
 

Chapter 13 

Integrable systems in classical 

mechanics 

So far, we’re (secretly) been looking at in�nite-dimensional systems: classical �eld theories 

in one space and one time dimension, though these can often be thought of as the continuum 

limits (see last term) of systems with �nitely-many degrees of freedom. 

Many of the methods we’ve seen, in particular the idea of a Lax pair, can also apply to �nite- 

dimensional systems, and more precisely to �nite-dimensional classical integrable Hamiltonian 

systems . To understand what these words mean, some de�nitions are needed. 

• A �nite-dimensional Hamiltonian system is de�ned by: 

- A set of (generalised) coordinates qi  “  1  ...n  and momenta pi  “  1  ...n, which completely specify 

the con�guration of the system at time t  (the space parametrised by these so-called canonical 

coordinates q  , p  is called the 2  n  -dimensional phase space of the system); 

- A function H  p q  ,  p  q de�ned on phase space called the Hamiltonian . 

The time evolution equations are then, with the dots denoting time derivatives,

 

9qi “  

B H

 

B pi  

9pi “ ´B H

 

B qi

 

(13.1) 

These are called Hamilton’s equations . 
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Example:

 

for n  particles with masses mi  moving in one dimension under conservative forces 

associated with a potential energy V  p q1  ,  .  .  .  qnq , the Hamiltonian is

 

H  p q  ,  p  q “  

nÿ 

i  “  1  

p2  

i

 

2  mi  

`  V  p q1  ,  .  .  .  qnq

 

(13.2) 

and Hamilton’s equations are

 

9qi “  

pi

 

mi  

,  9pi “ ´B V  p q1  ,  .  .  .  qnq

 

B qi  

.

 

(13.3) 

These are the same as Newton’s equations,

 

mi:qi “ ´B V  p q1  ,  .  .  .  qnq

 

B qi  

,

 

(13.4) 

put into a �rst-order form. 

• One can associate to a Hamiltonian system a Poisson bracket t  ,  u  , a bilinear antisymmetric 

form on the space of functions of q  and p  :

 

t  f  ,  g  u  :  “  

nÿ 

i  “  1  

ˆ B f

 

B pi  

B g

 

B qi  

´  

B f

 

B qi  

B g

 

B pi  

˙

 

(13.5) 

Clearly t  f  ,  g  u “ ´t  g  ,  f  u  and t  f  ,  f  u “  0  . 

• Hamilton’s equations (13.1) imply that any f  p q  ,  p  q which does not depend explicitly on time, 

but only implicitly via q  p t  q and p  p t  q , evolves as

 

d

 

dt  

f  p q  p t  q ,  p  p t  qq “  

nÿ 

i  “  1  

 ̂

9qi
B f

 

B qi  

`  9  pi
B f

 

B pi  

 ̇

“  

nÿ 

i  “  1  

ˆB H

 

B pi  

B f

 

B qi  

´ B H

 

B qi  

B f

 

B pi  

˙

 

That is,

 

d

 

dt  

f  p q  ,  p  q “ t H  p q  ,  p  q ,  f  p q  ,  p  qu

 

(13.6) 

(If f  also depends explicitly on t  , so f  “  f  p q  p t  q ,  p  p t  q ,  t  q , then 
d

 

dt  
f  p q  ,  p  q “  

B

 

B  t  
f  `t  H  p q  ,  p  q ,  f  p q  ,  p  qu  . ) 

• Functions F  p q  ,  p  q which don’t depend explicitly on time and have vanishing Poisson bracket 

with the Hamilton H  p q  ,  p  q are conserved

 

:

 

d

 

dt  

F  p q  p t  q ,  p  p t  qq “ t H  p q  ,  p  q ,  F  p q  ,  p  qu “  0

 

(13.7)
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In particular, the antisymmetry of the Poisson bracket means that the Hamiltonian is always 

conserved:

 

d

 

dt  

H  “ t  H  ,  H  u “  0  .

 

(13.8) 

Hence

 

H  p q  p t  q ,  p  p t  qq “  E  “  constant

 

(13.9) 

which is nothing but the conservation of energy. 

Note:

 

If t  F  ,  H  u  “  0  , then not only is F  p q  ,  p  q conserved under the time evolution (13.1), but 

also H  p q  ,  p  q is conserved under a di�erent time evolution with a di�erent time, s  say, and 

Hamiltonian F  p q  ,  p  q :

 

$ 

’’& 

’’% 

d

 

ds  

qi “  

B F

 

B pi  

d

 

ds  

pi “ ´B F

 

B qi  

, 

//. 

//- 

ñ 

d

 

ds  

H  p q  ,  p  q “ t F  p q  ,  p  q ,  H  p q  ,  p  qu “  0  .

 

(13.10) 

It also means (via the Jacobi identity) that we can evolve along the two times, along t  and then 

s  , or vice versa, and we will end up at the same point in phase space:

 

In fancy language, F  and H  such that t  F  ,  H  u “  0  are said to be in involution and they generate 

commuting �ows , where one �ow is t  -evolution with Hamiltonian H  , and the other �ow is s  - 

evolution with Hamiltonian F  . We saw this idea earlier, in section 10.3, when discussing the 

KdV hierarchy. 

De�nition:

 

A Hamiltonian system t  qi  “  1  ...n  ,  pi  “  1  ...n  ,  H  p qi  ,  piq u  is called completely integrable if 

it has n  independent conserved quantities Qip q  ,  p  q satisfying t  Qi  ,  H  u “  0  , which are mutually 

in involution , that is

 

t  Qi  ,  Qju “  0  @ i,  j  “  1  .  .  .  n

 

(13.11) 

One of these conserved quantities is always the original Hamiltonian H  . 

For such systems it is possible to �nd a new set of coordinates 'i  and momenta Qi  on phase
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space such that the Hamiltonian only depends of the Qi  and not on the 'i:

 

H  “  H  p Q  q ñ 

$ 

’’& 

’’% 

9'  “  

B H

 

B Qi  

9Q  “ ´B H

 

B 'i  

“  0

 

(13.12) 

These are called action-angle variables ( 'i: angle variables; Qi: action variables). The name is 

because if the surfaces of constant H  are compact, then the 'i  parametrise periodic orbits and 

can therefore be thought of as angular variables. 

• The n  conserved quantities Qi  are the �nite-dimensional analogues of the in�nitely-many 

conserved charges of the KdV hierarchy discussed in section 10.3. 

• What is interesting for us here is that the integrability of such classical systems can be es- 

tablished by constructing a Lax pair L  , M  , satisfying

 

9L  “ r  M  ,  L  s

 

(13.13) 

This is as we saw with L  and B  for KdV, but now L  and M  will be n  ˆ  n  matrices instead of 

di�erential operators. We’ll see that the n  conserved quantitites are the eigenvalues �i  “  1  ...n  of 

the Lax matrix L  (though as we’ll also see, it may be more convenient sometimes to use some 

functions of those eigenvalues instead, such as the sums of their powers). 

(To show that the conservation laws are in involution is a bit more tricky, and won’t be dis- 

cussed here.) 

• In general, if there are n  q  ’s, qi  “  1  ...n, L  and M  will be n  ˆ  n  matrices and the n  conserved 

quantities will be coded up in the n  eigenvalues �1. . . �n  of the Lax matrix L  . 

• The Lax equation (13.13), with L  and M  functions of time, can be solved formally by

 

L  p t  q “  U p t  q L  p 0  q U p t  q´  1

 

(13.14) 

where the time evolution operator U p t  q is the unique solution of the following (matrix) ordi- 

nary di�erential equation:

 

9U p t  q “  M  p t  q U p t  q 

U p 0  q “  

 

(13.15)
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This can be proved as follows:

 

9L  “  

d

 

dt  

`
U L  p 0  q U´  1  

˘  

“  
9U L  p 0  q U´  1 `  U L  p 0  q 

9p U´  1q 

“  
9U L  p 0  q U´  1 ´  U L  p 0  q U´  1 9U U´  1  

“  
9U U´  1  U L  p 0  q U´  1 ´  U L  p 0  q U´  1 9U U´  1  

“  M  L  ´  M  L  

“ r  M  ,  L  s  (13.16)

 

(where the result 
9p U´  1q “  U´  1 9U U´  1  used in going from the second line to the third can be 

proved by di�erentiating U U´  1 “   ). 

The formal solution (13.14) can be used to prove that the eigenvalues of the Lax matrix L  do 

not depend on time, just as was the case for KdV in in�nitely-many dimensions. To see this, 

consider the characteristic polynomial of L  :

 

PLp �  q “  det  p �   ´  L  q

 

(13.17) 

This is a degree n  monic polynomial (“monic”: �n `  .  .  .  ) whose roots are the n  eigenvalues 

�i  “  1  ...n  of L  . Now L  is going to be a Hermitian – often real – matrix which can be diagonalised 

by conjugating it with some unitary matrix V  :

 

L  “  V  ⇤  V ´  1  ,  ⇤  “  

 ̈

˚̊
˚̋

 

�1  

�2  

. . . 

�n  

 ̨

‹‹‹‚

 

(13.18) 

Thus (in a sequence of equalities that you might have seen before)

 

PLp �  q “  det  p �   ´  L  q 

“  det  p �   ´  V  ⇤  V ´  1q 

“  det  p �V  V ´  1 ´  V  ⇤  V ´  1q 

“  det  p V  p �   ´  ⇤  q V ´  1q 

“  det  p V  q det  p �   ´  ⇤  q det  p V ´  1q 

“  det  p �   ´  ⇤  q 

“  

nπ  

i  “  1  

p �  ´  �iq 

“  �n ´  c1  �
n  ́  1 `  c2  �

n  ́  2 ´ ¨ ¨ ¨ ` p´  1  qn  

nπ  

i  “  1  

�i  .  (13.19)
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(The signs of the coe�cients on the last line are chosen for later convenience.) 

Since time evolution is also given by conjugation (this time by U p t  q instead of V  ), the same 

argument shows that

 

PL  p  t  qp �  q “  det  p �   ´  U p t  q L  p 0  q U p t  q´  1q 

“  det  p �   ´  L  p 0  qq 

“  PL  p  0  qp �  q (13.20)

 

which implies that the eigenvalues �i  of L  p t  q are independent of time, as claimed. 

Equivalently, we can take the n  conserved quantities to be the coe�cients ck  of the character- 

istic polynomial

 

ck  “  

ÿ 

1  §  i1†  i2¨¨¨†  ik§  n  

�i1  
�i2  

.  .  .  �ik  
,  k  “  1  .  .  .  n  ,

 

(13.21) 

or as

 

sk  “  

nÿ 

i  “  1  

�k  

i  
“  tr  p Lkq ,  k  “  1  .  .  .  n  .

 

(13.22) 

Note that the conservation of sk  can be proved directly, taking d  { dt  of tr  p Lkq , expanding out, 

and using the Lax pair and then the cyclic property of the trace. 

As a �nal remark about the general formalism, note that the eigenvalue equation for L  p t  q , 

namely

 

L  p t  q   p t  q “  �  p t  q

 

(13.23) 

is solved formally by

 

  p t  q “  U p t  q   p 0  q

 

(13.24) 

where   p 0  q is an eigenfunction at t  “  0  :

 

L  p t  q   p t  q “  U p t  q L  p 0  q U p t  q´  1    p t  q 

“  U p t  q L  p 0  q U p t  q´  1  U p t  q   p 0  q 

“  U p t  q L  p 0  q   p 0  q 

“  U p t  q �  p 0  q 

“  �U p t  q   p 0  q 

“  �  p t  q .  (13.25)
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13.1 The Lax pair for the simple harmonic oscillator 

The Hamiltonian for the S.H.O. (which has n  “  1  ) is

 

H  p q  ,  p  q “  

p2

 

2  m
`  

1

 

2  

m!2  q2  .

 

(13.26) 

Hamilton’s equations are then

 

9q  “  

p

 

m  

,  9p  “ ´  m!2  q  .

 

(13.27) 

These equations are equivalent to a Lax equation of the form (13.13) with

 

L  “  

 ̂

p  m! q  

m! q  ´  p  

 ̇

,  M  “  

!

 

2  

ˆ
0  ´  1  

1  0  

 ̇

.

 

(13.28) 

Indeed

 

9L  “  

 ̂

9p  m! 9q  

m! 9  q  ´  9  p  

 ̇

,  r  M  ,  L  s “  

ˆ
´  m!2  q  ! p  

! p  m!2  q  

˙

 

(13.29) 

and so 
9L  “ r  M  ,  L  s  Ø (13.27). 

• Since in this case M  is independent of t  , the time evolution operator de�ned by (13.15) is 

simply

 

U p t  q “  eM  t

 

(13.30) 

where the exponential of the matrix M  t  is de�ned by its Taylor expansion:

 

eM  t “  

8ÿ 

n  “  0  

tn

 

n  !  

M  
n  .

 

(13.31) 

This can be calculated explicitly, noting that

 

M2 “ ´p 

!

 

2
q2

 

and so

 

M2  k  “ p´  1  qkp 

!

 

2
q2  k  

 ,  M2  k  `  1 “ p´  1  qkp 

!

 

2
q2  k  M

 

(13.32) 

and so (splitting (13.31) into sums over even and odd terms and then spotting the Taylor series 

for cosine and sine)

 

U p t  q “  

ˆ
cos  p ! t  { 2  q ´  sin  p ! t  { 2  q 

sin  p ! t  { 2  q cos  p ! t  { 2  q 

 ̇

.

 

(13.33)
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Hence

 

L  p t  q “  

 ̂

p  p t  q m! q  p t  q 

m! q  p t  q ´  p  p t  q 

 ̇

“  U p t  q L  p 0  q U p t  q´  1  

“  

ˆ
cos  p ! t  { 2  q ´  sin  p ! t  { 2  q 

sin  p ! t  { 2  q cos  p ! t  { 2  q 

 ̇  ̂

p  p 0  q m! q  p 0  q 

m! q  p 0  q ´  p  p 0  q 

 ̇  ̂

cos  p ! t  { 2  q sin  p ! t  { 2  q 

´  sin  p ! t  { 2  q cos  p ! t  { 2  q 

 ̇

“  .  .  .  

“  

ˆ
p  p 0  q cos  p ! t  q ´  m! q  p 0  q sin  p ! t  q p  p 0  q sin  p ! t  q `  m! q  p 0  q cos  p ! t  q 

p  p 0  q sin  p ! t  q `  m! q  p 0  q cos  p ! t  q ´  p  p 0  q cos  p ! t  q `  m! q  p 0  q sin  p ! t  q 

 ̇

(13.34)

 

and hence

 

q  p t  q “  q  p 0  q cos  p ! t  q `  

p  p 0  q

 

m! 

sin  p ! t  q 

p  p t  q “  p  p 0  q cos  p ! t  q ´  m! q  p 0  q sin  p ! t  q

 

(13.35) 

This shows that, up to a scaling of the axes, the time evolution is uniform rotation in the S.H.O. 

phase space:

 

In this case n  “  1  , and there is just one nontrivial conserved quantity, which should be the 

Hamiltonian. Indeed tr  p L  q “  0  (so this is trivially conserved) while

 

tr  p L2q “  tr  

ˆ
p2 `  m2  !2  q2  0  

0  p2 `  m2  !2  q2  

 ̇

“  2  p p2 `  m2  !2  q2 “  4  m  H  p q  ,  p  q

 

(13.36) 

is the only independent conserved quantity. While this case is a bit easy, it does illustrate the 

general point that it’s simpler to work with traces of powers of the Lax matrix, rather than 

with the individual eigenvalues themselves. 

13.2 The Lax pair for the Toda lattice 

The last example was a bit trivial. Much less trivial, and still the subject of research, is the 

�nite Toda lattice which describes in particles on a line, each one interacting with its nearest 

neighbours. Let’s take the particles to have equal masses, mi “  1  . Toda’s Hamiltonian is

 

H  p q  ,  p  q “  

nÿ 

i  “  1  

 ̂

p2  

i

 

2  

`  e´p  qi´  qi  ́  1q  

˙

 

(13.37)
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where, at least at t  “  0  ,

 

q0 ” ´8 †  q1 †  q2 ¨ ¨ ¨ †  qn †  qn  ̀  1 ” `8  .

 

Hamilton’s equations for this system are:

 

9  qi “  pi  

9pi “  e´p  qi´  qi  ́  1q ´  e´p  qi  ̀  1´  qiq

 

(13.38) 

Note

 

that it follows from these equations that 
d

 

dt  

∞n  

i  “  1  
pi “  0  , so 

∞n  

i  “  1  
pi “  constant “  P  , say, 

and 
d

 

dt  

∞n  

i  “  1  
qi “  P  . This in turn implies that 

∞n  

i  “  1  
qi “  P  t  `  const, thus solving a part of the 

equations of motion. 

The Lax pair is most simply formulated in terms of Flaschka’s variables :

 

ai “  
1

 

2  
e´p  qi  ̀  1´  qiq{ 2  ,  bi “ ´1

 

2  
pi

 

(13.39) 

which satisfy

 

9  ai “  
1

 

4  
e´p  qi  ̀  1´  qiq{ 2p pi  ̀  1 ´  piq “  aip bi  ̀  1 ´  biq 

9bi “ ´1

 

2 p e´p  qi´  qi  ́  1q ´  e´p  qi  ̀  1´  qiqq “  2  p a2  

i  
´  a2  

i  ́  1q

 

(13.40) 

(It might be objected that Flaschka’s variables only encode the di�erences of the qis, but given 

the note

 

above, we already know their overall sum, so the di�erences are all that we need.) 

Then the Lax pair is

 

L  “  

 ̈

˚̊
˚̊
˚̊
˚̋

 

b1  a1  

a1  b2  a2  

a2  b3  a3  

. . . 
. . . 

. . . 

an  ́  2  bn  ́  1  an  ́  1  

an  ́  1  bn  

 ̨

‹‹‹‹‹‹‹‚ 

M  “  

 ̈

˚̊
˚̊
˚̊
˚̋

 

0  a1  

´  a1  0  a2  

´  a2  0  a3  

. . . 
. . . 

. . . 

´  an  ́  2  0  an  ́  1  

´  an  ́  1  0  

 ̨

‹‹‹‹‹‹‹‚

 

(13.41)
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(Exercise: check for yourself that 
9L  “ r  M  ,  L  s ñ (13.40).) 

This implies that the eigenvalues of L  , or equivalently the traces of the powers of L  , are all 

conserved! This gives us n  conserved quantities,

 

Qk  “  tr  p Lkq ,  k  “  1  .  .  .  n  .

 

(13.42) 

The �rst few are

 

Q1 “  tr  p L  q 

“  

nÿ 

i  “  1  

bi “ ´1

 

2  

nÿ 

i  “  1  

pi  (total momentum) 

Q2 “  tr  p L2q 

“  

nÿ 

i  “  1  

b2  

i  
`  2  

n  ́  1ÿ 

i  “  1  

a2  

i  

“  
1

 

2  

˜  

1

 

2  

nÿ 

i  “  1  

p2  

i  
`  

n  ́  1ÿ 

i  “  1  

e´p  qi  ̀  1´  qiq  

¸  

(the Hamiltonian, or total energy) 

Q3 “  tr  p L3q 

“  

nÿ 

i  “  1  

b3  

i  
`  3  

n  ́  1ÿ 

i  “  1  

a2  

i p bi `  bi  ̀  1q 

“  
1

 

8  

˜  
nÿ 

i  “  1  

p3  

i  
´  3  

n  ́  1ÿ 

i  “  1  

e´p  qi  ̀  1´  qiqp pi `  pi  ̀  1q 

¸

 

(13.43) 

Interestingly, the limit n  Ñ 8  yields the in�nite Toda lattice , which describes an in�nite 

number of particles on a line, and this system has solitons. 

The index i P Z  for the in�nite Toda lattice is analogous to x  P R  for KdV, while qip t  q P R  

corresponds to u  p x,  t  q P R  . Thus space has been discretised, while time remains continuous, 

as does the �eld value. (In the ball and box model the process of discretisation goes two steps 

further, with both time and the �eld values also becoming discrete.) 

The solitons of the in�nite Toda lattice can be derived in a number of ways, including inverse 

scattering. The following turns out to be a solution, for any �  , k  °  0  :

 

qlp t  q “  q0 ´  log  

1  `  �  e´  2  k  l  ˘  2 sinh p  k  q  t

 

1  `  �  e´  2  k  p  l  ´  1  q˘  2 sinh p  k  q  t

 

(13.44)
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This is a single soliton moving through Z  with

 

velocity “ ˘  sinh  p k  q{ k  ,  

width „  1  { k  .

 

(13.45) 

As for KdV, the faster a soliton is moving, the narrower it becomes. 

Here’s a plot comparing three of these solitons at t  “  0  , taking the ‘+’ option with q0  “  0  in 

(13.44), with p k  ,  �  q “ p 0  .  2  ,  0  .  2  q (red), p k  ,  �  q “ p 0  .  25  ,  1  q (blue) and p k  ,  �  q “ p 0  .  3  ,  5  q (green) :

 

Note that the horizontal axis here is the index l  , while in the sketch between equations (13.37) 

and (13.38) it was the ‘�eld value’ ql. 

It is also possible to �nd N  -soliton solutions, which turn out to have a form similar to those 

we found earlier for the KdV equation:

 

qlp t  q “  q0 ´  log  

det  p N  ˆ  N  `  Clp t  qq

 

det  p N  ˆ  N  `  Cl  ´  1p t  qq

 

(13.46) 

where N  ˆ  N  is the N  ˆ  N  identity matrix, and t  Clp t  qu  is a family of N  ˆ  N  matrices depending 

on the space coordinate l  and the time coordinate t  as follows:

 

p Clp t  qqij  “  

?

 

�i  �j

 

1  ´  e´p  ki`  kjq  
e´p  ki`  kjq  l  ´p  �i  sinh  p  kiq`  �j  sinh  p  kjqq  t

 

(13.47) 

with ki  ,  �i °  0  and �i “ ˘  1  .

 

The end


