
 

Chapter 10 

Interlude: the KdV hierarchy and 

conservation laws 

10.1 Deriving the KdV equation (and generalising it) 

It’s natural to ask whether there are any other evolution equations for u  p x,  t  q such that the 

eigenvalues of L  “  D2  `  u  p x,  t  q are constant. In more fancy language, we’re looking for 

equations such that the L  p u  q ’s at di�erent times are isospectral ; these are called an isospectral 

�ows . 

The answer is yes, there are more such equations, and the Lax pair idea allows us to �nd them. 

Key point

 

: the proof in section 9.1 only used the fact that, when u  evolves by KdV, we have 

Lt “ r  B  ,  L  s  – no other details of B  were needed, so some other B  p u  q should work just as well. 

However, B  p u  q is not completely arbitrary: since Lt  “  ut, and is a multiplicative operator, 

r  B  ,  L  s  must also be multiplicative. This means all the D ’s must cancel out when computing 

the commutator. If they do cancel, what’s left in r  B  ,  L  s  will be a polynomial in u  , ux, uxx  etc, 

and setting this equal to ut  will give us the desired evolution equation. We can see this in 

action via some examples. 

Example (i) 

Try B  p u  q “  ↵  p x  q for some function ↵  p x  q . Then, leaving it as an exercise to �ll in the missing 

steps,

 

r  L,  B  s “ r  D2 `  u,  ↵  s “ ¨ ¨ ¨ “ ↵xx `  2  ↵x  D .
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For this to be multiplicative, the “ D ” bit has to be zero, which requires ↵x  “  0  . Hence ↵  is 

constant, ↵xx “  0  , and r  L,  B  s “  0  . Hence the equation we get is

 

ut “  0  .

 

This clearly is an answer to the question of what evolution equation for u  will leave the spec- 

trum of L  p u  q unchanged, but it’s not a very interesting one! 

Example (ii) 

Next up, let’s try B  p u  q “  ↵  p x  q D `  � p x  q . Then

 

(a) r  D2  ,  ↵  D `  � s “ ¨ ¨ ¨ “ 2  ↵x  D
2 ` p ↵xx `  2  �xq D `  �xx ;  

(b) r  u,  ↵  D `  � s “ ¨ ¨ ¨ “  ́↵  ux  ,

 

and (a) + (b) ñ

 

r  L,  B  s “ r  D2 `  u,  ↵  D `  � s “  2  ↵x  D
2 ` p ↵xx `  2  �xq D `  �xx ´  ↵  ux  .

 

For this to be multiplicative, the coe�cients of D2  and D must be zero.

 

p q D2 “  0  ñ 2  ↵x “  0 ;  

p q D “  0  ñ 2  �x “  0  .

 

Hence ↵  and � are both constants, and r  L,  B  s “ ´  ↵  ux  . The evolution equation is thus

 

0  “  Lt ` r  L,  B  s “  ut ´  ↵  ux  .

 

Sadly this is also a bit trivial: it’s the advection equation, and the solution for initial data 

u  p x,  0  q “  u0p x  q is

 

u  p x,  t  q “  u0p x  `  ↵  t  q .

 

This just translates the initial data sideways with velocity ´  ↵  , so the shape of the function is 

unchanged and it’s easy to see that the same is true of the spectrum (exercise!). 

Example (iii) 

Finally, we try B  p u  q “  ↵  p x  q D2 `  � p x  q D `  �  p x  q . Then

 

(a) r  D2  ,  ↵  p x  q D2 `  � p x  q D `  �  p x  qs “ ¨ ¨ ¨ “  2  ↵x  D
4 `  ↵xx  D

3 `  2  �x  D
2 ` p �xx `  2  �xq D `  �xx ;  

(b) r  u,  ↵  p x  q D2 `  � p x  q D `  �  p x  qs “ ¨ ¨ ¨ “  ́↵  p uxxx `  3  uxx  D `  3  ux  D
2q `  � ux  ,

 

and so

 

r  L,  B  s “  (a) `  (b) 

“  2  ↵x  D
4  

`  ↵xx  D
3  

` p 2  �x ´  3  ↵  uxq D2  

` p �xx `  2  �x  u  ´  3  ↵  uxxq D 

`  �xx ´  ↵  uxxx ´  � ux  .
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Equating the coe�cients of the powers of D to zero:

 

p q D4 “  0  ñ 2  ↵x “  0  ñ ↵  “  constant ;  

p q D3 “  0  (now automatic) ;  

p q D2 “  0  ñ 2  �x ´  3  ↵  ux “  0  ñ p � ´  
3

 

2  
↵  u  qx “  0  ñ � “  

3

 

2  
↵  u  `  k1 ;  

p q D “  0  ñ .  .  .  ñ �  “  
3

 

2  
↵  ux `  k2

 

where k1  and k2  are constants. The remaining (multiplicative) bit of r  L,  B  s  is then ´1

 

4  
↵  uxxx ´  

3

 

2  
↵  uux ´  k1  ux  and so in this case

 

Lt ` r  L,  B  s “  0  ô ut ´  
3

 

2  
↵  uux ´  

1

 

4  
↵  uxxx ´  k1  ux “  0  .

 

For ↵  “  0  and k1 “  0  this is the KdV equation. 

10.2 Hints for the general case 

To go further, introduce some new technology: 

(i) (Hermitian) inner product 

For two functions �  p x  q and �  p x  q , de�ne

 

p �,  �  q “  

ª `8  

´8  

�˚p x  q �  p x  q dx  .

 

(10.1) 

(The complex conjugation on the �rst term ensures p �,  �  q °  0  for �  ‰  0  even when �  is 

complex.) 

In this notation, the key property of L  “  D2 `  u  used in the Lax proof was that

 

p �,  L�  q “ p L�,  �  q

 

(10.2) 

for all �  and �  . 

(ii) The adjoint of an operator 

If M  is a di�erential operator, de�ne M :  (“ M  dagger”) to be the operator such that

 

p �,  M  �  q “ p M :  �,  �  q

 

(10.3) 

for all �  and �  . M :  is called the adjoint of M  ; it’s a bit like a matrix transpose and, like the 

matrix transpose, satis�es

 

p M :q: “  M  ,  p M  N  q: “  N :  M :
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(exercise: check!). The key property of L  was

 

L: “  L

 

(10.4) 

and such operators are called self-adjoint (or symmetric ). Other important operators have

 

M : “ ´  M

 

(10.5) 

and are called antisymmetric , or skew . 

Now if M  is just multiplication by a (real) function, then M :  “  M  . (Exercise: why?) This 

must be true of r  L,  B  s  as it is supposed to be a (real) multiplicative operator, so B  must be 

such that that r  L,  B  s: “ r  L,  B  s  . 

What can we deduce about B  from this? 

We have r  L,  B  s “  LB  ´  B  L  , so r  L,  B  s “ r  B  ,  L  s:  implies

 

LB  ´  B  L  “ p LB  ´  B  L  q:  

“  B:  L: ´  L:  B:  

“  B:  L  ´  LB:  (since L  is self-adjoint)

 

which implies

 

L  p B  `  B:q ´ p B  `  B:q L

 

or

 

r  L,  p B  `  B:qs “ 0  .

 

Otherwise stated, the symmetric part of B  must commute with L  . (As with matrices, any B  

can be written as

 

B  “  

1

 

2
p B  `  B:q `  

1

 

2
p B  ´  B:q

 

where the �rst term is called the symmetric part of B  , and the second the antisymmetric part.) 

Since it’s only the bit of B  which doesn’t commute with L  that makes a di�erence to the 

equation Lt ` r  L,  B  s “  0  , this means that B  can be assumed to be antisymmetric

 

. 

How to write such a B  ? 

Instead of writing a general B  as

 

B  “  

mÿ 

0  

↵jp x  q D 
j  ,
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we’ll choose a di�erent basis by writing

 

B  “  

mÿ 

0  

p �jp x  q D 
j `  D 

j  �jp x  qq .

 

(It can be checked that this is always possible.) 

Now if � p x  q is real, p � p x  qq:  “  � p x  q , and also D:  “  ´  D (this is proved by integration by 

parts), which implies

 

p D2  jq: “  D2  j  (self-adjoint) 

p D2  j  ´  1q: “ ´  D2  j  ´  1  (skew)

 

and replacing B  by its antisymmetric part, 
1

 

2p B  ´  B:q , it becomes

 

B  “  

ÿ 

0  †  2  j  ´  1  §  m  

p �2  j  ´  1p x  q D2  j  ´  1 `  D2  j  ´  1  �2  j  ´  1p x  qq .

 

(10.6) 

It can also be checked that r  L,  B  s  being multiplicative forces the coe�cient of the leading term 

in D to be a constant, so the general guess is

 

Bnp u  q “  D2  n  ́  3 `  

n  ́  2ÿ 

j  “  1  

p �jp x  q D2  j  ´  1 `  D2  j  ´  1  �jp x  qq .

 

(10.7) 

Notes: 

• the degree 2  n  ´  3  of the leading term was picked for later convenience; 

• the �j ’s have been relabelled going from (10.6) and (10.7); 

• setting the coe�cient of the leading term to 1  in (10.7) does not lose any generality, since an 

overall rescaling of B  p u  q can be “undone” in Lt ` r  L,  B  s “  0  by rescaling time. 

There’s now no alternative but to calculate. When the dust settles, Knp u  q ”  r  Bn  ,  L  s  will be 

a polynomial in u  , ux, uxx  etc, and setting Lt ` r  L,  Bns  “  0  , that is ut  “  Knp u  q , will give a 

KdV-like equation with x  derivatives up to order 2  n  ´  3  . 

The �rst few cases:

 

n  “  1  :  ut “  0  

n  “  2  :  ut `  ux “  0  

n  “  3  :  ut `  6  uux `  uxxx “  0  

n  “  4  :  ut `  30  u2  ux `  20  ux  uxx `  10  uuxxx `  uxxxxx “  0  (10.8)

 

These are the �rst equations of the KdV hierarchy , and in each case, they evolve u  p x,  t  q forward 

in time in such a way as to leave the spectrum of L  p u  q “  D2 `  u  unchanged.
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10.3 Connection with conservation laws 

Recall from last term that the KdV equation has an in�nite sequence of conserved charges:

 

Qn “  

ª `8  

´8  

Tn  dx

 

where the conservation of Qn, 
dQn

 

dt  
“  0  , is proved by showing that 

B  Tn

 

B  t  
`  

B  Xn

 

B  x  
“  0  when the 

KdV equation holds, for some Xn  with r  Xns8  

´8  
“  0  . Normalising the Tn’s as Tn  “  un `  .  .  .  , 

the �rst few examples are

 

T1 “  u  

T2 “  u2  

T3 “  u3 ´  
1

 

2  
u2  

x  

T4 “  u4 ´  2  uu2  

x `  
1

 

5  
u2  

xx  

T5 “  u5 ´  
105

 

21  
u2  u2  

x `  uu2  

xx ´  
1

 

21  
u2  

xxx  
(10.9)

 

So we now have two

 

in�nite sequences: 

• For the KdV equation itself, the sequence T1, T2, T3,. . . 

• Going beyond KdV, an in�nite sequence K1, K2, K3,. . . of polynomials in u  and its x  deriva- 

tives such that setting ut “  Knp u  q leaves the eigenvalues of D2 `  u  p x,  t  q constant. 

How do these two sequences tie together, if at all? 

The most boring possibility: each evolution equation ut  “  Knp u  q has its “own” set of Tn’s, 

conserved densities for that equation alone. In fact the answer, found by Gardner, is more 

clever. To explain it, a new concept is needed. . . 

The functional derivative 

(Also known as the variational, or Fréchet, derivative.) 

Suppose f  is some function of u  and its x  derivatives. Then

 

F  r  u  s “  

ª `8  

´8  

dxf  p u,  ux  ,  uxx  .  .  .  q

 

(10.10) 

is an example of a functional of u  : it takes a function u  p x  q and yields a number F  r  u  s  . In 

practice u  might also depend on the time t  , in which case the formula should be taken at �xed 

t  , which is not

 

integrated over. Since t  is a spectator for most of the following considerations, 

for now we won’t write it explicitly in formulae.
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Now consider a small variation �  u  p x  q of u  p x  q , so that u  p x  q Ñ u  p x  q `  �  u  p x  q , with �  u  p x  q Ñ 0  

as x  Ñ ˘8  . 

This changes F  r  u  s  to

 

F  r  u  `  �  u  s “  

ª `8  

´8  

dxf  p u  `  �  u,  p u  `  �  u  qx  ,  p u  `  �  u  qxx  ,  .  .  .  q 

“  

ª `8  

´8  

dxf  p u  `  �  u,  ux `  �  ux  ,  uxx `  �  uxx  ,  .  .  .  q 

“  

ª `8  

´8  

dx  

 ̂

f  p u,  ux  ,  uxx  ,  .  .  .  q ` B f

 

B u  

�  u  `  

B f

 

B ux  

�  ux `  

B f

 

B uxx  

�  uxx `  .  .  .  

 ̇

(Taylor expanding) 

“  F  r  u  s `  

ª `8  

´8  

dx  

ˆB f

 

B u  

�  u  `  

B f

 

B ux  

�  ux `  

B f

 

B uxx  

�  uxx `  .  .  .  

 ̇

`  O  p �  u2q 

“  F  r  u  s `  

ª `8  

´8  

dx  

ˆB f

 

B u  

´  

B

 

B x  

ˆ B f

 

B ux  

 ̇

`  

B2

 

B x2  

 ̂ B f

 

B uxx  

 ̇

`  .  .  .  

 ̇

�  u  `  O  p �  u2q 

(integrating by parts)

 

and the term multiplying �  u  p x  q in the last line is called the functional derivative of F  r  u  s  , 

written as 
�  F  r u  s

 

�  u  
. More precisely, 

�  F  r u  s

 

�  u  
is de�ned by

 

F  r  u  `  �  u  s “  F  r  u  s `  

ª `8  

´8  

dx  

�  F  r  u  s

 

�  u  

�  u  `  O  p �  u2q

 

(10.11) 

which is like f  p x  `  �  x  q “  f  p x  q `  
df

 

dx  
�  x  `  O  p �  x2q for ordinary functions. 

For functionals de�ned as in (10.10) the calculation just completed shows that

 

�  F  r  u  s

 

�  u  

“  

B f

 

B u  

´  

B

 

B x  

ˆ B f

 

B ux  

 ̇

`  

B2

 

B x2  

 ̂ B f

 

B uxx  

 ̇

`  .  .  .

 

(10.12) 

Examples 

(a) f  “  u  ñ 
�  F  r u  s

 

�  u  
“  1  

(b) f  “  u3  ñ 
�  F  r u  s

 

�  u  
“  3  u2  

(c) f  “  u2  

x  
ñ 

�  F  r u  s

 

�  u  
“ ´  2  uxx  

(Exercise: check these results.)
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The conserved quantities Qn  “  

≥ 

Tn  dx  are examples of functionals of u  , and so we can also 

calculate their functional derivatives: 

(a) 
�  Q1

 

�  u  
“  

�  u

 

�  u  
“  1  

(b) 
�  Q2

 

�  u  
“  

�  u2

 

�  u  
“  2  u  

(c) 
�  Q3

 

�  u  
“  

�

 

�  u  

`
u3 ´  

1

 

2  
u2  

x  

˘
“  3  u2 `  uxx  

Taking 
B

 

B  x  
of each of these,

 

B (a)

 

B x  

“  0  ,  

B (b)

 

B x  

“  2  ux  ,  

B (c)

 

B x  

“  6  uux `  uxxx

 

and these match, up to an overall scale, the �rst three equations of the KdV hierarchy:

 

ut “  0  ,  ut “ ´  ux  ,  ut “ ´  6  uux ´  uxxx  .

 

The normalisations of the charges, or else the scale of t  , can be adjusted to make these matches 

precise. They are the �rst three examples of Gardner’s general result:

 

ut “  

B

 

B x  

 ̂

�  Qn

 

�  u  

˙

 

–Ñ ut “  Knp u  q

 

connecting the nth  KdV conservation law with the nth  equation of the KdV hierarchy. Thus 

the two sequences are the same! 

Furthermore: 

• If ump x,  t  q evolves by the mth  KdV equation, all the Tn’s are conserved densities for it. 

• Imagine we have one “time” for each equation in the hierarchy, so that instead of ump x,  t  q 

with 
B

 

B  t  
um  “  Kmp u  q we have u  p x,  tt  ,  t2  ,  t3  .  .  .  q with 

B

 

B  tm  
um  “  Kmp u  q . Then if we evolve 

(or ‘�ow’) u  p x,  tt  ,  t2  ,  t3  .  .  .  q for a while in ti, then for a while in tj , we end up with the same

 

function of x  as if we’d evolved in tj  �rst followed by ti  . This is the idea of commuting �ows : 

it’s very important in “modern” soliton theory. 

Now back to KdV. . .
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The story so far

 

The ‘big idea’ was to encode u  p x,  0  q as   , [step (a)], then evolve it forward in time by  t  “  

B  p u  q   , [step (b)], then decode u  p x,  t  q [step (c)] a time t  later. 

One problem

 

: to evolve   , we seem to need to know how u  p x,  t  q evolves, since B  depends on 

u  p x,  t  q (recall, for KdV, B  p u  q “ ´  4  D3 ´  6  uD ´  3  ux). 

This looks to be fatal. . . 

But, just how much of   p x,  t  q do we really need to reconstruct u  p x,  t  q ? The method might be 

saved if we only needed to know   p x,  t  q at | x  | Ñ 8  , since in this limit u  Ñ 0  and B  p u  q Ñ 

´  4  D3, which is independent of u  . 

If we could get away with only this, the idea would be saved. In fact GGKM already knew 

this to be true, which is perhaps why they persisted. To understand how it goes, some more 

information on the solutions to problems like p 
d2

 

dx2  `  u  p x  qq   “  �  is required, and this is the 

subject of the next chapter.


