Chapter 7

Overview of the inverse scattering method

7.1 Initial value problems

So far, we have seen methods to construct particular solutions.

Question: can we find a general solution to these p.d.e.s?

In more detail: given a wave equation and 'enough' initial data at $t=0$, find $u(x, t)$ at all later times $t>0$. For there to be a unique solution, sufficient initial data must be given.

- If p.d.e. is 1 st order in time, (eg KdV) must specify $u(x, 0)$
- If 2 nd order (eg sine-Gordon), need $u(x, 0)$ and $u_{t}(x, 0)$
- etc.
[why? because we can use the p.d.e. to solve for higher t derivatives. Eg for KdV, if I tell you $u(x, 0)$, you can use the p.d.e. to find out what $u_{t}(x, 0)$ must be - it's not independent data.]

But given that information, can we construct $u(x, t)$ for all $t>0$? (analytically if possible). So far, the answer is no, unless the initial condition happens to be a snapshot of one of the special solutions seen before.

Eg in KdV, what if
(a) $u(x, 0)=2 \operatorname{sech}^{2}(x)$
(b) $u(x, 0)=2.1 \operatorname{sech}^{2}(x)$
(c) $u(x, 0)=6 \operatorname{sech}^{2}(x)$?

Case (a) is a snapshot of a one-soliton solution at $t=0$, so, assuming the uniqueness of solutions, the answer to (a) at all later times is

$$
u(x, t>0)=2 \operatorname{sech}^{2}(x-4 t) .
$$

But what about (b) and (c)?

It turns out that
(b) \rightarrow \{ 2 solitons, 1 very small, both moving right, + some junk moving left $\}$
(c) \rightarrow \{ 2 solitons, both moving right, and that's all $\}$
[so in fact, the initial condition for (c) is a snapshot of a "pure" 2-soliton solution]

Inverse scattering will allow us to understand situations like (b), and give a much more complete understanding of when things like (a) and (c) occur. In fact (as you might remember seeing "experimentally" at the start of last term) whenever the height is $N(N+1), N=1,2$, $3 .$. we are in a situation like (a) or (c)... but why?

Inverse scattering gives analytic insight into this question.

How might this go?

7.2 Linear initial value problems

For a linear wave equation, the general solution is a linear transformation of the initial data.

Examples

1. The heat equation

$$
\begin{equation*}
u_{t}+u_{x x}=0, \quad-\infty<x<\infty, t>0 . \tag{7.1}
\end{equation*}
$$

Given $u(x, 0) \equiv u_{0}(x)$ (the initial data), $u(x, t)$ is

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{4 \pi t}} e^{-\left(x-x^{\prime}\right)^{2} /(4 t)} u_{0}\left(x^{\prime}\right) d x^{\prime} \tag{7.2}
\end{equation*}
$$

and this is a linear transform of $u_{0}(x)$ (it's actually a "Green's function" solution).

2. The Klein-Gordon equation

$$
\begin{equation*}
u_{t t}-u_{x x}+u=0 \tag{7.3}
\end{equation*}
$$

This is second-order in t, so we need to specify $u(x, 0)$ and $u_{t}(x, 0)$:

$$
\begin{equation*}
u(x, 0)=\alpha(x), \quad u_{t}(x, 0)=\beta(x) . \tag{7.4}
\end{equation*}
$$

With luck, $\{7.3+\boxed{7.4}\}$ is a "good" initial value problem.

It can be solved using a Fourier transform, which is like the Fourier series seen in AMV, but for functions on a infinite line.

Given $u(x, t)$, set

$$
\begin{align*}
& \widehat{u}(k, t)=\int_{-\infty}^{+\infty} d x e^{-i k x} u(x, t) \\
& u(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d k e^{+i k x} \widehat{u}(k, t) \tag{7.5}
\end{align*}
$$

where the second equation shows how to get u back from \hat{u}.

Working with $\widehat{u}(k, t)$ instead of $u(x, t)$ is a good move, because 7.3 for u implies

$$
\begin{equation*}
\widehat{u}_{t t}+\left(k^{2}+1\right) \widehat{u}=0 \tag{7.6}
\end{equation*}
$$

for \widehat{u}, and this equation is easier to solve - there are only t derivatives, so it can be treated as an ordinary differential equation rather than a partial one.

Solving (7.6),

$$
\begin{equation*}
\widehat{u}(k, t)=A(k) e^{i \omega t}+B(k) e^{-i \omega t} \tag{7.7}
\end{equation*}
$$

where $\omega^{2}=k^{2}+1$, and A and B can be fixed by matching with the initial condition at $t=0$:

$$
\begin{align*}
\widehat{u}(k, 0) & =A(k)+B(k)=\widehat{\alpha}(k) \\
\widehat{u}_{t}(k, 0) & =i \omega(A(k)-B(k))=\widehat{\beta}(k) . \tag{7.8}
\end{align*}
$$

Solving for A and B and simplifying the resulting expression for $\widehat{u}(k, t)$,

$$
\begin{equation*}
\widehat{u}(k, t)=\widehat{\alpha}(k) \cos \omega t+\frac{1}{\omega} \widehat{\beta}(k) \sin \omega t . \tag{7.9}
\end{equation*}
$$

Finally, a reverse Fourier transform allows $u(x, t)$ to be found:

$$
\begin{align*}
u(x, t) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \widehat{u}(k, t) e^{i k x} d k \\
& =\ldots \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{i k\left(x-x^{\prime}\right)}\left(u\left(x^{\prime}, 0\right) \cos \omega t+\frac{1}{\omega} u_{t}\left(x^{\prime}, 0\right) \sin \omega t\right) d x^{\prime} d k \tag{7.10}
\end{align*}
$$

with $\omega=\sqrt{k^{2}+1}$.

Again, this is a linear function of $u(x, 0)$ and $u_{t}(x, 0)$, the initial data [this won't be true for KdV].

Key feature: the data for each value of k evolved separately, in a simple way, in the "transformed" equation (7.6) [something like this will be true for KdV].

Summarising, the general picture for Klein-Gordon is:

This will turn out to be the correct "big idea" for KdV also, but in a much more subtle way since KdV is nonlinear.

Map of the general strategy for KdV:

Instead of doing step (d) directly, we will go the roundabout route of $(a) \rightarrow(b) \rightarrow(c)$.

This will be a long story, so it will be good to keep this "roadmap" in mind as we go, starting with step (a).

