
ON SPECIAL L-VALUES ATTACHED TO SIEGEL MODULAR

FORMS.

THANASIS BOUGANIS

In his admirable book “Arithmeticity in the Theory of Automorphic Forms” Shimura es-
tablishes various algebraicity results concerning special values of Siegel modular forms.
These results are all stated over an algebraic closure of Q. In this article we work out
the field of definition of these special values. In this way we extend some previous
results obtained by Sturm, Harris, Panchishkin, and Böcherer-Schmidt.
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1. Introduction

Special values of L functions play a central role in Iwasawa theory since they are indis-
pensable for the formulation of the Main Conjectures. It is precisely this information
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which is encoded in the interpolation properties of the p-adic L-functions. The first
step to construct these p-adic L-functions is to show that the L-functions under con-
sideration evaluated at “critical” points have particular algebraic properties. These
properties are usually described by Deligne’s conjectures. In this article we address
this kind of questions for L functions associated to Siegel modular forms.

This article grew out of the author’s effort to read carefully the book of Shimura
“Arithmeticity in the Theory of Automorphic Forms” ([23]) which means to do also
the “exercises” left by Shimura to the reader. One of them is related to the algebraicity
of various special values of Siegel modular forms (see page 239, Remark 28.13 in (loc.
cit.)). As Shimura points out the results left as exercises should follow by using the
various techniques and results obtained in his book and various papers of him. This
is indeed the case since most ideas of this article can be found in the various works of
Shimura, which of course in turn requires some familiarity with them. In any rate we
believe that it is useful to have the results worked out in this paper documented in the
literature, and for this reason we decided to write this article. In this paper we consider
the special values of Siegel modular forms of integral weight. In [5], the continuation
of this article, we consider also special L-value attached to half-integral weight Siegel
modular forms.

Let us point out some results in this article that we believe deserve special mention.
The first is the reciprocity law of the action of the Galois group on half-integral weight
Eisenstein series. For integral weight Eisenstein series one can find the reciprocity laws
in the book of Feit ([8]) (if not in the form that it is needed for our purposes). However
to the best of our knowledge the reciprocity for half integral Eisenstein series has not
been worked out for Siegel modular forms. Another interesting result is the definition
of the period Ωf appearing in Theorem 7.3. These kind of periods have been first
considered by Sturm and Harris [25, 11] (and later also by Panchishkin), based on an
idea of Shimura. We follow the ideas of Sturm in defining them but using some new
results of Shimura we are able to improve in some cases the bounds on the weight of the
Siegel modular forms that the results are applicable. Also the fact that we use the more
precise form of the Andrianov-Kalinin type identity proved by Shimura, we can obtain
slightly finer results, since we need to remove less Euler factors of the L-function.

This paper is organized as follows. In section two we have a very brief introduction to
Siegel modular forms. Then we move to section three where after presenting various
results of Shimura with respect the theory of theta series and Eisenstein series for the
symplectic group, we prove the various reciprocity laws of the action of the absolute
Galois group on the Eisenstein series. Some of the result have already appeared in
[25] and [8], and we use ideas of these works. For the case of half integral weight
Eisenstein series we prove the reciprocity inspired by an idea of Shimura. In section 4
we introduce the L functions which are considered in this paper. All the material of
this section is from Shimura’s book. In section 5 we also present the work of Shimura
on the generalization of the so-called Adrianov-Kalinin type identity. However for our
purposes we use an integral expression that it is not in the book [23] but in a paper
of Shimura [20]. The use of this integral expression will lead to study slightly different
L-functions than in the ones studied in the book of Shimura (we explain more later on
this). Also in this section all the material is taken from works of Shimura. In section 6
we define the periods that we will use to obtain the good reciprocity laws. The idea of
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defining this periods as values of an L function goes back to Shimura, and have been
used by Sturm [25], Harris [11] and Panchishkin [17] in the case Siegel modular forms
over the rationals and of even degree. We also note that we obtain a slightly different
results than in these works, partly because we use some newer results of Shimura that
were not available when these works were written. Finally in the last section we present
the various results on the field of rationality of the various special functions properly
normalized and in some cases we provide some reciprocity results.

One last remark with respect to the notation used in this article. Since we are using as
our main reference the book of Shimura [23] we decided to keep, the anyway excellent,
notation used by him. In particular if some times we use some notions not defined
in this paper the reader will find the exact same notation also in the reference. This
allows to keep the length of this article reasonable since we do not need to introduce
all the mathematical notions used here.

2. Siegel Modular forms

2.1. Integral weight Siegel modular forms. In this section we introduce the notion
of a Siegel modular form (classicaly and adelically). We follow closely the book of
Shimura [23].

For a positive integer n ∈ N we define the matrix ηn :=

(
0 −1n
1n 0

)
and for any

commutative ring A with an identity the group Spn(A) := {α ∈ GL2n(A)|tαηnα = ηn}.
The group Spn(R) acts on the Siegel upper half space Hn := {z ∈ Cnn|tz = z, Im(z) >

0} by linear fractional transformations, that is for α =

(
aα bα
cα dα

)
∈ Spn(R) and

z ∈ Hn we have α · z := (aαz + bα)(cαz + dα)−1 ∈ Hn. Moreover if we define µα(z) :=
µ(α, z) := cαz + dα then we have

µ(βα, z) = µ(β, αz)µ(α, z), α, β ∈ Spn(R), z ∈ Hn

Let now F be a totally real field of degree d := [F : Q] and write g for its ring of
integers. We write a for the set of archimedean places of F , h for the finite ones and
we set G := Spn(F ). We write GA for the adelic group and we decompose GA = GhGa

where Ga :=
∏
v∈aGv and Gh :=

∏
v∈hGv. For two fractional ideals a and b of F such

that ab ⊆ g, we define the subgroup of GA,

D[a, b] :=

{
x =

(
ax bx
cx dx

)
∈ GA|ax ≺ gv, bx ≺ av, cx ≺ bv, dx ≺ gv, ∀v ∈ h

}
,

where we use the notation “≺” of Shimura, x ≺ bv meaning that the v-component
of x is a matrix with entries in the ideal bv. We will mainly consider groups of the
form D[b−1, bc] for a fractional ideal b and an integral ideal c. Strong approximation
for G implies that GA = GqD[b−1, bc] for any b, c and q ∈ Gh. We define Γq(b, c) :=
G∩qD[b−1, bc]q−1. Given a Hecke character ψ of F with ψv(a) = 1 for all a ∈ g×v , v ∈ h
such that a − 1 ∈ cv we define a character on D[b−1, bc] by ψ(x) =

∏
v|c ψv(det(dx)v)

and a character which we still denote ψ on Γq by ψ(γ) := ψ(q−1γq).
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We now write Za :=
∏
v∈a Z and H :=

∏
v∈aHn. For a function f : H → C and an

element k ∈ Za we define

(f |kα)(z) := jα(z)−kf(αz), α ∈ G, z ∈ H.
Here we write z = (zv)v∈a with zv ∈ Hn and αv ∈ Spn(R) and define jα(z)−k :=∏
v det(µαv(zv))

−kv . Let now Γ be group of the form Γq, q ∈ Gh as above and ψ a
Hecke character. Then we define

Definition 2.1. A function f : H → C is called a Siegel modular form for the congru-
ence subgroup Γ of weight k ∈ Za and Nebentypus ψ if

(i) f is holomorphic,
(ii) f |kγ = ψ(γ)f for all γ ∈ Γ,
(iii) f is holomorphic at cusps.

The last condition is needed only if F = Q and n = 1. Then it is the classical condition
of elliptic modular forms being holomorphic at cusps. The above defined space we will
denote it byMk(Γ, ψ). As it is explained in [23, page 33] for an element f ∈Mk(Γ, ψ)
and an element α ∈ G we have a Fourier expansion

(f |kα)(z) =
∑
h∈S+

cα(h)ena(hz),

where S+ is the set of n by n symmetric matrices with entries in F which are positive
semi-definite at every real place v ∈ a and ena(x) = exp(2πi

∑
v∈a tr(xv)). An element

f ∈ Mk(Γ, ψ) is called a cusp form if cα(h) 6= 0 for some α ∈ G implies hv is positive
definite for all v ∈ a.

We now turn to the adelic Siegel modular forms. Let D be a group of the form D[b−1, bc]
and ψ a Hecke character of F .

Definition 2.2. A function f : GA → C is called adelic Siegel modular form if

(i) f(αxw) = ψ(w)jkw(i)f(x) for α ∈ G, w ∈ D with w(i) = i,
(ii) For every p ∈ Gh there exists fp ∈ Mk(Γ

p, ψp), where Γp := G ∩ pDp−1 and
ψp(γ) = ψ(pγp−1) such that f(py) = (fp|ky)(i) for every y ∈ Ga.

We write Mk(D,ψ) for this space. Strong approximation theorem for Spn gives
Mk(D,ψ) ∼= Mk(Γ

q, ψq) for any q ∈ Gh. We define the space of automorphic cusp
form Sk(D,ψ) to be the subspace of Mk(D,ψ) that is in bijection with Sk(Γ

q, ψ) for
any q ∈ Gh in the above bijection. We may also sometimes write Mk(b, c, ψ) for
Mk(D,ψ). Similarly we may write Mk(b, c, ψ) for Mk(Γ, ψ) where Γ = G ∩D[b−1, bc],
i.e q = 1.

2.2. Half-integral weight Siegel modular forms. Even though we will consider
only algebraicity results for integral weight Siegel modular forms, in many case we
will need to use half-integral weight modular forms. We denote by MA the adelized
metaplectic group sitting in the exact sequence 0 → T → MA → GA → 0. The last
projection we denote by pr. We write Cθ for the theta group defined for example in [20,
page 536] and Γθ = G ∩ Cθ. We also define the group M = {x ∈ MA|pr(x) ∈ PAC

θ},
where P is the standard Siegel parabolic subgroup of G. Thanks to a canonical lift



ON SPECIAL L-VALUES ATTACHED TO SIEGEL MODULAR FORMS. 5

we may consider G as a subgroup of MA and hence also Γθ a subgroup of M. For an
element σ ∈ M and z ∈ H we write hσ(z) for the holomorphic function defined by
Shimura. By a half integral weight k ∈ 1

2Z
a we mean a tuple (kv)v∈a so that kv ∈ Z+ 1

2
for all v ∈ a. For such a k we define the factor of automorphy

jσ(z)k := hσ(z)jpr(σ)(z)
[k].

Then the definition of half integral weight modular forms, with congruence subgroup
Γ ≤ Γθ is the same as in integral case but using the new factor of automorphy. One
may define also adelic automorphic forms, we refer to Shimura [23, page 166] for this.

3. Theta and Eisenstein Series

3.1. Theta series. Following Shimura we set W = Fnn and we let S(Wh) denote the
space of Schwartz-Bruhat functions on Wh. Let τ be an n by n symmetric matrix with
entries in F such that τv > 0 for all v ∈ a. For an element λ ∈ S(Wh) and an element
µ ∈ Za such that 0 ≤ µv ≤ 1 for all v ∈ a we define

θ(z, λ) =
∑
ξ∈W

λ(ξh)det(ξ)µea(tr(tξτξz)), z ∈ H.

It is shown in the appendix of [23] that this is an element of Ml with l := µ + n
2 a.

Moreover it is also shown that if µ 6= 0 then θ(z, λ) is actually a cusp form. We now
introduce some extra notation following [23, Appendix A3.18]. We set

R =
∏
vh

(gv)
n
n, Ev = GLn(gv), R∗ = RWa ⊂WA.

We let ω be now a Hecke character of F of conductor f such that ωa(−1)n = (−1)n
∑
v µv .

Let now r be an element of GLn(F )h and define

θ(z) :=
∑

W∩rR∗
ωa(det(ξ))ω∗(det(r−1ξ)g)det(ξ)µena(tξτξt),

where for a Hecke character ψ we denote by ψ∗ the corresponding ideal character. Then
Shimura proves the following proposition

Proposition 3.1 (Shimura). Let ρτ be the Hecke character of F corresponding to

the extension F (c1/2)/F with c = (−1)[n/2]det(2τ); put ω′ = ωρτ . Then there exist
a fractional ideal b and an integral ideal c, such that the conductor of ω′ divides c,
D[b−1, bc] ⊂ D[2d−1, 2d] if n is odd, and

θ(γz) = ω′c(det(aγ))jlγ(z)θ(z), γ ∈ G ∩D,

where D = {x ∈ D[b−1, bc]. Moreover, if β ∈ G ∩ diag[q, q̂]C with q ∈ GLn(F )h, then

jlβ(β−1z)θ(β−1z) = ω′(det(q))−1ω′c(det(dβq))|det(q)|
n/2
A ×∑

ξ∈W∩rR∗q−1

ωa(det(ξ))ω∗(det(ξr−1q)g)det(ξ)µena(tξτξz).
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In particular, let x and t be fractional ideals of F such that tg2τg ∈ x for every g ∈ rgn1
and th(2τ)−1h ∈ 4t−1 for every hr̂gn1 and write h for the conductor of ρτ . Then we can
take

(b, c) =

{
(2−1dx, h ∩ f ∩ x−1f2t), if n is even;
(2−1da−1, h ∩ f ∩ 4a ∩ af2t), if n is odd.

,

where a = x−1 ∩ g.

3.2. Eisenstein series. We follow Shimura [22, 23] and define various Eisenstein series
of Siegel type. Let k ∈ 1

2Z
a be a weight, b a fractional ideal of F , c an integral ideal in

F and a Hecke character χ of F with infinity type χa(x) = x`a|xa|−`, and

χv(a) = 1, if v ∈ h, a ∈ r×v , and a− 1 ∈ rvcv, ∀ v ∈ h.

When k is half integral we also assume that D[b−1, bc] ⊂ D[2d−1, 2d], where d the
different ideal of F . Following the notation of Shimura we now define in the case of
k ∈ Za

D̃ = D[b−1, bc], D̃0 = D0[b−1, bc],

and otherwise

D̃ = {x ∈MA|pr(x) ∈ D[b−1, bc]}, D̃0 = {x ∈ D̃|pr(x) ∈ D0[b−1, bc]}.

Write P = {x ∈ G|cx = 0} for the standard Siegel parabolic. We then define a function
µ on GA or MA by

µ(x) = 0, if x 6∈ PAD̃,

µ(x) = χh(det(dp))
−1χc(det(dw))−1jkx(i)−1|jx(i)|k,

if x = pw with p ∈ PA and w ∈ D̃. Then for a pair (x, s) ∈ GA × C if k ∈ Za or in
MA × C otherwise, we define the Eisenstein series

EA(x, s) = EA(x, s;χ, D̃) =
∑

α∈P\G

µ(αx)ε(αx)−s.

We will need one more type of Eisenstein series. We define the element ζ ∈ Sp(n, F )A
by

ζa = 1, ζh =

(
0 −δ−11n
δ1n 0

)
,

where δ ∈ F×h such that δg = d. We further fix an element ζ̃ ∈MA such that pr(ζ̃) = ζ

and h(ζ̃, z) = 1. Then we define the Eisenstein series

E∗A(x, s) = χ(δ)−n ×
{
EA(xζ, s), k ∈ Za ;

EA(xζ̃, s), otherwise.

Finally we define the Eisenstein series

DA(x, s) = E∗A(x, s)×

{
Lc(2s, χ)

∏[n/2]
i=1 Lc(4s− 2i, χ2), k ∈ Za;∏[(n+1)/2]

i=1 Lc(4s− 2i− 1, χ2), k 6∈ Za;
,

Write S = {x ∈ Fnn |tx = x}. Then the q-expansion of E∗A(x, s) is given by

E∗A

((
q σq̂
0 q̂

)
, s

)
=
∑
h∈S

c(h, q, s)enA(hσ),
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where q ∈ GLn(F )A and σ ∈ SA. We now define the Eisenstein series on (z, s) ∈ H×C
by

E∗(x(i), s) = jkx(i)E∗A(x, s),

and similarly we define D(z, s and D∗(z, s). When we want to indicate the dependence
on the various input data we will write E(z, s; k, χ, c) for E(z, s) or in case we want also
to indicate the dependency on b we will write E(z, s; k, χ,Γ), where Γ = G∩D[b−1, bc].

We now note the q-expansion

E∗(z, s) =
∑
h∈S

det(y)−ka/2c(h, q, s)ena(hx),

where qh = q1 and qa = y1/2. For the coefficients c(h, q, s) we have the following
propositions of Shimura [23, Proposition 16.9, 16.10, 17.6],( for notation not introduced
here we refer to (loc. cit)).

Proposition 3.2 (Shimura). Suppose that c 6= g and det(qv) > 0 for every v ∈ a.

Then c(h, q, s) 6= 0 only if (tqhq)v ∈ (db−1c−1)vS̃v for every v ∈ h. In this case

c(h, q, s) = Cχh(det(−q))−1|det(q)h|n+1−2s
A |DF |−2ns+3n(n+1)/4N(bc)−n(n+1)/2×

det(y)saΞ(y;h; sa + k/2, sa− k/2)αec (ε
−1
b ·

tqhq, 2s, χ),

where C = 1 and e = 0 if k ∈ Za, and C = e(n[F : Q]/8) and e = 1 if k 6∈ Za; εb ∈ F×h
such that εbg = b−1d if k ∈ Za, and εb = 1 otherwise; DF is the discriminant of F .The
function Ξ(g;h;α, β) =

∏
v∈a ξ(yv, hv;αv, βv) is given in [23, page 140].

Proposition 3.3 (Shimura). Consider q and h such that c(h, q, s) 6= 0. Set r =
rank(h) and let g ∈ GLn(F ) such that g−1hg = diag[h′, 0] with h′ ∈ Sr. Let ρh be the

Hecke character corresponding to F (c1/2)/F where c = (−1)[r/2]det(2h′), if r > 0; let
ρh = 1 if r = 0. Then

αec (ε
−1
b ·

tqhq, 2s, χ) = Λc(s)
−1Λh(s)

∏
v∈c

fh,q,v

(
χ(πv)|πv|2s+e/2

)
,

where

Λc(s) =

{
Lc(2s, χ)

∏[n/2]
i=1 Lc(4s− 2i, χ2), if k ∈ Za;∏[(n+1)/2]

i=1 Lc(4s− 2i+ 1, χ2), otherwise.

Λh(s) =

{
Lc(2s− n+ r/2, χρh)

∏[(n−r)/2]
i=1 Lc(4s− 2n+ r + 2i− 1, χ2), if k ∈ Za;∏[(n−r+1)/2]

i=1 Lc(4s− 2n+ r + 2i− 2, χ2), otherwise.

Here fh,q,v are polynomials with coefficients in Z, independent of χ. The set c is
determined as follows: c = ∅ if r = 0. If r > 0, then take a ∈

∏
v-cGLn(gv) so that

(ε−1
b

tatqhqa)v = diag[τv, 0] with τv ∈ T rv for every v - c. Then c consists of those v’s not
dividing c such that τv is not regular.

For a number field W we follow Shimura and write N r
k (W ) for the space of W -rational

nearly holomorphic forms of weight k (see [23, page 103 and page 110] for the definition).
The theorem below is due to Shimura [23, Theorem 17.9].
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Theorem 3.4 (Shimura). Let Φ be the Galois closure of F over Q and let k ∈ 1
2Z

a

with kv ≥ (n+ 1)/2 for all v ∈ a and kv− kv′ ∈ 2Z for every v, v′ ∈ a. Let µ ∈ 1
2Z with

n+ 1− kv ≤ µ ≤ kv and |µ− n+1
2 |+

n+1
2 − kv ∈ 2Z for all v ∈ a. Exclude the cases

(i) µ = (n+ 2)/2, F = Q and χ2 = 1,
(ii) µ = 0, c = g and χ = 1,
(iii) 0 < µ ≤ n/2, c = g and χ2 = 1.

Then D(z, µ/2; k, χ, c) belongs to πβN r
k (ΦQab), where r = (n/2)(k− |µ− (n+ 1)/2|a−

n+1
2 a) except in the case where n = 1, µ = 2, F = Q, χ = 1 and n > 1, µ = (n+ 3)/2,

F = Q, χ2 = 1. In these two case we have r = n(k − µ+ 2)/2. Moreover we have that
β = (n/2)

∑
v∈a(kv + µ)− [F : Q]e where

e =

{
[(n+ 1)2/4]− µ, if 2µ+ n ∈ 2Z and µ ≥ λ;[
n2/4

]
, otherwise.

For an element p ∈ Za and a weight q ∈ 1
2Z

a we write ∆p
q for the differential op-

erators defined by Shimura in [23, page 146]. In particular we have ∆p
qN t

q (ΦQab) ⊂
πn|p|N t+np

q+2p (ΦQab). Moreover for any f ∈ N t
q (ΦQab) and any σ ∈ Gal(ΦQab/Φ) we have

that

(3.1)
(
π−n|p|∆p

q(f)
)σ

= π−n|p|∆p
q(f

σ)

Let µ ∈ 1
2Z and k ∈ 1

2Z
a be as in the theorem above. If µ ≥ (n + 1)/2 then Shimura

shows that [23, page 146]

(3.2) ∆p
µaD(z, µ/2;µa, χ, c) = cpµa(µ/2)(i/2)n|p|D(z, µ/2; ka, χ, c),

where p = (k − µa)/2. Here cpµa(µ/2) ∈ Q×. If µ < (n+ 1)/2 then we have

(3.3) ∆p
νaD(z, µ/2; νa, χ, c) = cpνa(µ/2)(i/2)n|p|D(z, µ/2; ka, χ, c),

where ν = n+ 1− µ, p = (k − νa)/2 and again cpνa(µ/2) ∈ Q×.

The following lemma is immediate from the above equations,

Lemma 3.5. Assume there exists A(χ), B(χ) ∈ Qab and β1, β2 ∈ N such that for all
σ ∈ Gal(Qab/Q)(

D(z, µ/2;µa, χ, c)

πβ1A(χ)

)σ
=
D(z, µ/2;µa, χσ, c)

πβ1A(χσ)
, µ ≥ (n+ 1)/2

and (
D(z, µ/2; νa, χ, c)

πβ2B(χ)

)σ
=
D(z, µ/2; νa, χσ, c)

πβ2B(χσ)
, µ ≤ (n+ 1)/2.

Then we have for µ ≥ (n+ 1)/2 that(
D(z, µ/2; k, χ, c)

πβ1+n|p|in|p|A(χ)

)σ
=
D(z, µ/2; k, χσ, c)

πβ1+n|p|in|p|A(χσ)
, p = (k − µa)/2 ∈ Za,

and for µ ≤ (n+ 1)/2 that(
D(z, µ/2; k, χ, c)

πβ2+n|p|in|p|B(χ)

)σ
=
D(z, µ/2; k, χσ, c)

πβ2+n|p|in|p|B(χσ)
, ν = n+ 1− µ p = (k − νa)/2 ∈ Za,
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We will be interested in algebraicity statements of the Eisenstein series of weight suffi-
cient large it is enough to study the effect of the action of the Galois group of the full
rank coefficients. More precisely we have the following lemma.

Lemma 3.6. Let f(z) =
∑

h∈S c(h)ena(hz) ∈ Mka(Qab) with k ≥ n/2. Assume that
for an element σ ∈ Gal(Qab/Q) we have c(h)σ = ac(h) for all h with det(h) 6= 0 for
some a ∈ C. Then c(h)σ = ac(h) for all h ∈ S. In particular fσ = af .

Proof. We obviously have fσ ∈Mka(Qab). We consider g := af − fσ ∈Mka(Qab). We
note that the form g has non-zero Fourier coefficients only for h ∈ S with det(h) = 0.
But then by [23, Proposition 6.16] we have that g = 0. �

We now want to consider the action of Gal(Qab/Q) on the Eisenstein series. We first
consider the holomorphic ones. That is, we consider the following two Eisenstein series

(i) D(z, k/2; ka, χ, c) ∈ πβMka(Qab) for k ≥ n+1
2 ,

(ii) D(z, µ/2; ka, χ, c) ∈ πβMka(Qab) for k := n+ 1− µ and µ ≤ n+1
2 ,

where β is determined by Theorem 3.4. Note here that we take the field of definition to
be Qab, i.e. the extension Φ does not appear. For this we refer to [23, Theorem 17.7].

In the following lemma we collect some properties that we will need concerning the
functions Ξ(y, h;α, β) =

∏
v∈a ξ(y, h;α, β).

Lemma 3.7. Let h ∈ S with det(h) 6= 0 and y ∈ Sa
+(R). Then we have for k ∈ 1

2Z we
have

Ξ(y, h; k, 0) = 2d(1−(n+1)/2)i−dnk(2π)dnkΓn(k)−dN(det(h))k−(n+1)/2en(iyh)

and for µ := n+ 1− k we have

Ξ(y, h; (n+1)/2, (µ−k)/2) = i−nk2−(dn(µ−k))/2πdn(n+1)/2Γn(
n+ 1

2
)−d

∏
v∈a

det(yv)
−(µ−k

2
)en(iyh)

Proof. The first statement is in [23, Equation 17.12]. For the second we have Ξ(y, h; (n+
1)/2, µ/2−k/2) =

∏
v∈a ξ(yv, hv; (n+ 1)/2, µ/2−k/2), where the function ξ(·) is given

in [23, page 140]. By Shimura [19, Equation 4.35K] we have that ω(2πyv, hv; (n +

1)/2, µ/2− k/2) = 2−n(n+1)/2ev(iyvhv). We conclude that

ξ(yv, hv; (n+1)/2, µ/2−k/2) = i−nk2−(n(µ−k))/2πn(n+1)/2Γn(
n+ 1

2
)−1det(yv)

−(µ−k
2

)ev(iyvhv),

where we have used the fact that δ−(hvyv) = 1 (the product of the negative eigenvalues

of hvyv). Indeed we have that δ−(hvyv) = δ−(y
1/2
v hv

ty
1/2
v ). But the last quantity has

the same number of negative eigenvalues as the matrix hv, but hv > 0.

�

We will need the following Theorem (for a proof see [22, Theorem A6.5].

Theorem 3.8. Let F be a totally real field, and let ψ be a Hecke character of F with

ψa(b) =
∏
v∈a

(
bv
|bv |

)k
, with 0 < k ∈ Z. For any integral ideal c of F put

Pc(k, ψ) := g(ψ)−1(2πi)−kd|DF |1/2Lc(k, ψ),
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where d = [F : Q] and g(ψ) is a Gauss sum (defined [22, page 240]). Then Pc(k, ψ) ∈
Q(ψ) and for every σ ∈ Gal(Q(ψ)/Q) we have

Pc(k, ψ)σ = Pc(k, ψ
σ).

We also summarize in the following lemma some more properties of Gauss sums.

Lemma 3.9. Let χ and ψ be two finit order Hecke characters of F and σ ∈ Gal(Qab/Q)
we have

(i) g(χ)σ = χ∗(qg)−1g(χσ) where 0 < q ∈ Z so that e(1/N(f))σ = e(q/N(f)) ,
where f denotes the conductor of χ.

(ii)
(

g(χψ)
g(χ)g(ψ)

)σ
= g(χσψσ)

g(χσ)g(ψσ) .

(iii) If χ is a quadratic character then g(χ) = imN(f)1/2 where m is the number of
archimedean primes where χv 6= 1.

We remark here that if we pick an element t ∈ Z×h so that e
[t,Q]
h = eh(t−1x) for x ∈ Q/Z

then we have that we can pick the q ∈ Z above so that rtp−1 ∈ N(f)Zp for every prime
p. Then we also obtain that χ∗(qq) = χf(t).

3.3. Eisenstein series of integral weight: We first consider the integral weight case.
We have the following proposition.

Proposition 3.10. For the Eisenstein series

D(z, k/2; ka, χ, c) = Lc(k, χ)

[n/2]∏
i=1

Lc(2k − 2i, χ2)E(z, k/2; ka, χ, c)

with k ≥ n+1
2 we have that π−βD(z, k/2; ka, χ, c) ∈Mka(Qab) and for all σ ∈ Gal(Qab/Q)

we have that(
D(z, k/2; ka, χ, c)

πβP (χ)

)σ
=
D(z, k/2; ka, χσ, c)

πβP (χσ)
, σ ∈ Gal(Qab/Q),

where β = kd +
∑[n/2]

i=1 (2k − 2i) and P (χ) := g(χ)(i)kd

|DF |1/2

(∏[n/2]
i=1 (i)(2k−2i)d

)
g(χ2[n/2])

|DF |b(n)
, with

b(n) = 1/2 if [n/2] odd and 1 otherwise.

Proof. We observe that we have that 2k − 2i > 0 for all i = 1 . . . [n/2]. By definition

we have that χa(b) =
∏
v∈a

(
bv
|bv |

)k
. By Theorem 3.8 above we have for

A(χ) :=
|DF |1/2Lc(k, χ)

g(χ)(2πi)kd

[n/2]∏
i=1

|DF |1/2Lc(2k − 2i, χ2)

g(χ2)(2πi)(2k−2i)d
∈ Qab

and for all σ ∈ Gal(Qab/Q) we have A(χ)σ = A(χσ). Using Lemma 3.9 we may define
the quantity

B(χ) =
|DF |1/2Lc(k, χ)

g(χ)(2πi)kd

[n/2]∏
i=1

Lc(2k − 2i, χ2)

(2πi)(2k−2i)d

 |DF |b(n)

g(χ2[n/2])
,
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where b(n) = 1/2 if [n/2] is odd and 1 otherwise. Then we have B(χ)σ = B(χσ).
By [8, Theorem 15.1] we have E(z, k/2; ka, χ, c)σ = E(z, k/2; ka, χσ, c) for all σ ∈
Gal(Q(χ)/Q). In particular we conclude that(

D(z, k/2; ka, χ, c)

πβP (χ)

)σ
=
D(z, k/2; ka, χσ, c)

πβP (χσ)
, σ ∈ Gal(Qab/Q),

where β = kd+
∑[n/2]

i=1 (2k − 2i) and P (χ) := g(χ)(i)kd

|DF |1/2

(∏[n/2]
i=1 (i)(2k−2i)d

)
g(χ2[n/2])

|DF |b(n)
.

�

Now we turn to the Eisenstein series

D(z, µ/2; ka, χ, c) = Lc(µ, χ)

[n/2]∏
i=1

Lc(2µ− 2i, χ2)E(z, µ/2; ka, χ, c),

and

D∗(z, µ/2; ka, χ, c) = Lc(µ, χ)

[n/2]∏
i=1

Lc(2µ− 2i, χ2)E∗(z, µ/2; ka, χ, c),

where we take µ ≤ n+1
2 , and k = n+ 1− µ.

We now prove

Lemma 3.11. Let β ∈ N as in Theorem 3.4 so that π−βD(z, µ/2; ka, χ, c) ∈Mka(Qab).
Then we have that also π−βD∗(z, µ/2; ka, χ, c) ∈ Mka(Qab). Moreover for every σ ∈
Gal(Qab/Q) we have the reciprocity law(

D∗(z, µ/2; ka, χ, c)

πβi−dnk|DF |−nµ+3n(n+1)/4

)σ
=

D∗(z, µ/2; ka, χσ, c)

πβi−dnk|DF |−nµ+3n(n+1)/4
.

Proof. The first statement i.e. that π−βD∗(z, µ/2; ka, χ, c) ∈ Mka(Qab) follows from
[23, Lemma 10.10]. Moreover by Lemma 3.6 it is enough to establish the action of
Gal(Qab/Q) on the full rank coefficients. By Proposition 3.2 and Lemma 3.7 we have
that the hth Fourier coefficient c(h, χ) of π−βD∗(z, µ/2; ka, χ, c) with det(h) 6= 0 is
equal to

i−dnk2−(dn(µ−k))/2
n∏
j=0

Γ(
n+ 1

2
− j/2)−d|DF |−nµ+3n(n+1)/4N(bc)−n(n+1)/2×

∏
v∈c

fh,v (χ(πv)|πv|µ)×
{
Lc(µ− n/2, χρh), n even ;
1, n odd.

If n is odd we have(
c(h, χ)

i−dnk|DF |−nµ+3n(n+1)/4

)σ
=

c(h, χσ)

i−dnk|DF |−nµ+3n(n+1)/4
.

Now we take n = 2m even. The character χρh has infinity type (χρh)a(b) =
∏
v∈a

(
bv
|bv |

)1−µ+m

since the character ρh is the non-trivial character of the extension F (c1/2)/F with
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c := (−1)mdet(2h) and det(h) >> 0 as h is positive definite for all real embeddings of
F . Since 1−µ+m > 0 we have by [23, Theorem 18.12] that L(1−(1−µ+m), (χρh)σ) =
L(1− (1− µ+m), (χρh))σ for all σ ∈ Gal(Qab/Q). Hence we conclude also in the case
of n even that (

c(h, χ)

i−dnk|DF |−nµ+3n(n+1)/4

)σ
=

c(h, χσ)

i−dnk|DF |−nµ+3n(n+1)/4
.

�

We now prove the following lemma

Lemma 3.12. Assume that (π−βD∗(z, µ/2; ka, χ, c))σ = aπ−βD∗(z, µ/2; ka, χσ, c) for
σ ∈ Gal(Qab/Q) a ∈ Q×ab. Then

(π−βD(z, µ/2; ka, χ, c))σ = bπ−βD(z, µ/2; ka, χσ, c)

where b = χ(qg)−na, where 0 < q ∈ Z such that e(1/N(c))σ = e(q/N(c)).

Proof. We use an argument due to Feit [8] and Sturm [25, Lemma 5] first introduced
by Shimura in the case of n = 1. We will need the reciprocity law of the action of the
group G+ ×Gal(Q/Q) defined by Shimura in [23, Theorem 10.2]. We use the notation
of Shimura in this theorem. Let t be an idele of F and as in Shimura we define ı(t) :=(

1 0
0 t−1

)
. For a σ ∈ Gal(Qab/Q) we define the element (ı(t), σ) ∈ G+ × Gal(Q/Q)

where t ∈ Z×h corresponds to σ by class field theory and we extend σ to an element of
the absolute Galois group. Moreover we may consider also ζh ∈ SpA as an element of
G+ ×Gal(Q/Q) by taking (ζh, 1). Then we have that

(ı(t), σ)(ζh, 1)(ı(t−1), σ−1)(ζ−1
h , 1) =

((
t 0
0 t−1

)
, 1

)
In particular we have

π−βD(z, µ/2; ka, χ, c)(ı(t),σ)(ζh,1)(ı(t−1),σ−1)(ζ−1
h ,1) =

π−βD(z, µ/2; ka, χ, c)|k
(
t 0
0 t−1

)
= χc(t)

nπ−βD(z, µ/2; ka, χ, c)

But then

(π−βD(z, µ/2; ka, χ, c))σ = π−βD(z, µ/2; ka, χ, c)(ı(t),σ) =

π−βD(z, µ/2; ka, χ, c)(ı(t),σ)(ζh,1)(ı(t−1),σ−1)(ζ−1
h ,1)(ζh,1)(ı(t),σ)(ζ−1

h ),1) =

(3.4)

χc(t)
n
((
π−βD(z, µ/2; ka, χ, c)|k(ζh

)σ)
|kζ−1

h ) = χc(t)
naπ−βD(z, µ/2; ka, χσ, c).

�

We can now establish the following corollary

Corollary 3.13. For the Eisenstein series D(z, µ/2; ka, χ,D) we have(
D(z, µ/2; ka, χ, c)

πβg(χn)i−dnk|DF |−nµ+3n(n+1)/4

)σ
=

D(z, µ/2; ka, χσ, c)

πβg((χn)σ)i−dnk|DF |−nµ+3n(n+1)/4
, σ ∈ Gal(Qab/Q).
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Proof. This follows immediately by combining Lemma 3.9 ((i) and (ii)), and the last
two lemmas. �

3.4. Eisenstein series of half integral weight: Now we consider the case of half-
integral weight. We will need the theta series θ(z) :=

∑
a∈gn ea(taza/2) ∈ M 1

2
a(Q, φ),

where the quadratic character φ of Γθ is defined by hγ(z) = φ(γ)jaγ (z) for γ ∈ Γθ.
Note that this is the series θF defined in [23, page 39, equation 6.16] by taking in the
equation there, using Shimura’s notation, u = 0 and λ the characteristic function of
gn ⊂ Fn. Note in particular that since we are taking u = 0 we have that φF = θF . In
particular Theorem 6.8 in (loc. cit) gives the properties of the series θ. We now prove
the following lemma.

Lemma 3.14. For the theta series θ(z) and for σ ∈ Gal(Q/Q) we have that(
θ| 1

2
a(ζh

)σ
| 1
2
aζ
−1
h = θ

Proof. This follows immediately after observing that ζh ∈ Cθ and from Theorem 6.8 (4)
in [23]. Indeed since θ is invariant under Γθ = G∩Cθ we have that θ| 1

2
aζh = θ 1

2
aζ
−1
h = θ.

Since θ ∈M 1
2
a(Q), we conclude the proof.

�

Proposition 3.15. Let λ be equal to k or µ. Let β(λ) ∈ N so that π−β(λ)D∗(z, λ/2; ka, χ, c) ∈
Mka(Qab). Let σ ∈ Gal(Qab/Q and assume(

π−β(λ)D∗(z, λ/2; ka, χ, c)
)σ

= α(λ)π−β(λ)D∗(z, λ/2; ka, χσ, c), k = n+ 1− µ,

for some α(λ) ∈ Q×. Then we have π−β(λ)D(z, λ/2; ka, χ, c) ∈Mka(Qab) and(
π−β(λ)D(z, λ/2; ka, χ, c)

)σ
= βπ−β(λ)D(z, lambda/2; ka, χσ, c)

where β = (χφ)c(t)
nα(λ).

Proof. The fact that π−β(λ)D(z, λ/2; ka, χ, c) ∈ Mk(Qab) follows from [23, Lemma
10.10]. The rest of the proof was inspired by the proof of Theorem 10.7 in [23]. We

write D(χ, λ) for π−β(λ)D(z, λ/2; ka, χ, c). Let k′ = k + 1
2 ∈ Z. Then we note that

θD(χ, λ) ∈ Mk′a(Qab) and for a σ ∈ Gal(Qab/Q) we have θD(χ, λ)σ = (θD(χ, λ))σ.
Since θD(χ) is of integral weight we can apply the reciprocity-laws as before. Writing
t ∈ Z×h corresponding to σ we have

(θD(χ, λ))σ = (θD(χ, λ))((ı(t),σ)(ζh,1)(ı(t−1),σ−1)(ζ−1
h ,1))((ζh,1)(ı(t)σ)(ζ−1

h ,1))

=

(
(θD(χ, λ))|k′

(
t 0
0 t−1

))(ζh,1)(ı(t),σ)(ζ−1
h ,1)

= (φχ)c(t)
n ((θD(χ)|k′aζh)σ)k′a ζ

−1
h =

(φχ)c(t)
n
(
φ(ζ0)

(
θ| 1

2
aζh

)σ
(D(χ, λ)|kaζh)σ

)
|k′aζ−1

h =

φ(ζ0)φ(ζ0)−1
((
θ| 1

2
aζh

)σ
| 1
2
aζ
−1
h

)
((D(χ, λ)|kaζh)σ) |kaζ−1

h =

(φχ)c(t)
nα(λ)θD(χσ, λ).
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The last equation follows from the last Lemma. However the previous equations de-
serve a comment. Note that for f1, f2 ∈ M 1

2
a and γ ∈ Γθ we have that (f1f2)|aγ =

φ(γ)(f1| 1
2
aγ)(f2| 1

2
aγ) since hγ(z)2 = φ(γ)jaγ (z).

So we obtain that θD(χ, λ)σ = (φχ)c(t)
−nαθD(χσ). Since θ is not a zero divisor in the

formal ring of the Fourier-expansion (see [23, page 74]) we conclude the proof.

�

We now establish also in the case of half-integral weight that

Proposition 3.16. Let β1 ∈ N so that π−β1D∗(z, k/2; ka, χ, c) ∈ Mka(Qab). Let
σ ∈ Gal(Qab/Q) Then for n even we have(

π−β1D∗(z, k/2; ka, χ, c)

i−dnkC|DF |nk/2+3n(n+1)/4

)σ
=

π−β1D∗(z, k/2; ka, χσ)

i−dnkC|DF |nk/2+3n(n+1)/4

and for n odd(
π−β1D∗(z, k/2; ka, χ, c)

i−dnkC|DF |nk/2+3n(n+1)/4g(χ)|DF |1/2(2i)−(k−n)db([n/2])

)σ
=

π−β1D∗(z, k/2; ka, χσ)

i−dnkC|DF |nk/2+3n(n+1)/4g(χσ)|DF |1/2(2i)−(k−n)db([n/2])
,

where b(m) = id if m is m is odd and 1 otherwise.

Let now β2 ∈ N so that π−β2D∗(z, µ/2; ka, χ, c) ∈Mka(Qab). Then we have(
π−β2D∗(z, µ/2; ka, χ, c)

i−dnkC|DF |−n(n+1−k)+3n(n+1)/4

)σ
=

π−β2D∗(z, µ/2; ka, χσ, c)

i−dnkC|DF |−n(n+1−k)+3n(n+1)/4
, k = n+1−µ

Proof. Arguing as before, it is enough to consider the action of σ on the full rank
coefficients. We consider an h with det(h) 6= 0. Then we have that the hth Fourier
coefficient c(h, χ) of π−β1D∗(z, k/2; ka, χ, c) is equal to

2d(nk+1−(n+1)/2)i−dnk

n−1∏
j=0

Γ(k − j/2)

−dN(det(h))k−(n+1)/2C|DF |nk/2+3n(n+1)/4N(bc)−n(n+1)/2×

∏
v∈c

fh,v

(
χ(πv)|πv|k+1/2

)
×
{
π−d(k−n/2)Lc(k − n/2, χρh), n odd ;
1, n even.

We now note that if n is even we have that k−(n+1)/2 ∈ Z and henceN(det(h))k−(n+1)/2 ∈
Q×. Then we conclude that(

c(h, χ)

i−dnkC|DF |nk/2+3n(n+1)/4

)σ
=

c(h, χσ)

i−dnkC|DF |nk/2+3n(n+1)/4
.

In the case where n is odd we have that

Pc(k − n/2, χρh)σ = Pc(k − n/2, χσρh), ∀σ ∈ Gal(Qab/Q),

with

Pc(k − n/2, χρh) := g(χρh)−1(2πi)−(k−n/2)d|DF |1/2Lc(k − n/2, χρh)
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We have g(χρh)σ

g(χσρh) = g(χ)σg(ρh)σ

g(χσ)g(ρh) . Moreover we have that

g(ρh)σ

g(ρh)
=


√
N(2det(h))

σ

√
N(2det(h))

, if [n/2] even;(
iσ

i

)d √N(2det(h))
σ

√
N(2det(h))

, otherwise.

In particular since det(h) ∈ F+ we have(√
N(2det(h))−1g(ρh)

)σ
√
N(2det(h))−1g(ρh)

=

{
1, if [n/2] even;(
iσ

i

)d
, otherwise.

For n odd we have that k − (n+ 1)/2 is half integral. Hence we conclude that

(
c(h, χ)

i−dnkC|DF |nk/2+3n(n+1)/4g(χ)|DF |1/2(2i)−(k−n)db([n/2])

)σ
=

c(h, χσ)

i−dnkC|DF |nk/2+3n(n+1)/4g(χσ)|DF |1/2(2i)−(k−n)db([n/2])
,

where b(i) = id if [n/2] odd and 1 otherwise.

Now we turn to the Eisenstein series D∗(z, µ/2; ka, χ, c). The Fourier coefficient c(h, χ)
of π−β2D∗(z, µ/2; ka, χ, c) for det(h) 6= 0 is equal to

i−dnk2−dn(µ−k)/2C|DF |−n(n+1−k)+3n(n+1)/4
n−1∏
j=0

Γ(
n+ 1

2
− j/2)−dN(bc)−n(n+1)/2×

∏
v∈c

fh,v

(
χ(πv)|πv|n+1−k+1/2

)
×
{
Lc(n/2 + 1− k, χρh), n odd ;
1, n even.

Since we are taking k ≥ n+1
2 we have that Lc(n/2 + 1 − k, χρh) ∈ Q. Hence after

observing that n+ 1− k + 1/2 ∈ Z we conclude that

(
c(h, χ

i−dnkC|DF |−n(n+1−k)+3n(n+1)/4

)σ
=

c(h, χσ

i−dnkC|DF |−n(n+1−k)+3n(n+1)/4

�

We can now conclude

Proposition 3.17. Let β1 ∈ N so that π−β1D(z, k/2; ka, χ, c) ∈ Mka(Qab). Let σ ∈
Gal(Qab/Q) Then for n even we have(

π−β1D(z, k/2; ka, χ, c)

g(χφ)ni−dnkC|DF |nk/2+3n(n+1)/4

)σ
=

π−β1D(z, k/2; ka, χσ)

g(χσφ)ni−dnkC|DF |nk/2+3n(n+1)/4

and for n odd(
π−β1D(z, k/2; ka, χ, c)

g((χφ)n)i−dnkC|DF |nk/2+3n(n+1)/4g(χ)|DF |1/2(2i)−(k−n)db([n/2])

)σ
=
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π−β1D(z, k/2; ka, χσ)

g((χn)σφ)i−dnkC|DF |nk/2+3n(n+1)/4g(χσ)|DF |1/2(2i)−(k−n)db([n/2])
,

where b(m) = id if m is m is odd and 1 otherwise.

Let now β2 ∈ N so that π−β2D∗(z, µ/2; ka, χ, c) ∈Mka(Qab). Then we have(
π−β2D(z, µ/2; ka, χ, c)

g(χφn)i−dnkC|DF |−n(n+1−k)+3n(n+1)/4

)σ
=

π−β2D(z, µ/2; ka, χσ, c)

g(((χφ)n)σ)i−dnkC|DF |−n(n+1−k)+3n(n+1)/4
,

We now remark that the above proposition and Lemma [?] give a complete description
of the reciprocity laws of the Eisenstein series which we are considering. We summarize
all the above in the following Theorem.

Theorem 3.18. Let k ∈ 1
2Z

a with kv ≥ (n + 1)/2 for every v ∈ a. Let µ ∈ 1
2Z such

that n+ 1− kv ≤ µ ≤ kv and |µ− (n+ 1)/2|+ (n+ 1)/2− kv ∈ 2Z for all v ∈ a. Then
with a β ∈ N as in Theorem 3.4 we have

π−βD(z, µ/2; k, χ, c) ∈ N r
k (ΦQab),

and for every σ ∈ Gal(ΦQab/Φ) we have(
π−βD(z, µ/2; k, χ, c)

ω(χ)

)σ
=
π−βD(z, µ/2; k, χσ, c)

ω(χσ)
,

where ω(χ) is given as follows:

(i) if k ∈ Za, µ ≥ (n+ 1)/2:

ω(χ) = in|p|g(χ)iµd+2µ[n/2]−[n/2]([n/2]+1)d|DF |−b(n)g(χ2[n/2]),

where p := (k−µa)
2 and b(n) = 0 if [n/2] odd and 1/2 otherwise.

(ii) if k ∈ Za, µ < (n+ 1)/2:

ω(χ) = in|p|g(χn)i−dnν |DF |−nµ+3n(n+1)/4,

where ν := n+ 1− µ and p := k−νa
2 .

(iii) if k 6∈ Za and µ ≥ (n+ 1)/2:
(a) if n is even

ω(χ) = in|p|g(χn)i−dnkC|DF |nk/2+3n(n+1)/4,

(b) if n is odd

ω(χ) = in|p|g(χnφ)i−dnkC|DF |nµ/2+3n(n+1)/4g(χ)|DF |1/2(2i)−(µ−n)db([n/2]),

where p := (k−µa)
2 and b(m) = id if m is m is odd and 1 otherwise and

(iv) if k 6∈ Za and µ < (n+ 1)/2:

ω(χ) = in|p|g(χφ)ni−dnνC|DF |−n(n+1−ν)+3n(n+1)/4,

where ν := n+ 1− µ and p := k−νa
2 .

In particular we have that

π−βD(z, µ/2; k, χ, c)

ω(χ)
∈ N r

k (Φ(χ)),

where Φ(χ) is the finite extension of Φ obtained by adjoining the values of the character
χ.
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4. The L-function attached to a Siegel Modular Form

We start by discussing the Hecke algebras that we consider in this work. We follow
Chapter V in [23]. As before we fix a fractional ideal b of F and an integral ideal c.
We write C for D[b−1, bc] Moreover we define

E =
∏
v∈h

GLn(gv), B = {x ∈ GLn(F )h|x ≺ g}, X = CQC, Q = {diag[r̂, r]|r ∈ B}

We write R(C,X) for the Hecke algebra corresponding to the pair (C,X) and for every
place v ∈ h we we write R(Cv,Xv) for the local Hecke algebra at v and hence R(C,X) =⊗

vR(Cv,Xv). We now consider the formal Dirichlet series with coefficients in the
global Hecke algebra defined by T =

∑
C\X/C CξC[νb(ξ)] and its local version at v ∈ h

defined as Tv =
∑

Cv\Xv/Cv CvξCv[νb(ξ)]. Here νb(ξ) is defined by det(q)g where q ∈ B
such that ξ ∈ D[b−1, b]diag[q−1, q∗]D[b−1, b]. We have that T =

∏
v Tv. Moreover if

we define for an integral g-ideal a the elements T (a) ∈ R(C,X) and Tv(a) ∈ R(Cv,Xv)
for v ∈ h by

T (a) =
∑

ξ∈X,νb(ξ)=a

CξC, Tv(a) =
∑

ξ∈Xv ,νb(ξ)=a

CvξCv

then we have that T =
∑

a T (a)[a]. The structure of the local Hecke algebra has been
investigated by Shimura in [22, 23] where he proves

Theorem 4.1 (Shimura). Let t1, . . . , tn be n indeterminates. Then for each v ∈ h
there exists a Q-linear ring injection

ωv : R(Cv,Xv)→ Q[t1, . . . , tn, t
−1
1 , . . . , t−1

n ]

such that ω(Tv) :=
∑

ξ∈Cv\X/Cv ω(CvξCv)[νb(ξ)] has the following expressions

ω(Tv) =

{
1−[p]

1−qn[p]

∏n
i=1

(1−(−q)2i[p2])

(1−qnti[p])(1−qnt−1
i [p])

, if v - c;∏n
i=1(1− qnti[p])−1, otherwise.

For an element f ∈ Mk(C,ψ) we have an action of the Hecke algebra R(C,ψ) (see
[22]). We denote this action by f |CξC for an element CξC ∈ R(C,ψ). Assume now
that for such an f 6= 0 we have f |T (a) = λ(a)f with λ(a) ∈ C for all integral g-ideals.
Then we have that there exists λv,i ∈ C such that

L ·
∑
a

λ(a)[a] =
∏
v∈h

Zv,

where the factors Zv are given by

Zv =

{
(1−N(p)n[p])−1

∏n
i=1

(
(1−N(p)nλv,i[p])(1−N(p)nλ−1

v,i [p])
)−1

, if v - c;∏n
i=1(1−N(p)nλv,i[p])−1, otherwise.

and L :=
∏

p-c(1 − [p])
∏n
i=1

(
1−N(p)2i[p]2

)−1
, where the product is over the prime

g-ideals prime to c. For a Hecke character χ of F of conductor f we put

(4.5) Z(s, f , χ) :=
∏
v∈h

Zv
(
χ∗(q)N(q)−s

)
,

where Zv (χ∗(q)N(q)−s) is obtained from Zv by substituting (χ∗(p)N(p)−s for [p].



18 THANASIS BOUGANIS

We will need another L-function which we will denote by Z ′(s, f , χ) and we define by

(4.6) Z ′(s, f , χ) :=
∏
v∈h

Zv
(
χ∗(q)(ψ/ψc)(πq)N(q)−s

)
,

where πq a uniformizer of Kq. We note here that we may obtain the first from the
second up to a finite number of Euler factors by setting χψ−1 for χ.

5. The Rankin-Selberg Method

We now explain the integral representation of the zeta function introduced above due
to Shimura. Everything in this section is taken from [23, paragraph 20 and 22] as well
as [20].

We write L for the set of all g-lattices in Fn1 . We set L0 := gn1 and we remark that for
an element L ∈ L we can find an element y ∈ GLn(F )h such that L = yL0. For an
element τ ∈ S we define

Lτ := {L ∈ L|`∗τ` ∈ bd−1, ∀` ∈ L}.

Let f ∈ Mk(C,ψ), τ ∈ S+ and q ∈ GLn(F )h. Following Shimura we define the
following two formal Dirichlet series

(5.7) D(τ, q; f) :=
∑

x∈B/E

ψc(det(qx))|det(x)|−n−1
F c(τ, qx; f)[det(x)g],

and

(5.8) D′(τ, q; f) :=
∑

x∈B/E

ψ(det(qx))|det(x)|−n−1
F c(τ, qx; f)[det(x)g].

We note that the second is obtained from the first one by setting (ψ/ψc)(t)[tg] for [tg],
t ∈ F×h in D(τ, q; f) and multiplying by (ψ/ψc)(det(q)). For the formal Dirichlet series
D(τ, q; f) Shimura [23, Theorem 20.4] proves the following theorem

Theorem 5.1 (Shimura). Given τ ∈ S+, L ∈ Lτ and f ∈Mk(C,ψ), take q ∈ GLn(F )h
so that L = qL0 and define formal Dirichlet series a(τ ;L) and A(τ, L) by

A(τ, L) := |det(q)|−κF [det(qq∗)g]
∑

L<M∈Lτ

µ(M/L)a(τ,M),

and

a(τ, L) := |det(q)|−κF [(det(qq∗))−1g]αc0(εbq
∗τq).

Here εb is an element of F×h such that εbg = b−1d. Then

[det(q̂)g]ψc(det(q))c(τ, q; f |T) =
∑

L<M∈Lτ

[det(ŷ)g]A(τ,M)D(τ, y; f),

where y is an element of GLn(F )h depending on M such that M = yL0 and y−1q ∈ B.
In particular if f |T (a) = λ(a)f for each integral r-ideal a, then

ψc(det(q))c(τ, q; f)
∑
a

λ(a)[a] =
∑

L<M∈Lτ

[det(q∗ŷ)g]A(τ,M)D(τ, y; f)
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Here µ denote the Möbius function defined in [23, Lemma 19.10]. As Shimura remarks
right after the Theorem 20.4 in [23] in the case that we consider the series D(τ, q; f)
depend only on the lattice L = qL0 so we can write D(τ, L; f) instead. The next
important input from the theory of Shimura is the understanding of the series A(τ, L).
Shimura proves the following lemma

Lemma 5.2 (Shimura). Let τ ∈ S+ ∩GLn(KF ) and L = qL0 ∈ Lτ ; let b be the set of
all primes v ∈ h prime to c such that εbq

∗τq is not regular. Then

A(τ, L) =
∏
v∈b

gv([p])
∏
v-c

hv([p])−1(1− [p])

[n/2]∏
i=1

(1−N(p)2i[p]2),

Here p is the prime ideal of F at v and gv is a polynomial with coefficients in Z and
constant term 1; hv = 1 if n is odd and hv(t) = 1 − ρ∗τ (p)N(p)n/2t with the Hecke

character ρτ of F corresponding to F (c1/2), c = (−1)n/2det(τ), if n is even.

We define the series

L0 =
∏
v-c

[(n+1)/2]∏
i=1

(1−N(p)2n+2−2i[p]2)

−1

.

Then we have

Theorem 5.3 (Shimura). Let 0 6= f ∈ Mk(C,ψ)) and such that f |T (a) = λ(a)f for
every a. Then for τ ∈ S+ ∩GLn(F ) and L = qL0 with q ∈ GLn(F )h we have

D(τ, q; f)L0

∏
v∈b

gv[p]
∏
v-c

hv([p])−1 =

∏
v∈h

Zv
∑

L<M∈Lτ

µ(M/L)ψc(det(y))[det(q∗ŷg]c(τ, y; f).

Assume now that kv ≥ n/2 for some v ∈ a. Then there exists τ ∈ S+ ∩ GLn(F ) and
r ∈ GLn(F )h such that

0 6= ψc(det(r))cf (τ, r)
∏
v∈h

Zv = D(τ, r; f) · L0

∏
v-c

hv([pr])
−1 ·

∏
v∈b

gv([pr])

Now given a Hecke character χ of F , τ ∈ S+ and r ∈ GLn(F )h we define a formal and
an ordinary Dirichlet series as follows:

(5.9) D′r,τ (f , χ) :=
∑
B/E

ψ(det(rx))χ∗(det(x)g)cf (τ, rx)|det(x)|−(n+1)
F [det(x)g],

and

(5.10) D′r,τ (s, f , χ) :=
∑
B/E

ψ(det(rx))χ∗(det(x)g)cf (τ, rx)|det(x)|s−n−1
F .

This second series is obtained from the series in Equation 5.8 by putting χ∗(tg)|tg|sF
for [tg]. In particular we have the equation

(5.11) D′r,τ (s, f , χ)Λc

(
2s− n

4

)∏
v∈b

gv(χ(ψ/ψc)(πv)|πv|s) =
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Z ′(s, f , χ)(ψ/ψc)
2(det(r))

∑
L<M∈Lτ

µ(M/L)(ψ2
c /ψ)(det(y))χ∗(det(r∗ŷ)g)|det(r∗ŷ|sF c(τ, y; f).

where for an integral ideal a we write

Λa(s) =

{
La(2s, ρτψχ)

∏n/2
i=1 La(4s− 2i, ψ2χ2), if n is even;∏(n+1)/2

i=1 La(4s− 2i+ 1, ψ2χ2), n is odd.
,

Given χ as above we write f for the conductor of χ. We define t′ ∈ Za by

(ψχ)a(x) = x−t
′

a |xa|t
′
.

and µ ∈ Za by the conditions 0 ≤ µv ≤ 1 for all v ∈ a and µ− [k]− t′ ∈ 2Za.

We now define a weight l and a Hecke character ψ′ of F by l = µ + (n/2)a and
ψ′ = χ−1ρτ , where ρτ is the Hecke character of F corresponding to the extension

F (c
1
2 )/F with c := (−1)[n/2]det(2τ). Let us write θχ ∈ Ml(C

′, ψ′) for the theta series

associated to the datum (χ, µ, τ, r) in section 2. Write C ′ = D[b′−1, b′c′]} and define
e := b + b′

Then we have (see [20, page 572])

Theorem 5.4 (Shimura).

(4π)−n(su+(k+l)/2)(
√
DFN(e)−1)n(n+1)/2

∏
v∈a

Γn(s+(kv+lv)/2)D′r,τ (2s+3n/2+1; f , χ) =

|det(r)|−2s−n/2
F det(τ)+(k+µ+nu/2)/2+su

∫
Φ
f(z)θχ(z)E(z, s̄+ (n+ 1)/2, k − l, εψχρτ ,Γ′)δ(z)kdz,

where Φ := H/Γ′ and Γ′ := G ∩D[e−1, eh], where h = e−1(bc ∩ b′c′).

In particular using the equation 5.11 we obtain

Theorem 5.5.

Z ′(s, f , χ)
∏
v∈a

Γn

(
s− n− 1 + kv + µv

2

)
×(

(ψ/ψc)
2(det(r))

∑
L<M∈Lτ

µ(M/L)(ψ2
c /ψ)(det(y))χ∗(det(r∗ŷ)g)|det(r∗ŷ)|sF c(τ, y; f)

)
=

(
D
−1/2
F N(e)

)n(n+1)/2
(4π)n||s

′u+λ||det(τ)s
′u+λ|det(r)|n+1−s

A ×∏
v∈b

gv((ψ/ψc)(πv)χ
∗(πvg)|πv|s)(Λc/Λh)((2s− n)/4)vol(Φ) < f, θχD((2s− n)/4) >Γ′ ,

where s′ = (2s− 3n− 2)/4 and for an integral ideal a of F ,

Λa(s) =

{
La(2s, ρτψχ)

∏n/2
i=1 La(4s− 2i, ψ2χ2), if n is even;∏(n+1)/2

i=1 La(4s− 2i+ 1, ψ2χ2), n is odd.
,

and
D(s) = Λh(s)E(z, s̄; k − l, ε, ρτψχ,Γ′).

We have normalized the Petersson inner product as follows

< f, θχD((2s− n)/4) >Γ′=
1

vol(Φ)

∫
Φ
f(z)θχ(z)D(z, (2s− n)/4)δ(z)kdz.
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In particular there exists (τ, r) with c(τ, r; f) 6= 0 such that

(5.12) Z ′(s, f , χ)
∏
v∈a

Γn

(
s− n− 1 + kv + µv

2

)
ψc(det(r))c(τ, r; f) =

(
D
−1/2
F N(e)

)n(n+1)/2
(4π)n||s

′u+λ||det(τ)s
′u+λ|det(r)|n+1−s

A ×∏
v∈b

gv((ψ/ψc)(πv)χ
∗(πvg)|πv|s)(Λc/Λh)((2s− n)/4)vol(Φ) < f, θχD((2s− n)/4) >Γ′ .

We note here that vol(Φ) ∈ πn(n+1)/2Q×.

6. Petersson Inner Products and Periods

In this section we define some archimedean periods that we will use to normalize the
special values of the function Z ′(s, f , ψ). The idea of defining these periods is due to
Sturm [25] (building on previous work of Shimura), who considered the case of n even
and F = Q. However one should notice also the difference on the bounds of the weights
that we impose. In what it follows we will call a Hecke operator T (a), relative to the
group C = D[b−1, bc], as “good” if a is prime to c

Theorem 6.1. Let f ∈ Sk(c, ψ) be an eigenform for all the “good” Hecke oparators of
C. Let Φ be the Galois closure of F over Q and write Ψ for extension of Φ generated
by the eigenvalues of f and their complex conjugation . Assume m0 := minv(mv) >
[3n/2 + 1] + 2. Then there exists a period Ωf such that for any g ∈ Sk(Q) we have(

< f ,g >

Ωf

)σ
=
< fσ,gσ

′
>

Ωfσ
,

for all σ ∈ Gal(Q/Φ), where σ′ = ρσρ. Moreover Ωf depends only on the eigenvalues

of f and we have <f ,f>
Ωf
∈ Ψ×.

Remark 6.2. As we remarked above, a theorem of this form has been firstly proved by
Sturm [25], when F = Q and n is even. A similar theorem appears also in the work of
Panchishkin [17]. It is also important to notice that in Panchishkin’s theorem one can
take also g not cuspidal. However for this he has to take the weight big enough in order
to be in the range of absolute convergent for the Eisenstein series (see the Theorems
after the proof). Our proof is modelled on that of Sturm [25, Theorem 3]and of Shimura
[23, Theorem 28.5]. Maybe one should here remark that one of the differences with
the proof here in comparison with the one of Sturm is that we use the identity (5.11)
and not the Andrianov-Kalinin identity used by Sturm. Finally since we are using a
stronger theorem of Shimura with respect to the absolute convergence of the function
Z(s, f , χ) we also obtain better bounds for the weights. Finally we remark the slightly
larger bound on m0 than in Shimura [23, Theorem 28.5]. The reason for this is the
above mentioned problem with the Eisenstein spectrum (i.e. separate it rationally from
the cuspidal part).

Proof. We write {λ(a)} for the system of the eigenvalues of f (with respect to the
“good” Hecke operators) and we define V := {h ∈ Sk(c, ψ)|h|T (a) = λ(a)h}. Then as
in Shimura we define V(Ψ) = V ∩ Sk(c, ψ; Ψ). By [10] we have that the space V(Ψ)
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is preserved by the operators T (a). Moreover the “good” Hecke operators generate
a ring of semi-simple Ψ-linear transformations hence we have V = V(Ψ) ⊗Ψ C and
Sk(C,Ψ) = V(Ψ)⊕U , with U a vector space over Ψ which is stable under the action of
the “good” Hecke operators. Since an eigenform in U ⊗Ψ C which is not contained in
V must be orthogonal to it we have that the above decomposition is orthogonal with
respect to the Petersson inner product.

We now pick an integer σ0 so that 3n/2 + 1 < σ0 < m0 and m0 − σ0 6∈ 2Z. Note
that this is always possible thanks to our assumption m0 > [3n/2 + 1] + 2. Then we
define µ ∈ Za by the conditions 0 ≤ µv ≤ 1 and σ0 − kv + µv ∈ 2Z for all v ∈ a. Our
choice of σ0 implies in particular that there exists an v ∈ a so that µv 6= 0. We put
t′ := µ − k. We now pick a quadratic character χ of F so that (ψχ)a(x) = xt

′
a |xa|−t

′

and of conductor f such that c|f. Note that such a character can be obtained as the non

trivial character of the quadratic extension F (
√

∆) by picking the sign of ∆ properly at
v ∈ a and ∆ with non trivial valuation at all primes that divide c. The existence of such
a ∆ follows from the approximation theorem for F . As in Shimura [23, page 236] we
define l := µ+(n/2)a and ν = σ0−(n/2). Then ν ≥ (n+1)/2 and 0 ≤ k− l−νa ∈ 2Za.
We consider the theta series θχ with respect to our choices of χ and µ. By Theorem
5.5, after evaluating at s = σ0 we obtain

Z ′(σ0, f , χ)
∏
v∈a

Γn

(
σ0 − n− 1 + kv + µv

2

)
×

(
(ψ/ψc)

2(det(r))
∑

L<M∈Lτ

µ(M/L)(ψ2
c /ψ)(det(y))χ∗(det(r∗ŷ)g)|det(r∗ŷ)|σ0F c(τ, y; f)

)
=

(
D
−1/2
F N(e)

)n(n+1)/2
(4π)n||s

′
0u+λ||det(τ)s

′
0u+λ|det(r)|n+1−σ0

A ×∏
v∈b

gv((ψ/ψc)(πv)χ
∗(πvg)|πv|σ0)(Λc/Λh)(ν/2)vol(Φ) < f, θχD(ν/2, ερτψχ) >Γ′ ,

where s′0 = (2σ0 − 3n− 2)/4. We now note (see [23, page 237]) that∏
v∈a Γn

(
σ0−n−1+kv+µv

2

)
vol(Φ)

∈ πn||
k−l−νa

2
||−n||k||+dεQ×

where ε = n2/4 if n even and (n2 − 1)/4 otherwise. We now write δ for the rational

part of

∏
v∈a Γn

(
σ0−n−1+kv+µv

2

)
vol(Φ) . We now take β ∈ N so that π−βD(ν/2) ∈ N p

k−l(ΦQab)

with p = k−l−νa
2 and we set γ := n||k−l−νa2 || −n||k||+ dε−n||s′0u+λ|| −β. We further

set

B(χ, ψ, τ, r, f) := δ

(
(ψ/ψc)

2(det(r))
∑

L<M∈Lτ

µ(M/L)(ψ2
c /ψ)(det(y))χ∗(det(r∗ŷ)g)|det(r∗ŷ)|σ0F c(τ, y; f)

)
,

and

C(χ, ψ, τ, r) := (N(e))n(n+1)/2 |det(r)|n+1−σ0
A ×∏

v∈b
gv((ψ/ψc)(πv)χ

∗(πvg)|πv|σ0)(Λc/Λh)(ν/2).
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We then have for every σ ∈ Gal(Q/Φ) that

B(χ, ψ, τ, r, f)σ = B(χσ, ψσ, τ, r, fσ) and C(χ, ψ, τ, r)σ = C(χσ, ψσ, τ, r).

We now note the equalities

< f, θχD(ν/2, ερτψχ) >Γ′=< f, p(θχD(ν/2, ερτψχ)) >Γ′=< f, TrΓ
Γ′(p(θχD(ν/2, ερτψχ))) >Γ,

where p : Rpk → Sk is Shimura’s holomorphic projection operators [23, Proposition

15.6](note that θχD(ν/2) ∈ Rpk since θχ is a cusp form) and TrΓ
Γ′ : Sk(Γ′, ψ) →

Sk(Γ, ψ) is the usual trace operator attached to the groups Γ′ ≤ Γ. Moreover, since
θχπ

−βD(ν/2) ∈ N p
k (ΦQab), we may consider the action of σ ∈ Gal(ΦQab/Φ). Then

p(θχπ
−βD(ν/2, ερτψχ))σ = p(θσχ(π−βD(ν/2, ερτψχ))σ), and TrΓ

Γ′(θχπ
−βD(ν/2, ερτψχ))σ =

TrΓ
Γ′(θ

σ
χD(ν/2, ερτψχ)σ),

where in the last equation the last trace is from the space Sk(Γ′, ψσ) to Sk(Γ′, ψσ). The
equivariant property of the holomorphic projection operator is shown in Proposition
15.6 of (loc. cit.) and the one of the trace is exactly as in Sturm where he considers
the case of F = Q, but the arguments is valid also for general F since the strong
approximation theorem also hold for the group Spn(F ), the essential argument in his
proof. We make this more formal in the lemma following this proof.

Keeping now the character χ fixed we know that for any given f ∈ V there exists (τ, r)
such that

B(χ, ψ, τ, r, f) = δψ(det(r))c(τ, r; f) 6= 0.

We note here that the same pair (τ, r) can be used for the form fσ, as it follows from
the proof of Theorem 20.9 in [23]. As in Shimura we write G for the set of pairs (τ, r)
for which such an f exists. From the observation above the set G is the same also for
the system of eigenvalues λ(a)σ, for all σ ∈ Gal(Q/Φ). In particular for such an (τ, r)

(6.13) 0 6= πγZ ′(σ0, f , χ)δψ(det(r))c(τ, r; f) =(
D
−1/2
F N(e)

)n(n+1)/2
(4)n||s

′
0u+λ||det(τ)s

′
0u+λ|det(r)|n+1−σ0

A ×∏
v∈b

gv((ψ/ψc)(πv)χ
∗(πvg)|πv|σ0)(Λc/Λh)(ν/2) < f, θχπ

−βD(ν/2, ερτψχ) >Γ′ .

The fact that Z ′(σ0, f , χ) 6= 0 is in principle [23, Theorem 20.13]. Indeed in page 183
of (loc. cit) Shimura first proves the non-vanishing of Z ′(σ0, f , χ) for any character χ
with µ 6= 0, as it is the case that we consider. Further we note that this in particular
implies also that C(χ, ψ, τ, r) 6= 0 for all (τ, r) ∈ G.

We now define an element gτ,r,ψ ∈ Sk(Γ, ψ; ΦQab) by

gτ,r,ψ = π−βTrΓ
Γ′

(
p(θχπ

−βD(ν/2, ερτψχ))
)
,

and define the space W to be the space generated by gτ,r,ψ for (τ, r) ∈ G. We now
consider the case n even or odd separately.

The case of n even: In this case we have that ε is the trivial character. We now
claim that there exists an Ωf ∈ C× such that any f ∈ V and any gτ,r,ψ(

< f ,gτ,r,ψ >

Ωf

)σ
=
< fσ,gσ

′
τ,r,ψ >

Ωfσ
,
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where σ′ = ρσρ. First we observe that

gσ
′
τ,r,ψ = TrΓ

Γ′

(
p(θχπ

−βD(ν/2, ερτψχ))
)σ′

= TrΓ
Γ′

(
p(θσ

′
χ (π−βD(ν/2, ερτψχ))σ

′
)

=

TrΓ
Γ′

(
p(θχ(π−βD(ν/2, ερτψχ))σ

′
)
,

where the last equality follows from the fact that χ is a quadratic character. We now
recall that D(ν/2, ρτψχ) = D(z, ν/2; k − l, ρτψχ,Γ) and we have seen that(

πγD(z, ν/2; k − l, ρτψχ,Γ)

P (ρτψχ)

)σ′
=
π−βD(z, ν/2; k − l, ρτψχ

σ′
,Γ)

P (ρτψχ
σ′

)
,

where P (ρτψχ) = in|p|g(ρτψχ)(i)νd

|DF |1/2

(∏[n/2]
i=1 (i)(2ν−2i)d

)
g(ψ

2[n/2]
)

|DF |b(n)
, with p = k−l−νa

2 . We con-

clude that

gσ
′
τ,r,ψ =

P (ρτψχ)σ
′

P (ρτψ
σ′
χ)
TrΓ

Γ′

(
p(θχπ

−βD(ν/2, ερτψ
σ′
χ))
)

=
P (ρτψχ)σ

′

P (ρτψ
σ′
χ)

gτ,r,ψσ .

We set R(ψ) := in|p|(i)νd

|DF |1/2

(∏[n/2]
i=1 (i)(2ν−2i)d

)
g(ψ

2[n/2]
)

|DF |b(n)
. We now consider the ratio

g(ρτψχ)σ
′

g(ρτψ
σ′
χ)

=
g(ρτ )σ

′

g(ρσ′τ )

g(ψ)σ
′

g(ψ
σ′

)

g(χ)σ
′

g(χσ′)
.

We recall that ρτ is the non-trivial character of the quadratic extension F (
√
c)/F with

c = (−1)[n/2]det(2τ). Since we are considering τ > 0 we have that

g(ρτ )σ
′

g(ρσ′τ )
=


√

2det(τ)
σ′

√
2det(τ)

, if [n/2] even;(
iσ
′

i

)d √N(2det(τ))
σ′

√
N(2det(τ))

, otherwise.

Putting all these together we conclude that

gσ
′
τ,r,ψ =

g(ρτ )σ
′

g(ρσ′τ )

g(ψ)σ
′

g(ψ
σ′

)

g(χ)σ
′

g(χσ′)

R(ψ)σ
′

R(ψ
σ′

)
gτ,r,ψσ

For any gτ,r we have

(4)−n||s
′
0u+λ||D

n(n+1)/4
F πγZ ′(σ0, f , χ)B(χ, ψ, τ, r, f) = det(τ)s

′
0u+λC(χ, ψ, τ, r) < f ,gτ,r >Γ .

For any (τ, r) ∈ G we have seen that C(χ, ψ, τ, r) 6= 0. We obtain

< f ,gτ,r >Γ

(4π)−n||s
′
0u+λ||D

n(n+1)/4
F Z ′(σ0, f , χ)

= det(τ)−(s′0u+λ)B(χ, ψ, τ, r, f)

C(χ, ψ, τ, r)
.

For any σ ∈ Gal(Q/Q) we have then(
< f ,gτ,r,ψ >Γ

(4)−n||s
′
0u+λ||D

n(n+1)/4
F πγZ ′(σ0, f , χ)

)σ
=

(
det(τ)−(s′0u+λ)B(χ, ψ, τ, r, f)

C(χ, ψ, τ, r)

)σ
=

(det(τ)−(s′0u+λ))σ
B(χσ, ψσ, τ, r, fσ)

C(χσ, ψσ, τ, r)
=

(det(τ)−(s′0u+λ))σ

det(τ)−(s′0u+λ)

< fσ,gτ,r,ψσ >Γ

(4π)−n||s
′
0u+λ||D

n(n+1)/4
F Z ′(σ0, fσ, χ)

.
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We remark that s′0u + λ = 2σ0−3n−2
4 u +

k+µ+n
2
u

2 = σ0u+k+µ
2 − n+1

2 u. By our choice of

σ0 we have that σ0u+ k + µ ∈ 2Za. We obtain that (det(τ)−(s′0u+λ))σ

det(τ)−(s′0u+λ)
= (det(τ)

1
2a)σ

det(τ)(
1
2a)

Now

we note that since det(τ) is totally positive we have(
g(ρτ )σ′

g(ρσ′τ )

)−1
(det(τ)

1
2
a)σ

det(τ)( 1
2
a)

=

{
1, if [n/2] even;(
iσ
′

i

)d
, otherwise.

We have seen that

gτ,r,ψσ =

(
g(ρτ )σ

′

g(ρσ′τ )

g(ψ)σ
′

g(ψ
σ′

)

g(χ)σ
′

g(χσ′)

R(ψ)σ
′

R(ψ
σ′

)

)−1

gσ
′
τ,r,ψ.

and hence (
< f ,gτ,r,ψ >Γ

(4)−n||s
′
0u+λ||D

n(n+1)/4
F πγZ(σ0, f , χ)

)σ
=

(
g(ρτ )σ′

g(ρσ′τ )

g(ψ)σ′

g(ψ
σ′

)

g(χ)σ′

g(χσ′)

R(ψ)σ′

R(ψ
σ′

)

)−1
(det(τ)

1
2
a)σ

det(τ)( 1
2
a)

< fσ,gσ
′
τ,r,ψ >Γ

(4)−n||s
′
0u+λ||D

n(n+1)/4
F πγZ ′(σ0, fσ, χ)

,

or equivalently < f ,gτ,r,ψ >Γ(
g(ψ)g(χ)R(ψ)

)−1
B(n)4−n||s

′
0u+λ||D

n(n+1)/4
F πγZ ′(σ0, f , χ)

σ

=

< fσ,gσ
′
τ,r,ψ >Γ(

g(ψ
σ′

)g(χ)R(ψ
σ′

)B(n)
)−1

4−n||s
′
0u+λ||D

n(n+1)/4
F πγZ ′(σ0, fσ, χ)

.

where B(n) = id if [n/2] is odd and 1 otherwise. Hence we define

Ωf :=
(
g(ψ)g(χ)R(ψ)

)−1
B(n)4−n||s

′
0u+λ||D

n(n+1)/4
F πγZ ′(σ0, f , χ)

The case of n odd: We now repeat the considerations above but with the half-integral
weight Eisenstein series.(

π−βD(z, ν/2; k − l, εχψρτ , c)
g(ερτψχφ)nin|p|i−dnνC|DF |nν/2+3n(n+1)/4g(ερτψχ)|DF |1/2(2i)−(ν−n)db([n/2])

)σ′
=

π−βD(z, ν/2; k − l, (εχψρτ )σ)

g((εχψρτ )σ′φ)nin|p|i−dnνC|DF |nν/2+3n(n+1)/4g((εχψρτ )σ′)|DF |1/2(2i)−(ν−n)db([n/2])
,

where b(m) = id if m is m is odd and 1 otherwise. We set

P (εχψρτ ) := g(ερτψχφ)nin|p|i−dnνC|DF |nν/2+3n(n+1)/4g(ερτψχ)|DF |1/2(2i)−(ν−n)db([n/2])

and as before we have

gσ
′
τ,r,ψ =

P (ερτψχ)σ
′

P (ερτψ
σ′
χ)

gτ,r,ψσ .
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We consider the ratio(
g(ερτψχφ)ng(ερτψχ)

)σ′
g(ερτψ

σ′
χφ)ng(ερτψ

σ′
χ)

=

(
g(ε)σ

′

g(ε)

)n+1(
g(ρτ )σ

′

g(ρτ )

)n+1(
g(ψ)σ

′

g(ψ
σ′

)

)n+1(
g(χ)σ

′

g(χ)

)n+1(
g(φ)σ

′

g(φ)

)n
.

Since n+ 1 is even and ρτ , χ, ε are quadratic characters we get that(
g(ε)σ

′

g(ε)

)n+1

=

(
g(ρτ )σ

′

g(ρτ )

)n+1

=

(
g(χ)σ

′

g(χ)

)n+1

= 1.

We set R := in|p|i−dnνC|DF |nν/2+3n(n+1)/4|DF |1/2(2i)−(ν−n)db([n/2]), and then we have

gσ
′
τ,r,ψ =

(
g(ψ)σ

′

g(ψ
σ′

)

)n+1(
g(φ)σ

′

g(φ)

)n
Rσ
′

R
gτ,r,ψσ .

By the same calculations as in the case of n even, by no noticing that s′0u+ λ ∈ Za we
obtain For any σ ∈ Gal(Q/Q) we have then(

< f ,gτ,r,ψ >Γ

4−n||s
′
0u+λ||D

n(n+1)/4
F πγZ ′(σ0, f , χ)

)σ
=

< fσ,gτ,r,ψσ >Γ

4−n||s
′
0u+λ||D

n(n+1)/4
F πγZ ′(σ0, fσ, χ)

.

Hence we conclude < f ,gτ,r,ψ >Γ(
g(ψ)

n+1
g(φ)

n
R̄

)−1

4−n||s
′
0u+λ||D

n(n+1)/4
F πγZ ′(σ0, f , χ)


σ

=

< fσ,gτ,r,ψσ >Γ(
g(ψ

σ′
)
n+1

g(φ)
n
R̄

)−1

4−n||s
′
0u+λ||D

n(n+1)/4
F πγZ ′(σ0, fσ, χ)

.

So for n odd we define

Ωf :=

(
g(ψ)

n+1
g(φ)

n
R̄

)−1

4−n||s
′
0u+λ||D

n(n+1)/4
F πγZ ′(σ0, f , χ).

By W ′ we define the space generated by the projection of W on V. By definition
W ′ = V. Indeed for any element g ∈ V there exists h ∈ W ′ such that < g,h >Γ 6= 0,
simply by taking the projection of the corresponding gτ,r to W ′. So the C span of gτ,r
with τ, r ∈ G is equal to V. Since gτ,r have algebraic coefficients we have that the

Q-span is equal to V(Q). We can now establish the theorem for any g ∈ V(Q) since
after writing g =

∑
j cjgτj ,rj ,V ∈ V(Q), where gτj ,rj ,V is the projection of gτj ,rj to V,

we have (
< f ,g >

Ωf

)σ
=
∑
j

cj
σ

(
< fσ,gσ

′
τj ,rj ,V >

Ωfσ

)
=
< fσ,gσ

′
>

Ωfσ

We now take any g ∈ Sk(Γ, ψ;Q). We write g = g1 + g2 with g1 ∈ V and }2 ∈ V⊥.
Then we have that(

< f ,g >

Ωf

)σ
=

(
< f ,g1 >

Ωf

)σ
=
< fσ,gσ

′
1 >

Ωfσ
=
< fσ,gσ

′
>

Ωfσ
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where the last equality follows from the fact that < f ,g >= 0 implies that < fσ,gσ
′
>=

0. It is enough to show this for g an eigenform for all the good Hecke operators in an
L-packet diffferent from that of f ’s. That is, there exists an ideal a with (a, c) = 1 so
that T (af = λf f and T (ag = λgg such that λf 6= λg. But then we have

λσf < fσ,gσ
′
>=< T (a)fσ,gσ

′
>=

< fσ, T (a)gσ
′
>=< fσ, λσ

′
g gσ

′
>=< fσ,gσ

′
> λσg

and hence we conclude that < fσ,gσ
′
>= 0. Here we have used the facts that the good

Hecke operators are self adjoint with respect to the Petersson inner produt, and that
their Hecke eigenvalues are totally real (for both facts see [23, Lemma 23.15]).

Finally taking g equal to f we obtain that Ωf is equal to < f , f > up to a non-zero
element in the the Galois closure of the field generated by the Fourier coefficients of f
(note that it also contains the eigenvalues).

�

We now give a proof of the equivariant property of the trace that we used in the proof
of the theorem. The proof follows the proof given by Sturm [25, Lemma 11] extended
to the totally real field situation.

Lemma 6.3. With notation as in the proof of the above theorem we have for any
f ∈ Sk(Γ′, ψ;Qab)

TrΓ
Γ′(f)σ = TrΓ

Γ′(f
σ), σ ∈ Gal(ΦQab/Φ).

Proof. Thanks to the strong approxiamation for Spn(F ) we may work adelically. We
write D and D′ for the corresponding to Γ and Γ′ adelic groups (i.e. Γ = G ∩D). We
fix elements {gi} ⊂ Dh so that D =

⋃
D′gi. For t ∈ Z×h corresponding to σ|Qab we note

that (
1n 0
0 t−11n

)
gi

(
1n 0
0 t1n

)
∈ Spn(A)h

and hence by strong approximation we can find elements ui ∈ D′ with f |ui = f (i.e.
ψ(ui) = 1) and wi ∈ Spn(F ) so that(

1n 0
0 t−11n

)
gi

(
1n 0
0 t1n

)
= uiwi.

We moreover note that wia = ui
−1
a . Now we claim that since the gi’s form a set of repre-

sentatives of the classes of D′ in D, the same holds for

(
1n 0
0 t−11n

)
gi

(
1n 0
0 t1n

)
,

and hence also for wi since ui ∈ D′. Indeed since t ∈ Z×h ↪→ F×h we have that(
1n 0
0 t−11n

)(
a b
c d

)(
1n 0
0 t1n

)
=

(
a tb

t−1c d

)
∈ D[a, b]

if

(
a b
c d

)
∈ D[a, b], for some fractional ideals a, b with ab ⊆ g. In particular we have

that ı(t)giı(t
−1) ∈ D. We claim that the set D =

∐
iD
′ı(t)giı(t

−1). Indeed let d ∈ D.
Then ı(t−1)dı(t) ∈ D and hence there exists d′ ∈ D′ such that ı(t−1)dı(t) = d′gj for
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some j. Or equivalently d = ı(t)d′gjı(t
−1) = ı(t)d′ı(t−1)ı(t)gjı(t

−1), which establishes
our claim since ı(t)d′ı(t−1)ı(t) ∈ D′.
We now consider the elements (ı(t), σ), (wi, id), (gi, id) ∈ G+ × Gal(Q/Q). Then we
have

(TrΓ
Γ′(f

σ))σ
−1

= (
∑
i

ψ(gi)
σfσ|kgi)σ

−1
=

∑
i

(ψ(gi)f)((ı(t),σ)(gi,1)(ı(t−1),σ−1)) =
∑
i

ψ(gi)f
(uiwi,1) =

∑
i

ψ(gi)f |kwi.

The proof of the lemma is now completed after observing that ψ(gi) = ψ(wi). �

We also mention here the following theorem of Garrett [10].

Theorem 6.4 (Garrett). Let k > 2n + 1 and f ,g ∈ Ska. Take f an eigenform for
almost all Hecke operators. Then for all σ ∈ Aut(C/Q), we have(

< fρ,g >

< fρ, f >

)σ
=
< fσρ,gσ >

< fσρ, fσ >

In particular if we take f ,g ∈ Ska(Q), and take f with totally real Fourier coefficients

then we have that <fρ,g>
<fρ,f> ∈ Q and(

< f ,g >

< f , f >

)σ
=
< fσ,gσ >

< fσ, fσ >
, σ ∈ Gal(Q/Q).

We note that if we combine the above result of Garrett with the following result of
Harris on the Eisenstein spectrum

Theorem 6.5 (Harris). Let k > 2n + 1 and write Eka for the orthogonal complement
of Ska in Mka (the Eisenstein series). Define Eka(Q) :=Mka(Q)∩Eka. Then we have

Mka(Q) = Eka(Q)⊕ Ska(Q).

Proof. This follows from the work of Harris [12]. Indeed in general we have that (see
[23, Theorems 27.14, and 27.16])

Mka(Q) = Eka(Q)⊕ Ska(Q)

and Eka(Q) = ⊕nr=0Erka(Q) where Erka the space of Klingen type Eisenstein series asso-
ciated to a parabolic group Pr stabilizing an isotropic space of dimension r. Harris has
shown that in the case of weight as above (i.e. the absolute convergence situation) we
have that Erka(Q) = Erka(Q)⊗Q Q.

�

Now this theorem allows us to take g ∈Mka in Theorem 6.4.
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7. Algebraicity results for Siegel Modular Forms over totally real
fields

In this section we present various results regarding special values of the function
Z ′(s, f , χ), with f ∈ Sk(b, c, ψ), an eigenform for all Hecke operators. We remind that
we have also considered the function Z(s, f , χ). The two coincide when the Nebentypus
of f is trivial. Indeed if we write Zv(χ

∗(πvg)|πv|s) for the Euler factor of Z(s, f , χ)
at some prime v ∈ h then the corresponding Euler factor of Z ′(s, f , χ) is equal to
Zv((ψ/ψc)χ

∗(πvg)|πv|s). We note the equation

Z ′(s, f , χψ−1) = Zc(s, f , χ),

where the subindex on the right hand side indicates that we have removed the Euler
factors all primes in the support of c. In particular if we take the character χ trivial
(may not primitive) at the primes dividing c then we have that the two functions are
the same.

We start by stating a result of Shimura [23, Theorem 28.8]. We take an f ∈ Sk(C;Q),
where

C = {x ∈ D[b−1c, bc]|ax − 1 ≺ c}
We moreover take f of trivial Nebentypus and assume that it is an eigenform for all
Hecke operators away from the primes in the support of c. In the notation of Shimura
in Chapter V of his book, we take e = c, and not e = g. In particular here we take the
Euler factors Zv trivial for v in the support of c. The theorem below is stated only for
k ∈ Za.

Theorem 7.1 (Shimura). With notation as above define m0 := min{kv|v ∈ a} and
assume m0 > (3n/2) + 1. Let χ be a character of F such that χa(x) = xta|xa|−t with
t ∈ Za. Set µv := 0 if kv − tv ∈ 2Z and µv = 1 if kv − tv 6∈ 2Z. Let σ0 ∈ Za such that

(i) 2n+ 1− kv + µv ≤ σ0 ≤ kv − µv,
(ii) σ0 − kv + µv ∈ 2Z for every v ∈ a if σ0 > n,
(iii) σ0 − 1 + kv − µv ∈ 2Z for every v ∈ a if σ0 ≤ n.

We exclude the cases

(i) σ0 = n+ 1, F = Q and χ2 = 1,
(ii) σ0 = 0, c = g and χ = 1,
(iii) 0 < σ0 ≤ n, c = g, χ2 = 1 and the conductor of χ is g.

Then we have
Z(σ0, f , χ)

< f , f >
∈ πn(

∑
v kv)+deQ

where d = [F : Q] and

e :=

{
(n+ 1)σ0 − n2 − n, σ0 > n;
nσ0 − n2, otherwise.

We now take f ∈ Sk(C,ψ;Q) with C of the form D[b−1, bc] (i.e. the standard setting
in this paper). We are interested in special values of Z ′(s, f , χ) for a Hecke character χ
of F of conductor f.
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Theorem 7.2. Let f ∈ Sk(b, c, ψ;Q) be an eigenform for all Hecke operators. Assume
that either

(i) there exists v, v′ ∈ a such that kv 6= kv′, and m0 = min{kv|v ∈ a} > [3n/2 +
1] + 2 or

(ii) k is a parallel weight with k > 2n+ 1.

Let χ be a character of F such that χa(x) = xta|xa|−t with t ∈ Za. Define t′ ∈ Za by

(ψχ)a(x) = xt
′
a |xa|t

′
. Set µv := 0 if kv − t′v ∈ 2Z and µv = 1 if kv − t′v 6∈ 2Z. Let

σ0 ∈ Za such that

(i) 2n+ 1− kv + µv ≤ σ0 ≤ kv − µv for all v ∈ a,
(ii) |σ0 − n− 1

2 |+ n+ 1
2 − k + µ ∈ 2Za.

(iii) if n is even, and σ0 = n/2 + i for i = 0, . . . n/2, i ∈ N or if n is odd and
σ0 = n/2−1+ i, i = 1, . . . , (n+1)/2, then we assume the Assumption below.

We exclude the cases

(i) σ0 = n+ 1, F = Q and (χψ)2 = 1,
(ii) σ0 = n

2 , c = g, n is even and there is no (τ, r) that satisfy our assumption such
that ρτ 6= 1 and χψ = 1,

(iii) n/2 < σ0 ≤ n, c = g and (ψχ)2 = 1.

Then with notation as in the previous theorem we have

Z ′(σ0, f , χ)

< f , f >
∈ πn(

∑
v kv)+deQ

Moreover, if we take a number field W so that f , fρ ∈ Sk(W ) and Φ ⊂ W , where Φ is
the Galois closure of F in Q, then

Z ′(σ0, f , χ)

πβ(
√
DF

n(n+1)/4
)imω(εχψ)ρ < f , f >

∈ W := W (χψ),

where ω(·) is defined by using the Theorem 3.18 as follows

(i) for σ0 > n and n even then ω(·) is as in Theorem 3.18 (i),
(ii) for σ0 > n and n odd then ω(·) is as in Theorem 3.18 (iii) (b),
(iii) for σ0 ≤ n and n even then ω(·) is as in Theorem 3.18 (ii),
(iv) for σ0 ≤ n and n odd thenthen ω(·) is as in Theorem 3.18 (iv).

and m = d if [n/2] is odd and 0 otherwise.

Assumption: Let θ ∈ F×h so that θg = b−1d. Write f′ for the conductor of χ2. We
assume that we can find τ ∈ S+ ∩ GLn(F ) and r ∈ GLn(F )h so that c(τ, r; f) 6= 0,
equation 5.12 in Theorem 5.5 holds and

(i) if n is even and v - cf′ then (θtrτr)v is regular and v - f,
(ii) if n is odd and v - cf′ then (θtrτr)v is regular and v - 2f ∩ b−1d.

We note that this assumption implies that in Theorem 5.5 we have that Λc(s)/Λh(s) = 1
(see [20, Proposition 8.3]).
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Proof. (of Theorem 7.2) We first consider the Gamma factors that appear in Theorem
5.5. We first recall that

Γn(s) = πn(n−1)/4
n−1∏
j=0

Γ(s− j

2
).

Hence for
∏
v∈a Γn(σ0−n−1+kv+µv

2 ) we need the condition that σ0 > 2n − kv + µv for
all v ∈ a, which is the lower bound appearing in the theorem. Moreover the Eisenstein
series D(ν2 ) of weight k − µ − n

2 for ν = σ0 − n
2 is nearly holomorphic if and only if

n+ 1− (kv − µv − n
2 ) ≤ σ0 − n

2 ≤ kv − µv −
n
2 and |ν − n+1

2 |+
n+1

2 − kv + µv + n
2 ∈ 2Z

for every v ∈ a. These inequalities give the upper bound in the (i) condition for σ0

and (ii). The third condition for σ0 is imposed so that in the range where the fraction
Λc(s)/Λh(s) (a finite product of Euler factors associated to finite order characters) could
have a pole it is equal to 1. Finally the various exclusion follows from various cases
where the Eisenstein series D(ν2 ) is not nearly holomorphic.

We take β ∈ N so that π−βD(v2 ) ∈ Nk−l(ΦQab). Now using Theorem 5.5 after a proper
choice of (τ, r) we have

πγZ ′(σ0, f , χ)ψc(det(r))c(τ, r; f) =

α
(
D
−1/2
F

)n(n+1)/2
det(τ)s

′
0u+λ|det(r)|n+1−σ0

A ×∏
v∈b

gv((ψ/ψc)(πv)χ
∗(πvg)|πv|σ0)(Λc/Λh)((2σ0 − n)/4) < f, θχ(π−βD(ν/2)) >,

where α ∈ Q×, and γ := n||k−l−νa2 || − n||k|| + dε − n||s′0u + λ|| − β where we recall

ε = n2/4 if n even and (n2 − 1)/4 otherwise.

We now note that θχ ∈Ml(W) and π−βD(ν/2) ∈ N r
k−l(WQab) where r = (k−l−νa)/2

if ν > (n+ 1)/2 and r = (k − l − (n+ 1− ν)a)/2 otherwise.

Moreover we have s′0u+ λ = σ0u+k+µ
2 − n+1

2 u. In particular

(i) for σ0 > n and n even we have that s′0u+ λ 6∈ 2Z,
(ii) for σ0 > n and n odd we have that s′0u+ λ ∈ 2Z,

(iii) for σ0 ≤ n and n even we have that s′0u+ λ ∈ 2Z,
(iv) for σ0 ≤ n and n odd we have that s′0u+ λ 6∈ 2Z.

We now note that g(ρτ ) = im
√
NF/Qdet(τ), with m = d if [n/2] is odd and 0 otherwise.

Now we set P :=
√
DF

n(n+1)/4
imω(εχψ) where ω(·) is defined as in the statement of

the theorem. Then by Theorem 3.18 we conclude that(
D
−1/2
F

)n(n+1)/2
det(τ)s

′
0u+λπ−βP−1D(ν/2) ∈ N r

k−l(W).

We set a :=
(
D
−1/2
F

)n(n+1)/2
det(τ)s

′
0u+λπ−βP−1. By Lemma 15.8 in [23] we have that

there exists a q ∈ Mk(W) so that < f, θχaD(ν/2) >=< f, q >. If k is not a parallel
weight, then we have that actually q ∈ Sk(W) since in this case Mk = Sk. Then by

Theorem 6.1 we have that <f,q>
<f,f> ∈ W. In the other case, that is of k being a parallel
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weight we can use Theorem 6.4 combined with the Theorem 6.5 to conclude again
<f,q>
<f,f> ∈ W and hence conclude the proof. �

We now obtain also some results with reciprocity laws.

Theorem 7.3. Let f ∈ Sk(b, c, ψ;Q) be an eigenform for all Hecke operators. With
notation as before we take m0 > [3n/2 + 1] + 2. Let χ be a character of F such that

χa(x) = xta|xa|−t with t ∈ Za. Define t′ ∈ Za by (ψχ)a(x) = xt
′
a |xa|t

′
. Set µv := 0 if

kv − t′v ∈ 2Z and µv = 1 if kv − t′v 6∈ 2Z. Assume that µ 6= 0.

Let σ0 ∈ Za be as in the previous Theorem. Then with Ωf ∈ C× as defined in the
previous section in Theorem 6.1 we have for all σ ∈ Gal(Q/Φ) that Z ′(σ0, f , χ)

πn(
∑
v kv)+de

√
D
n(n+1)/4
F imω(εχψ)ρΩf

σ

=
Z ′(σ0, f

σ, χσ)

πn(
∑
v kv)+deim

√
DF

n(n+1)/4
ω(εχσψσ)ρΩfσ

.

Proof. We first observe that thanks to the assumption that µ 6= 0 we have that θχ ∈ Sl.
Moreover for σ ∈ Gal(Q/Φ) we have θσ

′
χ = θχσ , as it follows from the explicit Fourier

expansion of θχ. Moreover arguing as in the theorem above and using the reciprocity
laws for Eisenstein series in Theorem 3.18 we have that(

π−β
√
DF

n(n+1)/2
det(τ)s

′
0u+λD(ν/2, εψχρτ )

ω(εψχ)

)σ′
=

π−β
√
DF

n(n+1)/2
det(τ)s

′
0u+λD(ν/2, εψσχσ)

ω(εψσχσ)
, σ ∈ Gal(Q/Φ).

Moreover we have that θχD(ν/2, εψσχσρτ ) ∈ Rk. By Proposition 15.6 in [23] we have

that there exists q = p
(
θχD(ν/2, εψσχσρτ )

)
∈ Sk so that < f, θχD(ν/2, εψχρτ ) >=<

f, q > and qσ = p
(
θσχD(ν/2, εψχρτ )σ

)
for all σ ∈ Aut(C/Φ). In particular we have

that (√
DF

n(n+1)/2
det(τ)s

′
0u+λ < f, θχπ

−βD(ν/2, εψχρτ ) >

ω(εψχ)ρΩf

)σ
=

√
DF

n(n+1)/2
det(τ)s

′
0u+λ < fσ, θχσπ

−βD(ν/2, εψσχσρτ ) >

ω(εψσχσ)ρΩfσ
,

from which we conclude the proof of the theorem

�

As we have remarked in the introduction results similar to the ones proved in this
paper have been obtained by Sturm [25], Harris [12] and Panchishkin [17] in the case
of F = Q and n even. Our proofs are just generalizations of theirs building in some
new results of Shimura. We close this section by mentioning that the perhaps strongest
result concerning the special values of Siegel modular forms, at least when F = Q and
under some other technical assumptions, is due to Böcherer and Schmidt [4]. Using the
doubling method (see also the next section) and some holomorphic differential opera-
tors of Böcherer they obtained algebraicity results but assuming only that the weight
of the Siegel modular form is larger than n rather than 3n

2 + 1. It is of course very
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interesting to extend their results to the totally real field case, however the generaliza-
tion of their result seems to be a quite challenging task. We comment a bit more on
this in the next section.

8. Some Remarks on the Doubling Method

In this paper our main tool for the study of the special L-values of Siegel Modular
Forms was the Rankin-Selberg method. However, as we also briefly mentioned above,
there is yet another powerful method for the study of these special values, namely the
so-called doubling method. In this paper we considered mainly the Rankin-Selberg
Method, since this article, already quite long, would have increased considerably in size
if the doubling method was also to be considered here. So we have decided to defer
the consideration of the doubling method with respect to the same questions addressed
here for a future paper. In this section we wish to very briefly discuss various aspects
that are closely related to the doubling method and the questions considered in this
paper.

It is perhaps fair to say that the doubling method was initiated by Garrett in [9] and
extended further by Böcherer [1, 2, 3], Böcherer and Schmidt [4], Shimura [21] and in
the automorphic language by Piatetski-Shapiro and Rallis [18]. Of course the list of
contributors here is not meant to be complete.

Concerning the algebraicity results addressed in this paper, it seems that the two
methods (Rankin-Selberg and the Doubling Method) provide in many cases the same
results, but there are indeed case where one method is better than the other. Indeed,
Shimura in his books [23, theorem 28.8] concludes his algebraicity results by using both
methods (1st method and 2nd method in Shimura’s notation). However one should at
this point remark the following. Shimura writes at the beginning of his proof of his
Theorem 28.8 “There are two ways to prove this: the first one (i.e. doubling method)
applies to the whole critical strip, and the second one (i.e. Rankin-Selberg Method)
only to the right half of the strip”. However this is so, because Shimura is taking e = c
in his book [23, page 231](see also our discussion just before Theorem 7.1 in this paper).
Indeed in this situation the doubling method seems to be able to tackle critical points
also to the left half of the critical strip, something that the Rankin-Selberg method
cannot. However for e = g this is not the case and this is the situation that we consider
here. The main reason being that the integral expression in Theorem 5.5 it is available
in this form (in particular this particular Siegel type Eisenstein series for which we know
quite explicitly) only in the case e = g. We also note here that e = c corresponds to
Γ1(N)-case and c = g corresponds to Γ0(N)-case in the elliptic modular form situation.

In this paper we have considered only Siegel modular forms. Of course the same
questions can be addressed for other groups, as for example unitary groups. Actually
Shimura in his book provides similar results (always over an algebraic closure of Q)
for hermitian modular forms, that is modular forms associated to unitary groups. For
hermitian modular forms the two methods are not at all equivalent, and in particular
one cannot use the Rankin-Selberg method to study special L-values for hermitian
forms of unitary groups of the form U(n,m) for n 6= m (this is part of the case UB in
Shimura’s notation in his book). For example one cannot consider the case of hermitian
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modular forms for definite unitary groups. But the doubling method still does apply.
Here we should say that the field of definition for hermitian modular forms has been
worked out by Harris in [13] using the doubling method. However we would like further
to remark here that Harris considers special L-values only in the strip of absolute
convergence. In the UT case (i.e. n = m) we have obtained in some cases results [6]
using the Rankin-Selberg method that improves the ones of Harris (i.e. beyond the
absolute convergence).

As we explained at the beginning of this article one of the main motivations of our in-
vestigations is the construction of p-adic measures for Siegel modular forms. We briefly
describe here what is known with respect to this, even though the reader should keep in
mind that we do not wish to give here a complete and detailed picture of the situation.
Historically the first results in this direction were obtained by Panchishkin,[17] (see also
the joint work of Courtieu and Panchishkin [7]), who used the Rankin-Selberg method
to construct these measures. However he considered the case of even degree (or genus),
the main reason being that in this case the Rankin-Selberg method does not involve
Eisenstein series of half-integral weight. Later Böcherer and Schmidt [4] constructed
these p-adic measures for any degree using the doubling method. One should remark
here that there is a very delicate difference in the way that Böcherer and Schmidt ap-
plied the doubling method and in the way Shimura developed it in his work [21]. Very
briefly the main difference seems to be in the decomposition that is proved in Propo-
sition 2.1 of [4] as well as the use of the holomorphic operators of Böcherer (opposite
to the non-holomorphic ones in the work of Shimura). Of course one should add here
that the work [4] is restricted to Siegel modular forms over the rationals, opposite to
the work of Shimura who applies to any totally real field. We simply say here that
in an ongoing project we extend the work of Panchishkin (i.e. p-adic measures using
the Rankin-Selberg mathod) in two directions. We consider also odd genus and to the
totally real field case. Note, as we already said, that both the work of Panchishkin
and of Böcherer and Schmidt are over the rationals. It seems to be a big challenge to
obtain the analogue of Proposition 2.1 of [4] in the totally real case in the situation
of strict class number bigger than one, and in particular extend the work of Böcherer
and Schmidt to totally real fields. We are currently working on this. At this point it is
worth mentioning that in this article we considered scalar valued Siegel modular forms.
Many of the above questions can be stated also for the vector valued ones. For a first
step in this direction the reader can see [16]. Finally we close this article by mention
that of course it is very interesting to construct p-adic measures for hermitian modular
forms. The doubling method has been already used in that context, as for example
in [14, 15, 24]. In [6] we are considering the Rankin-Selberg method for constructing
these p-adic measures.
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