
 

Chapter 12 

The Marchenko equation 

12.1 Introduction 

To conclude the inverse scattering method, we need to reassemble the KdV �eld u  p x,  t  q , or 

equivalently the Schrödinger potential V  p x  ;  t  q “  ´  u  p x,  t  q , from the time-evolved scattering 

data. This is step (c) : “reassembly / inverse scattering”. 

This touches on a general question: if all you were allowed to do was sit at in�nity and chuck 

particles at your potential, and measure how they come back, could you deduce the form of 

V  p x  q ? 

This question is of practical importance, for example when looking for oil using seismic re- 

�ection, or in medicine (one example there being deducing the shape of the inner ear from 

re�ected sound waves). It belongs to the category of “inverse problems”: deducing the form 

of an operator (here D2 `  u  ) from information about its spectrum ( µi, cn  and so on): “can you 

hear the shape of a drum?” 

For this one-dimensional (Schrödinger) case, the result was already known, found by Marchenko 

(following earlier work by Gelfand and Levitan), some years before GGKM. 

In fact you don’t need to know T  p k  q , just R  p k  q for real k  , together with the N  discrete eigen- 

values ´  µ2  

j , j  “  1  ,  .  .  .  N  , and the normalising coe�cients cj , j  “  1  ,  .  .  .  N  . The full set! 

R  p k  q ,  ,  t  µn  ,  cnuN  

n  “  1  

) 

is precisely the scattering data we evolved forward in time in the last 

chapter. 
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There are two important special cases: 

(1) N  “  0  : V  p x  q has no bound states; 

(2) R  p k  q “  0  @ k  : V  p x  q is re�ectionless, but there is still information about V  p x  q hidden in 

the bound state eigenvalues and normalisation coe�cients. 

It turns out that 

(1) ñ initial data contains no solitons; 

(2) ñ initial data contains only solitons. 

12.2 The recipe for inverse scattering: the Marchenko equa- 

tion 

We want to solve the inverse scattering problem for given scattering data at x  “  ´8  to 

determine the potential V  p x  q , and hence the KdV �eld u  p x  q “  ´  V  p x  q , at any �xed KdV 

time t  . 

The derivation is long and we’ll skip it here – see for example section 3.3 of Drazin and Johnson. 

But a warning: everything in Drazin and Johnson is phrased in terms of scattering solutions 

with waves arriving from `8  , and asymptotics also at `8  , while we do the opposite:

 

Once the not inconsiderable quantity of dust has settled, the upshot is the following recipe: 

(1) Construct the function

 

F  p ⇠  q “  

ª `8  

´8  

dk

 

2  ⇡  

R  p k  q e´  ik  ⇠ `  

Nÿ 

n  “  1  

c2  

n  
eµn  ⇠

 

(12.1)
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from the scattering data

 

! 

R  p k  q ,  t  µn  ,  cnuN  

n  “  1  

)

 

(12.2) 

(2) Solve the Marchenko equation

 

K p x,  z  q `  F  p x  ̀  z  q `  

ª x  

´8  

dy  K p x,  y  q F  p y  `  z  q “  0

 

(12.3) 

to determine the unknown function K p x,  z  q for all z  §  x  (and set K p x,  z  q “  0  for x  †  z  ). 

(3) Finally determine the Schrödinger potential from

 

V  p x  q “  2  

d

 

dx  

K p x,  x  q

 

(12.4) 

The KdV �eld is then given by u  “ ´  V  . 

This all applies at one �xed KdV time t  . But using the results of the last section of the last 

chapter, we know that

 

R  p k  ;  t  q “  R  p k  ; 0  q e´  8  ik3  t  

cnp t  q “  cnp 0  q e´  4  µ3
n  t

 

while k2  and µ2  

n  
are independent of time. 

So to �nd the �eld at time t  , we just apply the above recipe starting from

 

F  p ⇠  ;  t  q “  

ª `8  

´8  

dk

 

2  ⇡  

R  p k  ;  t  q e´  ik  ⇠ `  

Nÿ 

n  “  1  

cnp t  q2  eµn  ⇠ 

“  

ª `8  

´8  

dk

 

2  ⇡  

R  p k  ; 0  q e´  ik  p  ⇠ `  8  k2  t  q `  

Nÿ 

n  “  1  

cnp 0  q2  eµnp  ⇠ ´  8  µ2
n  t  q  (12.5)

 

At least in principle, this solves the problem! In practice the term involving R  in the de�nition 

of F  , with the integral over k  , makes the calculation of F  hard when t  °  0  . But for re�ec- 

tionless potentials this term is absent, and F  p ⇠  ,  t  q can be read o� at any time t  . This turns out 

to yield the ‘pure’ multisoliton solutins that can also be found via Bäcklund or Hirota. Even 

when R  is nonzero, it can be shown that the term involving R  goes to zero as t  Ñ 8  . All of 

which leads to the following ‘big picture’:
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(A) t  µn  ,  cnuN  

n  “  1 Ø N  right-moving solitons hidden inside the initial data:

 

(B) R  p k  q Ø a superposition of dispersive left-moving waves hidden inside the initial data:

 

The net result is a sort of “nonlinear Fourier analysis” (which reverts to the usual Fourier 

solution in the limit of small-amplitude waves). 

12.3 Example 1: the single KdV soliton 

Consider a re�ectionless potential, so R  p k  q “  0  , with just one bound state encoded in t  µ1  ,  c1u ”  

t  µ,  c  u  . Then (at �xed t  )

 

F  p ⇠  q “  c2  eµ⇠

 

(12.6) 

and the Marchenko equation (12.3) reads

 

K p x,  z  q `  c2  eµ  p  x  ̀  z  q `  

ª x  

´8  

dy  K p x,  y  q c2  eµ  p  y  `  z  q “  0

 

(12.7) 

This needs to be solved for z  §  x  . As a �rst step, factorise eµz  from the last two terms:

 

K p x,  z  q `  eµz  

 ̂

c2  eµx `  

ª x  

´8  

dy  K p x,  y  q c2  eµy  

 ̇

“  0  ,

 

(12.8) 

and note that the terms in brackets are independent of z  , meaning that

 

K p x,  z  q “  h  p x  q eµz

 

(12.9) 

for some h  p x  q . Substituting back into (12.8) and dividing through by eµz , h  p x  q must satisfy

 

0  “  h  p x  q `  c2  eµx `  c2  

ª x  

´8  

dy  h  p x  q e2  µy  “  h  p x  q 

 ̂

1  `  c2  

ª x  

´8  

dy  e2  µy  

 ̇

`  c2  eµx

 

and hence

 

h  p x  q “ ´  

c2  eµx

 

1  `  
c2

 

2  µ  
e2  µx  

.

 

(12.10)
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If we set

 

c2 “  2  µ  e´  2  µx0

 

(12.11) 

(thereby trading c  for x0) we obtain

 

h  p x  q “ ´  2  µ  

eµ  p  x  ́  2  x0q

 

1  `  
c2

 

2  µ  
e2  µ  p  x  ́  x0q

 

(12.12) 

and so

 

K p x,  z  q “ ´  2  µ  

eµ  p  x  ̀  z  ´  2  x0q

 

1  `  
c2

 

2  µ  
e2  µ  p  x  ́  x0q  

.

 

(12.13) 

Hence

 

V  p x  q “  2  

d

 

dx  

K p x,  x  q “ ´  2  µ2sech2p µ  p x  ´  x0qq

 

(12.14) 

and u  “ ´  V  is indeed a snapshot of a single KdV soliton, at a time (say t  “  0  ) when its centre 

is at x  “  x0. 

Time evolution is easily included using

 

c  p t  q2 “  cp0  q e´  8  µ3  t “  2  µ  e´  2  µ  p  x0´  4  µ2  t  q

 

(12.15) 

which has the e�ect of translating the centre of the soliton as

 

x0 Ñ x0 `  4  µ2  t

 

(12.16) 

and the KdV �eld at time t  is

 

u  p x,  t  q “ ´  V  p x,  t  q “  2  µ2sech2p µ  p x  ´  x0 ´  4  µ2  t  qq

 

(12.17) 

which is a single moving soliton just as found earlier in the course:

 

12.4 Example 2: the N  -soliton solution 

Now let’s consider a siutation with R  p k  q “  0  but with N  bound states, encoded in t  µn  ,  cnuN  

n  “  1  
. 

Then

 

F  p ⇠  q “  

Nÿ 

n  “  1  

c2  

n  
eµn  ⇠ .

 

(12.18)
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Since

 

F  p x  ̀  z  q “  

Nÿ 

n  “  1  

c2  

n  
eµn  x  eµn  z

 

is a sum of factorised terms, we will look for a solution where K p x,  z  q is also a sum of factorised 

terms. This is best encoded using a vector and matrix notation, setting

 

E  p x  q “  

 ̈

˚̋
 

eµ1  x  

... 

eµN  x  

 ̨

‹‚ ,  L  p x  q “  

 ̈

˚̋
 

c2  

1  
eµ1  x  

... 

c2  

N  
eµN  x  

 ̨

‹‚ ,  H  p x  q “  

 ̈

˚̋
 

h1p x  q 

... 

hNp x  q 

 ̨

‹‚ ,

 

(12.19) 

where H  p x  q is yet to be determined. With this notation set up, we have

 

F  p x  ̀  z  q “  E  
T p x  q L  p z  q

 

(12.20) 

(where the T  superscript denotes a transpose) and we’ll look for a K p x,  z  q of the form

 

K p x,  z  q “  H  
T p x  q L  p z  q .

 

(12.21) 

Substituting into the Marchenko equation, we �nd

 

0  “  K p x,  z  q `  F  p x  ̀  z  q `  

ª x  

´8  

dy  K p x,  y  q F  p y  `  z  q 

“  H  
T p x  q L  p z  q `  E  

T p x  q L  p z  q `  H  
T p x  q 

ª x  

´8  

dy  L  p y  q E  
T p y  q L  p z  q 

“  

´  

H  p x  q `  E  p x  q `  

ª x  

´8  

dy  E  p y  q E  
T p y  q H  p x  q 

¯T  

L  p z  q .  (12.22)

 

If the term in brackets on the last line can be made to vanish, we’ll have a solution. In turn 

this will be true if

 

�  p x  q H  p x  q “ ´  E  p x  q

 

(12.23) 

where �  p x  q is not the gamma function seen earlier, but rather the N  ˆ  N  matrix

 

�  p x  q “  N  ˆ  N  `  

ª x  

´8  

dy  E  p y  q LT p y  q

 

(12.24) 

with matrix elements

 

�  p x  qmn “  �mn `  

ª x  

´8  

dy  eµm  y  c2  

n  
eµn  y  

“  �mn `  c2  

n  

ep  µm`  µnq  y

 

µm `  µn  

.  (12.25)

 

Note also we have

 

d

 

dx
�  p x  q “  E  p x  q LT p x  q ,

 

(12.26)
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a formula that will be useful shortly. 

From (12.23) we have

 

H  p x  q “ ´  �  p x  q´  1  E  p x  q

 

(12.27) 

and so

 

K p x,  z  q “  LT p z  q H  p x  q “ ´  LT p z  q �  p x  q´  1  E  p x  q 

“ ´  tr
`
�  p x  q´  1  E  p x  q LT p z  q

˘  

.  (12.28)

 

Therefore

 

K p x,  x  q “ ´  tr
`
�  p x  q´  1  E  p x  q LT p x  q

˘  

“ ´  tr
`
�  p x  q´  1  

d

 

dx
�  p x  q

˘  

“ ´  tr
`  d

 

dx  

log� p x  q
˘  

“ ´  

d

 

dx  

tr
`
log� p x  q

˘  

“ ´  

d

 

dx  

log  

`
det  �  p x  q

˘  

(12.29)

 

using the matrix identities

 

d

 

dx  

log� “  �´  1  
d

 

dx
�  ,  tr  p log� q “  log  p det  �  q .

 

(12.30) 

This implies that the KdV �eld is

 

u  “ ´  2  

d

 

dx  

K p x,  x  q “  2  

d2

 

dx2  
log  p det  �  p x  qq

 

(12.31) 

or, putting back the t  -dependence hidden in �  (through the cn),

 

u  p x,  t  q “  2  

B2

 

B x2  
log  p det  �  p x  ;  t  qq

 

(12.32) 

with

 

�  p x  ;  t  qmn “  �mn `  c2  

np t  q 

ep  µm`  µnq  x

 

µm `  µn  

.

 

(12.33) 

These formulae are very similar to the N  -soliton KdV solutions found by Hirota. To see that 

they are in fact exactly the same, we can use Sylvester’s determinant theorem , which states that

 

det  p N  ˆ  N  `  AB  q “  det  p N  ˆ  N  `  B  A q

 

(12.34) 

for any pair of N  ˆ  N  matrices A , B  .
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Taking

 

Amn “  eµm  x  �mn  ,  Bmn “  

c2  

n  
eµn  x

 

µm `  µn

 

we have

 

p AB  qmn “  

c2  

n  
ep  µm`  µnq  x

 

µm `  µn  

,  p B  A qmn “  

c2  

n  
e2  µn  x

 

µm `  µn  

,

 

and so we can equivalently write

 

u  p x,  t  q “  2  

B2

 

B x2  
log  p det  S  p x  ;  t  qq

 

(12.35) 

with

 

S  p x  ;  t  qmn “  �mn `  

1

 

µm `  µn  

c2  

np t  q e2  µn  x  

“  �mn `  

2  µn

 

µm `  µn  

e2  µnp  x  ́  x0  ,n´  4  µ2
n  t  q  (12.36)

 

where, just as done above for the one-soliton solution, we traded cnp 0  q for x0  ,n  by setting

 

cnp 0  q2 “  2  µn  e
´  2  µn  x0  ,n  .

 

(12.37) 

These equations give the general form of the N  -soliton solution of the KdV equation.


