|ax−1≺ c}

We moreover take f of trivial Nebentypus and assume that it is an eigenform for
all Hecke operators away from the primes in the support of c. In the notation of
Shimura in Chapter V of his book, we take e = c, and not e = g. In particular here
we take the Euler factors Zv trivial for v in the support of c. The theorem below is
stated only for k ∈ Za.

Theorem 10 (Shimura). With notation as above define m0 := min{kv|v ∈ a} and
assume m0 > (3n/2)+1. Let χ be a character of F such that χa(x) = xt

a|xa|−t with
t ∈ Za. Set µv := 0 if kv− tv ∈ 2Z and µv = 1 if kv− tv 6∈ 2Z. Let σ0 ∈ Z such that

1. 2n+1− kv +µv ≤ σ0 ≤ kv−µv,
2. σ0− kv +µv ∈ 2Z for every v ∈ a if σ0 > n,
3. σ0−1+ kv−µv ∈ 2Z for every v ∈ a if σ0 ≤ n.

We exclude the cases

1. σ0 = n+1, F =Q and χ2 = 1,
2. σ0 = 0, c= g and χ = 1,
3. 0 < σ0 ≤ n, c= g, χ2 = 1 and the conductor of χ is g.

Then we have
Z(σ0, f,χ)
< f, f >

∈ π
n(∑v kv)+deQ

where d = [F : Q] and

e :=
{
(n+1)σ0−n2−n, σ0 > n;
nσ0−n2, otherwise.

We now take f ∈ Sk(C,ψ;Q) with C of the form D[b−1,bc] (i.e. the standard
setting in this paper). We are interested in special values of Z′(s, f,χ) for a Hecke
character χ of F of conductor f.

Theorem 11. Let f ∈ Sk(b,c,ψ;Q) be an eigenform for all Hecke operators. As-
sume that either
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1. there exists v,v′ ∈ a such that kv 6= kv′ , and m0 = min{kv|v ∈ a}> [3n/2+1]+2
or

2. k is a parallel weight with k > 2n+1.

Let χ be a character of F such that χa(x) = xt
a|xa|−t with t ∈ Za. Define t ′ ∈ Za by

(ψχ)a(x) = xt ′
a |xa|t

′
. Set µv := 0 if kv−t ′v ∈ 2Z and µv = 1 if kv−t ′v 6∈ 2Z. Let σ0 ∈Z

such that

1. 2n+1− kv +µv ≤ σ0 ≤ kv−µv for all v ∈ a,
2. |σ0−n− 1

2 |+n+ 1
2 − k+µ ∈ 2Za.

3. if n is even, and σ0 = n/2+ i for i = 0, . . .n/2, i ∈ N or if n is odd and σ0 =
n/2−1+ i, i = 1, . . . ,(n+1)/2, then we assume the Assumption below.

We exclude the cases

1. σ0 = n+1, F =Q and (χψ)2 = 1,
2. σ0 = n

2 , c = g, n is even and there is no (τ,r) that satisfy our assumption such
that ρτ 6= 1 and χψ = 1,

3. n/2 < σ0 ≤ n, c= g and (ψχ)2 = 1.

Then with notation as in the previous theorem we have

Z′(σ0, f,χ)
< f, f >

∈ π
n(∑v kv)+deQ

Moreover, if we take a number field W so that f, fρ ∈Sk(W ) and Φ ⊂W, where
Φ is the Galois closure of F in Q, then

Z′(σ0, f,χ)

πβ (
√

DF
n(n+1)/4

)imω(εχψ)ρ < f, f >
∈W :=W (χψ),

where ω(·) is defined by using the Theorem 3 as follows

1. for σ0 > n and n even then ω(·) is as in Theorem 3 (i),
2. for σ0 > n and n odd then ω(·) is as in Theorem 3 (iii) (b),
3. for σ0 ≤ n and n even then ω(·) is as in Theorem 3 (ii),
4. for σ0 ≤ n and n odd then ω(·) is as in Theorem 3 (iv).

and m = d if [n/2] is odd and 0 otherwise.

Assumption: Let θ ∈ F×h so that θg = b−1d. Write f′ for the conductor of χ2.
We assume that we can find τ ∈ S+∩GLn(F) and r ∈GLn(F)h so that c(τ,r; f) 6= 0,
equation 11 in Theorem 6 holds and

1. if n is even and v - cf′ then (θ trτr)v is regular and v - f,
2. if n is odd and v - cf′ then (θ trτr)v is regular and v - 2f∩b−1d.

We note that this assumption implies that in Theorem 6 we have that Λc(s)/Λh(s)=
1 (see [20, Proposition 8.3]).
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Proof. (of Theorem 11) We first consider the Gamma factors that appear in Theorem
6. We first recall that

Γn(s) = π
n(n−1)/4

n−1

∏
j=0

Γ (s− j
2
).

Hence for ∏v∈a Γn(
σ0−n−1+kv+µv

2 ) we need the condition that σ0 > 2n− kv + µv
for all v ∈ a, which is the lower bound appearing in the theorem. Moreover the
Eisenstein series D( ν

2 ) of weight k− µ − n
2 for ν = σ0− n

2 is nearly holomorphic
if and only if n+ 1− (kv− µv− n

2 ) ≤ σ0− n
2 ≤ kv− µv− n

2 and |ν − n+1
2 |+

n+1
2 −

kv + µv +
n
2 ∈ 2Z for every v ∈ a. These inequalities give the upper bound in the

(i) condition for σ0 and (ii). The third condition for σ0 is imposed so that in the
range where the fraction Λc(s)/Λh(s) (a finite product of Euler factors associated
to finite order characters) could have a pole it is equal to 1. Finally the various
exclusion follows from various cases where the Eisenstein series D( ν

2 ) is not nearly
holomorphic.

We take β ∈ N so that π−β D( v
2 ) ∈Nk−l(ΦQab). Now using Theorem 6 after a

proper choice of (τ,r) we have

π
γ Z′(σ0, f,χ)ψc(det(r))c(τ,r; f) =

α

(
D−1/2

F

)n(n+1)/2
det(τ)s′0u+λ |det(r)|n+1−σ0

A ×

∏
v∈b

gv((ψ/ψc)(πv)χ
∗(πvg)|πv|σ0)(Λc/Λh)((2σ0−n)/4)< f ,θχ(π

−β D(ν/2))>,

where α ∈Q×, and γ := n|| k−l−νa
2 ||−n||k||+dε−n||s′0u+λ ||−β where we recall

ε = n2/4 if n even and (n2−1)/4 otherwise.
We now note that θχ ∈Ml(W ) and π−β D(ν/2) ∈N r

k−l(WQab) where r = (k−
l−νa)/2 if ν > (n+1)/2 and r = (k− l− (n+1−ν)a)/2 otherwise.

Moreover we have s′0u+λ = σ0u+k+µ

2 − n+1
2 u. In particular

1. for σ0 > n and n even we have that s′0u+λ 6∈ 2Z,
2. for σ0 > n and n odd we have that s′0u+λ ∈ 2Z,
3. for σ0 ≤ n and n even we have that s′0u+λ ∈ 2Z,
4. for σ0 ≤ n and n odd we have that s′0u+λ 6∈ 2Z.

We now note that g(ρτ) = im
√

NF/Qdet(τ), with m = d if [n/2] is odd and 0

otherwise. Now we set P :=
√

DF
n(n+1)/4imω(εχψ) where ω(·) is defined as in the

statement of the theorem. Then by Theorem 3 we conclude that(
D−1/2

F

)n(n+1)/2
det(τ)s′0u+λ

π
−β P−1D(ν/2) ∈N r

k−l(W ).

We set a :=
(

D−1/2
F

)n(n+1)/2
det(τ)s′0u+λ π−β P−1. By Lemma 15.8 in [23] we have

that there exists a q ∈Mk(W ) so that < f ,θχ aD(ν/2) >=< f ,q >. If k is not a
parallel weight, then we have that actually q ∈Sk(W ) since in this case Mk = Sk.
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Then by Theorem 7 we have that < f ,q>
< f , f> ∈ W . In the other case, that is of k being

a parallel weight we can use Theorem 8 combined with the Theorem 9 to conclude
again < f ,q>

< f , f> ∈W and hence conclude the proof. ut

We now obtain also some results with reciprocity laws.

Theorem 12. Let f ∈Sk(b,c,ψ;Q) be an eigenform for all Hecke operators. With
notation as before we take m0 > [3n/2+1]+2. Let χ be a character of F such that
χa(x) = xt

a|xa|−t with t ∈ Za. Define t ′ ∈ Za by (ψχ)a(x) = xt ′
a |xa|t

′
. Set µv := 0 if

kv− t ′v ∈ 2Z and µv = 1 if kv− t ′v 6∈ 2Z. Assume that µ 6= 0.
Let σ0 ∈ Z be as in the previous Theorem. Then with Ωf ∈ C× as defined in the

previous section in Theorem 7 we have for all σ ∈ Gal(Q/Φ) that Z′(σ0, f,χ)

πn(∑v kv)+de
√

Dn(n+1)/4
F imω(εχψ)ρ Ωf

σ

=

Z′(σ0, fσ ,χσ )

πn(∑v kv)+deim
√

DF
n(n+1)/4

ω(εχσ ψσ )ρ Ωfσ

.

Proof. We first observe that thanks to the assumption that µ 6= 0 we have that θχ ∈
Sl . Moreover for σ ∈Gal(Q/Φ) we have θ σ ′

χ = θχσ , as it follows from the explicit
Fourier expansion of θχ . Moreover arguing as in the theorem above and using the
reciprocity laws for Eisenstein series in Theorem 3 we have that(

π−β
√

DF
n(n+1)/2det(τ)s′0u+λ D(ν/2,εψχρτ)

ω(εψχ)

)σ ′

=

π−β
√

DF
n(n+1)/2det(τ)s′0u+λ D(ν/2,εψσ χσ )

ω(εψσ χσ )
, σ ∈ Gal(Q/Φ).

Moreover we have that θχ D(ν/2,εψσ χσ ρτ) ∈Rk. By Proposition 15.6 in [23] we
have that there exists q= p

(
θχ D(ν/2,εψσ χσ ρτ)

)
∈Sk so that < f ,θχ D(ν/2,εψχρτ)>=<

f ,q > and qσ = p
(

θ σ
χ D(ν/2,εψχρτ)

σ

)
for all σ ∈ Aut(C/Φ). In particular we

have that(√
DF

n(n+1)/2det(τ)s′0u+λ < f ,θχ π−β D(ν/2,εψχρτ)>

ω(εψχ)ρ Ωf

)σ

=

√
DF

n(n+1)/2det(τ)s′0u+λ < f σ ,θχσ π−β D(ν/2,εψσ χσ ρτ)>

ω(εψσ χσ )ρ Ωfσ

,

from which we conclude the proof of the theorem. ut

As we have remarked in the introduction results similar to the ones proved in this
paper have been obtained by Sturm [25], Harris [12] and Panchishkin [17] in the
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case of F =Q and n even. We also remark that Sturm has also considered the case
n = 1 and F = Q in [26]. Our proofs are just generalizations of theirs building on
some new results of Shimura. We close this section by mentioning that the perhaps
strongest result concerning the special values of Siegel modular forms, at least when
F =Q and under some other technical assumptions, is due to Böcherer and Schmidt
[4]. Using the doubling method (see also the next section) and some holomorphic
differential operators of Böcherer they obtained algebraicity results but assuming
only that the weight of the Siegel modular form is larger than n rather than 3n

2 +1.
It is of course very interesting to extend their results to the totally real field case,
however the generalization of their result seems to be a quite challenging task. We
comment a bit more on this in the next section.

8 Some Remarks on the Doubling Method

In this paper our main tool for the study of the special L-values of Siegel Modu-
lar Forms was the Rankin-Selberg method. However, as we also briefly mentioned
above, there is yet another powerful method for the study of these special val-
ues, namely the so-called doubling method. In this paper we considered mainly the
Rankin-Selberg Method, since this article, already quite long, would have increased
considerably in size if the doubling method was also to be considered here. So we
have decided to defer the consideration of the doubling method with respect to the
same questions addressed here for a future paper. In this section we wish to very
briefly discuss various aspects that are closely related to the doubling method and
the questions considered in this paper.

It is perhaps fair to say that the doubling method was initiated by Garrett in [9]
and extended further by Böcherer [1, 2, 3], Böcherer and Schmidt [4], Shimura [21]
and in the automorphic language by Piatetski-Shapiro and Rallis [18]. Of course the
list of contributors here is not meant to be complete.

Concerning the algebraicity results addressed in this paper, it seems that the two
methods (Rankin-Selberg and the Doubling Method) provide in many cases the
same results, but there are indeed case where one method is better than the other.
Indeed, Shimura in his books [23, theorem 28.8] concludes his algebraicity results
by using both methods (1st method and 2nd method in Shimura’s notation). How-
ever one should at this point remark the following. Shimura writes at the beginning
of his proof of his Theorem 28.8 “There are two ways to prove this: the first one
(i.e. doubling method) applies to the whole critical strip, and the second one (i.e.
Rankin-Selberg Method) only to the right half of the strip”. However this is so, be-
cause Shimura is taking e = c in his book [23, page 231](see also our discussion
just before Theorem 7.1 in this paper). Indeed in this situation the doubling method
seems to be able to tackle critical points also to the left half of the critical strip,
something that the Rankin-Selberg method cannot. However for e = g this is not
the case and this is the situation that we consider here. The main reason being that
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the integral expression in Theorem 6 it is available in this form (in particular this
particular Siegel type Eisenstein series for which we know quite explicitly) only in
the case e = g. We also note here that e = c corresponds to Γ1(N)-case and c = g
corresponds to Γ0(N)-case in the elliptic modular form situation.

In this paper we have considered only Siegel modular forms. Of course the same
questions can be addressed for other groups, as for example unitary groups. Actually
Shimura in his book provides similar results (always over an algebraic closure of Q)
for hermitian modular forms, that is modular forms associated to unitary groups. For
hermitian modular forms the two methods are not at all equivalent, and in particular
one cannot use the Rankin-Selberg method to study special L-values for hermitian
forms of unitary groups of the form U(n,m) for n 6= m (this is part of the case UB
in Shimura’s notation in his book). For example one cannot consider the case of
hermitian modular forms for definite unitary groups. But the doubling method still
does apply. Here we should say that the field of definition for hermitian modular
forms has been worked out by Harris in [13] using the doubling method. However
we would like further to remark here that Harris considers special L-values only in
the strip of absolute convergence. In the UT case (i.e. n = m) we have obtained in
some cases results [6] using the Rankin-Selberg method that improves the ones of
Harris (i.e. beyond the absolute convergence).

As we explained at the beginning of this article one of the main motivations of
our investigations is the construction of p-adic measures for Siegel modular forms.
We briefly describe here what is known with respect to this, even though the reader
should keep in mind that we do not wish to give here a complete and detailed pic-
ture of the situation. Historically the first results in this direction were obtained by
Panchishkin,[17] (see also the joint work of Courtieu and Panchishkin [7]), who
used the Rankin-Selberg method to construct these measures. However he consid-
ered the case of even degree (or genus), the main reason being that in this case the
Rankin-Selberg method does not involve Eisenstein series of half-integral weight.
Later Böcherer and Schmidt [4] constructed these p-adic measures for any degree
using the doubling method. One should remark here that there is a very delicate
difference in the way that Böcherer and Schmidt applied the doubling method and
in the way Shimura developed it in his work [21]. Very briefly the main difference
seems to be in the decomposition that is proved in Proposition 2.1 of [4] as well as
the use of the holomorphic operators of Böcherer (opposite to the non-holomorphic
ones in the work of Shimura). Of course one should add here that the work [4] is re-
stricted to Siegel modular forms over the rationals, opposite to the work of Shimura
who applies to any totally real field. We simply say here that in an ongoing project
we extend the work of Panchishkin (i.e. p-adic measures using the Rankin-Selberg
mathod) in two directions. We consider also odd genus and to the totally real field
case. Note, as we already said, that both the work of Panchishkin and of Böcherer
and Schmidt are over the rationals. It seems to be a big challenge to obtain the ana-
logue of Proposition 2.1 of [4] in the totally real case in the situation of strict class
number bigger than one, and in particular extend the work of Böcherer and Schmidt
to totally real fields. We are currently working on this. At this point it is worth men-
tioning that in this article we considered scalar valued Siegel modular forms. Many
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of the above questions can be stated also for the vector valued ones. For a first step
in this direction the reader can see [16]. Finally we close this article by mention that
of course it is very interesting to construct p-adic measures for hermitian modular
forms. The doubling method has been already used in that context, as for example in
[14, 15, 24]. In [6] we are considering the Rankin-Selberg method for constructing
these p-adic measures.
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2. S. Böcherer, Über die Fourier-jacobi-Entwicklung der Siegelschen Eisensteinreihen II, Math.
Z. 189 (1985), 81-100
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