
 

Chapter 9 

Time evolution of the scattering data 

9.1 The idea of a Lax pair 

We’ll think of  xx `  u  “  �  at some �xed time t  as an eigenvalue problem :

 

L  p u  q   “  � 

 

(9.1) 

where L  p u  q is the following di�erential operator:

 

L  p u  q “  

d2

 

dx2  
`  u  p x,  t  q .

 

(9.2) 

Notes: 

1. You should think of di�erential operators such as L  , or d  { dx  , or whatever, as acting on all 

functions sitting to their right. 

2. (9.1) does pick out “special” values of �  (the eigenvalues ) since we require that   p x  q is square 

integrable (ie 

≥`8  

´8|   p x  q|2  dx  † 8  ) which in particular means   p x  q Ñ 0  both as x  Ñ ´8  and 

as x  Ñ `8  . [Later, we will relax this a little to allow solutions   that are merely bounded , but 

for now we will require that the stronger condition holds.] 

3. The “ t  ” in (9.2) has nothing to do with the time in the time-dependent Schrödinger equation 

you might see in quantum mechanics; rather, it’s the KdV time. 

4. Since L  depends on u  , and u  depends on t  , the eigenfunctions   and (in principle) the 

eigenvalues �  might be di�erent at di�erent times. 

But, we have two remarkable facts: 
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THEOREM

 

: 

(i) If u  “  u  p x,  t  q evolves by the KdV equation, then the set of eigenvalues t  �  u  of L  p u  q (the 

spectrum of L  p u  q ) is independent of t  ; 

(ii) There is a set of eigenfunctions   of L  p u  q which evolves in t  simply, as  t  “  B  p u  q   , 

where B  p u  q is another di�erential operator.

 

The result (i) is particularly striking – it says that the spectra of d2{ dx2 `  u  p x,  0  q and d2{ dx2 `  

u  p x,  t  q are the same, which is very unexpected since u  p x,  0  q and u  p x,  t  q might look very dif- 

ferent. 

PROOF

 

: 

First, we’ll assume that a B  p u  q can be found such that the time evolution of L  p u  p x,  t  qq is given 

by

 

L  p u  qt “  B  p u  q L  p u  q ´  L  p u  q B  p u  q 

“ r  B  p u  q ,  L  p u  qs  (9.3)

 

when u  evolves by KdV (we’ll �nd B  later). 

Here, r  B  ,  L  s  :  “  B  L  ´  B  L  is called the commutator of the two operators B  and L  . Since B  

and L  can both involve x  derivatives, B  L  ‰  LB  is possible – see later for examples. 

Now let �  and   be an eigenvalue and eigenfunction of L  , so that L  “  �  . Taking B{B t  of 

this equation,

 

Lt    `  L t “  �t    `  � t  .

 

Rearranging,

 

�t    “  �t    `  L t ´  � t  

“ p B  L  ´  LB  q   ` p L  ´  �  q  t  (using (9.3)) 

“ p B  �  ´  LB  q   ` p L  ´  �  q  t  (using L  “  �  ) 

“ p L  ´  �  q
`
 t ´  B    

˘

 

Now multiply both sides by   p x  q˚ and integrate 

≥`8  

´8dx  to �nd

 

�t  

ª `8  

´8  

|   |2  dx  “  

ª `8  

´8  

  p x  q˚p L  ´  �  q
`
 t ´  B    

˘
  p x  q dx  .

 

(*) 

(Note, the integral on the LHS of this equation is �nite since that was part of the speci�cation 

of the eigenvalue problem.)



 

CHAPTER 9. TIME EVOLUTION OF THE SCATTERING DATA 105 

Now we’ll use a key property of L  : for any pair of functions �  and �  , both tending to zero at 

x  “ ˘8  ,

 

ª `8  

´8  

�  p x  q˚ L  �  p x  q dx  “  

ª `8  

´8  

p L�  p x  qq˚ �  p x  q dx  .

 

Such an L  is called self-adjoint; more on this in the next section. 

Proof

 

of the key property: Recall L  “  d2{ dx2 `  u  p x  q and u  p x  q is real. Then compute

 

ª 

�˚ L�  dx  “  

ª 

�˚p x  q 

d2

 

dx2  
�  p x  q `  �˚p x  q u  p x  q �  p x  q dx  

“  

ª `  d2

 

dx2  
�˚p x  q

˘
�  p x  q `  

`
u  p x  q �  p x  q

˘˚ 

�  p x  q dx  

(integrating by parts twice for the �rst term, and using reality of u  for the second) 

“  

ª `
L�  p x  q

˘˚ 

�  p x  q dx

 

as required.

 

Since �  is real (the proof of this fact is left as an exercise!) the key property also holds for 

L  ´  �  . Thus the earlier result (*) can be rewritten as

 

�t  

ª `8  

´8  

|   |2  dx  “  

ª `8  

´8  

`
p L  ´  �  q   

˘˚ 
`
 t ´  B    

˘
  p x  q dx  .

 

But L  “  �  , so p L  ´  �  q   “  0  , and the RHS of this equation is zero. Since 

≥
|   |2  dx  is �nite 

and nonzero, we deduce �t “  0  , which is result (i).

 

For result (ii), we need to show that p L  ´  �  q   “  0  continues to be true if   changes according 

to  t “  B    . Calculating,

 

B

 

B t  

`
p L  ´  �  q   

˘
“  Lt    `  L t ´  �t    ´  � t  

“  Lt    `  L t ´  � t  (since we already know �t “  0  ) 

“  Lt    `  LB    ´  �B    (using  t “  B    ) 

“  Lt    `  LB    ´  B  �  (since �  is a number) 

“  Lt    `  LB    ´  B  L  (using L  “  �  ) 

“  

`
Lt ´ r  B  ,  L  s

˘
  

“  0  (using (9.3) )

 

This shows that if  t  “  B    and   starts of at t  “  0  as an eigenfunction, then it stays that 

way, which is result (ii).

 

L  and B  are called a Lax pair . All that remains now is to �nd a suitable B  p u  q .



 

CHAPTER 9. TIME EVOLUTION OF THE SCATTERING DATA 106 

9.2 The Lax pair for KdV 

We’ve already decided that L  p u  q “  
d2

 

dx2  `  u  p x,  t  q . For now we’ll just make an inspired guess 

for B  p u  q , and check that it works; in the next chapter a more systematic approach will be 

explained. The guess is to set

 

B  p u  q “ ´  

`
4  D3 `  6  uD `  3  ux  

˘

 

(9.4) 

where to save ink the notation D ”  
d

 

dx , D2 ”  
d2

 

dx2 , etc has been adopted. 

Notice that operators like D act on everything to their right, and that di�erential operators are 

de�ned by their actions on functions. So for example r  u,  D s  is de�ned by how it would act on 

any function f  p x  q . Calculating,

 

r  u,  D s  f  “  

 ̂

u  

d

 

dx
´  

d

 

dx  

u  

 ̇

f  

“  u  

df

 

dx
´  

d

 

dx
p uf  q 

“  u  

df

 

dx
´  

`  du

 

dx  

˘
f  ´  u  

df

 

dx  

(using the product rule) 

“ ´
`  du

 

dx  

˘
f

 

Thus the e�ect of r  u,  D s  on f  p x  q is to multiply it by ´  uxp x  q . Since this is true for all functions 

f  p x  q we have that r  u,  D s “ ´  ux  as an identity between di�erential operators. Perhaps more 

usefully, this can be rephrased as

 

D u  “  uD `  ux

 

which shows how to “shu�e” D s past other functions. This can be used to rewrite expressions 

in a form where all D s are on the far right in all terms, making cancellations easier to spot. 

Now just calculate! We have

 

L  “  D2 `  u  ,  B  “ ´p 4  D3 `  6  uD `  3  uxq

 

so

 

LB  “ ´  D2p 4  D3 `  6  uD `  3  uxq ´  u  p 4  D3 `  6  uD `  3  uxq 

“  .  .  .  

“ ´
`
4  D5 `  6  uD3 `  12  ux  D

2 `  6  uxx  D `  3  ux  D
2  

`  6  uxx  D `  3  uxxx `  4  uD3 `  6  u2  D `  3  uux  

˘
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while

 

B  L  “ ´  4  D3p D2 `  u  q ´  6  uD p D2 `  u  q ´  3  uxp D2 `  u  q 

“  .  .  .  

“ ´p 4  D5 `  4  uD3 `  12  ux  D
2 `  12  uxx  D `  4  uxxx  

`  6  uD3 `  6  u2  D `  6  uux  

`  3  ux  D
2 `  3  uuxq .

 

Hence

 

LB  ´  B  L  “  uxxx `  6  uux

 

and somewhat surprisingly all of the D s have gone. 

Also, Lt “  ut  and so

 

Lt ` r  L,  B  s “  ut `  6  uux `  uxxx

 

which is zero, as required, if u  p x,  t  q satis�es the KdV equation. 

This completes the proof of properties (i) and (ii) of the associated linear problem for solutions 

of the KdV equation.

 

Notes 

1. L  and B  were both di�erential operators, since they involved D “  
d

 

dx , but in some senses 

r  L,  B  s  wasn’t: r  L,  B  s  acting on some function f  p x  q doesn’t do any di�erentiating, but just 

multiplies f  pointwise by p uxxx `  6  uuxq . For this reason r  L,  B  s  is called multiplicative . 

2. The equation for the time evolution of   ,  t  “  B  p u  q   , is linear (good news!), but since 

B  depends on u  p x,  t  q , the thing we’re trying to �nd, it’s not yet clear we have made too 

much progress on step (b) (bad news). We will �x this later, once we have developed a better 

understanding of the scattering data. But �rst, a diversion to explore other options for B  p u  q . . .


