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(1) (a) By taking the first few exponents, we find

153 ≡ 152 · 15 = 225 · 15 = 23 · 15 = 345 ≡ 42 (mod 101)

and

154 = 153 · 15 ≡ 42 · 15 = 630 ≡ 24 (mod 101) .

Therefore we derive m = 3 and n = 4.
Hence we can find the shared secret key

(153)4 ≡ 424 = (422)2 = 17642 ≡ 472 ≡ 2209 = 2121 + 88 ≡ 88 (mod 101) .

(b) One way has given in part (a) above, the second one is by

(154)3 ≡ 243 ≡ 576 · 24 ≡ 71 · 24 ≡ −30 · 24 = −720 ≡ −13 ≡ 88 (mod 101) .

(2) If we have a message given as a number m (mod 31) and encrypt using the
encryption exponent e = 7, then we find a decryption exponent by writing

e · x+ ϕ(m)y = 1

for some integers x and y, e.g. from (a) we find x = 13 and y = −3 do it.
Therefore the inverse map of E(x) = x7 (mod 31) is given by E−1(y) = x13

(mod 31).
(3) Factorization of n gives 114113 = 113 ·101 (one can find it either by Fermat

method or by trial and error). Therefore we have ϕ(11413) = 11200 and
we can take the decryption exponent d = 3 since 3 · 7467 ≡ 1 (mod 11200).
Computing 58593 (mod 11413) gives the message X = 1415.

(4) According to the lectures, the two primes are the roots of the polynomial

(x− p)(x− q) = x2 − (n− ϕ(n) + 1)x+ n = x2 − 1332x+ 442931 ,

which we can solve easily as

x = 666±
√

6662 − 442931 = 666± 25 ,

and so n = pq = (666− 25) · (666 + 25) = 641 · 691.
(5) (a) For p and q odd primes and n = pq we have that ϕ(n) = (p−1)(q−1).

For a coprime to pq have

ap−1 ≡ 1 (mod p) , aq−1 ≡ 1 (mod q)

by Fermat, and so (by raising to the power (q−1)/2 ∈ Z and (p−1)/2 ∈
Z, respectively) we find

(ap−1)
1
2 (q−1) ≡ 1 (mod p) , (aq−1)

1
2 (p−1) ≡ 1 (mod q) ,

and putting these two together we obtain indeed

a
1
2 (p−1)(q−1) = a

1
2ϕ(n) ≡ 1 (mod n) .
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(b) Let d and e be integers with de ≡ 1 (mod 1
2ϕ(n)). Then ade−1 ≡ 1

(mod n) by the above (raise to the integer power (de− 1)/( 1
2ϕ(n))).

(6) (a) Fermat factorization algorithm for n = 3525283 chekcs x = d
√
ne + j

for j = 0, 1, 2, . . . and to check numerically if
√
x2 − n is an integer.

We obtain for j = 0, 1, 2, 3, 4 the following respective values

40.012 . . . , 73.198 . . . , 95.482 . . . , 113.481 . . . , 129.000 .

That is, 18822−n = 1292 and so n = (1882−129)(1882 + 129) , where
1753 and 2011 are non-trivial factors of n

(b) It x2 ≡ y2 (mod n) and x 6≡ ±y (mod n), then n | (x2 − y2) =
(x−y)(x+y), but n does not divide any of the two factors. It is enough
to show that gcd(n, x+ y) 6= 1. If it was so, then 1 = an+ b(x+ y) for
some a, b ∈ Z, and so

x− y = an(x− y) + b(x− y)(x+ y) .

But n divides both summands on the right, hence also the LHS. But
this contradistcs the fact that n does not divide x− y.

(c) For n = 642401, we are given

5161072 ≡ 7 (mod n) ,

and

1877222 ≡ 22 · 7 (mod n) .

We try to find a factor of n “by hand”.
Multiplying the first equation by 22 and subtracting the second one
gives

22 · 5161072 − 1877222 ≡ 0 (mod n) .

So we find that

(2 · 516107− 187722)(2 · 516107 + 187722)

is divisible by n, and hence we can try to use, as in part (b), the gcd
of 2 · 516107 + 187722 = 1032214 + 187722 = 1219936 and n, which is
obtained by the Euclidean algorithm as

1219936 = 642401 + 577535

642401 = 577535 + 64866

577535 = 8 · 64866 + 58607

64866 = 58607 + 6259

58607 = 9 · 6259 + 2276

6259 = 2 · 2276 + 1707

2276 = 1707 + 569

1707 = 3 · 569 .

Conclusion: one factor of n is 569, the other one being 1129, both
being primes.

(7) (a) We get m = d · e − 1 = 11600000 whose binary expansion is as given
in the question. So m/16 = 725000 and, using the squaring method,
we find ρ = 3m/16 ≡ 34485 (mod n) (with n = 93433).
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(b) Since 3m/16 ≡ 34485 6≡ 1 (mod n), and the fact that ρ2 ≡ 1 (mod 93433),
the algorithm in the lectures suggest that we should try gcd(ρ−1, n) =
gcd(34484, 93433) = 233, and we find

n = 93433 = 233 · 401 ,

which is indeed a prime factorization.


