
Advanced Quantum Theory IV Michaelmas Term 2021

Study Sheet: Special Relativity, Index Notation and Summation Convention

Note: Any blue text is a hyperlink.

1. Lorentz Boosts. Consider two inertial frames S and S′ with space-time co-ordinates (ct, ~x)
and (ct′, ~x′) respectively, where ~x =

(
x1, x2, x3

)
. In this exercise we are going to walk through

how S and S′ are related when S′ has speed v in the positive x1-direction. Assume that at t = 0
the origin ~x = 0 of S coincides with the origin ~x′ = 0 of S′. This transformation is a Lorentz
boost along the x1 axis.

An inertial frame is a frame of reference which is not undergoing acceleration. A particle with
no net force acting upon it will therefore travel at a constant velocity in an inertial frame,
meaning that its trajectory is a straight line. Since S and S′ are inertial frames, the map
(ct, ~x) 7→ (ct′, ~x′) between them must therefore send straight lines to straight lines. This means
that such a map is a linear transformation and, since the origins of S and S′ coincide at t = 0,
can be written in matrix form:

ct′

(x′)1

(x′)2

(x′)3

 =


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33



ct
x1

x2

x3

 , (1)

for some constants aij , i, j = 0, 1, 2, 3, that we are going to determine.

Now use that S′ is moving at speed v in the positive x1-direction, meaning that its origin ~x′ = 0
follows the trajectory ~x = (vt, 0, 0). Based on this information, show that:(

x′
)1

= γ
(
x1 − vt

)
,

(
x′
)2

= αx2,
(
x′
)3

= βx3, (2)

for some constant coefficients γ, α, β. Conversely, using that S has speed v in the negative
(x′)1-direction from the perspective of S′, show:

x1 = γ
((
x′
)1

+ vt′
)
, x2 = α

(
x′
)2
, x3 = β

(
x′
)3
, (3)

for the same constants γ, α, β as in (2). [Hint: You should convince yourself that one can obtain
(2) from (3) by sending v → −v and interchanging S and S′]. Conclude that α = 1 and β = 1.

The second postulate of Special Relativity states that the speed of light c in the vacuum is the
same in all reference frames. Using this, show that:

γ =
1√

1− v2

c2

. (4)

[Hint: In S a light ray that passes through the origin at t = 0 and is travelling in the x1 direction
has trajectory x1 = ct. Using the second postulate of special relativity, convince yourself that
this has trajectory (x′)1 = ct′ in S′]. Finally, show that:

t′ = γ
(
t− v

c2
x1
)
. (5)

The final part of this exercise continues on the next page.

1

https://en.wikipedia.org/wiki/Lorentz_transformation
https://en.wikipedia.org/wiki/Lorentz_transformation
https://en.wikipedia.org/wiki/Inertial_frame_of_reference
https://en.wikipedia.org/wiki/Postulates_of_special_relativity


Using the results you obtained above, deduce that a Lorentz boost in the (positive) x1-direction
is given by the following 4× 4 matrix Λ:

ct′

(x′)1

(x′)2

(x′)3

 =


γ −vγ

c 0 0
−vγ

c γ 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

Λ


ct
x1

x2

x3

 . (6)

Extension exercise: A similar argument gives the matrix form for Lorentz Boosts along the x2-
and x3-axes. Is there a quicker way to obtain them given the knowledge of the matrix form
(6) of the Lorentz Boost along the x1-axis? [Hint: the x2- and x3-axes can be reached from the
x1 axis through a rotation.] In the first assignment we shall see yet another derivation which
follows from a group-theoretical approach to Lorentz transformations.
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2. Lorentz transformations and the Minkowski metric.

Consider a bilinear form on a 4-dimensional vector space,

B (v, u) = vTB u, (7)

where B is the 4× 4 matrix of the bilinear form and vectors v, u,

v =


v0

v1

v2

v3

 , u =


u0

u1

u2

u3

 . (8)

Let’s transform them under the Lorentz Boost (6),

v′ = Λv, u′ = Λu. (9)

Suppose that B = I4×4, the identity matrix:

I4×4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (10)

The bi-linear form (7) is then the usual dot product:

B (v, u) = v0u0 + v1u1 + v2u2 + v3u3. (11)

Show that this is not invariant under the Lorentz Boost (6).

Suppose instead B = η, the Minkowski metric:

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (12)

Show that in this case we have:

B (v, u) = −v0u0 + v1u1 + v2u2 + v3u3. (13)

Show that this is invariant under the Lorentz Boost (6).

In Special Relativity, our usual 3-dimensional Euclidean space with metric given by the dot
product is extended to a four-dimensional space-time endowed with the Minkowski metric
(12), known as Minkowski space. Lorentz transformations are defined as the group of trans-
formations which preserve the Minkowski metric. This is in analogy to the group of orthogonal
transformations (rotations and reflections) which preserve the dot product of Euclidean space.
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3. Contravariant and covariant vectors, index notation and Einstein summation convention.

Note: For the AQT course it is not necessary to know what is a dual space. It is touched upon in
this exercise purely for a wider understanding of contravariant and covariant vectors.

Every bilinear form on a vector space V defines a map to the dual space V ?,

B : V → V ?. (14)

The components of vectors v ∈ V are labelled by upper indices vµ, while the components of
dual vectors ω ∈ V ? are labelled by lower indices ωµ.

Take V to be a four-dimensional vector space and B to be the Minkowski metric (12). Consider
a (contravariant) vector v ∈ V with components vµ, µ = 0, 1, 2, 3. Show that the components
vµ of the dual (covariant) vector are given by:

v0 = −v0, v1 = v1, v2 = v2, v3 = v3. (15)

In index notation this map reads:

vµ = (ηv)µ =

3∑
ν=0

ηµνv
ν , (16)

where ηµν , µ, ν = 0, 1, 2, 3, label the elements of the Minkowski metric (12). The expression
on the right hand side can be made more concise by adopting a convenient notation known
as Einstein Summation convention. In this notation, when an index appears twice in a given
term we are instructed to sum the term over all the values that the index takes. In Einstein
summation convention the map (16) therefore reads:

vµ = (ηv)µ = ηµνv
ν . (17)

This notation is much less cumbersome since we do not need to include the sum over the
index ν explicitly – it is implied. In the following we will work through further examples using
Einstein summation convention.

The inverse map to (14) is simply given by the inverse matrix η−1:

η−1η = I4. (18)

Write (18) in index notation and show that in Einstein summation convention it reads:(
η−1
)µν

ηνσ = δµσ, (19)

where the Kronecker delta δµν encodes the elements of the identity matrix,

δµν =

{
1
0

if
µ = ν
µ 6= ν

. (20)

By explicit computation, show that:
η−1 = η. (21)

In index notation the above equation reads [exercise continues on next page]:(
η−1
)µν

= ηµν , (22)
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where now the elements of the Minkowski metric are labelled with upper indices ηµν , since we
are mapping from the dual space V ∗ to V . Show that:

vµ = ηµνvν . (23)

In summary, indices are raised with ηµν and lowered with ηµν:

vµ = ηµνv
ν , vµ = ηµνvν . (24)

Show that using Einstein summation convention (7) can be written as:

B (v, u) = vµu
µ = vµuµ. (25)

In Euclidean space, where the metric is B = I, the distinction between upper and lower indices
is not so important since vµ = vµ for all µ (verify this!). In Minkowski space however, where
the metric is B = η, this is no longer true (see equation (15)) and the distinction between
upper and lower indices is very important. In particular, an object like

vµuµ = v0u0 + v1u1 + v2u2 + v3u3, (26)

doesn’t make much sense in Minkowski space since it is not invariant under Lorentz transfor-
mations (see exercise 2). We therefore only sum over pairs of repeated indices when one of them
is raised and the other is lowered.
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4. More exercises on index notation and Einstein summation convention.

a. Show that using Einstein summation convention the Lorentz transformation (9) reads(
v′
)µ

= Λµνv
ν , (27)

where Λµν are the elements of the 4× 4 matrix Λ. Show also that:(
v′
)
µ

= Λµ
νvν , (28)

where
Λµ

ν = ηµρΛ
ρ
ση

σν . (29)

Recalling that vµvµ is invariant under Lorentz transformations, show that:

Λµ
ν =

(
Λ−1

)ν
µ. (30)

b. Consider the gradient vector:

∂

∂xµ
=

(
∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
. (31)

Show that
∂xν

∂xµ
= δµ

ν , (32)

where δµν is the Kronecker delta (20). The gradient vector (31) is therefore a covariant vector
with lower index µ. In the AQT course we shall often abbreviate (31) as ∂xµ or, when there is
no risk of ambiguity, ∂µ. If x = (ct, ~x), i.e. so that x0 = ct, show that:

∂0 =
1

c

∂

∂t
and ∂0 = −1

c

∂

∂t
. (33)

Show that:

∂µ∂µ = − 1

c2

∂2

∂t2
+

∂2

∂ (x1)2 +
∂2

∂ (x2)2 +
∂2

∂ (x3)2 . (34)

[Note: We will often make use of the formulas (33) and (34) in the AQT course. A common
mistake is to forget the minus signs – you have been warned!]

c. If pν is a constant vector, show that

∂ (pνx
ν)

∂xµ
= pµ. (35)
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