Chapter 9

Time evolution of the scattering data

9.1 The idea of a Lax pair

We'll think of $\psi_{x x}+u \psi=\lambda \psi$ at some fixed time t as an eigenvalue problem:

$$
\begin{equation*}
L(u) \psi=\lambda \psi \tag{9.1}
\end{equation*}
$$

where $L(u)$ is the following differential operator:

$$
\begin{equation*}
L(u)=\frac{d^{2}}{d x^{2}}+u(x, t) \tag{9.2}
\end{equation*}
$$

Notes:

1. You should think of differential operators such as L, or $d / d x$, or whatever, as acting on all functions sitting to their right.
2. 9.1 does pick out "special" values of λ (the eigenvalues) since we require that $\psi(x)$ is square integrable (ie $\int_{-\infty}^{+\infty}|\psi(x)|^{2} d x<\infty$) which in particular means $\psi(x) \rightarrow 0$ both as $x \rightarrow-\infty$ and as $x \rightarrow+\infty$. [Later, we will relax this a little to allow solutions ψ that are merely bounded, but for now we will require that the stronger condition holds.]
3. The " t " in (9.2) has nothing to do with the time in the time-dependent Schrödinger equation you might see in quantum mechanics; rather, it's the KdV time.
4. Since L depends on u, and u depends on t, the eigenfunctions ψ and (in principle) the eigenvalues λ might be different at different times.

But, we have two remarkable facts:

THEOREM:

(i) If $u=u(x, t)$ evolves by the KdV equation, then the set of eigenvalues $\{\lambda\}$ of $L(u)$ (the spectrum of $L(u))$ is independent of t;
(ii) There is a set of eigenfunctions ψ of $L(u)$ which evolves in t simply, as $\psi_{t}=B(u) \psi$, where $B(u)$ is another differential operator.

The result (i) is particularly striking - it says that the spectra of $d^{2} / d x^{2}+u(x, 0)$ and $d^{2} / d x^{2}+$ $u(x, t)$ are the same, which is very unexpected since $u(x, 0)$ and $u(x, t)$ might look very different.

PROOF:

First, we'll assume that a $B(u)$ can be found such that the time evolution of $L(u(x, t))$ is given by

$$
\begin{align*}
L(u)_{t} & =B(u) L(u)-L(u) B(u) \\
& =[B(u), L(u)] \tag{9.3}
\end{align*}
$$

when u evolves by KdV (we'll find B later).
Here, $[B, L]:=B L-B L$ is called the commutator of the two operators B and L. Since B and L can both involve x derivatives, $B L \neq L B$ is possible - see later for examples.
Now let λ and ψ be an eigenvalue and eigenfunction of L, so that $L \psi=\lambda \psi$. Taking $\partial / \partial t$ of this equation,

$$
L_{t} \psi+L \psi_{t}=\lambda_{t} \psi+\lambda \psi_{t}
$$

Rearranging,

$$
\begin{aligned}
\lambda_{t} \psi & =\lambda_{t} \psi+L \psi_{t}-\lambda \psi_{t} & & \\
& =(B L-L B) \psi+(L-\lambda) \psi_{t} & & \text { (using (9.3)) } \\
& =(B \lambda-L B) \psi+(L-\lambda) \psi_{t} & & \text { (using } L \psi=\lambda \psi) \\
& =(L-\lambda)\left(\psi_{t}-B \psi\right) & &
\end{aligned}
$$

Now multiply both sides by $\psi(x)^{*}$ and integrate $\int_{-\infty}^{+\infty} d x$ to find

$$
\begin{equation*}
\lambda_{t} \int_{-\infty}^{+\infty}|\psi|^{2} d x=\int_{-\infty}^{+\infty} \psi(x)^{*}(L-\lambda)\left(\psi_{t}-B \psi\right) \psi(x) d x \tag{*}
\end{equation*}
$$

(Note, the integral on the LHS of this equation is finite since that was part of the specification of the eigenvalue problem.)

Now we'll use a key property of L : for any pair of functions ϕ and χ, both tending to zero at $x= \pm \infty$,

$$
\int_{-\infty}^{+\infty} \phi(x)^{*} L \chi(x) d x=\int_{-\infty}^{+\infty}(L \phi(x))^{*} \chi(x) d x .
$$

Such an L is called self-adjoint; more on this in the next section.
Proof of the key property: Recall $L=d^{2} / d x^{2}+u(x)$ and $u(x)$ is real. Then compute

$$
\begin{aligned}
\int \phi^{*} L \chi d x & =\int \phi^{*}(x) \frac{d^{2}}{d x^{2}} \chi(x)+\phi^{*}(x) u(x) \chi(x) d x \\
& =\int\left(\frac{d^{2}}{d x^{2}} \phi^{*}(x)\right) \chi(x)+(u(x) \phi(x))^{*} \chi(x) d x
\end{aligned}
$$

(integrating by parts twice for the first term, and using reality of u for the second)

$$
=\int(L \phi(x))^{*} \chi(x) d x
$$

as required.

Since λ is real (the proof of this fact is left as an exercise!) the key property also holds for $L-\lambda$. Thus the earlier result (*) can be rewritten as

$$
\lambda_{t} \int_{-\infty}^{+\infty}|\psi|^{2} d x=\int_{-\infty}^{+\infty}((L-\lambda) \psi)^{*}\left(\psi_{t}-B \psi\right) \psi(x) d x
$$

But $L \psi=\lambda \psi$, so $(L-\lambda) \psi=0$, and the RHS of this equation is zero. Since $\int|\psi|^{2} d x$ is finite and nonzero, we deduce $\lambda_{t}=0$, which is result (i).

For result (ii), we need to show that $(L-\lambda) \psi=0$ continues to be true if ψ changes according to $\psi_{t}=B \psi$. Calculating,

$$
\begin{array}{rlr}
\frac{\partial}{\partial t}((L-\lambda) \psi) & =L_{t} \psi+L \psi_{t}-\lambda_{t} \psi-\lambda \psi_{t} \\
& \left.=L_{t} \psi+L \psi_{t}-\lambda \psi_{t} \quad \text { (since we already know } \lambda_{t}=0\right) \\
& =L_{t} \psi+L B \psi-\lambda B \psi \quad & \text { (using } \left.\psi_{t}=B \psi\right) \\
& =L_{t} \psi+L B \psi-B \lambda \psi \quad & \text { (since } \lambda \text { is a number) } \\
& =L_{t} \psi+L B \psi-B L \psi \quad & \text { (using } L \psi=\lambda \psi) \\
& =\left(L_{t}-[B, L]\right) \psi & \\
& =0 \quad(\text { using 9.3) }) &
\end{array}
$$

This shows that if $\psi_{t}=B \psi$ and ψ starts of at $t=0$ as an eigenfunction, then it stays that way, which is result (ii).
L and B are called a Lax pair. All that remains now is to find a suitable $B(u)$.

9.2 The Lax pair for KdV

We've already decided that $L(u)=\frac{d^{2}}{d x^{2}}+u(x, t)$. For now we'll just make an inspired guess for $B(u)$, and check that it works; in the next chapter a more systematic approach will be explained. The guess is to set

$$
\begin{equation*}
B(u)=-\left(4 D^{3}+6 u D+3 u_{x}\right) \tag{9.4}
\end{equation*}
$$

where to save ink the notation $D \equiv \frac{d}{d x}, D^{2} \equiv \frac{d^{2}}{d x^{2}}$, etc has been adopted.

Notice that operators like D act on everything to their right, and that differential operators are defined by their actions on functions. So for example $[u, D]$ is defined by how it would act on any function $f(x)$. Calculating,

$$
\begin{aligned}
{[u, D] f } & =\left(u \frac{d}{d x}-\frac{d}{d x} u\right) f \\
& =u \frac{d f}{d x}-\frac{d}{d x}(u f) \\
& =u \frac{d f}{d x}-\left(\frac{d u}{d x}\right) f-u \frac{d f}{d x} \quad \text { (using the product rule) } \\
& =-\left(\frac{d u}{d x}\right) f
\end{aligned}
$$

Thus the effect of $[u, D]$ on $f(x)$ is to multiply it by $-u_{x}(x)$. Since this is true for all functions $f(x)$ we have that $[u, D]=-u_{x}$ as an identity between differential operators. Perhaps more usefully, this can be rephrased as

$$
D u=u D+u_{x}
$$

which shows how to "shuffle" Ds past other functions. This can be used to rewrite expressions in a form where all D s are on the far right in all terms, making cancellations easier to spot.

Now just calculate! We have

$$
L=D^{2}+u, \quad B=-\left(4 D^{3}+6 u D+3 u_{x}\right)
$$

so

$$
\begin{aligned}
L B= & -D^{2}\left(4 D^{3}+6 u D+3 u_{x}\right)-u\left(4 D^{3}+6 u D+3 u_{x}\right) \\
& =\ldots \\
= & -\left(4 D^{5}+6 u D^{3}+12 u_{x} D^{2}+6 u_{x x} D+3 u_{x} D^{2}\right. \\
& \left.\quad+6 u_{x x} D+3 u_{x x x}+4 u D^{3}+6 u^{2} D+3 u u_{x}\right)
\end{aligned}
$$

while

$$
\begin{aligned}
B L= & -4 D^{3}\left(D^{2}+u\right)-6 u D\left(D^{2}+u\right)-3 u_{x}\left(D^{2}+u\right) \\
= & \ldots \\
= & -\left(4 D^{5}+4 u D^{3}+12 u_{x} D^{2}+12 u_{x x} D+4 u_{x x x}\right. \\
& \quad+6 u D^{3}+6 u^{2} D+6 u u_{x} \\
& \left.+3 u_{x} D^{2}+3 u u_{x}\right) .
\end{aligned}
$$

Hence

$$
L B-B L=u_{x x x}+6 u u_{x}
$$

and somewhat surprisingly all of the D s have gone.
Also, $L_{t}=u_{t}$ and so

$$
L_{t}+[L, B]=u_{t}+6 u u_{x}+u_{x x x}
$$

which is zero, as required, if $u(x, t)$ satisfies the KdV equation.

This completes the proof of properties (i) and (ii) of the associated linear problem for solutions of the $K d V$ equation.

Notes

1. L and B were both differential operators, since they involved $D=\frac{d}{d x}$, but in some senses $[L, B]$ wasn't: $[L, B]$ acting on some function $f(x)$ doesn't do any differentiating, but just multiplies f pointwise by $\left(u_{x x x}+6 u u_{x}\right)$. For this reason $[L, B]$ is called multiplicative.
2. The equation for the time evolution of $\psi, \psi_{t}=B(u) \psi$, is linear (good news!), but since B depends on $u(x, t)$, the thing we're trying to find, it's not yet clear we have made too much progress on step (b) (bad news). We will fix this later, once we have developed a better understanding of the scattering data. But first, a diversion to explore other options for $B(u) \ldots$
