
 

Chapter 11 

The basics of scattering theory 

Aim

 

: to analyse the possible solutions to L  “  �  , that is

 

 ̂

d2

 

dx2  
`  u  p x  q 

 ̇

  “  � 

 

(11.1) 

with   p x  q bounded

 

for all x  (which restricts the possible �  ’s). Note this relaxes slightly the 

previous requirement that 

≥`8  

´8|   |2  dx  † 8  , ie   P L2p R  q . 

Note, in this chapter the KdV time t  just appears as a parameter in u  p x,  t  q and stays �xed (and 

will be dropped from the notation). 

11.1 Overview: the physical interpretation 

FACT: the equation

 

i 

B

 

B ⌧
  p x,  ⌧  q “  

 ̂

´  

B2

 

B x2  
`  V  p x  q 

 ̇

  p x,  ⌧  q

 

(11.2) 

(the time-dependent Schrödinger equation ) describes a particle (of mass 
1

 

2 ) moving on a line in 

a potential V  p x  q in quantum mechanics. The wavefunction   tells you where the particle is 

likely to be: |   p x,  ⌧  q|2  is the probability to �nd it in the interval r  x,  x  `  dx  s  at time ⌧  . (Note, 

this time ⌧  is not

 

the same as the KdV time t  .) 

To solve (11.2), separate variables

 

  p x,  ⌧  q “    p x  q �  p ⌧  q

 

(11.3) 

117



 

CHAPTER 11. THE BASICS OF SCATTERING THEORY 118 

and substitute in and rearrange to �nd

 

i 

9�

 

�  

“  

´   2 `  V   

 

  

“  constant ”  k2

 

(11.4) 

where the dot denotes 
d

 

d⌧  
, the dash 

d

 

dx , and the constant was called k2  for later convenience. 

Solving �rst the equation for �  ,

 

9�  “ ´  ik2  �  ñ �  p ⌧  q “  e´  ik2  ⌧

 

(11.5) 

while   p x  q satis�es

 

 ̂

´  

d2

 

dx2  
`  V  p x  q 

 ̇

  p x  q “  k2    p x  q

 

(11.6) 

(the time independent Schrödinger equation ) which is the same as (9.1) with the identi�cations

 

u  “ ´  V  ;  �  “ ´  k2  .

 

(11.7) 

In quantum mechanics, (11.6) describes a particle with energy E  “  k2  “  ´  �  moving in the 

potential V  p x  q “ ´  u  p x  q . 

With the link to KdV in mind, we’ll consider potentials which tend to zero (su�ciently fast) 

as x  Ñ ˘8  :

 

In classical mechanics, a particle with total (kinetic plus potential) energy E  “  T  `  V  is 

localised, and bounces o� the potential at the “turning points” x˚ where V  p x˚q “  E  . 

By contrast, in quantum mechanics, there’s a non-zero chance to �nd the particle anywhere 

(if V  is �nite), and it can ‘tunnel’ through potential barriers.
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The scattering data will be encoded in the asymptotics (limiting behaviour) of   p x  q as x  Ñ 

˘8  . 

Since V  p x  q Ñ 0  as x  Ñ ˘8  , (11.6) in these regions reduces to

 

´  

d2

 

dx2  
  “  k2   

 

(11.8) 

with two independent solutions e˘  ik  x. 

So the general solution with eigenvalue E  “  k2  has the asymptotics

 

  p x  q «  A p k  q eik  x `  B  p k  q e´  ik  x  x  Ñ ´8  

  p x  q «  C  p k  q eik  x `  D p k  q e´  ik  x  x  Ñ `8  (11.9)

 

and, restoring the ⌧  -dependence,

 

  p x,  ⌧  q «  A p k  q eik  x  ́  ik2  ⌧  `  B  p k  q e´  ik  x  ́  ik2  ⌧  x  Ñ ´8  

  p x,  ⌧  q «  C  p k  q eik  x  ́  ik2  ⌧  `  D p k  q e´  ik  x  ́  ik2  ⌧  x  Ñ `8  (11.10)

 

showing that for real k  °  0  the ‘ A ’ and ‘ C  ’ terms correspond to right-moving waves, while 

the ‘ B  ’ and ‘ D ’ terms correspond to left-moving waves:

 

This solution will be bounded

 

for any values for A , B  , C  and D if E  “  k2 °  0  .
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As we’ll see in examples, solving (11.6) in the middle region where V  p x  q ‰  0  interpolates 

between the two asymptotic regions and imposes two relations among A , B  , C  and D , leaving 

two undetermined coe�cients, as expected for a 2nd  order ODE. 

To �x these remaining coe�cients, for k2 °  0  we will impose

 

A p k  q “  1  ,  D p k  q “  0

 

(11.11) 

and write

 

B  p k  q ”  R  p k  q (the re�ection coe�cient ) 

C  p k  q ”  T  p k  q (the transmission coe�cient ) (11.12)

 

so that the resulting scattering solution has asymptotics

 

  p x  q «  eik  x `  R  p k  q e´  ik  x  x  Ñ ´8  

  p x  q «  T  p k  q eik  x  x  Ñ `8  (11.13)

 

and represents a unit �ux (since A p k  q “  1  ) of incoming particles from the left, partially re- 

�ected from the potential and partially transmitted through it:

 

It can be shown (exercise) that

 

| R  p k  q|2 ` | T  p k  q|2 “  1

 

(11.14) 

meaning that with probability 1 the particle is either re�ected or transmitted (conservation of 

probability). 

Aside: the Wronskian 

Results such as | R  p k  q|2 ` | T  p k  q|2 “  1  , proved in exercise 60, are proved using a gadget called 

the Wronskian . For two functions f  p x  q and g  p x  q , their Wronskian is

 

W  r  f  ,  g  sp x  q “  f 1q x  q g  p x  q ´  f  p x  q g1p x  q .

 

(11.15)
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Two facts about W  : 

1) If f  and g  are linearly dependent, the W  r  f  ,  g  s “  0  identically. 

(It’s easy to see that W  is antisymmetric, and linear in each of its arguments. Then if, say, 

f  p x  q “  ↵  g  p x  q with ↵  a constant, W  r  f  ,  g  s “  W  r  ↵  g  ,  g  s “  ↵  W  r  g  ,  g  s “  0  .) 

2) The converse statement, that W  r  f  ,  g  s  “  0  implies that f  and g  are linearly dependent, is 

more tricky. The following is easily proved: if 

a) W  r  f  ,  g  sp x  q “  0  on some interval, and 

b) one or other of f  and g  is nonzero on that interval, 

then f  and g  are linearly dependent on that interval. 

(Say it’s g  that is nonzero. Dividing W  r  f  ,  g  sp x  q “  0  through by g2  shows that 
d

 

dxp f  { g  q “  0  , 

so f  { g  “  constant, and f  and g  are linearly dependent.) 

Notes: 

• Some sort of extra condition such as b) is needed: consider, as suggested by Peano in 1889,

 

f  p x  q “  x2  ,  g  p x  q “  x  | x  | “  x2sign  p x  q .

 

Then f  and g  are not linearly dependent on R  , even though W  r  f  ,  g  s “  0  everywhere. (Exer- 

cise: check this!) 

• In fact, though it won’t be proved here, the result that W  r  f  ,  g  sp x  q “  0  everywhere implies f  

and g  are linearly dependent does hold if both f  and g  are analytic. This is true of solutions to 

the ODEs we are dealing with here, so we will therefore assume that the converse statement 

to 1) does hold in all cases we will need. 

Now back to the time independent Schrödinger equation

 

 ̂

´  

d2

 

dx2  
`  V  p x  q 

 ̇

  p x  q “  E    p x  q “  k2    p x  q .

 

So far we have looked at cases with k2  “  E  °  0  . For k2  †  0  , let k  “  iµ  with µ  °  0  real, so 

E  “ ´  µ2. Then the asymptotics of the general solution (11.9) become

 

  p x  q «  a p µ  q e´  µx `  b  p µ  q eµx  x  Ñ ´8  

  p x  q «  c  p µ  q e´  µx `  d  p µ  q eµx  x  Ñ `8  (11.16)

 

and it follows that

 

  bounded

 

ô a p µ  q “  d  p µ  q “  0

 

(11.17) 

In such cases   is not only bounded, it also tends to zero at ˘8  and satis�es 

≥
|   |2  dx  †  0  . 

Note that there might be no

 

values for µ  at which this happens. But if it does, the correspond- 

ing   is called a bound state solution .
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Fact: Given a potential V  p x  q tending to zero at ˘8  , bound state solutions only exist for a 

�nite

 

(possibly empty) set of µ  ’s:

 

 
µk  

(N  

k  “  1
“  

 
µ1  ,  µ2  ,  .  .  .  µN  

( 

,  µ1 †  µ2 †  .  .  .  µN  .

 

(11.18) 

Summary 

Bounded solutions to

 

 ̂

´  

d2

 

dx2  
`  V  p x  q 

 ̇

  p x  q “  E    p x  q “  k2    p x  q ,

 

or equivalently 

`  
d2

 

dx2  `  u  p x  q
˘
  p x  q “  �  p x  q with u  p x  q “  ´  V  p x  q and �  “  ´  E  , come in two 

�avours when V  p x  q Ñ 0  as x  Ñ ˘8  : 

1) E  “  k2 “ ´  �  P p 0  ,  `8q : the “continuous spectrum”, leading to scattering solutions which 

are bounded, and have oscillatory asymptotics; 

2) E  “  ´  µ2  “  ´  �  P t´  µ2  

1  
,  ´  µ2  

2  
,  .  .  .  ´  µ2  

Nu  : the “discrete spectrum”, leading to bound state 

solutions which are square integrable ( i.e. 

≥`8  

´8|   p x  q|2  dx  † 8  ), and have damped asymptotics. 

(Note: for some rather-special, slowly-decaying potentials, at least in higher dimensions, there 

may also be some square integrable solutions with k2  °  0  . These so-called ‘bound states in 

the continuum’ (BICs) crop up in a number of physical applications, but won’t be relevant for 

the current discussion.) 

11.2 Examples 

Example 1

 

V  p x  q “  0  .

 

This was already done, essentially, when looking at the asymptotics for general V  . We must 

solve ´  
d2

 

dx2    “  k2    for all x  P R  . There are two cases to consider. 

(a) k2 °  0  . 

The general solution, valid for all

 

x  , not just asymptotically, is

 

  p x  q “  Aeik  x `  B  e´  ik  x  .

 

(11.19) 

Restoring the ⌧  dependence, it’s a left or right moving wave, bounded for all real values of k  . 

Comparing with (11.9) shows that in this case C  p k  q “  A p k  q and D p k  q “  B  p k  q . Imposing 

A p k  q “  1  and D p k  q “  0  then gives us the scattering solution:

 

  p x  q “  eik  x  .

 

(11.20)
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from which it follows that

 

R  p k  q “  0  ,  T  p k  q “  1

 

(11.21) 

If you think about it this should seem reasonable – with no potential, a particle incident from 

the left is transmitted through to the right with probability 1  . 

(b) k2 “ ´  µ2 †  0  . 

The general solution from part (a) turns into

 

  p x  q “  ae“  µx `  beµx  .

 

(11.22) 

and the only way to keep this bounded as x  Ñ ˘8  is to set a “  b  “  0  . Thus there are no

 

bound state solutions for this problem. 

Summary 

For u  “  0  , the problem L  p u  q   “  �  ,   bounded, has a ‘scattering’ solution for all real �  †  0  , 

and no solutions for �  °  0  :

 

Example 2

 

V  p x  q “  a�  p x  q

 

where a is a real constant and �  p x  q is the Dirac delta function. Recall that �  p x  q can be viewed 

as the limit of a sequence (a ‘delta sequence’) of unit-area functions which are increasingly 

concentrated at the origin, so that for any (test) function f  p x  q ,

 

ª `8  

´8  

�  p x  q f  p x  q dx  “  f  p 0  q .
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We seek a single solution   p x  q , solving the equation in regions (1) and (2), and also consistent 

with the potential at x  “  0  . 

(a) k2 °  0  . 

In regions (1) and (2), V  p x  q “  0  , so   satis�es ´  
d2

 

dx2    “  k2    and as in example 1, the solutions 

in the two regions are

 

 p  1  qp x  q “  Aeik  x `  B  e´  ik  x  

 p  2  qp x  q “  C  eik  x `  D e´  ik  x

 

(11.23) 

To �nish, we must match the two parts of the solution at x  “  0  , and this will determine the 

relation(s) between A , B  , C  and D . 

• First, even for “funny” potentials like this one,   p x  q should be continuous at x  “  0  :

 

r    p x  q s0` 

0´ “  0

 

(11.24) 

• But  1p x  q is forced by the equation to be discontinuous at x  “  0  . The equation is

 

´   2p x  q `  a�  p x  q   p x  q “  k2    p x  q .

 

(11.25) 

Integrating from x  “ ´  ✏  to x  “ `  ✏  ,

 

ª `  ✏  

´  ✏  

dx  r´   2p x  q `  a�  p x  q   p x  qs “ k2  

ª `  ✏  

´  ✏  

dx    p x  q

 

ñ ´ r   1p x  qs`  ✏  

´  ✏ `  a  p 0  q “  k2  

ª `  ✏  

´  ✏  

dx    p x  q .

 

(11.26) 

Provided that   is bounded (which it is), the RHS of this equation Ñ 0  as ✏  Ñ 0  , and taking 

this limit implies ´ r   1p x  q s0` 

0´ `  a  p 0  q “  0  , or

 

r   1p x  q s0` 

0´ “  a  p 0  q

 

(11.27)
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Applying the matching conditions (11.24) and (11.27) to (11.23) we have

 

A `  B  “  C  `  D 

ik  p C  ´  D q ´  ik  p A ´  B  q “  a p A `  B  q “  a p C  `  D q

 

which in turn implies

 

A `  B  “  C  `  D 

A ´  B  “  

`
1  ´  

a

 

ik  

˘
C  ´  

`
1  ´  

a

 

ik  

˘
D .

 

Adding and subtracting,

 

A “  

`
1  ´  

a

 

2  ik  

˘
C  ´  

a

 

2  ik  

D 

B  “  

a

 

ik  

C  `  

`
1  `  

a

 

2  ik  

˘
D .  (11.28)

 

Substituting into (11.23) gives the general solution, with, as expected, two undetermined con- 

stants. 

To get to the scattering solution , set D “  0  and then divide through so that A “  1  :

 

  p x  q “  

# 

eik  x `  
a

 

2  ik  ´  a  
e´  ik  x  x  †  0  

2  ik

 

2  ik  ´  a  
eik  x  x  °  0

 

(11.29) 

and from this the re�ection and transmission coe�cients can be read o�:

 

R  p k  q “  

a

 

2  ik  ´  a 

T  p k  q “  

2  ik

 

2  ik  ´  a 

(11.30)

 

and it’s easy to see that

 

| R  p k  q|2 ` | T  p k  q|2 “  1

 

(11.31) 

as expected. 

(b) k2 “ ´  µ2 †  0  . 

Setting k  “  iµ  in (11.23), (11.28) with µ  °  0  we obtain the general solution in this regime:

 

  p x  q “  

# 

A p iµ  q e´  µx `  B  p iµ  q eµx  x  †  0  

C  p iµ  q e´  µx `  D p iµ  q eµx  x  °  0

 

(11.32) 

Given that we chose µ  °  0  , this is bounded

 

as x  Ñ ˘8  i�

 

A p iµ  q “  B  p iµ  q “  0  .

 

(11.33)
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Substituting into (11.28),

 

0  “  

`
1  `  

a

 

2  µ  

˘
C  

B  “ ´  

a

 

µ  

C

 

giving two options: 

1) C  “  B  “  A “  D “  0  (trivial) 

2)

 

µ  “ ´  

a

 

2  

,  B  “  C

 

(11.34) 

Given that we took µ  °  0  , option 2 means that there is a bounded solution with k2  †  0  only 

for a †  0

 

. The bound state solution is then

 

  p x  q “  e  

a

 

2 |  x  | “  

# 

e´  
a

 

2  
x  ,  x  †  0  

e  

a

 

2  
x  ,  x  °  0

 

(11.35) 

and for this case

 

k2 “ ´  

a2

 

4

 

(11.36)

 

Summary 

For V  p x  q “ ´  u  p x  q “  a�  p x  q , the problem L  p u  q   “  �  ,   bounded, has a scattering solution 

for all real �  †  0  , and either no solutions for �  °  0  if a •  0  , or one solution for �  °  0  if a †  0  :
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The general story 

For potentials V  p x  q which tend to zero as x  Ñ ˘8  , bounded solutions to 

`
´  

d2

 

dx2 `  V  p x  q
˘
  “  

k2    come in two �avours: 

(a) For all k2 °  0  (taking k  °  0  ) we can �nd a bounded scattering solution with asymptotics

 

  p x  q „  

# 

eik  x `  R  p k  q e´  ik  x  x  Ñ ´8  

T  p k  q eik  x  x  Ñ `8

 

(11.37) 

(b) For k2 “ ´  µ2 †  0  , set k  “  iµ  , µ  °  0  , in the above scattering solution to �nd a solution to 

the ODE with asymptotics

 

  p x  q „  

# 

e´  µx `  R  p iµ  q eµx  x  Ñ ´8  

T  p iµ  q e´  µx  x  Ñ `8

 

(11.38) 

but since e´  µx  is unbounded as x  Ñ ´8  this looks to be unacceptable. 

However, dividing through by T  p iµ  q gets to the following situation:

 

  p x  q „  

# 
1

 

T  p  iµ  q  
e´  µx `  

R  p  iµ  q

 

T  p  iµ  q  
eµx  x  Ñ ´8  

e´  µx  x  Ñ `8

 

(11.39) 

and at a pole

 

of T  p iµ  q , 1  { T  p iµ  q “  0  and (11.39) turns into a bounded (and in fact square 

integrable) solution:

 

  p x  q „  

# 
R  p  iµ  q

 

T  p  iµ  q  
eµx  x  Ñ ´8  

e´  µx  x  Ñ `8

 

(11.40) 

(Exercise: check that this procedure recovers the bound state solution found above for the 

delta-function potential V  p x  q “  a�  p x  q , a †  0  .) 

Conclusion 

Bound state solutions can be obtained from scattering solutions by 

(1) dividing the scattering solution through by T  p k  q ; 

(2) setting

 

k  “  iµ  “  position of a pole of T  p k  q on the positive imaginary axis .

 

(11.41) 

Depending on T  p k  q , there will be 0  ,  1  ,  2  .  .  .  such poles, and hence 0  ,  1  ,  2  .  .  .  bound states in 

the discrete spectrum. 

More examples are on the problem sheet, and there’s one more in the next section.
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11.3 Re�ectionless potentials 

We return to the initial �eld con�gurations u  p x,  0  q “  a sech2p x  q that were tried for the KdV 

�eld earlier. These seemed to lead to interesting �eld evolutions whenever a was equal to 

n  p n  `  1  q with n  a positive integer, and it’s natural to wonder whether interesting behaviour 

is also apparent in the correpsonding scattering problem. 

The relevant potential is

 

V  p x  q “ ´  a sech2p x  q

 

(11.42) 

as illustrated below:

 

The time independent Schödinger equation (T.I.S.E.) to be solved is

 

´   2p x  q ´  a sech2p x  q   p x  q “  k2    p x  q

 

(11.43) 

and we’re after bounded

 

solutions to this problem. 

Substituting

 

y  “  tanh  p x  q P p´  1  ,  1  q

 

(11.44) 

so that

 

d

 

dx  

“  sech2p x  q 

d

 

dy  

“ p 1  ´  y2q 

d

 

dy

 

(11.45) 

the T.I.S.E. becomes

 

d

 

dy  

” 

p 1  ´  y2q 

d 

 

dy  

ı 

`  

´  k2

 

1  ´  y2  
`  a 

¯  

  “  0

 

(11.46) 

and putting

 

k2 “ ´  m2  ,  a “  n  p n  `  1  q

 

(11.47) 

this becomes

 

d

 

dy  

” 

p 1  ´  y2q 

d 

 

dy  

ı 

`  

´  

n  p n  `  1  q ´  

m2

 

1  ´  y2  

¯  

  “  0

 

(11.48) 

which is the standard form of the general (or associated) Legendre equation . This equation has 

been much studied, and in particular its solutions are known in general in terms of certain 

special functions.
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Fact 1 : 

If n  “  1  ,  1  ,  2  .  .  .  ( i.e. n  P Z•  0  ) and m  “  0  (so k  “  0  ), then (11.48) becomes the Legendre 

equation and its bounded solution for y  P r´  1  ,  1  s  is

 

  “  Pnp y  q “  

1

 

n  ! 2n  

dn

 

dy  
n

p y2 ´  1  qn  ,

 

(11.49) 

the nth  Legendre polynomial of the �rst kind . The �rst few examples are:

 

P1p y  q “  y  

P2p y  q “ ´1

 

2 `  
3

 

2  
y2  

P3p y  q “ ´3

 

2  
y  `  

5

 

2  
y3  

P4p y  q “  
3

 

8 ´  
15

 

4  
y2 `  

35

 

8  
y4

 

In general, Pjp´  x  q “ p´  1  qj  Pjp x  q and Pjp 1  q “  1  . Since y  “ ˘  1  corresponds to x  “ ˘8  , this 

means that these are bounded

 

solutions to the Schrödinger equation (tending to 1  or maybe 

´  1  as x  Ñ ˘8  ) but they are not bound states

 

(for which   would have to tend to zero as 

x  Ñ ˘8  ). 

(The second solutions, the Legendre functions of the second kind , Qnp y  q , blow up at y  “ ˘  1  .) 

Fact 2 : 

If n  P Z•  0  , bounded solutions to (11.48) only exist for

 

m  “  0  ,  1  ,  2  .  .  .  n

 

(11.50) 

and are

 

P  
m  

n  
p y  q “ p´  1  qmp 1  ´  y2qm  { 2  

dm

 

dy  
m  
Pnp y  q .

 

(11.51) 

These are the associated Legendre ‘polynomials’ of the �rst kind (the word polynomials is in 

quotes since for m  odd, m  { 2  is not an integer so they aren’t strictly speaking polynomials). 

Fact 3 : 

Even when m  and n  are not integers (and in fact even when they are complex), solutions to 

(11.48) can be written explicitly using certain special functions. We have that

 

P  
m  

n  
p y  q “  

1

 

�  p 1  ´  m  q 

ˆ
1  `  y

 

1  ´  y  

˙m  { 2  

2  F1  

`
´  m,  n  ̀  1; 1  ́  m  ;  

1  ́  y

 

2  

˘

 

(11.52) 

solves (11.48), and reduces to (11.51) if n  P Z•  0  and m  “  0  ,  1  ,  .  .  .  n  . 

Here

 

�  p z  q “  

ª 8  

0  

dt  tz  ´  1  e´  t

 

(11.53)
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is Euler’s Gamma function and satis�es

 

�  p N  `  1  q “  N  !  if N  P Z•  0

 

(11.54) 

(and, for general N  , �  p N  `  1  q “  N  �  p N  q )

 

�  p z  q ‰  0  @ z  ,  

1

 

�  p z  q 

“  0  i� z  P t  0  ,  ´  1  ,  ´  2  ,  .  .  .  u

 

(11.55)

 

�  p z  q �  p 1  ´  z  q 

⇡

 

sin  p ⇡  z  q

 

(11.56) 

while 2  F1  is the hypergeometric function and has the Taylor expansion

 

2  F1p a,  b  ;  c  ;  z  q “  

�  p c  q

 

�  p a q �  p b  q 

8ÿ 

k  “  0  

�  p k  `  a q �  p k  `  b  q

 

�  p k  `  c  q 

z  
k

 

k  !

 

(11.57) 

for | z  | †  1  . The �rst few terms are

 

2  F1p a,  b  ;  c  ;  z  q “  1  `  

ab

 

c  

z

 

1!
`  

a p a ̀  1  q b  p b  ̀  1  q

 

c  p c  ̀  1  q 

z2

 

2!  

`  .  .  .  .

 

So, up to normalisation, a potentially bounded solution to (11.46) is

 

  “  P  
m  

n  
p y  q

 

(11.58) 

with

 

m  “  ik  ,  n  “  

?

 

1  `  4  a

 

2  

´  

1

 

2  

.

 

(11.59) 

(a) k2 °  0  – the continuous spectrum. 

• x  Ñ `8  :

 

In this limit y  “  tanh  p x  q „  1  ´  2  e´  2  x Ñ 1´  and so

 

2  F1p .  .  .  ;  
1  ́  y

 

2  
q Ñ 2  F1p .  .  .  ; 0  q “  1 ;  

1  `  y

 

1  ´  y  

„  e2  x  .

 

Putting these bits together,

 

  „  

1

 

�  p 1  ´  ik  q 

eik  x

 

(11.60) 

as x  Ñ `8  . 

• x  Ñ ´8  :

 

In this limit y  “  tanh  p x  q „ ´  1  `  2  e2  x  Ñ ´  1`  and 
1  ̀  y

 

1  ́  y  
„  e2  x, and it turns out 

that

 

1

 

�  p 1  ́  m  q 

2  F1p´  n,  n  ̀  1; 1  ́  m  ;  
1  ́  y

 

2  
q „  

�  p´  m  q

 

�  p 1  ́  m  ̀  n  q �  p´  m  ́  n  q `  

�  p m  q

 

�  p´  n  q �  p n  ̀  1  q 

e´  2  mx  .
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This asymptotic can be proved using the already-mentioned properties of the hypergeometric 

function together with the identity

 

sin  p ⇡  p c  ́  a ́  b  qq

 

⇡  

2  F1p a,  b  ;  c  ;  z  q “  

2  F1p a,  b  ;  c  ; 1  ́  z  q

 

�  p c  ́  a q �  p c  ́  b  q �  p a ̀  b  ́  c  ̀  1  q ´ p 1  ́  z  qc  ́  a  ́  b  2  F1p c  ́  a,  c  ́  b  ;  c  ́  a ́  b  ̀  1; 1  ́  z  q

 

�  p a q �  p b  q �  p c  ́  a ́  b  ̀  1  q 

.

 

Hence

 

  „  

�  p´  ik  q

 

�  p 1  ́  ik  `  n  q �  p´  ik  ´  n  q 

eik  x `  

�  p ik  q

 

�  p´  n  q �  p n  ̀  1  q 

e´  ik  x

 

(11.61) 

as x  Ñ ´8  . 

Normalising this solution so that the coe�cient of eik  x  at ´8  is 1  , we can read o� the values 

of R  p k  q and T  p k  q :

 

R  p k  q “  

�  p ik  q �  p 1  ́  ik  `  n  q �  p´  ik  ´  n  q

 

�  p´  ik  q �  p 1  ̀  n  q �  p´  n  q 

“ ´sin  p ⇡  n  q

 

⇡  

�  p ik  q �  p 1  ́  ik  `  n  q �  p´  ik  ´  n  q

 

�  p´  ik  q 

T  p k  q “  

�  p 1  ́  ik  `  n  q �  p´  ik  ´  n  q

 

�  p 1  ́  ik  q �  p´  ik  q 

.  (11.62)

 

Note: The sin  p ⇡  n  q factor in R  p k  q means that it vanishes for all k  if n  is an integer. The 

corresponding potentials

 

V  p x  q “ ´  n  p n  ̀  1  q sech2p x  q

 

(11.63) 

with n  P Z•  0  are called re�ectionless : no particles are re�ected for any

 

value of k  . 

(b) k2 †  0  – the discrete spectrum. 

To �nd the discrete spectrum, set k  “  iµ  , µ  °  0  and divide the scattering solution through by 

T  p iµ  q to �nd a possible eigenfunction

 

  p x  q „  

# 
1

 

T  p  iµ  q  
e´  µx `  

R  p  iµ  q

 

T  p  iµ  q  
eµx  x  Ñ ´8  

e´  µx  x  Ñ `8

 

(11.64) 

This is automatically bounded as x  Ñ `8  ; it will be bounded as x  Ñ ´8  if (and only if) 

µ  •  0  is such that 1  { T  p iµ  q “  0  . (In fact we’ll require µ  °  0  , since 

≥`8  

´8|   |2  dx  should be �nite 

for the discrete spectrum.) This in turn requires

 

1

 

T  p iµ  q 

“  

�  p 1  `  µ  q �  p mu  q

 

�  p 1  `  µ  `  n  q �  p µ  ´  n  q 

“  0  .

 

Given that µ  must be a posiitve real number, there are two options:
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(1) 1  `  µ  `  n  “ ´  j  , j  P Z•  0  

(2) µ  ´  n  “ ´  h  , h  P Z•  0  

• If n  R R  then there are no real solutions for µ  . 

• If n  P R  we can take n  • ´  1  { 2  without losing generality, since (1) Ø (2) when n  Ñ ´  1  ´  n  . 

Then (1) never holds, while solutions for poisitive µ  do exist for option (2) provided n  •  0  :

 

µ  “  n,  n  ´  1  ,  n  ´  2  .  .  .  n  ´  t  n  u

 

(11.65) 

where t  n  u  “  ‘�oor’ of n  “  {largest integer §  n  }. So

 

Total number of bound states “  r  n  s

 

(11.66) 

where r  n  s  “  {smallest integer •  n  }. (If n  is an integer, then the last eigenvalue, for µ  “  0  , 

should be discarded as the corresponding   is not squuare integrable and so is not a bound 

state – it’s in the continuous spectrum instead.) 

Summary for V  p x  q “ ´  a sech2p x  q “ ´  n  p n  ̀  1  q sech2p x  q : 

‚  a †  0  :

 

‚  a “  n  p n  `  1  q °  0  : 

( n  not an integer (say n  “  2  .  5  ) on the left, n  P Z°  0  (say n  “  2  ) on the right)
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11.4 Scattering data for general potentials 

So far we’ve seen that for any localised initial data u  p x,  0  q for KdV, the auxiliary time-independent 

Schrödinger equation

 

´   2p x  q `  V  p x  q   p x  q “  k2    p x  q

 

(11.67) 

with potential V  p x  q “ ´  u  p x,  0  q has 

(a) A continuous spectrum of non-negative eigenvalues E  with E  “  k2 •  0  and eigenfunctions

 

  p x  q „  

# 

eik  x `  R  p k  q e´  ik  x  x  Ñ ´8  

T  p k  q eik  x  x  Ñ `8

 

(11.68) 

normalised so that the incoming �ux is one; 

(b) A (maybe empty) discrete spectrum of negative eigenvalues E  “  k2  “  ´  µ2  

n  
†  0  , indexed 

by n  “  1  ,  2  .  .  .  N  . These look like

 

 np x  q „  

# 

cn  eµn  x  x  Ñ ´8  

dn  e´  µn  x  x  Ñ `8

 

(11.69) 

So far the  n’s we’ve found have been normalised so that dn  “  1  , but now we will instead 

normalise them so that

 

p  n  ,   nq “  

ª `8  

´8  

|  np x  q|2  dx  “  1  .

 

(11.70) 

Once  n  has been normalised in this way, the number cn  is called the normalising coe�cient 

and it will be needed later, to reconstruct V  p x  q “ ´  u  p x  q . More precisely, to reconstruct V  p x  q 

we will need to know

 

! 

R  p k  q ,  t  µn  ,  cnuN  

n  “  1  

)

 

(11.71) 

This is called the scattering data , re�ning the notion of scattering data given earlier. 

• Clearly, u  (or V  “  ´  u  ) determines the scattering data completely (this was step (a) , disas- 

sembly, of the roadmap). 

• Amazingly, the converse also holds: u  (or V  “ ´  u  ) can be reconstructed uniquely from the 

scattering data (step (c) , reassembly). 

• The next major task is to return to step (b) , time evolution, to see precisely how the scattering 

data evolves. 

Before going there, let’s make precise the scattering data for two sets of potentials studied 

earlier.
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Examples of scattering data 

1) V  p x  q “  a �  p x  q : 

• For all values of a we have

 

R  p k  q “  

a

 

2  ik  ´  a

 

• For a •  0  that’s all. 

• For a †  0  there is also a single bound state   p x  q “  Ae´  µ  |  x  |  with µ  “ ´  a { 2  °  0  . Normalising 

determines A2{ µ  “  1  so A “ ?

 

µ  “  

a

 

´  a { 2  . 

Thus the general scattering data for u  p x,  0  q “ ´  a�  p x  q , V  p x  q “  a�  p x  q , is

 

$ 

’& 

’% 

! 

R  p k  q “  
a

 

2  ik  ´  a  

) 

if a •  0  

! 

R  p k  q “  
a

 

2  ik  ´  a  

 
µ1 “ ´  a { 2  ,  c1 “  

a

 

´  a { 2  

( 
) 

if a †  0

 

(11.72) 

2) V  p x  q “ ´  n  p n  ̀  1  q sech2p x  q , n  P Z•  0  : 

(a) Scattering states: R  p k  q “  0  (since the potential is re�ectionless). 

(b) Bound states: we have  mp x  q “  A P  
m  

n  
p tanh  p x  qq , m  “  1  ,  2  .  .  .  n  , where A is a normalisa- 

tion constant that can be �xed by imposing

 

1  “  

ª `8  

´8  

|  mp x  q|2  dx  “  A2  

ª 1  

´  1  

P  
m  

n  
p y  q2  

dy

 

1  ´  y2  
“  A2  

p n  ̀  m  q !

 

m  p n  ́  m  q !

 

where the last equality makes use of one of the standard properties of P  
m  

n  
. 

In addition P  has the asymptotic

 

P  
m  

n  
p tanh  p x  qq „ p´  1  qn  

p n  ̀  m  q !

 

m  !  p n  ́  m  q !  

emx  ,  x  Ñ ´8  .

 

Hence the asymptotic of the normalised bound state is

 

 mp x  q „ p´  1  qn  
1

 

m  !  

d

 

m  p n  ̀  m  q !

 

p n  ́  m  q !  

emx  ,  x  Ñ ´8

 

and the full scattering data is

 

"  

R  p k  q “  0  ,  

"  

µm “  m  ,  cm “ p´  1  qn  1

 

m  !  

b

 

m  p  n  ̀  m  q  !

 

p  n  ́  m  q  !  

*n  

m  “  1  

*

 

(11.73)
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11.5 Time evolution of the scattering data – concluded 

We have seen that if u  evolves by the KdV equation, then 

1) the eigenvalues �  of L  p u  q “  D2 `  u  remain constant in t  ; 

2) the eigenfunctions   evolve by  t “  B  p u  q   . 

Question:

 

how does the scattering data associated to V  “ ´  u  evolve in time? 

Answer:

 

We need to look at the asymptotics of the time-evolution equation  t  “  B  p u  q   as 

x  Ñ ˘8  . Recall that for KdV

 

B  p u  q “ ´p 4  D3 `  6  uD `  3  uxq

 

and so, since u  , ux Ñ 0  as x  Ñ ˘8  for all t  , as follows from the boundary conditions on u  ,

 

B  p u  q „ ´  4  D3  as x  Ñ ˘8

 

(11.74) 

and is independent of u  p x,  t  q . This is the key point: we can evolve the scattering data forward 

in t  without knowing in advance what u  evolves to! 

[You might worry about the bound state normalisation condition p  m  ,   mq “  1  . Is this pre- 

served under time evolution? It turns out that the answer is yes: this follows, with a little 

work, from the antisymmetry of B  , that is B  p u  q: “ ´  B  p u  q .] 

Next, we need to work out explicitly the t  evolution of the asymptotics of the scattering and 

bound state solutions. 

(a) The continuous spectrum

 

( ́  �  “  k2 °  0  ) 

Start with an un-normalised scattering solution:

 

 kp x  ;  t  q „  

# 

A p k  ;  t  q eik  x `  B  p k  ;  t  q e´  ik  x  x  Ñ ´8  

C  p k  ;  t  q eik  x  x  Ñ `8

 

(11.75) 

Imposing 
B

 

B  t  
 kp x  ;  t  q “  B  p u  q  kp x  ;  t  q „ ´  4  D3   kp x  ;  t  q as x  Ñ ˘8  , we have

 

Atp k  ;  t  q eik  x `  Btp k  ;  t  q e´  ik  x “  4  ik3  
“
A p k  ;  t  q eik  x ´  B  p k  ;  t  q e´  ik  x  

‰ 

Ctp k  ;  t  q eik  x “  4  ik3  C  p k  ;  t  q eik  x

 

and, hence, equating coe�cients of e˘  ik  x,

 

Atp k  ;  t  q “  4  ik3  A p k  ;  t  q 

Btp k  ;  t  q “ ´  4  ik3  B  p k  ;  t  q (11.76) 

Ctp k  ;  t  q “  4  ik3  C  p k  ;  t  q
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Solving,

 

A p k  ;  t  q “  A p k  ; 0  q e4  ik3  t  

B  p k  ;  t  q “  B  p k  ; 0  q e´  4  ik3  t  (11.77) 

C  p k  ;  t  q “  C  p k  ; 0  q e4  ik3  t

 

Dividing the un-normalised solution at time t  through by A p k  ;  t  q so that it continues to be 

correctly normalised with unit incoming �ux, R  p k  ;  t  q and T  p k  ;  t  q can be read o� as follows:

 

R  p k  ;  t  q “  R  p k  ; 0  q e´  8  ik3  t  (11.78) 

T  p k  ;  t  q “  T  p k  ; 0  q .

 

This can be summed up in the asymptotics of the normalised scattering solution:

 

 kp x  ;  t  q „  

# 

eik  x `  R  p k  ; 0  q e´  ik  p  x  ̀  8  k2  t  q  x  Ñ ´8  

T  p k  ; 0  q eik  x  x  Ñ `8

 

(11.79) 

The re�ected waves for  k, encoded in R  p k  ;  t  q , translate into a dispersive component

 

of u  p x,  t  q , 

moving to the left as t  increases. 

(b) The discrete spectrum

 

( ́  �  “ ´  µ2  

n †  0  ) 

The nth  bound state wave function has asymptotics

 

 np x  ;  t  q „  

# 

cnp t  q eµn  x  x  Ñ ´8  

dnp t  q e´  µn  x  x  Ñ `8

 

(11.80) 

Imposing 
B

 

B  t  
 np x  ;  t  q “  B  p u  q  kp x  ;  t  q „ ´  4  D3   np x  ;  t  q as x  Ñ ˘8  , we have

 

# B

 

B  t  
cnp t  q “ ´  4  µ3  

n  
cnp t  q 

B

 

B  t  
dnp t  q “ `  4  µ3  

n  
dnp t  q

 

and, solving,

 

cnp t  q “  cnp 0  q e´  4  µ3
n  t  

dnp t  q “  dnp 0  q e`  4  µ3
n  t  (11.81)

 

Again, this can be summarised as

 

 np x  ;  t  q „  

# 

cnp 0  q eµnp  x  ́  4  µ2
n  t  q  x  Ñ ´8  

dnp 0  q e´  µnp  x  ́  4  µ2
n  t  q  x  Ñ `8

 

(11.82) 

This will translate into a soliton for u  p x,  t  q , moving to the right with velocity 4  µ2  

n  
. 

These results describe the time evolution of the scattering data, completing step (b) of the 

inverse scattering method.


