
 

Chapter 7 

Overview of the inverse scattering 

method 

7.1 Initial value problems 

So far, we have seen methods to construct particular solutions. 

Question

 

: can we �nd a general solution to these p.d.e.s? 

In more detail: given a wave equation and ‘enough’ initial data at t  “  0  , �nd u  p x,  t  q at all later 

times t  °  0  . For there to be a unique solution, su�cient initial data must be given. 

• If p.d.e. is 1st order in time, (eg KdV) must specify u  p x,  0  q 

• If 2nd order (eg sine-Gordon), need u  p x,  0  q and utp x,  0  q 

• etc. 

[why? because we can use the p.d.e. to solve for higher t  derivatives. Eg for KdV, if I tell you 

u  p x,  0  q , you can use the p.d.e. to �nd out what utp x,  0  q must be – it’s not independent data.] 

But given that information, can we construct u  p x,  t  q for all t  °  0  ? (analytically if possible). 

So far, the answer is no, unless the initial condition happens to be a snapshot of one of the 

special solutions seen before. 
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Eg in KdV, what if 

(a) u  p x,  0  q “  2 sech2p x  q 

(b) u  p x,  0  q “  2  .  1 sech2p x  q 

(c) u  p x,  0  q “  6 sech2p x  q ? 

Case (a) is a snapshot of a one-soliton solution at t  “  0  , so, assuming the uniqueness of 

solutions, the answer to (a) at all later times is

 

u  p x,  t  °  0  q “  2sech2p x  ´  4  t  q .

 

But what about (b) and (c)? 

It turns out that 

(b) Ñ t  2 solitons, 1 very small, both moving right, `  some junk moving left u  

(c) Ñ t  2 solitons, both moving right, and that’s all u  

[so in fact, the initial condition for (c) is a snapshot of a “pure” 2-soliton solution] 

Inverse scattering will allow us to understand situations like (b), and give a much more com- 

plete understanding of when things like (a) and (c) occur. In fact (as you might remember 

seeing “experimentally” at the start of last term) whenever the height is N  p N  `  1  q , N  “  1  ,  2  , 

3  . . .we are in a situation like (a) or (c). . . but why? 

Inverse scattering gives analytic insight into this question. 

How might this go? 

7.2 Linear initial value problems 

For a linear wave equation, the general solution is a linear transformation of the initial data. 

Examples 

1. The heat equation

 

ut `  uxx “  0  ,  ´8 †  x  † 8  ,  t  °  0  .

 

(7.1)
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Given u  p x,  0  q ”  u0p x  q (the initial data), u  p x,  t  q is

 

u  p x,  t  q “  

ª `8  

´8  

1

 

?

 

4  ⇡  t  

e´p  x  ́  x1q2{p  4  t  q  u0p x1q dx1

 

(7.2) 

and this is a linear transform of u0p x  q (it’s actually a “Green’s function” solution). 

2. The Klein-Gordon equation

 

utt ´  uxx `  u  “  0

 

(7.3) 

This is second-order in t  , so we need to specify u  p x,  0  q and utp x,  0  q :

 

u  p x,  0  q “  ↵  p x  q ,  utp x,  0  q “  � p x  q .

 

(7.4) 

With luck, t  (7.3) + (7.4) u  is a “good” initial value problem. 

It can be solved using a Fourier transform, which is like the Fourier series seen in AMV, but 

for functions on a in�nite line. 

Given u  p x,  t  q , set

 

pu  p k  ,  t  q “  

ª `8  

´8  

dx  e´  ik  x  u  p x,  t  q 

u  p x,  t  q “  

1

 

2  ⇡  

ª `8  

´8  

dk  e`  ik  x  pu  p k  ,  t  q (7.5)

 

where the second equation shows how to get u  back from pu  . 

Working with pu  p k  ,  t  q instead of u  p x,  t  q is a good move, because (7.3) for u  implies

 

p  utt ` p k2 `  1  q pu  “  0

 

(7.6) 

for pu  , and this equation is easier to solve – there are only t  derivatives, so it can be treated as 

an ordinary di�erential equation rather than a partial one. 

Solving (7.6),

 

pu  p k  ,  t  q “  A p k  q ei!  t `  B  p k  q e´  i!  t

 

(7.7) 

where !2 “  k2 `  1  , and A and B  can be �xed by matching with the initial condition at t  “  0  :

 

pu  p k  ,  0  q “  A p k  q `  B  p k  q “  p↵  p k  q 

putp k  ,  0  q “  i! p A p k  q ´  B  p k  qq “  
p� p k  q .  (7.8)
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Solving for A and B  and simplifying the resulting expression for p  u  p k  ,  t  q ,

 

p  u  p k  ,  t  q “  p  ↵  p k  q cos  ! t  `  

1

 

! 

p� p k  q sin  ! t  .

 

(7.9) 

Finally, a reverse Fourier transform allows u  p x,  t  q to be found:

 

u  p x,  t  q “  

1

 

2  ⇡  

ª `8  

´8  

p  u  p k  ,  t  q eik  x  dk  

“  .  .  .  

“  

1

 

2  ⇡  

ª `8  

´8  

ª `8  

´8  

eik  p  x  ́  x1q  

 ̂

u  p x1 ,  0  q cos  ! t  `  

1

 

! 

utp x1 ,  0  q sin  ! t  

 ̇

dx1 dk  (7.10)

 

with ! “
?

 

k2 `  1  . 

Again, this is a linear function of u  p x,  0  q and utp x,  0  q , the initial data [this won’t be true for 

KdV]. 

Key feature: the data for each value of k  evolved separately, in a simple way, in the “trans- 

formed” equation (7.6) [something like this will be true for KdV]. 

Summarising, the general picture for Klein-Gordon is:
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This will turn out to be the correct “big idea” for KdV also, but in a much more subtle way 

since KdV is nonlinear. 

Map of the general strategy for KdV:

 

Instead of doing step (d) directly, we will go the roundabout route of (a) Ñ (b) Ñ (c). 

This will be a long story, so it will be good to keep this “roadmap” in mind as we go, starting 

with step (a).


