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Chapter 0 

Introduction 

0.1 What is a soliton? 

To a first approximation , solitons are very special solutions of a special class of non-linear 

partial differential equations (PDEs), or ‘wave equations’ . (We will provide a more technical 

definition shortly.) 

You might know that field theories, or the partial differential equations (PDEs) that describe 

their equations of motion, have solutions which look like waves . Solitons are special solutions 

which are localised in space and therefore look like particles . That’s the reason for suffix -on, 

as in electron, proton or photon. 

The historical discovery of solitons occurred in 1834, when a young Scottish civil engineer 

named John Scott Russell was conducting experiments to improve the design of canal barges 

at the Union Canal in Hermiston, near Edinburgh, see figure 1. Accidentally, a rope pulling a 

barge snapped, and here is what happened next in the words of John Scott Russell himself [John 

Scott Russell, 1845]:

 

“

 

I was observing the motion of a boat which was rapidly drawn along a narrow 

channel by a pair of horses, when the boat suddenly stopped - not so the mass 

of water in the channel which it had put in motion; it accumulated round the 

prow of the vessel in a state of violent agitation, then suddenly leaving it behind, 

rolled forward with great velocity, assuming the form of a large solitary elevation, 

a rounded, smooth and well-defined heap of water, which continued its course 

along the channel apparently without change of form or diminution of speed. 

I followed it on horseback, and overtook it still rolling on at a rate of some eight or 

nine miles an hour, preserving its original figure some thirty feet long and a foot 

4
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Figure 1: John Scott Russell, portrayed at a later time, and an artist’s impression of the initial 

condition of his observation in 1834 (with a liberal interpretation of a ‘pair of horses’).

 

Figure 2: A depiction of two experiments carried out by John Scott Russell to recreate the 

Wave of Translation and study its properties.

 

to a foot and a half in height. Its height gradually diminished, and after a chase 

of one or two miles I lost it in the windings of the channel. Such, in the month 

of August 1834, was my first chance interview with that singular and beautiful 

phenomenon which I have called the Wave of Translation. 

John Scott Russell

 

”

 

As we will appreciate in the coming chapters, this solitary Wave of Translation behaves very 

differently from the ordinary waves which solve linear differential equations, which are a good 

approximation when interactions are small. Different linear waves can be added up (“super- 

imposed”) to obtain any wave profile, but these different linear waves travel at different speeds 

which depend on their wavelengths. As a result, any localised wave profile which is the su- 

perposition of various linear waves will “disperse” and lose its shape over time, because it 

consists of several linear waves which travel at different speeds. Russell’s “Wave of Transla- 

tion” , which is now called a “soliton” using a term coined by [Zabusky and Kruskal, 1965], 

behaved very differently, maintaining its shape unaltered over a surprisingly long time. Con- 

vinced that his observation was very important, John Scott Russell followed it up by a number 

of experiments in which he recreated his waves of translation and studied their properties, see 

figure 2. His results were published ten years later in the report [John Scott Russell, 1845], but
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Figure 3: From left to right: Joseph Valentin Boussinesq, Diederik Korteweg and Gustav de 

Vries. 

much to his chagrin the scientific community paid little attention. 

It took a few decades before a mathematical equation that describes shallow water waves 

and captures the peculiar phenomenon observed by John Scott Russell was introduced. The 

equation was first written down by the French mathematician and physicist Joseph Valentin 

Boussinesq [Boussinesq, 1877], and was then independently rediscovered by the Dutch math- 

ematicians Diederik Korteweg and Gustav de Vries [Korteweg and Vries, 1895], see figure 3. 

According to the principle that things in science are named after the last people to discover 

them, this equation is now known as the 

• KORTEWEG-DE VRIES (KdV) EQUATION (1895):

 

ut ` 6 uux ` uxxx “ 0

 

.

 

(0.1) 

This is a short-hand for the partial differential equation 

B u

 

B t 

` 6 u
B u

 

B x
`

B3 u

 

B x3 

“ 0 

for the real ‘field’ u p x, t q , which represents the height of a wave (measured from the 

surface of water at rest) in one space dimension x at time t . This equation: 

– describes long wavelength shallow water waves propagating in one space dimen- 

sion; 

– captures the properties observed by John Scott Russell; 

– is a subtle limit of the equation describing real water waves propagating in one 

space dimension, in coordinates moving with the wave (see [Drazin and Johnson, 

1989] for details if you are interested).
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Figure 4: Plot of the initial condition u p x, 0 q “ 2 sech2 x for the KdV equation. 

REMARKS on the KdV equation

 

: 

1. Non-linear ùñ Superposition principle fails. 

(Superposition principle: u1 

, u2 

solutions ùñ a1 

u1` a2 

u2 

solution for all constants 

a1 

, a2) 

2. 1st order in t ùñ Solution determined by initial condition u p x, 0 q . 

3. Looks simple, but hides a rich mathematical structure. 

We’ll start by investigating the time evolution of the localised initial condition plotted in figure 

4,

 

u p x, 0 q “ 

2

 

cosh2
p x q

 

,

 

(0.2) 

with the help of a computer. To gain some intuition, let’s look at the KdV equation (0.1) piece 

by piece: 

1. Drop the non-linear term 6 uux, to obtain the LINEARISED KdV EQUATION :

 

ut ` uxxx “ 0 .

 

(0.3) 

See an animation of the time evolution here. The initial localised wave disperses , i.e. it 

spreads out to the left, and u Ñ 0 as t Ñ `8 for any fixed x . 

2. Drop the dispersive term uxxx, to obtain the DISPERSIONLESS KdV EQUATION :

 

ut ` 6 uux “ 0 .

 

(0.4)

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Linearised_KdV.gif
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In this case non-linearity causes the wave to pile up and break after a finite time: 

| ux| Ñ 8 as t Ñ 

?

 

3 { 16 » 0 . 108 , which can be computed using the method of char- 

acteristics. Read this if you are interested in the calculation of the breaking time and 

see an animation of the time evolution here (the high frequency oscillations near the 

breaking point are an artifact of the numerical approximation). 

3. Keep all terms in the KdV EQUATION :

 

ut ` 6 uux ` uxxx “ 0 .

 

The two previous effects cancel and we get a “travelling wave” , which keeps its form 

and just moves to the right, as you can see here. 

Admittedly, the initial condition that we chose in (0.2) was very special. Generic solutions of 

KdV have a much more complicated behaviour (indeed equations (0.3)-(0.4) and their solutions 

are recovered in certain limits). Let us then experiment with a slightly more general class of 

initial conditions:

 

u p x, 0 q “ 

N p N ` 1 q

 

cosh2
p x q

 

, N ą 0 ,

 

(0.5) 

which reduces to the previous initial condition (0.2) if N “ 1 . Here are animations of the time 

evolution of the initial condition (0.5) under the KdV equation, for N equal to 0 . 5 , 1 , 1 . 5 , 2 , 2 . 5 

and 3 .1 

These numerical experiments indicate that:2 

• N integer : 

the initial wave splits into N solitons moving to the right with no dispersion. 

• N not integer : 

the initial wave splits into r N s solitons moving to the right plus dispersing waves , 

where r N s denotes the integer part of N . 

• Either way, the different solitons move at different speeds. It can be checked that 

SPEED 9 HEIGHT 

WIDTH 9 (HEIGHT)´ 1 { 2

 

1Note: in this animation space has been compactified to a circle using periodic boundary conditions u p 10 , t q “ 

u p´ 10 , t q . This allows us to investigate what happens when two solitons collide. This will be briefly discussed 

below, and we will return to this specific feature in greater detail later. 

2We will derive these results analytically later.

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Wave_breaking_dispersionless_KdV.pdf
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Dispersionless_KdV.gif
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/KdV.gif
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Nequal05.gif
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Nequal1.gif
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Nequal15.gif
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Nequal2.gif
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Nequal25.gif
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Nequal3.gif
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in agreement with John Scott Russell’s empirical observations.3 

One more feature is visible if one works with periodic spatial boundary conditions (BC), in 

which space is a circle, as was assumed in the previous animations: faster solitons catch up 

with and overtake slower solitons, with seemingly no final effect on their shapes! This is very 

surprising for a non-linear equation, for which the superposition principle does not hold. Note 

also that something funny happens during the overtaking: the height of the wave decreases, 

unlike for linear equations where different waves add up. This unusual behaviour was first 

observed in experiments by John Scott Russell, who was convinced that this was very impor- 

tant. It took a long time for the mathematics necessary to understand this phenomenon to 

develop and for the scientific community to fully come on board with John Scott Russell.4 

We can summarize the previous observations in the following working definition of a soliton, 

that we will use in the rest of the course: 

A SOLITON

 

is a solution of a non-linear wave equation (or PDE) which: 

1. IS LOCALISED 

(It’s a “lump” of energy) 

2. KEEPS ITS LOCALISED SHAPE OVER TIME 

(It moves with constant shape and velocity in isolation) 

3. IS PRESERVED UNDER COLLISIONS WITH OTHER SOLITONS 

(If two or more solitons collide, they re-emerge from the collision with the same 

shapes and velocities.)

 

3Roughly, KdV solitons only move to the right because the limit of the physical wave equation that leads 

to the KdV equation involves switching to a reference frame which moves together with the fastest possible 

left-moving waves. Relative to that reference frame, all other waves move to the right. 

4The modern revival of solitons was kickstarted by the numerical and analytical results of [Zabusky and 

Kruskal, 1965], who built on the earlier important numerical work of Fermi, Pasta, Ulam and Tsingou [Fermi 

et al., 1955]. (The paper of Fermi et al. was based on the first ever computer-aided numerical experiment, done 

on the MANIAC computer at Los Alamos [Porter et al., 2009]. Mary Tsingou’s role in coding the problem was 

neglected for a long time and has only received the attention it deserves in recent years [Dauxois, 2008].) 

It was universally expected at the time that in any non-linear physical system and for any initial conditions, 

interactions would spread the energy of the system evenly among all its degrees of freedom over time (‘thermali- 

sation’ and ‘equipartition of energy’) and cause the system to explore all its available configurations (‘ergodicity’). 

This process is what makes thermodynamics and statistical mechanics work. 

Fermi et al. set out to study a system of non-linearly coupled oscillators numerically, with the aim of observing 

how thermalisation occurs. The system initially appeared to thermalise as expected, but to their great surprise 

they observed that it developed close-to-periodic (rather than ergodic) behaviour over longer time scales. A 

decade later, Zabusky and Kruskal showed that the system studied by Fermi et al. is approximated in a certain 

limit by the KdV equation, whose very special properties can explain the surprising behaviour of the system.
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Figure 5: Contour plot of the energy density of two colliding KdV solitons, as a function of 

space and time. Lighter regions have higher energy density and correspond to the cores of the 

two solitons. We can see the trajectories of the two solitons and the phase shift induced by the 

collision: the faster soliton is advanced, while the slower soliton is retarded by the collision. 

Watch this video (tip: turn down the volume) of water solitons created in a lab, which obey 

the previous defining properties to a very good approximation. 

Solitons are not just objects of purely academic interest. They can appear in Nature under a 

variety of circumstances. For instance, here is a video of the Severn bore taken on the 2019 

spring equinox: as the high tide coming from the Atlantic Ocean enters the funnel-shaped 

estuary of the Severn, water surges forming highly localised waves which travel (and can be 

surfed!) for several miles into the Bristol Channel. 

REMARKS

 

: 

• Property 3 does not mean that nothing happens to solitons which collide: as we will 

study towards the end of the term, the effect of the collision is to advance or retard the 

solitons by a so-called “phase shift”. As an example, in figure 5 we can see the trajectories 

of two colliding KdV solitons and the phase shifts resulting from their interaction. 

• Only very special field theories (or equivalently, wave equations) admit solitons as de- 

fined above. They are called integrable and are usually defined in 1 space + 1 time 

dimensions. Property 3 is the key. (Some people use the term “integrable soliton” for 

the above definition, but we will stick with “soliton” in this course.)

https://youtu.be/wEbYELtGZwI
https://youtu.be/7MME_cW7zmo
https://en.wikipedia.org/wiki/Severn_bore
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Solitons have been studied in depth since the 1960s in relation to many contexts: 

• Applied Maths : water waves, optical fibres, electronics, biological systems... 

• High Energy Physics : particle physics, gauge theory, string theory... 

• Pure Maths : special functions, algebraic geometry, spectral theory, group theory... 

We will consider two main examples of integrable equations in this course:

 

KdV : ut ` 6 uux ` uxxx “ 0

 

(0.6) 

sine ´ Gordon : utt ´ uxx “ ´ sin u

 

(0.7)

 

• THIS TERM

 

: we will study simple pure solitons with no dispersion . 

• NEXT TERM

 

: you will study “inverse scattering” , a powerful formalism that allows 

an analytical understanding of the time evolution of generic initial conditions .5 

To get a better feel for solitons before we start, let’s consider a discrete model which displays 

solitons but no dispersion. This is an example of a “cellular automaton”, a zero-player game 

where the rules for time evolution are fixed and the only freedom is in the choice of initial 

condition, but in which surprisingly rich patterns can develop.6 

0.2 The ball-and-box model 

This term we will learn several analytic methods to generate single and multiple soliton solu- 

tions of non-linear differential equations like KdV, and study the properties of these solutions. 

As we have seen, experimenting with these equations on a computer can be very useful to

 

5The inverse scattering formalism was designed for equations in which space is the real line, but it is also 

useful if space is a finite interval or a circle (periodic bc). E.g. a sinusoidal initial condition on a circle evolves into 

a train of solitons [Zabusky and Kruskal, 1965], see this animation. Here is a contour plot of the energy density, 

showing the trajectories of the various solitons, which after a while recombine into a sinusoidal wave, leading 

to the periodic behaviour discussed in footnote4. 

6The most famous cellular automaton is perhaps John Conway’s Game of Life. Read about it here if you have 

never heard of it. If you search Conway’s game of life or cellular automata on YouTube you will enter a rabbit 

hole of cool videos, often accompanied by an electronic music soundtrack. Too bad that we won’t study those 

cellular automata further in this course, apart from the simple model which is the subject of next section.

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/ZK_FUPT.gif
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/ZK_FUPTcontour.jpg
https://en.wikipedia.org/wiki/Conway's_Game_of_Life
https://www.youtube.com/results?search_query=conway's+game+of+life
https://www.youtube.com/results?search_query=cellular+automata
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Figure 6: A localised configuration of the ball and box model and its continuous analogue. 

develop intuition about the properties of solitons. The trouble is that you need a big-ish com- 

puter for most of these numerical experiments. 

Fortunately, it was realised around 1990 that many properties of continuous solitons can be 

mimicked by much simpler discrete models , which can be studied by drawing pictures with 

pen and paper . A nice and simple example is the BALL AND BOX MODEL of [Takahashi 

and Satsuma, 1990]. In this model, space and time are discrete . In particular: 

- Continuous space is replaced by an infinite line of boxes, labelled by a position i P Z 

- At any instant t P Z , the configuration of the system is specified by filling a number of 

boxes with one ball each, as in figure 6. 

- Time evolution t Ñ t ` 1 is governed by the 

BALL AND BOX RULE

 

: 

Move the leftmost ball to the next empty box to its right. Repeat the process until 

all balls have been moved exactly once. When you are done, the system has been 

evolved forward one unit in time.

 

The ball and box rule plays the role of the PDE for continuous solitons, e.g. ut “ ´ 6 uux´ uxxx 

in the case of the KdV equation. 

EXAMPLES

 

: 

• 1 ball :
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• 2 consecutive balls :

 

• 3 consecutive balls :

 

We learn that a sequence of n consecutive balls behaves like a soliton: it keeps its shape and 

translates by n boxes in one unit of time. So for this class of solitons 

SPEED “ LENGTH , 

where we define the speed as the length travelled per unit time. 

So far we have only checked that the defining properties 1 and 2 of a soliton are obeyed by 

a sequence of consecutive balls. To check the remaining property 3, let us consider what 

happens when a longer ( “ faster) soliton is behind( “ to the left of) a shorter ( “ slower) soliton. 

After a while the faster soliton will catch up and collide with the slower soliton. What happens 

next? Let’s look at an example with a length- 3 soliton following a length- 2 soliton:
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We see that the two solitons keep the same shape after the collision, but their order is re- 

versed: the faster soliton has overcome the slower one. If we look carefully, we can also notice 

that the positions of the two solitons are delayed/advanced by a finite amount compared to 

the positions that each soliton would have had in the absence of the other soliton. We will call 

this spatial advance or delay a “phase shift” , which is positive for a soliton which is advanced 

and negative for a soliton which is retarded. In the previous example the length- 3 solitons has 

a phase shift of ` 4 and the length- 2 solitons has a phase shift of ´ 4 . [Make sure that you 

understand how this phase shift is computed from the previous figure!] This is analogous to 

the phase shift visible in figure 5 in the scattering of continuous KdV solitons. 

˚ EXERCISE

 

: Generalize the previous example to a length m soliton overtaking a length 

n soliton (with m ą n ) and find a general rule for what happens. (Start with 

separation l ě n between the two solitons, that is, there are l empty boxes 

between the two solitons in the initial configuration.) [Ex 4] 

The ball and box model can be generalized by introducing balls of different colours. For in- 

stance, in the 2-COLOUR BALL AND BOX MODEL , balls come in two colours (say BLUE 

and RED ), and again each box can be filled by at most one ball, of either colour.7 The time 

evolution t Ñ t ` 1 is governed by the 

2-COLOUR BALL AND BOX RULE

 

: 

Move the leftmost BLUE ball to the next empty box to its right. Repeat the process until 

all BLUE balls have been moved exactly once. Then do the same for the RED balls. When 

all the BLUE and RED balls have been moved, the system has been evolved forward by 

one unit of time.

 

EXAMPLE

 

:

 

˚ EXERCISE

 

: Can you classify solitons in the 2-colour ball and box model? [Ex 5] 

What happens when solitons collide? [Ex 7*] 

(Starred exercises are for the bravest.) 

Next, we will return to continuous wave equations and aim to make the phenomenon of dis-

 

7If you happen to be colour blind and this part of the note is not accessible, please let me know and I’ll replace 

the two colours by different symbols.
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persion more precise.



 

Chapter 1 

Waves, dispersion and dissipation 

The main reference for this chapter is §1.1 of the book [Drazin and Johnson, 1989]. 

1.1 Dispersion 

Usually, localised waves spread out ( “disperse” ) as they travel. This prevents them from 

being solitons. Let’s understand this phenomenon first. 

EXAMPLES

 

: 

1. ADVECTION EQUATION (linear, 1st order):

 

1

 

v 

ut ` ux “ 0

 

(1.1) 

ÝÑ Solution 

u p x, t q “ f p x ´ v t q for any function f , 

i.e. a wave moving with velocity v (right-moving if v ą 0 , left-moving if v ă 0 ). The 

wave keeps a fixed profile f p ξ q and moves rigidly at velocity v (indeed ξ “ x ´ v t ):

 

16
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So in this case there is no dispersion, but nothing else happens either. 

2. “THE” WAVE EQUATION or D’ALEMBERT EQUATION (linear, 2nd order):

 

1

 

v2 

utt ´ uxx “ 0

 

p v ą 0 wlog q

 

(1.2) 

ÝÑ Solution 

u p x, t q “ f p x ´ v t q ` g p x ` v t q for any functions f , g , 

i.e. the superposition of a right-moving and a left-moving wave with velocities ˘ v :

 

All waves move at the same speed, so there is no dispersion, but there is no interaction 

either, so this is also not very interesting for our purposes. 

3. KLEIN-GORDON EQUATION1 (linear, 2nd order):

 

1

 

v2 

utt ´ uxx ` m2 u “ 0

 

,

 

(1.3) 

where we take v ą 0 wlog. 

This is a more interesting equation. Let us try a complex “plane wave” solution2

 

u p x, t q “ ei p k x ́  ω t q

 

.

 

(1.4) 

Substituting the plane wave (1.4) in the Klein-Gordon equation (1.3), we find:

 

´ 

ω2

 

v2 

ei p k x ́  ω t q
` k2 ei p k x ́  ω t q

` m2 ei p k x ́  ω t q
“ 0 

ùñ ´ 

ω2

 

v2 

` k2 ` m2
“ 0 .

 

1This is the first relativistic wave equation (with v the speed of light). It was introduced independently by 

Oskar Klein [Klein, 1926] and Walter Gordon [Gordon, 1926], who hoped that their equation would describe 

electrons. It doesn’t, but it describes massive elementary particles without spin, like the pion or the Higgs boson. 

2This is called a “plane wave” because its three-dimensional analogue u p ⃗x, t q “ exp r i pk⃗ ¨ x⃗ ´ ω t qs has constant 

u along a plane k⃗ ¨ x⃗ “ const at fixed t . Unless specified, in this course we are interested in real fields u . It is 

nevertheless convenient to use complex plane waves (1.4) and eventually take the real or imaginary part to find 

a real solution, rather than working with the real plane waves cos p k x ´ ω t q and sin p k x ´ ω t q from the outset.
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So the plane wave (1.4) is a solution of the Klein-Gordon equation (1.3) provided that ω 

satisfies

 

ω “ ω p k q “ ˘ v 

?

 

k2 ` m2

 

.

 

(1.5) 

We will usually ignore the sign ambiguity and only consider the ` sign in (1.5) and 

similar equations.3 

VOCABULARY

 

: 

k wavenumber 

ω angular frequency 

λ “ 

2 π

 

k 

wavelength (periodicity in x ) 

τ “ 

2 π

 

ω 

period (periodicity in t ) 

A formula like (1.5) relating ω to k : dispersion relation . 

The maxima of a real plane wave, like for instance Re ei p k x ́  ω p k q t q or Im ei p k x ́  ω p k q t q, are 

called “wave crests” . By a slight abuse of terminology, we will refer to the wave crests 

of the real or imaginary part of a complex plane wave like (1.4) simply as the wave crests 

of the complex plane wave. 

By rewriting the complex plane wave solution (1.4) of the Klein-Gordon equation as 

eik p x ́  c p k q t q, we see that its wave crests move at the velocity

 

c p k q “ 

ω p k q

 

k 

“ v 

c

 

1 ` 

m2

 

k2 

sign p k q .

 

Plane waves with different wavenumbers move at different velocities , so if we try 

to make a lump of real Klein-Gordon field by superimposing different plane waves

 

u p x, t q “ Re 

ż `8 

´8 

dk f p k q ei p k x ́  ω p k q t q

 

,

 

(1.6) 

it will disperse . 

In fact, there are two different notions of velocity for a wave: 

- PHASE VELOCITY

 

c p k q “ 

ω p k q

 

k

 

,

 

(1.7) 

which is the velocity of wave crests.

 

3We do not lose generality here, since we can obtain the plane wave solution with opposite ω by taking the 

complex conjugate plane wave solution and sending k Ñ ´ k .
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- GROUP VELOCITY

 

cgp k q “ 

dω p k q

 

dk

 

,

 

(1.8) 

which is the velocity of the lump of field while it disperses. 

We will understand better the relevance of the group velocity in the next section. 

REMARK

 

: 

The energy (and information) carried by a wave travels at the group velocity , not at the 

phase velocity. For a relativistic wave equation with speed of light v , no signals can be 

transmitted faster than the speed of light. So it should be the case that | cgp k q| ď v

 

for all 

wavenumbers k , but there is no analogous bound on the phase velocity. For example, for the 

Klein-Gordon equation (1.3), we can calculate 

- |Group velocity|: 

| cgp k q| “ 

ˇ

ˇ

ˇ

ˇ 

dω p k q

 

dk 

ˇ

ˇ

ˇ

ˇ

“ 

v

 

b

 

1 ` 

m2

 

k2 

ď v 

consistently with the principles of relativity. 

- |Phase velocity|: 

| c p k q| “ 

ˇ

ˇ

ˇ

ˇ 

ω p k q

 

k 

ˇ

ˇ

ˇ

ˇ

“ v 

c

 

1 ` 

m2

 

k2 

ě v , 

which is faster than the speed of light v for all k , but this is not a problem. 

1.2 Example: the Gaussian wave packet 

The simplest example of a localised field configuration obtained by superposition of plane 

waves is the “GAUSSIAN WAVE PACKET”, which is obtained by choosing a Gaussian 

f p k q “ e´ a2p k ´k̄ q2 

p a ą 0 , k̄ P R q 

in the general superposition (1.6). This represents a lump of field with 

average wavenumber k̄ 

spread of wavenumber „ 1 { a , 

see fig. 1.1.
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Figure 1.1: Gaussian wavepacket in Fourier space. 

Then u p x, t q “ Re z p x, t q is a real solution of the Klein-Gordon equation, where

 

z p x, t q “ 

ż `8 

´8 

dk e´ a2p k ´k̄ q2 

ei p k x ́  ω p k q t q

 

,

 

(1.9) 

provided that ω p k q “ v
?

 

k2 ` m2.4 

Since most of the integral (1.9) comes from the region k « k̄ , we can obtain a good approxi- 

mation to (1.9) by Taylor expanding ω p k q about k “ k̄ . Expanding to first order in p k ´ k̄ q we 

obtain

 

ω p k q “ ω pk̄ q ` ω1
pk̄ q ¨ p k ´ k̄ q ` O pp k ´ k̄ q

2
q 

“ ω pk̄ q ` cgpk̄ q ¨ p k ´ k̄ q ` O pp k ´ k̄ q
2
q 

« ω pk̄ q ` cgpk̄ q ¨ p k ´ k̄ q ,

 

where in the second line we used (1.8) and in the third line we introduced a short-hand « to

 

4 z p x, t q is a complex solution of the Klein-Gordon equation. Since the Klein-Gordon equation is a linear 

equation with real coefficients, the complex conjugate z p x, t q˚ is also a solution of the Klein-Gordon equation, 

as are Re z p x, t q and Im z p x, t q .
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avoid writing O pp k ´ k̄ q2q every time. Substituting in (1.9), we find

 

z p x, t q « 

ż `8 

´8 

dk e´ a2p k ´k̄ q2 

ei t k x ́ r ω pk̄ q` cgpk̄ q¨p k ´k̄ qs t u 

“ ei rk̄ x ́  ω pk̄ q t s 

ż `8 

´8 

dk e´ a2p k ´k̄ q2 

ei p k ´k̄ qr x ́  cgpk̄ q t s 

“ 

k Ñ k `k̄ 

ei rk̄ x ́  ω pk̄ q t s 

ż `8 

´8 

dk e´ a2 k2` ik r x ́  cgpk̄ q t s 

“ 

complete 

the square 

ei rk̄ x ́  ω pk̄ q t s e´ 

1

 

4 a2
r x ́  cgpk̄ q t s2 

ż `8 

´8 

dk e´ a2tk ´ 

i

 

2 a2
r x ́  cgpk̄ q t su 

2 

“ 

Gaussian
integral 

ei rk̄ x ́  ω pk̄ q t s

l

 

jh

 

n 

CARRIER WAVE 

¨ 

?

 

π

 

a 

e´ 

1

 

4 a2
r x ́  cgpk̄ q t s2 

l

 

jh

 

n 

ENVELOPE 

,

 

where in the second line we factored out a plane wave with k “ k̄ , in the third line we 

changed integration variable replacing k by k ` k̄ , in the fourth line we completed the square 

Ak2 ` B k “ A p k ` 

B

 

2 A
q2 ´ 

B2

 

4 A
, and in the last line we used the Gaussian integral formula 

ż `8` ic 

´8` ic 

e´ Ak2 

“ 

c

 

π

 

A 

, 

which holds for all A ą 0 and c P R . The final result is the product of a: 

1. “CARRIER WAVE” : 

a plane wave moving at the phase velocity 

c pk̄ q “ 

ω pk̄ q

 

k̄

 

2. “ENVELOPE” : 

a localised profile (or “wave packet”) mov- 

ing at the group velocity 

cgpk̄ q “ ω1
pk̄ q .

 

Click here to see an animation of a Gaussian wavepacket with a (Gaussian) envelope and a 

carrier wave moving at different velocities. In the animation the phase velocity is much larger 

than the group velocity. 

To this order of approximation, the spatial width of the lump has the parametric dependence

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/GroupPhaseVelocity2.gif
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WIDTH „ a , 

meaning that the width doubles if a is doubled, and is constant in time. (Indeed, a simultaneous 

rescaling of x ´ cgpk̄ q t and a by the same constant λ leaves the envelope invariant.) 

˚ EXERCISE

 

: Improve on the previous approximation by including the 2nd order in k ´ k̄ . 

Show that [Ex 10] 

WIDTH2 „ a2 ` 

ω2pk̄ q

 

4 a2 

t2 

and that the amplitude of the wave packet also decreases as time increases. 

This leads to the phenomenon of DISPERSION , whereby the profile of the wave packet 

changes as it propagates. In particular, starting from a localised wave packet, dispersion makes 

the wave packet spread out: the width of the initial wave packet grows and the amplitude de- 

creases as time increases. See this animation of the time evolution of the Gaussian wave-packet 

up to second order in p k ´ k̄ q . 

1.3 Dissipation 

So far we have considered wave equations which lead to a real dispersion relation, so ω p k q P R . 

If instead ω p k q P C , then a new phenomenon occurs: DISSIPATION , where the amplitude 

of the wave decays (or grows) exponentially in time . For a plane wave

 

u p x, t q “ ei p k x ́  ω p k q t q
“ ei p k x ́  Re ω p k q¨ t qq e Im ω p k q¨ t

 

(1.10) 

and we have two cases: 

• Im ω p k q ă 0 : “PHYSICAL DISSIPATION” 

The amplitude decays exponentially with time. 

• Im ω p k q ą 0 : “UNPHYSICAL DISSIPATION” 

The amplitude grows exponentially with time (physically unacceptable). 

EXAMPLES

 

: 

1.

 

1

 

v 

ut ` ux ` α u “ 0

 

p α ą 0 , v ą 0 q

 

(1.11) 

Sub in a plane wave u “ ei p k x ́  ω t q:

 

´ i 

ω

 

v 

` ik ` α “ 0 ùñ ω p k q “ v p k ´ iα q ,

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/GaussianWPDispersion.gif
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leading to a complex dispersion relation. The plane wave solution is therefore 

u p x, t q “ eik p x ́  v t q e´ αv t 

and the wave decays exponentially, or “dissipates” , to zero as t Ñ `8 . This is an 

example of physical dissipation. ( α v ă 0 would have led to unphysical dissipation.) 

2. HEAT EQUATION:

 

ut ´ α uxx “ 0

 

p α ą 0 q

 

(1.12) 

˚ EXERCISE

 

: Sub in a plane wave and derive the dispersion relation ω p k q “ ´ iα k2. 

So the plane wave solution of the heat equation is 

u p x, t q “ eik x e´ αk2 t 

and the waves dissipates as time passes. 

1.4 Summary 

• Linear wave equation ÝÑ (Complex) plane wave solutions u “ ei p k x ́  ω t q . 

Sub in to get ω “ ω p k q dispersion relation . 

• Wave crests move at c p k q “ ω p k q{ k phase velocity . 

(If ω p k q P C , then we define the phase velocity as c p k q “ Re ω p k q{ k .) 

• Lumps of field 

/wave packets 

move at cgp k q “ ω1p k q group velocity . 

(If ω p k q P C , then we define the group velocity as cgp k q “ Re ω1p k q .) 

• Dispersion (real ω , width increases and amplitude decreases) and dissipation (complex 

ω , amplitude decreases exponentially) smooth out and destroy localised lumps of energy 

in linear wave (or field) equations. 

• Non-linearity can have an opposite effect (steepening and breaking, see chapter 0). 

• For solitons the competing effects counterbalance one another precisely, leading to 

stable lumps of energy, unlike for ordinary waves.



 

Chapter 2 

Travelling waves 

The main references for this chapter are §2.1-2.2 of [Drazin and Johnson, 1989] and §2.1 of 

[Dauxois and Peyrard, 2006]. 

A “TRAVELLING WAVE” is a solution of a wave equation of the form 

u p x, t q “ f p x ´ v t q

 

, 

where f is a function of a single variable, which we will typically denote by ξ : “ x ´ v t . The 

velocity v of the travelling wave could either be: 

1. Fixed in terms of a parameter appearing in the wave equation , as in d’Alembert’s 

general solution 

u p x, t q “ f p x ´ v t q ` g p x ` v t q 

of the wave equation 

1

 

v2 

utt ´ uxx “ 0 , 

which is the linear superposition of two travelling waves with velocities ˘ v . 

2. A free parameter of the solution , as in the KdV soliton that we will derive shortly. 

REMARK

 

: 

In some cases ( e.g. “the” wave equation or the sine-Gordon equation) there will be both a 

velocity parameter appearing in the equation ( e.g. the speed of light) and a different velocity 

parameter appearing in the travelling wave solution (namely, the speed of the wave). To avoid 

confusion, from now on the velocity parameter appearing in the wave equation will be set to 

24
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1 by an appropriate choice of units, and v will be reserved for the velocity of the travelling 

wave. For example, we will write “the” wave equation as utt 

´ uxx 

“ 0 and d’Alembert’s 

general solution as u p x, t q “ f p x ´ t q ` g p x ` t q , which is the superposition of two travelling 

waves with velocities v “ ˘ 1 . 

2.1 The KdV soliton 

We would like to find a travelling wave solution of the KdV equation 

ut ` 6 uux ` uxxx “ 0 

with boundary conditions (BC’s) 

BC’s : u, ux 

, uxx ÝÝÝÝÑ 

x Ñ˘8 

0 

for all finite values of t . Let us accept these BC’s for the time being; we will derive them later. 

Substituting in the KdV equation the travelling wave ansatz u p x, t q “ f p x ´ v t q ” f p ξ q where 

ξ “ x ´ v t , using the chain rule to express partial derivatives wrt x and t in terms of ordinary 

derivatives wrt ξ as follows, 

B

 

B x 

“ 

B ξ

 

B x 

d

 

dξ 

“ 

d

 

dξ 

, 

B

 

B t 

“ 

B ξ

 

B t 

d

 

dξ 

“ ´ v 

d

 

dξ 

, 

and using primes to denote derivatives wrt ξ , we obtain an ODE which we can integrate twice:

 

´ v f 1
` 6 f f 1

` f3
“ 0 

ùñ
ş 

dξ 

´ v f ` 3 f 2
` f2

“ A 

ùñ
ş 

dξ f 1 

´ 

v

 

2 

f 2
` f 3

` 

1

 

2
p f 1

q
2

“ Af ` B ,

 

where A and B are integration constants. The second integration used an integrating factor 

f 1, as denoted by the short-hand 

ş 

dξ f 1. 

We can determine the integration constants A and B by imposing the BC’s, which imply that 

f , f 1 , f2 Ñ 0 as ξ Ñ ˘8 . Sending ξ Ñ ˘8 in the second and third line above we find1

 

BC’s: A “ B “ 0 

ùñ p f 1
q
2

“ f 2
p v ´ 2 f q 

ùñ f 1
“ ˘ f 

a

 

v ´ 2 f 

ùñ 

ż 

df

 

f
?

 

v ´ 2 f 

“ ˘ ξ ” ˘p x ´ v t q . ( ̊  )

 

1

 

▲

 

!

 

Always impose the boundary conditions carefully and keep in mind that they don’t always imply 

that the integration constants vanish. This is a major source of mistakes in homework and exams.
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where we note that we need f ď v { 2 to ensure that f , f 1 P R . 

To calculate the integral obtained by separation of variables, we change integration variable

 

f “ 

v

 

2
sech2 ϑ ( ̊ ˚ ) 

ùñ df “ ´ v 

sinh ϑ

 

cosh3 ϑ 

dϑ , 

a

 

v ´ 2 f “
?

 

v 

c

 

1 ´ 

1

 

cosh2 ϑ 

“ ˘
?

 

v
sinh ϑ

 

cosh ϑ 

ùñ 

df

 

f
?

 

v ´ 2 f 

“ ¯ 

v 

sinh ϑ

 

cosh3 ϑ 

dϑ

 

v

 

2 

1

 

cosh2 ϑ 

?

 

v 

sinh ϑ

 

cosh ϑ 

“ ¯ 

2

 

?

 

v 

dϑ . ( ̊ ˚ ˚ )

 

Substituting ( ̊ ˚ ˚ ) in ( ̊  ) and keeping in mind that the sign ambiguities arising from taking 

square roots in the two equations are unrelated (and therefore only the relative sign ambiguity 

matters), we find

 

´ 

2

 

?

 

v 

ż 

dϑ “ ˘p x ´ v t q 

ùñ ϑ “ ˘ 

?

 

v

 

2 

p x ´ x0 ´ v t q ,

 

where x0 

is an integration constant. Substituting in ( ̊ ˚ ) we find the travelling wave solution

 

u p x, t q “ f p x ´ v t q “ 

v

 

2
sech2 

„?

 

v

 

2 

p x ´ x0 ´ v t q 

ȷ

 

(2.1) 

where the sign ambiguity has disappeared because sech2 is an even function. 

The travelling wave solution (2.1) of the KdV equation is the KdV SOLITON . See 2.1 for a 

snapshot of the KdV soliton. 

REMARKS

 

: 

• For a real non-singular solution we need v ě 0 , which means that KdV solitons only 

travel to the right.2

 

2If v ă 0 the travelling wave solution is 

´
| v |

 

2 

sec2 

« 

a

 

| v |

 

2 

p x ´ x0 ` | v | t q 

ff 

, 

which moves to the left with speed | v | but diverges wherever r . . . s “ 

`

n ` 

1

 

2 

˘ 

π with n P Z . We are always 

after real bounded solutions, so we discard this singular (or divergent) solution.



 

CHAPTER 2. TRAVELLING WAVES 27

 

Figure 2.1: Snapshot of the KdV soliton. 

• PROPERTIES of the KdV soliton: 

VELOCITY v 

HEIGHT v { 2 

WIDTH „ 

1

 

?

 

v 

CENTRE x0 ` v t 

Clarification: 

What do I mean by WIDTH „ 1 {
?

 

v ? A possible definition of the width of the soliton is as 

the distance between the two points where the value of u is reduced by a factor of e from its 

maximum, that is WIDTH “ | x` ´ x´| ” 2∆ x where u p x˘q “ v {p 2 e q . For
?

 

v ∆ x " 1 , we 

can approximate sech2 

´?

 

v

 

2 

∆ x 

¯ 

« 4 e´
?

 

v ∆ x, therefore this definition of width would give 

WIDTH “ 2∆ x « 

2

 

?

 

v
p 1 ` log 4 q « 

4 . 77

 

?

 

v 

. 

(Without the approximation one finds 4 . 34 ... {
?

 

v .) However the above definition of width 

was somewhat arbitrary: for instance we could have looked at points where the value u is 

reduced by a factor of 2 , or 3 , or else, from its maximum. Given a precise definition of width, 

one can determine the precise coefficient of 1 {
?

 

v above, but fixating on a precise definition 

would be somewhat absurd given the arbitrariness in the definition. It is better to say that 

“the width is of the order of” (or equivalently “goes like” ) 1 {
?

 

v . This is independent of 

the precise definition of width and captures the essential point that the spatial coordinate x 

appears multiplied by
?

 

v in the KdV soliton solution (2.1). We use „ to denote this paramet- 

ric dependence . This is not to be confused with « , which means “is approximately equal 

to”.
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A final comment: if the BC’s are changed to allow A, B ‰ 0 ( e.g. if we impose periodic 

boundary conditions, which is equivalent to solving the KdV equation on a circle), then the 

ODE for the travelling wave solution can still be integrated exactly using elliptic functions. 

See §2.4, 2.5 of [Drazin and Johnson, 1989] if you are interested. 

2.2 The sine-Gordon kink 

Let us seek a travelling wave solution the sine-Gordon equation 

uxx ´ utt “ sin u , 

where u is an angular variable u defined modulo 2 π , subject to the boundary conditions 

BC’s : u mod 2 π , ux ÝÝÝÝÑ 

x Ñ˘8 

0 

for every finite t . (More about these BC’s later.) 

Substituting the travelling wave ansatz u p x, t q “ f p x ´ v t q ” f p ξ q in the sine-Gordon equa- 

tion, we find

 

p 1 ´ v2q f2
“ sin f 

ðñ f2
“ γ2 sin f , where γ : “ 

1

 

?

 

1 ´ v2 

ùñ
ş 

dξ f 1 

1

 

2
p f 1

q
2

“ A ´ γ2 cos f 

BC’s: A “ γ2 

ùñ f 1
“ ˘ 

?

 

2 γ 

a

 

1 ´ cos f “ ˘ 2 γ sin 

f

 

2 

ùñ 

ż 

df

 

2 sin 

f

 

2 

“ ˘ γ p x ´ x0 ´ v t q 

ùñ log tan 

f

 

4 

“ ˘ γ p x ´ x0 ´ v t q

 

where x0 

is an undetermined integration constant. 

We find therefore the following travelling wave solution of the sine-Gordon equation

 

u p x, t q “ f p x ´ v t q “ 4 arctan 

`

e˘ γ p x ́  x0´ v t q 

˘

 

,

 

(2.2) 

which goes by the name of “KINK” ( ̀  sign) or “ANTI-KINK” ( ́  sign). 

Note that the BC required that as ξ Ñ ˘8 

f p ξ q Ñ 2 π n˘ 

, f 1
p ξ q Ñ 0 pñ f2

p ξ q Ñ 0 q ,
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where the two integers n˘ P Z can be different. Indeed they are different for a kink (/antikink) 

solution. Choosing the branch of the arctan such that 

arctan p 0˘
q “ 0˘ , arctan p˘8q “ ˘ 

´ π

 

2 

¯¯ 

, 

we find that the kink and the anti-kink solution look as in fig. 2.2 at a fixed time t :

 

a) Kink

 

b) Anti-kink 

Figure 2.2: Snapshots of the sine-Gordon kink and anti-kink. 

REMARKS

 

: 

1. Choosing a different branch of the arctan3 shifts the whole solution u p x, t q by a multiple 

of 2 π . This is inconsequential. What matters is:

 

u p`8 , t q ´ u p´8 , t q “ ` 2 π KINK 

u p`8 , t q ´ u p´8 , t q “ ´ 2 π ANTI-KINK

 

2. The velocity of the kink/anti-kink could be 

v ą 0 : RIGHT-MOVING 

v “ 0 : STATIC 

v ă 0 : LEFT-MOVING 

3. For a real solution we need 

γ2 ě 0 ùñ | v | ď 1 “ speed of light 

4. The kink/antikink is a localised lump centred at x0 ` v t and with 

WIDTH „ 

1

 

γ 

“ 

?

 

1 ´ v2 .

 

3along with reversing the sign and adjusting the integration constant if the multiple is odd. Check for yourself.
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So faster kinks/antikinks are narrower. This phenomenon is known as “Lorentz con- 

traction” and is a feature of special relativity. γ is called the “Lorentz factor” . 

NOTE: It might be confusing to state that the kink/antikink is localised, when u interpo- 

lates between different values as x Ñ ˘8 . The key point is that u is an angular variable 

which is only defined modulo addition of 2 π . To define the width it is better to look at 

single-valued objects like eiu or Bx 

u , which do not suffer from the above ambiguity. This 

point will become more concrete later when we calculate the energy density of the kink, 

which is a single-valued and everywhere positive function, which achieves a maximum 

at the centre of the kink and approaches zero far away from the centre, see figure 3.2. 

2.3 A mechanical model for the sine-Gordon equation 

Consider a chain of infinitely many identical pendula hanging from a straight wire which 

cannot be stretched but can be twisted. Each identical pendulum consists of a massless4 rod 

of length L , with a weight of mass M at the end of the rod. The pivot of the n -th pendulum 

at position na along the line, where n P Z and a is the separation, and the configuration of 

the n -th pendulum at time t is encoded by θnp t q , the angle between the pendulum and the 

downward pointing vertical at time t . See figure 2.3.

 

Figure 2.3: Section of an infinite chain of pendula separated by distance a . 

The pendula are subject to two kinds of forces: a gravitational force due to the attraction 

between the Earth and the weights, which favours downward pointing pendula; and a twist- 

ing force between neighbouring pendula due to the wire, which favours a straight untwisted 

wire and therefore the alignment of neighbouring pendula.5 The equations of motion (the

 

4This assumption can be easily relaxed, leading to no qualitative difference in what follows. 

5This is a slight lie. If you have studied rigid bodies you will recognise that these are “torques” rather than 

forces. The equation of motion (2.3) is not the standard Newton’s law F “ ma , but rather its rotational analogue, 

which states that the total torque equals the product of the moment of inertia and the angular acceleration.
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analogue of Newton’s equation F “ ma ) for this physical system are a coupled system of 

infinitely many ODE’s labelled by the integer n , one for each pendulum, which take the form

 

M L2:θnp t q “ ´ M g L ¨ sin θnp t q
l

 

jh

 

n 

net gravitational force 

` 

k

 

a 

´ 

θn ̀  1p t q ´ θnp t q 

¯ 

` 

k

 

a 

´ 

θn ́  1p t q ´ θnp t q 

¯ 

l

 

jh

 

n 

twisting forces exerted by neighbouring pendula 

, n P Z

 

(2.3) 

where a dot denotes a time derivative, g is the gravitational acceleration and k is an elastic 

constant that parametrizes the strength of the twisting force. 

Now we are going to take the so called “continuum limit” of this infinite-dimensional dis- 

crete system, in which the separation between consecutive pendula becomes infinitesimally 

small and the average mass density ( i.e. the mass per unit length) along the line is kept fixed: 

a Ñ 0 , m “ M { a fixed . 

In the continuum limit, the position x “ na of the n -th pendulum along the line effectively 

becomes a continuous real variable, which replaces the discrete index n P Z . Identifying 

θnp t q ” θ p x “ na, t q , the collection t θnp t qun P Z 

of angular coordinates of the infinitely many 

pendula at time t is replaced in the limit by a single function θ p x, t q of two continuous variables, 

space and time. By the definition of the derivative as a limit, we also have that

 

θn ̀  1p t q ´ θnp t q

 

a 

Ñ θ1
p x, t q , 

1

 

a 

ˆ 

θn ̀  1p t q ´ θnp t q

 

a 

´ 

θnp t q ´ θn ́  1p t q

 

a 

˙ 

Ñ θ2
p x, t q .

 

where a prime denotes an x -derivative. 

Dividing the equations of motion (2.3) by M L2 “ amL2 and taking the continuum limit we 

find the single equation of motion 

:θ “ ´ 

g

 

L 

sin θ ` 

k

 

mL2 

θ2 

for the “field” θ p x, t q . We can get rid of the constants by rescaling x and t6, and rearrange to 

get the equation 

:θ ´ θ2
“ ´ sin θ , 

which is nothing but the sine-Gordon equation θtt 

´ θxx 

“ ´ sin θ for the field θ ! We say 

therefore that the sine-Gordon equation is the continuum limit of (2.3). 

We can use this mechanical model to gain some intuition about the possible configurations of 

the sine-Gordon field:

 

6Send x ÞÑ 

b

 

k

 

mg L 

x and t ÞÑ 

b

 

L

 

g 

t .
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• The lowest energy state (or “ground state” , or “vacuum” ) of the system is the con- 

figuration with all pendula pointing downwards, 

θ p x, t q “ 0 p mod 2 π q @ x , 

which is a configuration of stable equilibrium.7 See figure 2.4.

 

Figure 2.4: Configuration of stable equilibrium for the chain of pendula. 

• By a continuous perturbation of the vacuum, we can obtain configuration which rep- 

resents a “small wave”, which satisfies the same boundary conditions of the vacuum, 

θ Ñ 0 as x Ñ ˘8 :8

 

Figure 2.5: A small wave going through the chain of pendula. 

• There are also configurations in which the chain of pendula twists around the line. If 

they twist once in the direction of increasing angles, so that θ increases by 2 π from 

x Ñ ´8 to x Ñ `8 , this describes a kink or a continuous deformation thereof: 

If instead they twist once in the direction of decreasing angles, so that θ decreases by 

2 π from x Ñ ´8 to x Ñ `8 , this describes an anti-kink or a continuous deformation 

thereof. 

• The limiting values of the sine-Gordon field θ as x Ñ ˘8 are fixed : changing them 

would require twisting infinitely many pendula by 360 degrees, which would cost en- 

ergy.

 

7We will confirm this intuition later when we study the energy of the sine-Gordon field. 

8We will see later that this “small wave” does not need to be small, in fact. For instance it could look like a 

kink followed by an antikink.
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Figure 2.6: A kink going through the chain of pendula. 

If 

θ p`8 , t q ´ θ p´8 , t q “ 2 mπ , with m ‰ 0 integer , 

then the configuration of the system cannot be deformed continuously to the vac- 

uum where all pendula point downwards, unlike the “small wave” mentioned above. 

This tells us that the kink (or the antikink) cannot disperse/dissipate into the vac- 

uum . This is related to the notion of topological stability , which we will discuss in 

the next chapter. 

I invite you to play with this Wolfram demonstration of the chain of coupled pendula, using 

Mathematica (which should be available on university computers – let me know if it isn’t) or 

the free Wolfram Player. Play with the parameters and visualise a kink, the scattering of two 

kinks or of a kink and an anti-kink, and the breather, a bound state of a kink and an anti-kink. 

We will study all of these configurations in the continuum limit later in the term, using the 

sine-Gordon equation. 

2.4 Travelling waves and 1d point particles 

Looking for a travelling wave solutions u p x, t q “ f p x ´ v t q ” f p ξ q of the KdV and sine-Gordon 

equation, we encountered equations of the form 

f2
“ F̂ p f q

 

where a prime denotes a derivative with respect to ξ . We integrated this equation to

 

1

 

2
p f 1

q
2

` V̂ p f q “ Ê “ const

 

( ̊  ) 

where

 

V̂ p f q “ ´ 

ż 

df F̂ p f q .

https://demonstrations.wolfram.com/SystemOfPendulumsARealizationOfTheSineGordonModel/
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Figure 2.7: Example of a potential energy V p x q and force F p x q “ ´ V 1p x q . 

By tuning the integration constant in this indefinite integral and absorbing it in Ê , we can set 

Ê to zero or to any value we wish. 

The previous equations are analogous to the classical mechanics of a point particle mov- 

ing in one space dimension . Let x p t q be the position of the point particle at time t and 

dots denote time derivatives. The equation of motion (EoM) of the point particle is Newton’s 

equation 

m:x “ F p x q

 

(mass ˆ acceleration “ force) can be integrated to the energy conservation law 

1

 

2 

m 9x2 ` V p x q “ E “ const

 

(kinetic energy ` potential energy “ total energy, which is constant in time), where the force 

and the potential energy are related by 

F p x q “ ´ 

d

 

dx 

V p x q

 

. 

The potential energy and the total energy can be shifted by a common constant with no phys- 

ical change. See figure 2.7 for an example of a potential energy V p x q and the associated force 

F p x q “ ´ V 1p x q . 

It may be useful to think of x as the horizontal coordinate of a point particle (think of an 

infinitesimal ball) moving on a hill of vertical height V p x q at coordinate x , subject only to 

the gravitational force and the reaction of the ground (which is equal and opposite when the 

ground is flat). Even if you are not very familiar with classical mechanics, you will hopefully 

have some intuition of what will happen to the ball.9

 

9You can also model this by riding a brakeless bike in hilly Durham. It’s a good idea to develop some intuition 

about this physical system without running the experiment yourself, which I don’t recommend. (This is one of 

a number of reasons why theoretical physics is superior to experimental physics.)
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The mathematical correspondence between the equations for a travelling wave in one space 

and one time dimension and for a classical point particle in one space dimension is

 

ξ ÐÑ t 

f ÐÑ x 

1 ÐÝ m 

F̂ p f q ÐÑ F p x q 

Ê ´ V̂ p f q ÐÑ E ´ V p x q

 

This correspondence allows us to understand the qualitative behaviour of travelling waves 

even when we cannot integrate equation ( ̊  ) exactly, using elementary facts from classical 

mechanics, which are encoded in the the mathematics of the previous equations: 

1. The total energy is conserved and can only be converted from kinetic energy (which 

is non-negative!) to potential energy and vice versa. The velocity 9 x of the point particle 

is zero if and only if the kinetic energy is zero, which means that all the energy is stored 

in potential energy: 

9x “ 0 ðñ V p x q “ E . 

2. When the point particle reaches one of the special values of x such that V p x q “ E , 

either of two things happens depending on the acceleration of the particle: 

(a) F p x q “ ´ 

d

 

dx 

V p x q ‰ 0 : 

The acceleration is non-vanishing, therefore the particle reverses its direction of 

motion :

 

These values of x are known as “turning points” . 

(b) F p x q “ ´ 

d

 

dx 

V p x q “ 0 : 

The acceleration vanishes and the particle stops .
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These values of x are known as “equilibrium points” . The approach to equilib- 

rium takes an infinite time. 

˚ EXERCISE

 

: Derive the previous statements by Taylor expanding the potential energy 

about a point where V p x q “ E and substituting the expansion in the energy 

conservation law. 

Now let us translate this discussion to the context of travelling waves. We will focus on the 

examples of the KdV and the sine-Gordon equation here, but more examples are available in 

[Ex 13] in the problems set. 

EXAMPLES

 

: 

1. KdV : Ê “ 0 , V̂ p f q “ f 2 

`

f ´ 

v

 

2 

˘ 

p v ą 0 q

 

From a graphical analysis of V̂ p f q and the analogy between travelling waves and point 

particles in one dimension, we see that there exists a travelling wave solution that starts 

at f “ 0` at ξ Ñ ´8 , increases until the ‘turning point’ f “ v { 2 , and decreases to 

f “ 0` at ξ Ñ `8 . This is nothing but the KdV soliton (2.1) that we found in section 

2.1. If instead the travelling wave solution starts at f “ 0´ at ξ Ñ ´8 , then it will fall 

down the cliff and reach f Ñ ´8 , leading to a singular solution, that we discard. Note 

that if v ă 0 we have that V̂ p 0 q “ 0 , but V̂ p f q ą 0 for small f ‰ 0 . Therefore the only



 

CHAPTER 2. TRAVELLING WAVES 37 

real solution obeying the boundary conditions is the constant zero solution f p ξ q “ 0 

for all ξ . If v “ 0 , in addition to the trivial solution there is also a singular real travelling 

wave solution that we discard on physical grounds. 

2. sine-Gordon : Ê “ 0 , V̂ p f q “ γ2 pcos f ´ 1 q

 

From a graphical analysis of V̂ p f q , we see that two classes of travelling wave solutions 

exist: one where f interpolates between 2 nπ at x Ñ ´8 and 2 p n ` 1 q π x Ñ ´8 , and 

another where f interpolates between 2 nπ at x Ñ ´8 and 2 p n ´ 1 q π x Ñ ´8 . We 

identify these solutions with the kink and anti-kink (2.2) of section 2.2. 

˚ EXERCISE

 

: Using the analogy with a one-dimensional point particle, determine the qual- 

itative behaviour of a travelling wave solution of the KdV equation on a circle 

( i.e. with periodic boundary conditions). [ Hint : allow integration constants 

A, B ‰ 0 and look at V̂ p f q .] [Ex 14*]



 

Chapter 3 

Topological lumps and the Bogomol’nyi 

bound 

The main references for this chapter are §5.3, 5.1 of [Manton and Sutcliffe, 2004] and §2.1 

of [Dauxois and Peyrard, 2006]. 

3.1 The sine-Gordon kink as a topological lump 

In chapter 2 I mentioned the topological properties of the sine-Gordon kink , which en- 

sure that it cannot disperse or dissipate to the vacuum . Let us understand these topological 

properties better. As a reminder, the sine-Gordon equation for the field u is 

utt ´ uxx ` sin u “ 0 . 

Starting from the discrete mechanical model involving pendula of section 2.3, rescaling x and 

t as in footnote 6 so as to eliminate all constants, and taking the continuum limit a Ñ 0 , it is 

not hard to see that the kinetic energy T and the potential energy V of the sine-Gordon 

field are [Ex 15]

 

T “ 

ż `8 

´8 

dx 

1

 

2 

u2 

t 

(3.1) 

V “ 

ż `8 

´8 

dx 

” 1

 

2 

u2 

x
ljhn 

twisting 

` p 1 ´ cos u q
l

 

jh

 

n 

gravity 

ı 

. (3.2)

 

REMARK

 

: 

The kinetic and potential energies of the sine-Gordon field are the continuum limits of the 

38
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kinetic and potential energies of the infinite chain of pendula. They should not be confused 

with 

1

 

2
p f 1q2 and V̂ p f q for the one-dimensional point particle in the analogy of section 2.4. 

We can use this result to deduce the boundary conditions that we anticipated in section 2.2. 

The boundary conditions follow from requiring that all field configurations have finite 

(total) energy E “ T ` V . Since the total energy is the integral over the real line of the sum 

of three non-negative terms, all three terms must vanish in the asymptotic limits x Ñ ˘8 to 

ensure the convergence of the integral. So the finiteness of the energy requires the boundary 

conditions 

ut 

, ux 

, 1 ´ cos u ÝÝÝÝÑ 

x Ñ˘8 

0 @ t . 

Since 1 ´ cos u “ 0 iff u is an integer multiple of 2 π , we need

 

u p´8 , t q “ 2 π n´ 

, u p`8 , t q “ 2 π n` 

,

 

(3.3) 

for some integers n˘. (This means that pendula are at rest, pointing downwards, as x Ñ ˘8 .) 

REMARKS

 

:1 

1. The overall value of n˘ 

has no meaning, since u is defined modulo 2 π . A shift of the 

field u ÞÑ u ` 2 π k is unphysical, but it shifts n˘ 

ÞÑ n˘ ` k . What really matters is the 

difference n` ´ n´, which is invariant under this ambiguity: 

1

 

2 π
r u p`8 , t q ´ u p´8 , t qs “ n` ´ n´ “ # of “twists”/“kinks” 

2. The integer n` ´ n´ 

is “TOPOLOGICAL” , i.e. it does not change under any continu- 

ous changes of the field u (and of the energy E ). In particular, it cannot change under 

time evolution, since time is continuous. Therefore it is a constant of motion or a 

“conserved charge” (more about this in the next chapter). Since the conservation of 

n` ´ n´ 

is due to a topological property, we call this a “TOPOLOGICAL CHARGE” .2 

Solutions with the same topological charge are said to belong to the same “TOPOLOG- 

ICAL SECTOR” .

 

1Some of these remarks were made for kinks and antikinks in the previous chapter. Now that we derive them 

from the BC’s, we see that they hold more generally for all solutions. 

2[Advanced remark for those who know some topology – if you don’t, you can safely ignore this:] Mathe- 

matically, n` ´ n´ 

is a “winding number”, the topological invariant which characterises maps S1 Ñ S1. The 

first S1 is the compactification of the spatial real line, with the points at infinity identified, and the second S1 is 

the circle parametrised by u mod 2 π . The winding number counts how many times u winds around the circle as 

x goes from ´8 to `8 .
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3. Dispersion and dissipation occur by time evolution, a continuous process which cannot 

change the value of the integer n` 

´ n´. Since the vacuum has n` 

´ n´ 

“ 0 , any 

configuration with n` ´ n´ ‰ 0 cannot disperse/dissipate to the vacuum . 

VOCABULARY

 

: 

– “TOPOLOGICAL CONSERVATION LAW”: 

The conservation (in time) of a topological charge, that is 

d

 

dt
p topological charge q “ 0 . 

– “TOPOLOGICAL LUMP”: 

A localised field configuration which cannot dissipate or disperse to the vacuum by 

virtue of a topological conservation law. 

So the sine-Gordon kink is a topological lump . It is also a soliton , but to see that we will 

have to check property 3, which concerns scattering. 

Topological lumps also exist in higher dimensions. A notable example is the “magnetic mono- 

pole”, a magnetically charged localised object that exists in certain generalizations of electro- 

magnetism in three space and one time dimensions. Another example is the “vortex”, which 

is a topological lump if space is R2.3 

3.2 The Bogomol’nyi bound 

Among the kink solutions found in (2.2) using the travelling wave ansatz , there was a STATIC 

KINK with zero velocity. Topology tells us that it cannot disperse or dissipate completely 

to the vacuum. But is its precise shape “stable” under small perturbations? This would 

be guaranteed if we could show that it minimises the energy amongst all configurations 

with the same topological charge. The reason is that any perturbation near a minimum of the 

energy would increase the energy, which however is conserved upon time evolution.4 

A useful analogy to keep in mind is with a point particle on a hilly landscape under the force 

of gravity, as in figure 3.1: if the point particle is sitting still at a local miminum of the height, 

minimising the energy (locally), it is in a configuration of stable equilibrium. Any perturbation 

would necessarily move the particle up the hill, but this is not allowed under time evolution 

as it would increase the total energy.

 

3Indeed there is a topological charge, the ‘vortex number’, which is conserved and can be non-vanishing if 

space is R2. On the other hand, topology implies that the vortex number vanishes on the two-sphere S2: this is 

fortunate, because if it were non-vanishing there would always be hurricanes going around the surface of Earth. 

4We will in fact show that the static kink is a global minimum of the energy amongst configurations with 

unit topological charge. This ensures its stability even when one includes quantum effects, which we are not
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Figure 3.1: A point particle on a hilly landscape is stable if it locally minimises the energy. 

This happens when it is sitting still at a minimum of the potential energy. 

So we will seek a lower bound for the total energy E “ T ` V in the topological sector of the 

kink, which has topological charge n` ´ n´ “ 1 . The energy is the integral of a non-negative 

energy density, so immediately find the lower bound E ě 0 , but we can do better than that:

 

E “ T ` V “ 

ż `8 

´8 

dx 

„

1

 

2 

u2 

t 

` 

1

 

2 

u2 

x ` p 1 ´ cos u q 

ȷ 

ě 

p u2
t ě 0 q 

ż `8 

´8 

dx 

„

1

 

2 

u2 

x ` p 1 ´ cos u q 

ȷ 

“ 

ż `8 

´8 

dx 

„

1

 

2 

u2 

x ` 2 sin2 

u

 

2 

ȷ 

“ 

“Bogomol’nyi 

trick” 

ż `8 

´8 

dx 

„

1

 

2 

´ 

ux ˘ 2 sin 

u

 

2 

¯2 

¯ 2 sin 

u

 

2 

¨ ux 

ȷ 

“ 

ż `8 

´8 

dx 

1

 

2 

´ 

ux ˘ 2 sin 

u

 

2 

¯2 

˘ 4 

” 

cos 

u

 

2 

ı`8 

´8 

. ( ̊  )

 

A few comments are in order: 

1. The inequality in the second line follows from omitting the non-negative term 

1

 

2 

u2 

t . It is 

“saturated” (that is, it becomes an equality) for static field configurations , such that 

ut “ 0 ; 

2. In the third line we used a half-angle formula; 

3. In the fourth line we used the so called “Bogomol’nyi trick” to replace a sum of squares 

by the square of a sum plus a correction term which is a total x -derivative; 

4. In the fifth line we integrated the total derivative, leading to a “boundary term” (or 

“surface term” ) which only depends on the limiting values of the field at spatial infinity.

 

concerned with in this course.
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If u satisfies the 1 -kink BC’s 

u p´8 , t q “ 0 , u p`8 , t q “ 2 π

 

, 

then the boundary term evaluates to 

4 

” 

cos 

u

 

2 

ı`8 

´8

“ 4 p´ 1 ´ 1 q “ ´ 8 . 

Picking the lower ( i.e. ´ ) signs in ( ̊  ), we obtain the lower bound

 

E ě 

ż `8 

´8 

dx 

1

 

2 

´ 

ux ´ 2 sin 

u

 

2 

¯2 

` 8 ě 8

 

(3.4) 

for the energy, where the second inequality is saturated if the expression in brackets vanishes.5 

Equation (3.4) is known as the “BOGOMOL’NYI BOUND” . 

The Bogomol’nyi bound (3.4) is saturated ( i.e. E “ 8 ) if and only if the field configuration 

is static , that is 

ut “ 0

 

, 

and satisfies the “BOGOMOL’NYI EQUATION”

 

ux “ 2 sin 

u

 

2

 

.

 

(3.5) 

So we can find the least energy field configurations in the “ 1 -kink topological sector” 

( i.e. with n` ´ n´ “ 1 ) by looking for static solutions u “ u p x q of the Bogomol’nyi equation: 

ux “ 2 sin 

u

 

2 

ùñ 

ż 

dx “ 

ż 

du

 

2 sin 

u

 

2 

“ log tan 

u

 

4 

, 

whose general solution is

 

u p x q “ 4 arctan 

`

ex ́  x0 

˘

 

.

 

(3.6) 

This is nothing but the static kink , which we obtained in section 2.2 as a special case of a 

travelling wave solution of the sine-Gordon equation with v “ 0 . 

REMARK

 

: 

Note that the Bogomol’nyi equation, being a first order differential equation (in fact an ODE 

once we impose ut 

“ 0 ), is much easier to solve than the full equation of motion, the sine- 

Gordon equation, which is a second order PDE.

 

5Picking the upper ( i.e. ` ) signs in ( ̊  ) we obtain the lower bound E ě ´ 8 , which is weaker than the trivial 

bound E ě 0 therefore not very useful. The Bogomol’nyi trick always has a sign ambiguity. The choice of sign 

that leads to the stricter inequality depends on the sign of the boundary term.
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Figure 3.2: The energy density of a static kink. 

˚ EXERCISE

 

: Check that a field configuration that saturates the Bogomol’nyi bound is 

automatically a solution of the sine-Gordon equation. 

So we learned that amongst all solutions with topological charge n` ´ n´ “ 1 , the static 

kink has the least energy , hence it is stable . Indeed, topology in principle allows the kink to 

disperse to other solutions with n`´ n´ “ 1 , but the dispersing waves would carry some of the 

energy away. Since the static kink has the least energy in the n` ´ n´ “ 1 topological sector, it 

can’t lose energy, hence it’s stable. This notion of stability which originates from minimising 

the energy in a given topological sector is called “TOPOLOGICAL STABILITY” . 

Using staticity and the Bogomol’nyi equation, we now have a shortcut to compute the energy 

density E of the static kink , namely the integrand of the total energy E “ 

ş`8 

´8
dx E : 

E “ 

1

 

2 

u2 

t 

` 

1

 

2 

u2 

x ` 2 sin2 

u

 

2 

“ 

ut“ 0 

ux“ 2 sin 

u

 

2 

u2 

x 

“ 4sech2
p x ´ x0q , 

which shows that the energy density of the kink is localised near x0, see figure 3.2. 

˚ EXERCISE

 

: Think about how to generalise the Bogomol’nyi bound for higher topological 

charge, for instance n` ´ n´ “ 2 . This is not obvious! [Ex 17] 

3.3 Summary 

There are two ways for a lump to be long-lived: 

1. by INTEGRABILITY (infinitely many conservation laws, more about this next) 

ÝÑ “TRUE” (or “INTEGRABLE”) SOLITONS 

2. by TOPOLOGY (topological conservation law)
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ÝÑ TOPOLOGICAL LUMPS .6 

It is important to note that these two mechanisms are not mutually exclusive: there are some 

lumps, like the sine-Gordon kink, which are both topological lumps and true solitons. The 

various possibilities and some examples are summarised in the following Venn diagram:

 

6Some people use the term solitons for both integrable solitons and topological lumps, but in this course we 

will only refer to the former as “solitons”).



 

Chapter 4 

Conservation laws 

The main references for this chapter are §5.1.1 and §5.1.2 of [Drazin and Johnson, 1989]. 

Conservation laws provide the most fundamental characterisation of a physical system: they 

tell us which quantities don’t change with time. For the purpose of this course, they play a key 

role because they explain why the motion of “true” solitons is so restricted that they scatter 

without changing their shapes. 

The idea of a conservation law is to construct spatial integrals of functions of the field u and 

its derivatives

 

Q “ 

ż `8 

´8 

dx ρ p u, ux 

, uxx 

, . . . , ut 

, utt 

, . . . q

 

(4.1) 

which are constant in time (in physics parlance, they are “ constants of motion” )

 

d

 

dt 

Q “ 0

 

(4.2) 

when u satisfies its equation of motion (EoM) , such as the sine-Gordon equation or the 

KdV equation. The constant of motion (4.1) is called a “CONSERVED CHARGE” or “CON- 

SERVED QUANTITY” and the equation (4.2) stating its time-independence is called a “CON- 

SERVATION LAW” . 

For the KdV and the sine-Gordon equation, it turns out that there exist infinitely many 

conserved quantities . This makes them “integrable systems” (more about this next term) 

and explains many of their special properties. 

45
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4.1 The basic idea 

The standard method for constructing a conserved charge like (4.1) involves finding two func- 

tions ρ and j of u and its derivatives, such that the EoM for u implies the “LOCAL CONSER- 

VATION LAW” or “CONTINUITY EQUATION”

 

B ρ

 

B t 

` 

B j

 

B x 

“ 0

 

(4.3) 

and the boundary conditions imply1

 

lim 

x Ñ`8 

j ´ lim 

x Ñ´8 

j “ 0 @ t .

 

(4.4) 

Then 

d

 

dt 

ż `8 

´8 

dx ρ “ 

ż `8 

´8 

dx 

B ρ

 

B t 

“ 

p 4 . 3 q
´ 

ż `8 

´8 

dx 

B j

 

B x 

“ ´r j s
`8 

´8 

“ 

p 4 . 4 q 

0 . 

Hence

 

Q “ 

ż `8 

´8 

dx ρ

 

(4.5) 

is a conserved CHARGE . ρ is called the conserved “CHARGE DENSITY” , and j is called 

the conserved “CURRENT DENSITY” (or just “CURRENT” , by a common abuse of termi- 

nology.) 

4.2 Example: conservation of energy for sine-Gordon 

Is the total energy 

E “ 

ż `8 

´8 

dx E

 

conserved for the sine-Gordon field, where the energy density is

 

E “ 

1

 

2 

u2 

t 

` 

1

 

2 

u2 

x ` p 1 ´ cos u q

 

?

 

(4.6) 

The energy density E plays the role of ρ here. Can we show then that ρ “ E obeys a continuity 

equation (4.3) for some function j that obeys the limit condition (4.4), when the sine-Gordon 

equation (EoM) 

utt ´ uxx ` sin u “ 0

 

1

 

▲

 

!

 

Don’t forget that 8 ´ 8 is not equal to zero: it’s undetermined. So in particular j must have finite 

limits at spatial infinity for (4.4) to hold.
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holds? Let’s compute:

 

B E

 

B t 

“ ut 

utt ` ux 

uxt ` sin u ¨ ut 

“ utp utt ` sin u q ` ux 

uxt 

“ 

EoM 

ut 

uxx ` ux 

uxt “ 

B

 

B x
p ut 

uxq ” 

B

 

B x
p´ j q ,

 

and since the BC’s for the sine-Gordon equation imply that ut 

ux Ñ 0 as x Ñ ˘8 , we deduce 

that energy is conserved : 

dE

 

dt 

“ 0

 

. 

4.3 Extra conservation laws for relativistic field equations 

For any relativistic field theory in 1 space ( x ) + 1 time ( t ) dimensions ( e.g. Klein-Gordon, 

sine-Gordon, “ ϕ4”, . . . ), the energy

 

E “ 

ż `8 

´8 

dx E “ 

ż `8 

´8 

dx 

„

1

 

2 

u2 

t 

` 

1

 

2 

u2 

x ` V p u q 

ȷ

 

(4.7) 

is conserved , when the equation of motion ( EoM )

 

utt ´ uxx “ ´ V 1
p u q

 

(4.8) 

is satisfied . 

˚ EXERCISE

 

: Check this statement. 

The “scalar potential” V p u q determines the theory. For instance 

V p u q “ 

$ 

’

’

’

& 

’

’

’

% 

1

 

2 

m2 u2 (Klein-Gordon) 

1 ´ cos u (sine-Gordon) 

λ

 

2
p u2 ´ a2q2 (“ ϕ4”) 

. . . 

A deep theorem due to Emmy Noether shows that the conservation of energy follows from 

the invariance of the theory under arbitrary time translations t ÞÑ t ` c . Similarly, in- 

variance under space translations x ÞÑ x ` c1 implies the conservation of momentum 

P .
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We will not delve into Noether’s theorem, as you might encounter it in other courses and also 

because it is of limited help for our purposes. The question that we would like to answer now 

is: 

Can there be more conservation laws, in addition to energy and momentum con- 

servation?

 

We will answer this question constructively. 

The first step is to switch to light-cone coordinates

 

x˘
“ 

1

 

2
p t ˘ x q

 

ðñ 

# 

t “ x` ` x´ 

x “ x` ´ x´ 

,

 

(4.9) 

which are so called because the trajectory of light rays is x` “ const or x´ “ const for 

left-moving or right-moving rays respectively. By the chain rule we calculate

 

B˘ ” 

B

 

B x˘ 

“ 

B t

 

B x˘ 

B

 

B t
` 

B x

 

B x˘ 

B

 

B x 

“ 

B

 

B t
˘ 

B

 

B x 

” Bt ˘ Bx 

ùñ B`B´ “ B
2 

t 

´ B
2 

x 

,

 

so the EoM can be written synthetically as

 

u`´ “ ´ V 1
p u q

 

,

 

(4.10) 

where we used the shorthand notation f˘ ” 

B f

 

B x˘ 

” B˘ 

f . 

Next, we define the “Lorentz spin” of a monomial built out of light-cone derivatives of func- 

tions of u as the number of B` 

derivatives minus the number of B´ 

derivatives . For 

instance p u`q3 u´ 

u``´ 

has spin 3 ´ 1 `p 2 ´ 1 q “ 3 . According to the theory of special relativ- 

ity, objects of different spins transform differently under the “Lorentz group” of symmetries of 

relativistic field equations. If you would like to know more about Lorentz transformations and 

the Lorentz spin, you can read this optional note. If you don’t know any relativity and don’t 

want to read that note, you’ll just need to remember that objects of different spins don’t talk 

to one another, and that it only makes sense to add/subtract objects of the same spin. Note in 

particular that we can use the EoM (4.10) to convert u`´ 

into ´ V 1p u q , which does not affect 

the spin. So from now on we will focus on objects of definite spin, and we will treat different 

spins separately. 

Next, suppose that there exists a pair of densities p Ts ̀  1 

, Xs ́  1q of spins s ˘ 1 such that

 

B´ 

Ts ̀  1 “ B` 

Xs ́  1

 

.

 

(4.11)

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Lorentz_and_lightcone.pdf
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In terms of the original space and time coordinates x and t , this is nothing but the continuity 

equation2 

Bt p Ts ̀  1 ´ Xs ́  1q
l

 

jh

 

n 

ρ 

`Bx p´ Ts ̀  1 ´ Xs ́  1q
l

 

jh

 

n 

j 

“ 0 . 

Therefore, by the basic idea of section 4.1, provided that

 

lim 

x Ñ`8
p Ts ̀  1 ` Xs ́  1q ´ lim 

x Ñ´8
p Ts ̀  1 ` Xs ́  1q “ 0

 

,

 

(4.12) 

it follows that

 

Qs “ 

ż `8 

´8 

dx p Ts ̀  1 ´ Xs ́  1q

 

(4.13) 

is a conserved charge (which turns out to have spin s , hence the subscript). 

In order to construct conserved charges (4.13), our aim will be to find p T , X q pairs which sat- 

isfy equations (4.11)-(4.12). We will make a simplifying assumption : we will only consider 

“polynomially conserved densities” 

T “ p polynomial in x`-derivatives of u q , 

so we will never consider u without derivatives, and Ts ̀  1 

will be a sum of terms with precisely 

s ` 1 derivatives B` 

and no B´ 

derivatives. 

We will also disregard total x`-derivatives in T and consider p T , X q pairs modulo the equiv- 

alence relation

 

p Ts ̀  1 

, Xs ́  1q „ 

“equivalent to”
p T 1 

s ̀  1 

, X 1 

s ́  1q “ p Ts ̀  1 ` B` 

Us 

, Xs ́  1 ` B´ 

Usq

 

,

 

(4.14) 

so long as

 

lim 

x Ñ`8 

Us ´ lim 

x Ñ´8 

Us “ 0 @ t

 

.

 

(4.15) 

This is because the shifts in (4.14) cancel out in the continuity equation (4.11) and in the charge: 

Q1 

s “ 

ż `8 

´8 

dx p T 1 

s ̀  1 ´ X 1 

s ́  1q “ 

p 4 . 14 q 

Qs ` 

ż `8 

´8 

dx pB` ´ B´q Us “ Qs ` 2 

ż `8 

´8 

dx Bx 

Us 

“ 

p 4 . 15 q 

Qs 

. 

Let us proceed spin by spin.

 

2The reason why densities of different spins are mixed in the next equation, seemingly contradicting the 

statement I have made a few lines above, is that Bt 

and Bx 

don’t have definite spin either. In (4.11), which uses 

light-cone derivatives B˘, both sides have the same spin s , consistently with my statement.
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s “ 0

 

T1 “ u` 

is the only polynomially conserved density of spin 1, up to an irrelevant multiplicative 

factor which can be absorbed in the normalisation of the charge. It solves (4.11) with 

X´ 1 “ u´, since B´ 

u` “ u´` “ u`´ “ B` 

u´. The corresponding spin zero conserved 

charge is the topological charge 

Q0 “ 

ż `8 

´8 

dx p u` ´ u´q “ 2 

ż `8 

´8 

dx ux “ 2 r u s
`8 

´8 

. 

Note

 

: T1 

is a total derivative of u , but u could have different limits as x Ñ ˘8 ,3 in 

which case the condition (4.15) is not satisfied by U “ ´ u . Precisely in those cases the 

topological charge is non-trivial. 

s “ 1

 

T2 Ą u`` 

, u2 

`, 

which is a shorthand for: T2 

is a linear combination of u`` 

and u2 

`. However u`` 

“ 

p u`q` 

is a total derivative, and since u` 

Ñ 0 as x Ñ ˘8 we can disregard this term 

without loss of generality, and consider T2 “ u2 

`. Then 

B´ 

T2 “ B´ 

u2 

` “ 2 u` 

u`´ 

“ 

EoM
´ 2 V 1

p u q u` “ ´ 2 B` 

V p u q ” B` 

X0 

with X0 “ ´ 2 V p u q . Therefore

 

Q1 “ 

ż `8 

´8 

dx p T2 ´ X0q “ 

ż `8 

´8 

dx r u2 

` ` 2 V p u qs

 

(4.16) 

is conserved. 

REMARK

 

: 

given a pair of densities p Ts ̀  1 

, Xs ́  1q leading to a conserved charge Qs, we can switch 

the roles of x` and x´ to find a second pair of densities p T´ s ́  1 

, X´ s ̀  1q , which lead to a 

conserved charge 

Q´ s “ 

ż `8 

´8 

dx p T´ s ́  1 ´ X´ s ̀  1q

 

of opposite spin. 

So at | s | “ 1 we have the conserved charges

 

Q` 1 “ 

ż `8 

´8 

dx r u2 

` ` 2 V p u qs 

Q´ 1 “ 

ż `8 

´8 

dx r u2 

´ ` 2 V p u qs .

 

3The BC’s are ut 

, ux 

, V p u q , V 1p u q Ñ 0 as x Ñ ˘8 . Depending on the potential, u could be allowed to 

have different limits as x Ñ ˘8 .
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Taking the sum and difference and choosing a convenient normalization, we find two 

conserved charges

 

1

 

4
p Q1 ` Q´ 1q “ 

ż `8 

´8 

dx 

„

1

 

4
p u2 

` ` u2 

´q ` V p u q 

ȷ 

” E “ 

ż `8 

´8 

dx 

„

1

 

2 

u2 

t 

` 

1

 

2 

u2 

x ` V p u q 

ȷ

 

(4.17) 

1

 

4
p Q´ 1 ´ Q1q “ 

ż `8 

´8 

dx 

1

 

4
p u2 

´ ´ u2 

`q 

” P “ ´ 

ż `8 

´8 

dx ut 

ux

 

, (4.18)

 

which are interpreted as the energy E and the momentum P . 

s “ 2

 

T3 Ą u``` 

, u`` 

u` 

, u3 

`, 

but u``` 

“ p u``q` 

and u`` 

u` 

“ 

1

 

2
p u2 

`q` 

are total derivatives of functions which 

vanish at spatial infinity, hence they can be disregarded.4 So without loss of generality 

we can take T3 “ u3 

` 

and then 

B´ 

T3 “ B´ 

u3 

` “ 3 u2 

` 

u`´ 

“ 

EoM
´ 3 V 1

p u q u2 

` 

. 

The RHS of the previous equation cannot be a total x`-derivative , because the highest 

x` derivative of u (in this case u`) does not appear linearly. 

˚ EXERCISE

 

: Think about it and convince yourself that this statement is correct. Suppose 

that B 

n 

` 

u is the highest x`-derivative of u appearing in a function Y of u and 

its x`-derivatives. How does the highest x`-derivative of u appear in B` 

Y 

then? 

s “ 2

 

We learn therefore that there is no conserved charge Q2 

of spin 2 built out of poly- 

nomially conserved densities. 

s “ 3

 

T4 Ą u```` 

, u``` 

u` 

, u2 

`` 

, u`` 

u2 

` 

, u4 

`, 

but we can drop the first and fourth term as they are total derivatives of functions which 

vanish at spatial infinity. Moreover u``` 

u` 

“ ´ u2 

`` ` p u`` 

u`q`, so we can also dis- 

regard one of u``` 

u` 

and u2 

`` 

without loss of generality. The most general expression 

for T4 

up to an irrelevant total x`-derivative is therefore

 

T4 “ u2 

`` ` 

1

 

4 

λ2 u4 

`

 

,

 

(4.19)

 

4Note that u`¨¨¨` 

ÝÝÝÝÑ
x Ñ˘8 

0 assuming uniform convergence, which allows us to commute derivatives and 

limits. (We need to use B` “ ´B´ ` 2 B` 

and the EoM.)
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where λ is a constant to be determined below and the factor of 1 { 4 was inserted for later 

convenience.5 Then

 

B´ 

T4 “ 2 u`` 

u``´ ` λ2 u3 

` 

u`´ 

“ 

EoM
´ 2 u`` p V 1

p u qq
`

´ λ2 u3 

` 

V 1
p u q 

“ ´ 2 u`` 

u` 

V 2
p u q ´ λ2 u3 

` 

V 1
p u q “ ´p u2 

`q` 

V 2
p u q ´ λ2 u3 

` 

V 1
p u q . 

This may not seem very promising, but we can extract a total derivative from the first 

term using the trick familiar from integration by parts: 

“ ´p u2 

` 

V 2
p u qq` ` u3 

` 

V 3
p u q ´ λ2 u3 

` 

V 1
p u q 

“ ´p u2 

` 

V 2
p u qq` ` u3 

` 

“

V 3
p u q ´ λ2 V 1

p u q
‰ 

. (4.20)

 

We are hoping to obtain a total x`-derivative. The first term in (4.20) is a total x`- 

derivative, but in the second term the highest derivative u` 

does not appear linearly. By 

the previous argument which was the topic of the exercise, the second term is a total 

x`-derivative if and only if

 

V 3
p u q ´ λ2 V 1

p u q “ 0

 

.

 

(4.21) 

If (4.21) holds , we have X2 “ ´ u2 

` 

V 2p u q and

 

Q3 “ 

ż `8 

´8 

dx p T4 ´ X2q “ 

ż `8 

´8 

dx 

„ 

u2 

`` ` 

1

 

4 

λ2 u4 

` ` u2 

` 

V 2
p u q 

ȷ

 

(4.22) 

is a conserved charge of spin 3 . If instead (4.16) does not hold, there is no extra 

(polynomially) conserved charge of spin 3. 

To summarize, the relativistic field theories which have an extra conserved charge (of 

spin 3 ) , in addition to the topological charge (if that is non-trivial), the energy and the mo- 

mentum, are those with a scalar potential V p u q which satisfies equation (4.21) for some value 

of the constant λ . Let us examine the various possibilities: 

1. λ2 “ 0

 

: V p u q “ A ` B p u ´ u0q
2, 

where A and B are constants. Up to a linear redefinition of u , this scalar potential leads 

to the Klein-Gordon equation . This is a linear equation which describes a free field 

( i.e. a field free from interactions) and is therefore not interesting from the point of view 

of solitons. 

2. λ2 ‰ 0

 

: V p u q “ A ` B eλu ` C e´ λu, 

where A, B and C are constants.

 

5To be precise, T4 

should be written as a linear combination of u2 

`` 

and u4 

`. It turns out that the coefficient 

of u`` 

must be non-vanishing, hence we can normalise it to 1 .
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a) If only one of B , C is non-vanishing, the EoM is either 

C “ 0 :

 

u`´ “ ´ B λeλu or B “ 0 :

 

u`´ “ C λe´ λu . 

By a linear redefinition of u , we can always rewrite the EoM as the Liouville 

equation

 

u`´ “ eu

 

.

 

(4.23) 

b) If neither B or C vanish, then by a linear redefinition of u we can write the EoM 

as the sine-Gordon equation

 

u`´ “ ´ sin u

 

(4.24) 

if λ2 ă 0 , or as the the sinh-Gordon equation

 

u`´ “ ´ sinh u

 

(4.25) 

if λ2 ą 0 . 

The equations (4.23)-(4.25) are special : they have “hidden” conservation laws that generic 

interacting relativistic field equations u`´ “ ´ V 1p u q don’t have. 

One could carry on and find that these equations have more and more hidden conservation 

laws. But there are more systematic ways to find them, that you might return to next term. 

Instead, we will now move on to studying conservations laws for the KdV equation. 

4.4 Conserved quantities for the KdV equation 

Let us return to the KdV equation 

ut ` 6 uux ` uxxx “ 0 . 

We can rewrite the KdV equation as a continuity equation 

B

 

B t 

u ` 

B

 

B x
p 3 u2 ` uxxq “ 0 

and since the BC’s appropriate for KdV on the line R are that u, ux 

, uxx 

, ¨ ¨ ¨ Ñ 0 as x Ñ ˘8 , 

we deduce that the mass of the water wave6

 

Q1 “ 

ż `8 

´8 

dx u

 

,

 

(4.26)

 

6(4.26) is the (net) area under the profile of the wave, taking u “ 0 (flat water surface) as zero. Assuming that 

water has constant density (mass per unit area) and choosing units so that the density is 1 , (4.26) is the mass of 

the wave.
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is conserved . 

Next, we can ask whether ρ “ u2 is a conserved charge density. Let us compute

 

p u2qt “ 2 uut 

“ 

KdV
´ 12 u2 ux ´ 2 uuxxx “ ´ 4 p u3qx ´ 2 uuxxx 

“ p´ 4 u3 ´ 2 uuxxqx ` 2 ux 

uxx “ p´ 4 u3 ´ 2 uux ` u2 

xqx 

,

 

where to go from the first to the second line we used the trick familiar from integration by 

parts, f gx 

“ p f g qx ´ fx 

g . (We say that f gx 

and ´ fx 

g are equal up to a total x -derivative.) 

Hence we deduce that

 

Q2 “ 

ż `8 

´8 

dx u2

 

,

 

(4.27) 

which is interpreted as the momentum of the wave, is conserved . 

Next, what about ρ “ u3? Using the notation “ “ ” to mean “equal up to a total x -derivative” 

and striking out terms which are total derivatives (t.d.), we find

 

p u3qt “ 3 u2 ut 

“ 

KdV
´ 18 � 

� 

�* t.d. 

u3 ux 

´ 3 u2 uxxx“ “ ”6 uux 

uxx 

“ 

KdV
´ ut 

uxx ´ � 

� 

� 

� 

�: t.d.
uxxx 

uxx 

“ “ ” utx 

ux “ 

1

 

2
p u2 

xqt 

,

 

so rearranging we find a third conserved charge

 

Q3 “ 

ż `8 

´8 

dx 

ˆ 

u3 ´ 

1

 

2 

u2 

x 

˙

 

,

 

(4.28) 

which is interpreted as the energy of the wave. 

It turns out that the conservation laws (4.26)-(4.28) of mass, momentum and energy follow 

by Noether’s theorem from the “obvious” symmetries

 

u ÞÑ u ` c ùñ mass conservation 

x ÞÑ x ` c1 

ùñ momentum conservation 

t ÞÑ t ` c2 

ùñ energy conservation

 

of the KdV equation, so they are expected. But then surprisingly [Miura et al., 1968] found (by 

hand!) eight more conserved charges , all (but one, see [Ex 23] ) of the form 

Qn “ 

ż `8 

´8 

dx p un ` . . . q

 

,
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e.g.

 

Q4 “ 

ż `8 

´8 

dx 

ˆ 

u4 ´ 2 uu2 

x ` 

1

 

5 

u2 

xx 

˙ 

Q5 “ 

ż `8 

´8 

dx 

ˆ 

u5 ´ 5 u2 u2 

x ` uu2 

xx ´ 

1

 

14 

u2 

xxx 

˙ 

... 

Q10 “ 

ż `8 

´8 

dx 

ˆ 

u10 ´ 60 u7 u2 

x ` ( 29 terms) ` 

1

 

4862 

u2 

xxxxxxxx 

˙ 

.

 

(4.29) 

˚ EXERCISE

 

: Calculate Q6 

, . . . , Q9 

as well and the 29 missing terms in Q10. 

7 

This surprising result raises two natural questions : 

1. Are there infinitely many more conserved charges? 

2. If so, is there a systematic way to find them? 

4.5 The Gardner transform 

The answer to both questions is affirmative, and is based on a very clever (though at first sight 

unintuitive) method devised by Gardner [Miura et al., 1968]. 

First, let us suppose that the KdV field u p x, t q can be expressed in terms of another function 

v p x, t q as

 

u “ λ ´ v2 ´ vx

 

,

 

(4.30) 

where λ is a real parameter. Substituting (4.30) in the KdV equation we find

 

0 “ p λ ´ v2 ´ vxqt ` 6 p λ ´ v2 ´ vxqp λ ´ v2 ´ vxqx ` p λ ´ v2 ´ vxqxxx 

“ . . . [Ex 24] 

“ ´ 

ˆ 

2 v ` 

B

 

B x 

˙ 

“

vt ` 6 p λ ´ v2q vx ` vxxx 

‰

“ 0

 

. (4.31)

 

So 

KdV for u ðñ (4.31) for v

 

,

 

7Just kidding.
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and in particular, if v solves

 

vt ` 6 p λ ´ v2q vx ` vxxx “ 0

 

,

 

(4.32) 

then u given by (4.30) solves KdV. 

For λ “ 0 , (4.32) is the “wrong sign” mKdV equation that you encountered in [Ex 13.2] , and

 

u “ ´ v2 ´ vx

 

(4.33) 

was known as the Miura transform , found by Miura earlier in 1968 [Miura, 1968]. 

Gardner’s idea was to bring the equation for v closer to the KdV equation when λ ‰ 0 . This 

is achieved by setting

 

v “ ϵw ` 

1

 

2 ϵ 

λ “ 

1

 

4 ϵ2

 

(4.34) 

for some non-vanishing real constant ϵ . Then 

λ ´ v2 “ 

1

 

4 ϵ2 

´ 

ˆ 

ϵw ` 

1

 

2 ϵ 

˙2 

“ ´ w ´ ϵ2 w2 , 

which implies that u and w are related by the Gardner transform (GT)

 

u “ ´ w ´ ϵwx ´ ϵ2 w2

 

.

 

(4.35) 

We will use the free parameter ϵ to great advantage below. 

In terms of w , the KdV equation for u , or equivalently equation (4.31) for v becomes 

ˆ 

2 ϵw ` 

1

 

ϵ 

` 

B

 

B x 

˙ 

“

ϵwt ´ 6 p w ` ϵ2 w2
q ϵwx ` ϵwxxx 

‰

“ 0 , 

or equivalently

 

ˆ 

1 ` ϵ 

B

 

B x
` 2 ϵ2 w 

˙ 

“

wt ´ 6 p w ` ϵ2 w2
q wx ` wxxx 

‰

“ 0

 

.

 

(4.36) 

In particular, any w that solves the simpler equation

 

wt ´ 6 p w ` ϵ2 w2
q wx ` wxxx “ 0

 

(4.37) 

produces a u that solves the KdV equation by the Gardner transform (4.35). 

Now we are going to think about this backwards: let’s view u as a fixed solution of KdV , 

while w varies with ϵ so that (4.35) holds. Then
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• For ϵ “ 0

 

, equation (4.36) is nothing but the KdV equation with reversed middle terms. 

Indeed the Gardner transform reduces to u “ ´ w in this case.8 (Incidentally, this shows 

that we can extend the domain of ϵ to include 0 .) 

• For ϵ ‰ 0

 

, we encounter two problems : 

1. To obtain w in terms of u , we need to solve a differential equation (4.35); 

2. The differential operator 1 ` ϵ 

B

 

B x 

` 2 ϵ2 w in (4.36) is non-trivial . It might have 

a non-vanishing kernel, so we can’t immediately conclude that (4.37) holds. 

Gardner’s intuition was that we can solve both problems at once by viewing w as a formal 

power series in ϵ :9

 

w p x, t q “ 

8
ÿ 

n “ 0 

wnp x, t q ϵn “ w0p x, t q ` w1p x, t q ϵ ` w2p x, t q ϵ2 ` . . .

 

(4.38) 

1. To solve the first problem, we substitute (4.38) in the Gardner transform (4.35)

 

u “ ´p w0 ` w1 

ϵ ` w2 

ϵ2 ` . . . q ´ ϵ p w0 ` w1 

ϵ ` w2 

ϵ2 ` . . . qx 

´ ϵ2p w0 ` w1 

ϵ ` w2 

ϵ2 ` . . . q
2 

“ ´ w0 

´ ϵw1 

´ ϵ2 w2 

´ ϵ3 w3 

` . . . 

´ ϵw0 ,x 

´ ϵ2 w1 ,x 

´ ϵ3 w2 ,x 

` . . . 

´ ϵ2 w2 

0 

´ ϵ32 w0 

w1 

` . . .

 

and invert it to determine w in terms of u . Since u is fixed, it is of order ϵ0. Comparing 

order by order we obtain:

 

ϵ0 : w0 “ ´ u 

ϵ1 : w1 “ ´ w0 ,x “ ux 

ϵ2 : w2 “ ´ w1 ,x ´ w2 

0 

“ ´ uxx ´ u2 (4.39) 

ϵ3 : w3 “ ´ w2 ,x ´ 2 w0 

w1 “ uxxx ` 4 uux 

...

 

which in principle determines recursively all the coefficients wn 

of the formal power 

series (4.38) in terms of u .

 

8Sorry, I should have taken w Ñ ´ w in (4.34). Too late to change that now... 

9By a formal power series we mean that we don’t worry about the convergence of the series. (4.38) is actually 

an asymptotic expansion, for those who know what that is.
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2. Since w is a formal power series in ϵ , so is the expression inside the square brackets in 

(4.36): 

“

wt ´ 6 p w ` ϵ2 w2
q wx ` wxxx 

‰

” z p x, t q “ 

8
ÿ 

n “ 0 

znp x, t q ϵn “ z0 ` z1 

ϵ ` z2 

ϵ2 ` . . . 

The same applies to the differential operator 

A ” 1 ` ϵ 

B

 

B x
` 2 ϵ2 w ” 1 ` 

8
ÿ 

n “ 1 

An 

ϵn , 

where 1 is the identity operator, and An 

are linear (differential) operators: 

A1 “ 

B

 

B x 

, A2 “ 2 w0¨ , A3 “ 2 w1¨ , A4 “ 2 w2¨ , . . . 

where I wrote the dots to make clear which operators act by multiplication by a function. 

Then (4.36) becomes the formal power series equation

 

0 “ 

˜ 

1 ` 

8
ÿ 

n “ 1 

An 

ϵn 

¸ ˜ 

8
ÿ 

k “ 0 

zk 

ϵk 

¸ 

“ z0 

` ϵz1 

` ϵ2 z2 

` ϵ3 z3 

` . . . 

` ϵA1 

z0 

` ϵ2 A1 

z1 

` ϵ3 A1 

z2 

` . . . 

` ϵ2 A2 

z0 

` ϵ3 A2 

z1 

` . . . 

` ϵ3 A3 

z0 

` . . . 

` . . .

 

which we can solve order by order as follows:

 

ϵ0 : z0 “ 0 

ϵ1 : z1 “ ´ A1 

z0 

ϵ2 : z2 “ ´ A1 

z1 ´ A2 

z0 “ 0 (4.40) 

ϵ3 : z3 “ ´ A1 

z2 ´ A2 

z1 ´ A3 

z0 “ 0 

...

 

We found that, order by order in the formal power series in ϵ , equation (4.37) holds ! 

But (4.37) is a continuity equation

 

B

 

B t 

w ` 

B

 

B x 

`

´ 3 w2
´ 2 ϵ2 w3

` wxx 

˘

“ 0

 

.

 

(4.41) 

Since w , wx 

, wxx 

, ¨ ¨ ¨ Ñ 0 as x Ñ ˘8 order by order in powers of ϵ , the charge

 

Q̃ “ 

ż `8 

´8 

dx w

 

(4.42) 

is conserved .
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Now comes the important point: since w “ 

ř8 

n “ 0 

wn 

ϵn is a formal power series in ϵ , so is the 

conserved charge Q̃ too:10 

Q̃ “ 

ż `8 

´8 

dx 

8
ÿ 

n “ 0 

wn 

ϵn “ 

8
ÿ 

n “ 0 

ϵn 

ż `8 

´8 

dx wn ” 

8
ÿ 

n “ 0 

ϵn Q̃n 

. 

And since Q̃ is a conserved charge for all values of the free parameter ϵ , it must be that the 

charges

 

Q̃n “ 

ż `8 

´8 

dx wn

 

p n “ 0 , 1 , 2 , . . . q

 

(4.43) 

are all separately conserved! 

Going back to (4.39), we find that the first few conserved charges are

 

Q̃0 “ ´ 

ż `8 

´8 

dx u ” ´ Q1 

Q̃1 “ ` 

ż `8 

´8 

dx ux “ r u s
`8 

´8 “ 0 

Q̃2 “ ´ 

ż `8 

´8 

dx p uxx ` u2q “ ´ 

ż `8 

´8 

dx u2 ” ´ Q2 

Q̃3 “ ` 

ż `8 

´8 

dx p uxxx ` 4 uuxq “ r uxx ` 2 u2s`8 

´8 “ 0 

...

 

(4.44) 

As you might have guessed, the general pattern is as follows:

 

Q̃2 n ́  1 “ 

ż `8 

´8 

dx p total derivative q “ 0 

Q̃2 n ́  2 “ const ˆ Qn “ const ˆ 

ż `8 

´8 

dx p un ` . . . q ‰ 0 .

 

See [Drazin and Johnson, 1989] for a general proof. 

The existence of infinitely many conserved charges makes the KdV equation “integrable” . 

As you’ll start seeing in the exercises for this chapter, these unexpected conservation laws give 

us a lot of information about multi-soliton solutions of the KdV equation, see [Ex 23] and [Ex 

25] .

 

10Strictly speaking the middle equality assumes convergence, but we are working with a formal expansion, so 

we don’t need to worry about this subtlety.



 

Chapter 5 

The Bäcklund transform 

The main reference for this chapter is §5.4 of [Drazin and Johnson, 1989]. 

So far , we have constructed exact analytic solutions for moving solitons only as travelling 

waves , which describe the propagation of a single soliton . Our next goal will be to construct 

exact analytic solutions for multiple colliding solitons . The method that we will use in this 

chapter is a solution-generating technique called the Bäcklund transform . 

The method was introduced in the late 19th century by the Swedish mathematician Albert 

Victor Bäcklund and by the Italian mathematician Luigi Bianchi1 in the 1880s to map a 

pair of surfaces tangent to one another in three-dimensional space into another pair of sur- 

faces tangent to one another in a second three-dimensional space. The sine-Gordon equation 

happens to appear in this context when one considers hyperboloids, which are surfaces of 

negative curvature. 

There are two main uses of the Bäcklund transform : 

1. To generate solutions of a difficult PDE from solutions of a simpler PDE ; 

2. To generate new solutions of a given PDE from already known solutions of the 

same PDE . 

We will mostly be interested in use 2 , but you will see examples of use 1 in Ex 26-28 in the

 

1who, notably, was born in my hometown, Parma. Please remember this for the exam ;) This is the same 

Bianchi after whom the Bianchi identities in differential geometry and general relativity are named. 
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problem sheet. Our final goal in this chapter will be to obtain multi-soliton solutions of the 

sine-Gordon equation. 

5.1 Definition 

Consider two functions u and v , and two differential equations

 

P r u s “ 0

 

(5.1) 

Q r v s “ 0

 

(5.2)

 

where P and Q are two differential operators. 

If there is a pair of relations (which could be differential equations)

 

R1r u, v s “ 0 , R2r u, v s “ 0

 

(5.3) 

between u and v such that 

- If P r u s “ 0 , then (5.3) can be solved for v , to give a solution of Q r v s “ 0 ; 

- If Q r v s “ 0 , then (5.3) can be solved for u , to give a solution of P r u s “ 0 ; 

then (5.3) is called a Bäcklund transform (BT) . If furthermore P “ Q , so that the two 

differential equations are identical, then (5.3) is called an auto-Bäcklund transform (a-BT) . 

This is useful if (5.3) is easier to solve than (5.1) or (5.2). Then we can use (5.3) to generate 

solutions of the harder equation from solutions of the easier equation. If P “ Q , we can start 

from a simple seed solution ( e.g. u “ 0 ) to generate new non-trivial solutions. 

Vocabulary

 

: 

(5.1) and (5.2) are “integrability conditions” for the Bäcklund transform relations (5.3). 

(5.3) can be integrated for v if the integrability condition P r u s “ 0 is satisfied. 

(5.3) can be integrated for u if the integrability condition Q r v s “ 0 is satisfied. 

5.2 A simple example 

Take the two-dimensional Laplace operator P “ Q “ B2 

x ` B2 

y 

in (5.1) and (5.2):

 

P r u s “ uxx ` uy y 

“ 0 (5.4) 

Q r v s “ vxx ` vy y 

“ 0 (5.5)
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and for the Bäcklund transform (5.3)

 

R1r u, v s “ ux ´ vy 

“ 0 

R2r u, v s “ uy ` vx “ 0 .

 

(5.6) 

Let us check that (5.4)-(5.5) are integrability conditions for (5.6). Differentiating (5.6) we find

 

0 “ `Bx 

R1 ` By 

R2 “ ` uxx ´ vy x ` uy y ` vxy 

“ uxx ` uy y 

0 “ ´By 

R1 ` Bx 

R2 “ ´ uxy ` vy y ` uy x ` vxx “ vxx ` vy y 

,

 

therefore the relations (5.6) imply (5.4) and (5.5).2 This shows that (5.6) is an auto-Bäcklund 

transform for the two-dimensional Laplace equation. 

EXAMPLE

 

: 

v p x, y q “ 2 xy solves the Laplace equation (5.5). Let us use the a-BT to find another solution 

u of the same equation: 

# 

ux “ vy 

“ 2 x 

uy 

“ ´ vx “ ´ 2 y 

ùñ 

# 

u “ x2 ` f p y q 

f 1p y q “ ´ 2 y ñ f p y q “ ´ y2 ` c , 

so we find the function u p x, y q “ x2 ´ y2 ` c , where c is a constant. It is immediate to check 

that this u solves the Laplace equation (5.4). 

The equations R1r u, v s “ R2r u, v s “ 0 in (5.6) are nothing but the Cauchy-Riemann equa- 

tions for the holomorphic ( “ complex analytic) function w “ u ` iv of the complex variable 

z “ x ` iy . In the example above, w p z q “ z2 ` c . The equations P r u s “ 0 and Q r v s “ 0 

in (5.4)-(5.5) simply state that the real and imaginary parts of a holomorphic function are har- 

monic, that is, they solve the Laplace equation. Two such functions u and v are often called 

harmonic conjugate of each other. 

REMARKS

 

: 

1. Given v , the Bäcklund transform (5.6) is a system of two equations for u . Generically 

there wouldn’t be any solutions for the system (5.6). For example, if we pick v “ x2, 

then the system 

# 

ux “ vy 

“ 0 

uy 

“ ´ vx “ ´ 2 x 

has no solutions for u . But v “ x2 doesn’t solve (5.5)! The integrability condition 

(5.5) is what guarantees that the system (5.6) can be consistently solved for u .

 

2Note: in this example we don’t even need to use the other differential equation. This is not always the case.
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2. This auto-Bäcklund transform generates a new solution to the Laplace equation from 

a seed solution, but if we apply it a second time we get back the original seed solution 

(up to an irrelevant integration constant that we can ignore). So this auto-Bäcklund 

transform is an involution . To get further solutions we will need to introduce a param- 

eter. 

5.3 Bäcklund transform for sine-Gordon 

Recall that the sine-Gordon equation written in light-cone coordinates x˘ “ 

1

 

2
p t ˘ x q is

 

u`´ “ ´ sin u

 

.

 

(5.7) 

Let us try the Bäcklund transform

 

p u ´ v q` “ 

2

 

a 

sin 

´ u ` v

 

2 

¯ 

p u ` v q´ “ ´ 2 a sin 

´ u ´ v

 

2 

¯

 

(5.8) 

with the parameter a . Cross-differentiating,3

 

p u ´ v q`´ “ 

1

 

a 

cos 

´ u ` v

 

2 

¯ 

¨ p u ` v q´ “ ´ 2 cos 

´ u ` v

 

2 

¯ 

sin 

´ u ´ v

 

2 

¯ 

“ ´ sin u ` sin v 

p u ` v q´` “ ´ a cos 

´ u ´ v

 

2 

¯ 

¨ p u ´ v q` “ ´ 2 cos 

´ u ´ v

 

2 

¯ 

sin 

´ u ` v

 

2 

¯ 

“ ´ sin u ´ sin v .

 

Adding and subtracting, we find that both u and v obey the sine-Gordon equation:

 

u`´ “ ´ sin u

 

(5.9) 

v`´ “ ´ sin v

 

(5.10)

 

Therefore (5.8) is an auto-Bäcklund transform for the sine-Gordon equation, for any 

value of a . The extra parameter will allow us to generate multi-soliton solutions of the sine- 

Gordon equation. We will start by rederiving the one-kink solution using the auto-Bäcklund 

transform (5.8).

 

3Recall: sin p A ˘ B q “ sin A cos B ˘ cos A sin B , which implies sin p A ` B q ` sin p A ´ B q “ 2 sin A cos B .
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5.4 First example: the sine-Gordon kink from the vacuum 

Let us take the vacuum solution

 

v “ 0

 

(5.11) 

as our seed solution . Then the auto-Bäcklund transform (5.8) is

 

u` “ 

2

 

a 

sin 

u

 

2 

u´ “ ´ 2 a sin 

u

 

2 

.

 

(5.12) 

We can integrate both equations by separation of variables, using the indefinite integral 

ż 

du

 

sin 

u

 

2 

“ 2 log tan 

u

 

4 

up to an integration constant. We get

 

# 

2

 

a 

x` “ 2 log tan 

u

 

4 

` f p x´q 

´ 2 ax´ “ 2 log tan 

u

 

4 

` g p x`q

 

(5.13) 

where the functions f and g are “constants” of integration. They are only constant with respect 

to the variable that is integrated, but they can (and do!) depend on the other variable. 

Subtracting and rearranging, we get

 

2

 

a 

x`
` g p x`

q “ ´ 2 ax´
` f p x´

q .

 

(5.14) 

The left-hand-side is only a function of x`. The right-hand-side is only a function of x´. But 

the two sides are equal, so they must be equal to a constant, that we set to be ´ 2 c for future 

convenience. Therefore

 

f p x´
q “ 2 ax´

´ 2 c 

g p x`
q “ ´

2

 

a 

x`
´ 2 c

 

and so 

2 log tan 

u

 

4 

“ 

2

 

a 

x`
´ 2 ax´

` 2 c , 

that is

 

u “ 4 arctan 

´ 

e 

1

 

a 

x`´ ax´` c 

¯

 

.

 

(5.15) 

Finally, we convert to p x, t q coordinates: 

1

 

a 

x`
´ ax´

“ 

1

 

2 a
p t ` x q´ 

a

 

2
p t ´ x q “ 

1

 

2 

„ˆ 

a ` 

1

 

a 

˙ 

x ´ 

ˆ 

a ´ 

1

 

a 

˙ 

t 

ȷ 

“ 

1 ` a2

 

2 a 

ˆ 

x ´ 

a2 ` 1

 

a2 ´ 1 

t 

˙ 

.
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Defining

 

v : “ 

a2 ´ 1

 

a2 ` 1 

ϵ : “ sign p a q 

γ : “ 

1

 

?

 

1 ´ v2 

“ 

˚ Ex 

1 ` a2

 

2 | a |

 

,

 

(5.16) 

the solution (5.15) generated by auto-Bäcklund transform of the vacuum is

 

u p x, t q “ 4 arctan 

`

eϵγ p x ́  x0´ v t q 

˘

 

,

 

(5.17) 

where we traded the integration constant c for x0. This solution describes a kink or an anti- 

kink moving at velocity v . 

Properties:

 

a ą 0 : kink | a | ą 1 : right-moving 

a ă 0 : anti-kink | a | ă 1 : left-moving

 

a ă ´ 1 :

 

´ 1 ă a ă 0

 

0 ă a ă 1

 

a ą 1

 

Right-moving

 

Left-moving

 

Left-moving

 

Right-moving

 

anti-kink

 

anti-kink

 

kink

 

kink

 

So the auto-Bäcklund transform creates a kink/anti-kink from the vacuum! By varying the 

parameter a P R zt 0 u and the integration constant x0 

or c , we reproduce all the kink and 

anti-kink solutions derived in section 2.2 as travelling waves. 

The amazing fact is that this holds more generally: the auto-Bäcklund transform always adds 

a kink or an anti-kink to the seed solution.4 (The only exception is if one tries to add a soliton 

with the same velocity as one already present.) Therefore we can think of the auto-Bäcklund 

transform as a solution-generating technique which “adds” kinks or anti-kinks . 

We will use the following graph to denote the action of a Bäcklund transform on with param- 

eter a and integration constant c on a seed solution u1, which adds a kink or anti-kink and 

generates the new solution u2:

 

u1

 

u2

 

a

 

c

 

4Which of the two is added depends on the seed. More about this later.
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We can add a kink/anti-kink wherever we like (by choosing c ) and with whatever velocity we 

like (by choosing a ). For example

 

u1

 

u2

 

u3

 

u4

 

a1

 

c1

 

a2

 

c2

 

a3

 

c3

 

adds three kinks/anti-kinks to the seed solution u0. 

The problem with this is that the integrations get harder and harder as we keep “adding” 

solitons. Luckily, a nice theorem tells us that, having found one-soliton solutions, we can 

obtain multi-soliton solutions without doing any further integrals. 

5.5 The theorem of permutability 

Let’s apply the Bäcklund transform twice , with parameters a1 

and a2, in the two possible 

orders:

 

u0

 

u1

 

u2

 

u3

 

u4

 

a1

 

a2

 

a1

 

a2

 

The final results u3 

and u4 

of the double Bäcklund transforms both look like the seed solution 

u0 

with two added solitons, with parameters a1 

and a2. Could they actually be the same 

solution? The answer is yes, according to the following theorem: 

THEOREM

 

(Bianchi 1902): 

For any u1 

and u2, the integration constants in the second Bäcklund transforms, which 

generate u3 

and u4, can be arranged such that u3 

and u4 

are equal.

 

In other words, the a1 

and a2 

BT’s can be made to commute . Diagrammatically:
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u0

 

u1

 

u2

 

u3

 

a1

 

a2

 

a2

 

a1

 

I will spare you the proof of the theorem, which is a bit involved. Hopefully the statement 

makes intuitive sense, given the soliton content of u3 

and u4. 

This result has a nice application . We have two ways of getting to u3 

from u0: either 

through u1 

or through u2. By comparing these two ways we will be able to get rid of all 

derivatives in the Bäcklund transform and hence to obtain an algebraic relation between the 

four solutions u0 

, u1 

, u2 

, u3. 

Let’s start by considering the B` 

part of the Bäcklund transform, and let’s look at the upper 

route in the previous diagram first:

 

u0

 

u1

 

u3

 

a1

 

a2

 

We have

 

p u1 ´ u0q` “ 

2

 

a1 

sin 

u1 ` u0

 

2 

p u3 ´ u1q` “ 

2

 

a2 

sin 

u3 ` u1

 

2 

.

 

(5.18) 

Adding the two equations to cancel u1 

out in the left-hand side, we get

 

p u3 ´ u0q` “ 

2

 

a1 

sin 

u1 ` u0

 

2 

` 

2

 

a2 

sin 

u3 ` u1

 

2

 

.

 

(5.19) 

For the lower route
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u0

 

u2

 

u3

 

a2

 

a1

 

we swap a1 Ø a2, u1 Ø u2 

and get

 

p u3 ´ u0q` “ 

2

 

a2 

sin 

u2 ` u0

 

2 

` 

2

 

a1 

sin 

u3 ` u2

 

2

 

.

 

(5.20) 

We have found two different expressions for p u3 ´ u0q`. Equating them, we obtain an alge- 

braic relation between u0 

, u1 

, u2 

, u3:

 

1

 

a1 

sin 

u1 ` u0

 

2 

` 

1

 

a2 

sin 

u3 ` u1

 

2 

“ 

1

 

a2 

sin 

u2 ` u0

 

2 

` 

1

 

a1 

sin 

u3 ` u2

 

2

 

.

 

(5.21) 

This is very useful: starting from u0 

equal to the vacuum and twp one-soliton solutions u1 

, u2, 

we can generate a 2-soliton solution u3 

algebraically. We can then iterate the procedure and 

get a 3-soliton solution, then a 4-soliton solution, and so on and so forth. What we have found 

is akin to a “non-linear superposition principle” : the Bäcklund transform and the per- 

mutability theorem provide us with a machinery to “add” solutions of a non-linear equation! 

To check that the previous procedure is consistent, let’s see what happend for the B´ 

part of 

the Bäcklund transform. For the upper route

 

u0

 

u1

 

u3

 

a1

 

a2

 

we have

 

p u1 ` u0q´ “ ´ 2 a1 sin 

u1 ´ u0

 

2 

p u3 ` u1q´ “ ´ 2 a2 sin 

u3 ´ u1

 

2 

.

 

(5.22) 

Subtracting the two equations we get

 

p u0 ´ u3q´ “ 2 a2 sin 

u3 ´ u1

 

2 

´ 2 a1 sin 

u1 ´ u0

 

2

 

.

 

(5.23)
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For the lower route

 

u0

 

u2

 

u3

 

a2

 

a1

 

we swap again a1 Ø a2, u1 Ø u2 

and get

 

p u0 ´ u3q´ “ 2 a1 sin 

u3 ´ u2

 

2 

´ 2 a2 sin 

u2 ´ u0

 

2

 

.

 

(5.24) 

Equating (5.23) and (5.24), we find the algebraic relation

 

a2 sin 

u3 ´ u1

 

2 

´ a1 sin 

u1 ´ u0

 

2 

“ a1 sin 

u3 ´ u2

 

2 

´ a2 sin 

u2 ´ u0

 

2

 

.

 

(5.25) 

Consistency requires that the two algebraic relations (5.21) and (5.25) agree. To see that, let’s 

first massage (5.21) into the following form: 

1

 

a1 

´ 

sin 

u1 ` u0

 

2 

´ sin 

u3 ` u2

 

2 

¯ 

“ 

1

 

a2 

´ 

sin 

u2 ` u0

 

2 

´ sin 

u3 ` u1

 

2 

¯ 

. 

Multiplying by a1 

a2{ 2 and using the trigonometric identity sin A ˘ sin B “ 2 sin 

A ̆  B

 

2 

cos 

A ̄  B

 

2 

, 

this becomes

 

a2 sin 

u1 ` u0 ´ u3 ´ u2

 

4 � 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

cos 

u1 ` u0 ` u3 ` u2

 

4 

“ a1 sin 

u2 ` u0 ´ u3 ´ u1

 

4 � 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

cos 

u2 ` u0 ` u3 ` u1

 

4

 

(5.26) 

where we are allowed to simplify the common cosine factor in the two sides because the 

argument is a function of x and t which is generically different from π { 2 modulo 2 π . 

Similarly, (5.25) can be massaged to 

a1 

´ 

sin 

u3 ´ u2

 

2 

` sin 

u1 ´ u0

 

2 

¯ 

“ a2 

´ 

sin 

u3 ´ u1

 

2 

` sin 

u2 ´ u0

 

2 

¯ 

, 

which upon using the same trigonometric identity as above becomes

 

a1 sin 

u3 ´ u2 ` u1 ´ u0

 

4 � 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

cos 

u3 ´ u2 ´ u1 ` u0

 

4 

“ a2 sin 

u3 ´ u1 ` u2 ´ u0

 

4 � 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

� 

cos 

u3 ´ u1 ´ u2 ` u0

 

4

 

(5.27)
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which agrees with equation (5.26) upon simplification. So everything is consistent. 

To conclude this discussion, let’s massage (the simplified version of) equation (5.26) a bit 

further, with the aim of determining u3 

given u0 

, u1 

and u2. Letting A “ p u0 

´ u3q{ 4 and 

B “ p u1 ´ u2q{ 4 , (5.26) becomes

 

a1 sin p A ´ B q “ a2 sin p A ` B q 

ùñ a1p sin A cos B ´ sin B cos A q “ a2p sin A cos B ` sin B cos A q .

 

Dividing through by cos A cos B , we find

 

a1p tan A ´ tan B q “ a2p tan A ` tan B q . 

ùñ p a1 ´ a2q tan A “ p a1 ` a2q tan B .

 

In terms of u0 

, u1 

, u2 

, u3, this reads

 

tan 

u0 ´ u3

 

4 

“ 

a1 ` a2

 

a1 ´ a2 

tan 

u1 ´ u2

 

4

 

,

 

(5.28) 

which is an improvement on (5.26) since u3 

appears only once. Equivalently, we can write

 

tan 

u3 ´ u0

 

4 

“ 

a2 ` a1

 

a2 ´ a1 

tan 

u1 ´ u2

 

4

 

.

 

(5.29) 

Either of (5.28) or (5.29) allow us to express u3 

in terms of u0 

, u1 

, u2. 

5.6 The two-soliton solution 

This is the first nice application of the permutability theorem. Take the vacuum as the seed 

solution, i.e. u0 “ 0 . Then u1 

and u2 

are 1-soliton ( i.e. kink or antikink) solutions

 

tan 

ui

 

4 

“ eθi

 

p i “ 1 , 2 q

 

(5.30) 

where

 

θi “ 

x`

 

ai 

´ ai 

x´
` ci “ ϵi 

γip x ´ ¯ xi ´ vi 

t q

 

,

 

(5.31) 

as seen in section 5.4. Here ¯ x1 , 2 

are the centres of the two solitons at t “ 0 . 

Then equation (5.29) gives the double Bäcklund transform u3:

 

tan 

u3

 

4 

“ µ tan 

u1 ´ u2

 

4 

“ µ 

tan 

u1

 

4 

´ tan 

u2

 

4

 

1 ` tan 

u1

 

4 

tan 

u2

 

4 

,

 

(5.32)
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where

 

µ “ 

a2 ` a1

 

a2 ´ a1

 

(5.33) 

and we used the trigonometric identity 

tan p A ´ B q “ 

tan A ´ tan B

 

1 ` tan A ¨ tan B 

in the second equality in equation (5.32). Substituting equation (5.30) in equation (5.32) we 

find the 2-SOLITON SOLUTION

 

tan 

u3

 

4 

“ µ 

eθ1 ´ eθ2

 

1 ` eθ1` θ2

 

.

 

(5.34) 

REMARK

 

: 

If the two solitons have the same velocity v1 “ v2, which means 

a2 

1 ´ 1

 

a2 

1 ` 1 

“ 

a2 

2 ´ 1

 

a2 

2 ` 1 

ùñ a1 “ ˘ a2 

, 

then µ “ 0 , 8 and the 2-soliton solution (5.34) breaks down . In particular, there is no 

static 2-soliton solution ! As we will see later, this is because the two solitons exert a force 

on one another. 

But this is too fast. We haven’t confirmed yet that equation (5.34) contains two solitons. Let’s 

understand that next. 

5.7 Asymptotics of multisoliton solutions 

We will focus here on the 2-soliton solution of the sine-Gordon equation, but the method 

applies more generally to any multi-soliton solutions of integrable equations ( e.g. the KdV 

equation). 

Our goal will be to study the new solution (5.34) and identify two solutions hidden in its 

asymptotics for t Ñ ¯8 , namely BEFORE and AFTER the collision. Here is an example of 

what the solution may look like at early times (before the collision) and at late times (after the 

collision) in the case of a collision of a kink and an anti-kink:
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It is not completely obvious how to find the early time and late time asymptotics analytically. 

If we just take t ˘ 8 with x fixed, the two solitons will be at spatial infinity and we will miss 

them (unless one of the two has zero velocity, in which case we will see that soliton). We 

should instead follow one or the other soliton by letting

 

t Ñ ˘8 with XV 

“ x ´ V t fixed

 

,

 

(5.35) 

for some appropriate constant velocity V . If there is a soliton moving at velocity V in the 

original p x, t q coordinates, it will appear stationary in the p XV 

, t q coordinates. For this reason 

p XV 

, t q is called a “comoving frame” : they are coordinates for a reference frame which moves 

together with an object ( e.g. a soliton) of velocity V . 

Let us try this for the solution (5.34) which we obtained from a double Bäcklund transform of 

the vacuum. We will now use u to denote the field in the resulting solution, which reads 

tan 

u

 

4 

“ µ 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

with 

µ “ 

a2 ` a1

 

a2 ´ a1 

, θi “ ϵi 

γip x ´ vi 

t ´ ¯ xiq . 

If we switch to a comoving frame with velocity V , the exponents read

 

θi “ ϵi 

γip x ´ V t ` V t ´ vi 

t ´ ¯ xiq 

“ ϵi 

γip XV 

´ p vi ´ V q t ´ ¯ xiq ,

 

(5.36) 

where we see the appearance of the “relative velocity” vi 

´ V , that is the velocity in the 

comoving frame. 

For each soliton we now have three cases for the limit (5.35), corresponding to a positive, zero 

or negative relative velocity for the soliton: 

Case

 

t Ñ ´8

 

t Ñ `8

 

V ă vi

 

θi Ñ ` ϵi8

 

θi Ñ ´ ϵi8 

V “ vi

 

θi 

finite

 

θi 

finite 

V ą vi

 

θi Ñ ´ ϵi8

 

θi Ñ ` ϵi8
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Recall that ϵi “ ˘ 1 is a sign, and γi ą 0 so it does not affect the sign of θi 

in the limit. 

This tells us that if V ‰ v1 

, v2

 

, then θ1 

, θ2 Ñ ˘8 as | t | Ñ 8 . This implies that5 

tan 

u

 

4 

“ µ 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

Ñ ˘8 or 0 . 

So u { 4 tends to an integer multiple of π { 2 , which means that u tends to an integer multiple 

of 2 π : the field is in the vacuum . The conclusion is that if we go off to infinity in the original 

p x, t q plane in any direction apart from 

dx

 

dt 

“ v1 

, v2, then u Ñ 2 π n for some n P Z . 

If instead V “ v1 

or v2

 

, we need to study the limit more carefully. We will consider a single 

case a1 

, a2 ą 0

 

, leaving the other cases for the exercises. Since a1 

‰ a2 

for the solution to 

exist, let us take without loss of generality 

a2 ą a1 ą 0

 

ùñ v2 ą v1 

, ϵ1 “ ϵ2 “ 1 , µ ą 0 . 

Consider V “ v1

 

first, or "let’s ride the slower soliton". In the comoving frame the exponents 

θi 

read

 

θ1 “ γ1p x ´ v1 

t ´ ¯ x1q “ γ1p Xv1 ´ ¯ x1q 

θ2 “ γ2p x ´ v2 

t ´ ¯ x2q “ γ2p Xv1 ´ p v2 ´ v1q t ´ ¯ x2q

 

(5.37) 

so θ1 

stays finite, whereas θ2 Ñ ¯8 as t Ñ ˘8 with Xv1 

fixed (I used that v2 ą v1). 

One of the two limits is easier to analyse, so let’s start with that: 

1. t Ñ `8

 

: 

In this limit θ2 Ñ ´8 , so eθ2 Ñ 0 and

 

tan 

u

 

4 

“ µ 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

Ñ µeθ1 

“ µeγ1p Xv1´ ¯ x1q 

“ e
γ1 

´ 

x ́  v1 

t ́  ¯ x1` 

1

 

γ1 

log µ 

¯ 

,

 

5According to the signs of the limits of θ1 

and θ2, the limit of tan p u { 4 q is as follows:

 

`` : tan p u { 4 q Ñ 0 

`´ : tan p u { 4 q Ñ `8 

´` : tan p u { 4 q Ñ ´8 

´´ : tan p u { 4 q Ñ 0 .
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where in the last line we have expressed the finite limit in the comoving coordinates in 

terms of the original p x, t q coordinates. 

This is a kink (the centre of) which moves with velocity v1 

along the trajectory

 

x “ v1 

t ` ¯ x1 ´ 

1

 

γ1 

log 

a2 ` a1

 

a2 ´ a1

 

.

 

(5.38) 

The last term is negative and represents a backward shift in space of the slower soliton 

compared to where it would have been at the same time in the absence of the faster 

soliton. (Equivalently, we can view this as a time delay for reaching a fixed value of x .) 

2. t Ñ ´8

 

: 

In this limit θ2 Ñ `8 , so eθ2 Ñ `8 and

 

tan 

u

 

4 

“ µ 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

Ñ ´ µe´ θ1 .

 

Recalling that tan 

`

A ˘ 

π

 

2 

˘

“ ´ 

1

 

tan A
, this means that

 

tan 

´ u

 

4 

˘ 

π

 

2 

¯ 

Ñ µ´ 1 eθ1 

“ e
γ1 

´ 

x ́  v1 

t ́  ¯ x1´ 

1

 

γ1 

log µ 

¯ 

.

 

Therefore 

u
ˇ

ˇ 

t Ñ´8 , Xv1 

finite « ˘ 2 π ` 4 arctan e
γ1 

´ 

x ́  v1 

t ́  ¯ x1´ 

1

 

γ1 

log µ 

¯ 

. 

(The ˘ sign ambiguity can be fixed by continuity. It turns out that ´ 2 π is correct.) 

This is a kink (the centre of) which moves with velocity v1 

along the trajectory

 

x “ v1 

t ` ¯ x1 ` 

1

 

γ1 

log 

a2 ` a1

 

a2 ´ a1

 

.

 

(5.39) 

The last term is positive and represents a forward shift of the slower soliton com- 

pared to where it would have been at the same time in the absence of the faster soliton. 

(Equivalently, we can view this as a time advancement.) 

Comparing the trajectories at early times ( t Ñ ´8 ) and at late times ( t Ñ `8 ), we see that 

the collision with the faster soliton shifts the slower soliton backwards by 

2

 

γ1 

log 

a2 ` a1

 

a2 ´ a1 

, 

as exemplified by this figure:
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We say that the slower soliton has a negative phase shift :

 

PHASE SHIFTslower “ ´ 

2

 

γ1 

log 

a2 ` a1

 

a2 ´ a1

 

(5.40) 

We conclude that the slower kink emerges from the collision with the same shape and velocity, 

but delayed by a finite phase shift. 

Now consider V “ v2

 

, or "let’s ride the faster soliton". The calculation is similar to what we 

did above, so I’ll let you work out the details in [Ex 30] . If you do this exercise you will find a 

surprise : even though a2 ą 0 , so that acting on the vacuum with the a2-Bäcklund transform 

produces a kink, the component of the two-soliton solution (5.34) that moves at velocity v2 

is actually an anti-kink ! So, even though the Bäcklund transform always adds a soliton, the 

nature of the added soliton depends on what is already there. 

The shifts have opposite signs to before, as exemplified by this figure:



 

CHAPTER 5. THE BÄCKLUND TRANSFORM 76

 

This results in a positive phase shift :

 

PHASE SHIFTfaster “ ` 

2

 

γ2 

log 

a2 ` a1

 

a2 ´ a1

 

.

 

(5.41) 

Summarising, we have the following picture for the collision of the anti-kink and the kink:

 

Figure 5.1: Schematic summary of the kink-antikink solution. 

See also here for the plot of the kink-antikink solution with parameters a1 

“ 1 . 1 and a2 

“ 2 , 

here for a contour plot of its energy density, which clearly shows the trajectories of the kink 

and the anti-kink, and here for an animation of the time evolution.

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink_animation.gif
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REMARK

 

: 

From the plot of the exact solution or the contour plot of its energy density we see that the 

kink and the anti-kink attract each other . Indeed we observe that they get closer during 

the interaction. 

The remaining cases for the signs of a1 

and a2 

can be analysed similarly, see [Ex 31] and [Ex 

32] . In particular, the 2-soliton solution that contains two kinks looks as follows:6

 

Figure 5.2: Schematic summary of the kink-kink solution. 

See also here for a plot of the kink-kink solution with parameters a1 

“ 0 . 6 and a2 

“ ´ 1 . 5 , 

here for a contour plot of its energy density, which clearly shows the trajectories of the two 

kinks, and here for an animation of the time evolution. 

From the plot of the exact solution or the contour plot of its energy density we see that the 

two kinks repel each other . Indeed they get further apart during the interaction. Curiously, 

they also seem to swap their identities! 

INTERPRETATION:

 

ATTRACTIVE FORCE between kink and anti-kink 

REPULSIVE FORCE between kink and kink 

REPULSIVE FORCE between anti-kink and anti-kink

 

6The solution that contains two anti-kinks can be obtained by sending u ÞÑ ´ u .

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink_animation.gif
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink_energy_density.jpg
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So kinks and anti-kinks behave similarly to elementary particles with electric charge, such as 

the electron and the positron. The role of electric charge is played here by the topological 

charge: 

Solitons with like topological charges repel 

Solitons with opposite topological charges attract.

 

It is quite amazing that lump of fields can behave so similarly to pointlike elementary particles. 

In the 1950’s and 1960’s, Tony Skyrme used versions of kinks (and anti-kinks) in four spacetime 

dimensions to model the behaviour of protons and neutrons in atomic nuclei. This is a very far- 

reaching idea, which unfortunately we don’t have time to investigate further in this module. 

We have seen that kinks and anti-kinks attract each other. This raises a natural question: 

can they stick together, or in physics parlance “form a bound state”? The answer is yes. The 

resulting bound state of a kink and an anti-kink is the “breather”, which we now turn to. 

5.8 The breather 

Recall the general 2-soliton solution (5.34) of the sine-Gordon equation, that we rewrite here 

for convenience: 

u “ 4 arctan 

ˆ 

a2 ` a1

 

a2 ´ a1 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

˙

 

. 

This is a solution of the sine-Gordon equation for any values of the Bäcklund parameters 

a1 

and a2 

(and integration constants c1 

and c2), even complex values! However, the sine- 

Gordon field u is an angle and so it must be real . There are essentially two options to achieve 

this:7 

1. a1 

, a2 

(and c1 

, c2) P R :

 

this is what we have considered so far; 

2. a2 “ ¯ a1 

(and c2 “ ¯ c1):

 

this is what we will consider next. But let’s first check that u

 

7To be precise, one can also add to the integration constants c1 

and c2 

an integer multiple of π i . This has the 

effect of permuting the two solitons if the multiple is odd, and has no effect if the multiple is even.
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is real:

 

¯ u “

 

4 arctan 

ˆ 

a2 ` a1

 

a2 ´ a1 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

˙ 

“ 4 arctan 

˜ 

¯ a2 ` ¯ a1

 

¯ a2 ´ ¯ a1 

eθ̄1 ´ eθ̄2

 

1 ` eθ̄1`θ̄2 

¸ 

“ 4 arctan 

ˆ 

a1 ` a2

 

a1 ´ a2 

eθ2 ´ eθ1

 

1 ` eθ2` θ1 

˙ 

“ 4 arctan 

ˆ 

a2 ` a1

 

a2 ´ a1 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

˙ 

“ u .

 

To get to the second line we used the fact that arctan p z q and ez are complex analytic 

functions, therefore

 

arctan p z q “ arctan p ¯ z q and

 

ez “ e¯ z . To get to the third line we used 

θ2 “ θ̄1, which follows from a2 “ ¯ a1 

and c2 “ ¯ c1. 

Let us then consider option 2 and try a solution with arbitrary a1 

“ ¯ a2 

” a and with c1 

“ 

c2 “ 0 for simplicity . Define

 

a1 “ a “ A ` iB “ | a | eiφ 

a2 “ ¯ a “ A ´ iB “ | a | e´ iφ

 

(5.42) 

where A “ Re p a q , B “ Im p a q , φ “ arg p a q , and let

 

θ1 “ α ` iβ 

θ2 “ α ´ iβ

 

,

 

(5.43) 

with α and β real functions of x, t to be determined below. Then

 

tan 

u

 

4 

“ 

| a |p e´ iφ ` eiφq

 

| a |p e´ iφ ´ eiφq
¨ 

eα ̀  iβ ´ eα ́  iβ

 

1 ` e2 α 

“ 

2 cos φ

 

´ 2 i sin φ
¨ 

2 i sin β

 

2 cosh α

 

which simplifies to

 

tan 

u

 

4 

“ ´
cos φ

 

sin φ 

sin β

 

cosh α

 

.

 

(5.44) 

To finish the calculation, let’s determine the functions α , β in terms of the coordinates x, t and 

the parameters | a | and φ :

 

α ` iβ “ θ1 “ 

1

 

a 

x`
´ ax´ 

“ 

¯ a

 

| a |2 

x`
´ ax´

“ 

A ´ iB

 

| a |2 

x`
´ p A ` iB q x´ .

 

(5.45)
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Therefore

 

α “ Re p θ1q “ 

A

 

| a |2 

x`
´ Ax´ 

“ 

A

 

| a | 

ˆ 

1

 

| a | 

x`
´ | a | x´ 

˙ 

.

 

We can now do similar manipulations to what we did after equation (5.15) to find

 

α “ 

A

 

| a | 

γ p x ´ v t q “ 

(5.42) 

cos φ ¨ γ p x ´ v t q

 

,

 

(5.46) 

where

 

v “ 

| a |2 ´ 1

 

| a |2 ` 1 

γ “ 

1

 

?

 

1 ´ v2 

“ 

1 ` | a |2

 

2 | a |

 

.

 

(5.47) 

˚ EXERCISE

 

: Show that similarly [Ex 33]

 

β “ 

B

 

| a | 

γ p v x ´ t q “ 

(5.42) 

sin φ ¨ γ p v x ´ t q

 

.

 

(5.48) 

Substituting these expressions in (5.44) we find the breather solution

 

tan 

u

 

4 

“ ´ cot φ ¨ 

sin p sin φ ¨ γ p v x ´ t qq

 

cosh p cos φ ¨ γ p x ´ v t qq

 

.

 

(5.49) 

REMARK

 

: 

• The ratio of the prefactor and the denominator in the RHS, 

´ cot φ

 

cosh p cos φ ¨ γ p x ´ v t qq 

, 

defines an envelope which moves at the group velocity v . Recall that | v | ă 1 , where 

1 is the speed of light, so this is consistent with the laws of special relativity. 

• The numerator 

sin p sin φ ¨ γ p x ´ v t qq 

defines a carrier wave which moves at the phase velocity 1 { v .
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To see why the solution (5.49) is called a “breather” , let us set | a | “ 1 , or equivalently v “ 0 . 

(This can be achieved by switching to a comoving frame if v ‰ 0 .) Then the breather simplifies 

to

 

tan 

u

 

4 

“ cot φ ¨ 

sin p sin φ ¨ t q

 

cosh p cos φ ¨ x q

 

(5.50) 

and the field looks like a bouncing (or “breathing” ) bound state of a kink and an anti- 

kink , with time period

 

τ “ 

2 π

 

| sin φ |

 

.

 

(5.51) 

See figure (5.3) for a summary of the v “ 0 breather solution, this for a plot of the breather

 

Figure 5.3: Schematic summary of the v “ 0 breather solution. 

solution with v “ 0 and φ “ π { 10 , this for a contour plot of its energy density, which clearly 

shows the trajectories of the breathing pair of kink and anti-kink, and this for an animation 

of the time evolution. 

One can show8 that the v “ 0 breather has energy Ebreather “ 16 cos φ . Since a static kink and 

a static anti-kink have energy Ekink 

“ Eantikink 

“ 8 , the binding energy of the kink and the

 

8This is a good but technical exercise, which is not in the problem sheet.

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/breather.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/breather_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/breather_animation.gif
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anti-kink in the breather is 

Ebinding “ Ebreather ´ Ekink ´ Eantikink “ ´ 16 p 1 ´ cos φ q . 

This is negative as expected: the binding lowers the energy of the solution. 

As φ Ñ 0

 

, the binding energy tends to zero. It is immediate to see from equation (5.51) that 

the time period of the bounce diverges: τ „ 1 {| φ | Ñ 8 . The spatial size of the breather also 

diverges like [Ex 34] 

xmax „ ´ log | φ |

 

Ñ 8 . 

In this limit the kink and the antikink become more and more loosely bound . The resulting 

solution 

u “ 4 arctan p t ¨ sech p x qq 

describes a kink and an anti-kink starting infinitely far away from one another and doing half 

an oscillation. Since sech p x q « 2 e´| x | as | x | Ñ 8 , the kink and the anti-kink do not follow 

linear trajectories as t Ñ ˘8 . Rather, the asymptotic trajectories of the kink and the anti-kink 

are given by | x | „ log | t | .



 

Chapter 6 

The Hirota method 

The main reference for this chapter is §5.3 of [Drazin and Johnson, 1989]. 

This is an alternative to the Bäcklund transform as a way to generate multi-soliton 

solutions , which is sometimes available when the Bäcklund transform is not. It was devised 

by Hirota [Hirota, 1971] to write N -soliton solutions of the KdV equation , and was then 

generalised to a large class of equations. We will focus on the KdV equation in this chapter. 

6.1 Motivation 

Let us substitute

 

u “ wx

 

(6.1) 

in the KdV equation 

ut ` 6 uux ` uxxx “ 0 . 

We find the equation 

wxt ` 6 wx 

wxx ` wxxxx “ 0 , 

which we can integrate with respect to x : 

wt ` 3 w2 

x ` wxxx “ g p t q . 

We will drop the integration “constant” (with respect to x ) g p t q in what follows, since it can 

be absorbed in a redefinition of w that does not change u “ wx: 

woldp x, t q “ wnewp x, t q ` 

ż t 

t0 

dt1 g p t1q . 

83
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Using the new w (and dropping the subscript “new”), we have the following equation:

 

wt ` 3 w2 

x ` wxxx “ 0

 

.

 

(6.2) 

You may ask: why did we make the substitution (6.1)? Recall the one-soliton solution of 

KdV

 

u “ 2 µ2 sech2 

“

µ p x ´ x0 ´ 4 µ2 t q
‰

 

(6.3) 

with

 

µ “ 

?

 

v

 

2

 

.

 

(6.4) 

This one-soliton solution can be written as u “ wx 

with

 

w “ 2 µ tanh 

“

µ p x ´ x0 ´ 4 µ2 t q
‰

 

.

 

(6.5) 

In fact, we can integrate the right-hand side of (6.5) once more, using 

tanh y “ 

d

 

dy 

log cosh y . 

Therefore the one-soliton solution (6.3) of KdV can be written as

 

u “ 2 

B2

 

B x2 

log cosh 

“

µ p x ´ x0 ´ 4 µ2 t q
‰

 

.

 

(6.6) 

This can be simplified further. Let

 

X “ x ´ x0 ´ 4 µ2 t

 

.

 

(6.7) 

Then

 

u “ 2 

B2

 

B X2 

log 

e´ µXp 1 ` e2 µXq

 

2 

“ 2 

B2

 

B X2 

“

´ µX ´ log 2 ` log 

`

1 ` e2 µX 

˘‰ 

“ 2 

B2

 

B X2 

log 

`

1 ` e2 µX 

˘ 

,

 

or in terms of the original coordinates

 

u p x, t q “ 2 

B2

 

B x2 

log 

´ 

1 ` e2 µ p x ́  x0´ 4 µ2 t q 

¯

 

.

 

(6.8) 

This is the form of the one-soliton solution of KdV that we will refer to in the following.



 

CHAPTER 6. THE HIROTA METHOD 85 

6.2 KdV equation in bilinear form 

6.2.1 The quadratic form of KdV 

Inspired by the form (6.8) of the one-soliton solution, let’s substitute

 

w “ 2 

B

 

B x 

log f “ 

fx

 

f

 

ðñ u “ 2 

B2

 

B x2 

log f

 

(6.9) 

in equation (6.2).1 Then

 

1

 

2 

wt “ 

fxt 

f ´ fx 

ft

 

f 2 

, 

1

 

2 

wx “ 

fxx 

f ´ f 2 

x

 

f 2 

, 

1

 

2 

wxx “ . . . [Ex 35] 

1

 

2 

wxxx “ 

fxxxx

 

f 

´ 4 

fxxx 

fx

 

f 2 

´ 3 

f 2 

xx

 

f 2 

` 12 

fxx 

f 2 

x

 

f 3 

´ 6 

f 4 

x

 

f 4 

,

 

(6.10) 

and equation (6.2) for w becomes [Ex 35] 

fxt

 

f 

´ 

fx 

ft

 

f 2 

` 3 

f 2 

xx

 

f 2 

´ 4 

fxxx 

fx

 

f 2 

` 

fxxxx

 

f 

“ 0 

for f . 

Multiplying by f 2, we find the so called quadratic form of the KdV equation :

 

f fxt ´ fx 

ft ` 3 f 2 

xx ´ 4 fx 

fxxx ` f fxxxx “ 0

 

.

 

(6.11) 

Some cancellations have taken place to get to the quadratic form (6.11) of the KdV equation, but 

at first sight this might not seem progress on the initial equation (6.2). But (6.11) is quadratic 

in f and it can be rewritten in a neat way . A hint for that is that 

B

 

B x 

B

 

B t 

ˆ

1

 

2 

f 2 

˙ 

“ 

B

 

B x
p f ftq “ f fxt ` fx 

ft 

. 

This is almost like the first two terms in (6.11), except for the relative sign. We will fix this 

sign problem shortly.

 

1In the literature on integrable systems, the function f is now called the τ -function.
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6.2.2 Hirota’s bilinear operator 

Hirota defined a bilinear differential operator D which maps a pair of functions p f , g q into 

a single function D p f , g q . If we work on C8 functions, then

 

D : C8
ˆ C8

Ñ C8 

p f , g q ÞÑ D p f , g q ,

 

and bilinearity means that

 

D p a1 

f1 ` a2 

f2 

, g q “ a1 

D p f1 

, g q ` a2 

D p f2 

, g q 

D p f , b1 

g1 ` b2 

g2q “ b1 

D p f , g1q ` b2 

D p f , g2q

 

for any constants a1 

, a2 

, b1 

, b2. 

REMARK

 

: 

This is unlike the usual linear differential operators that you are familiar with, such as 

` 

B

 

B x 

˘n, 

which maps a single function f into a single function 

B 

n f

 

B xn . 

For any integers m, n ě 0 , we define the bilinear differential operators D 

m 

t 

D 

n 

x 

by

 

r D 

m 

t 

D 

n 

xp f , g qsp x, t q : “ 

ˆ

B

 

B t
´ 

B

 

B t1 

˙m 

ˆ 

B

 

B x
´ 

B

 

B x1 

˙n 

f p x, t q g p x1 , t1q 

ˇ

ˇ

ˇ

ˇ

x1“ x 

t1“ t

 

.

 

(6.12) 

Let us look at a few examples. We start with

 

r Dtp f , g qsp x, t q “ 

ˆ

B

 

B t
´ 

B

 

B t1 

˙ 

f p x, t q g p x1 , t1q 

ˇ

ˇ

ˇ

ˇ

x1“ x 

t1“ t 

“ fxp x, t q g p x1 , t1q ´ f p x, t q gt1p x1 , t1q 

ˇ

ˇ

ˇ

ˇ

x1“ x 

t1“ t 

“ ftp x, t q g p x, t q ´ f p x, t q gtp x, t q ,

 

(6.13) 

so 

Dtp f , g q “ ft 

g ´ f gt 

and Dtp f , f q “ 0 , 

and similarly for Dx. Next we look at

 

r Dt 

Dxp f , g qsp x, t q “ 

ˆ

B

 

B t
´ 

B

 

B t1 

ˆ 

B

 

B x
´ 

B

 

B x1 

˙˙ 

f p x, t q g p x1 , t1q 

ˇ

ˇ

ˇ

ˇ

x1“ x 

t1“ t 

“ 

ˆ

B

 

B t
´ 

B

 

B t1 

˙ 

p fxp x, t q g p x1 , t1q ´ f p x, t q gx1p x1 , t1qq 

ˇ

ˇ

ˇ

ˇ

x1“ x 

t1“ t 

“ fxtp x, t q g p x, t q ´ ftp x, t q gxp x, t q ´ fxp x, t q gtp x, t q ` f p x, t q gxtp x, t q ,

 

(6.14)
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so

 

Dt 

Dxp f , g q “ fxt 

g ´ ft 

gx ´ fx 

gt ` f gxt 

and Dt 

Dxp f , f q “ 2 p f ftx ´ ft 

f q .

 

(6.15) 

This is promising, because the right-hand-side of the last expressionreproduces the first two 

terms in the quadratic form of the KdV equation (6.11), up to an overall factor of 2 . Let’s 

proceed then and compute

 

D2 

xp f , g q “ fxx 

g ´ 2 fx 

gx ` f gxx 

,

 

(6.16) 

which implies 

D2 

xp f , f q “ 2 p f fxx ´ f 2 

xq . 

REMARK

 

: 

Note that D2 

xp f , f q ‰ 0 even though Dxp f , f q “ 0 . This is not inconsistent, because D2 

xp f , f q ‰ 

Dx p Dxp f , f qq . In fact, the right-hand side of this last expression is meaningless, since the outer 

Dx 

must act on a pair of functions, but Dxp f , f q is a single function. 

Finally, we can calculate

 

D4 

xp f , g q “ . . . [Ex 36] 

“ fxxxx 

g ´ 4 fxxx 

gx ` 6 fxx 

gxx ´ 4 fx 

gxxx ` f gxxxx 

.

 

(6.17) 

Note that the result is like B4 

xp f g q , but with alternating signs! So

 

D4 

xp f , f q “ 2 p f fxxxx ´ 4 fx 

fxxx ` 3 f 2 

xxq .

 

(6.18) 

Here is the miracle : the KdV equation in its quadratic form (6.11) can be recast as

 

p Dt 

Dx ` D4 

xqp f , f q “ 0

 

(6.19) 

where the bilinear operator Dt 

Dx ` D4 

x 

is defined by linearity on the space of operators of 

the type (6.12), namely p Dt 

Dx ` D4 

xqp f , g q “ Dt 

Dxp f , g q ` D4 

xp f , g q . Equation (6.19) is the so 

called bilinear form of the KdV equation . 

REMARK

 

: 

Observe that we can formally factor the Hirota operator as 

Dt 

Dx ` D4 

x “ p Dt ` D3 

xq Dx 

, 

which is a short-hand for 

p Dt 

Dx ` D4 

xqp f , g q “ pBt ´ Bt1 ` pBx ´ Bx1q
3
qpBx ´ Bx1q f p x, t q g p x1 , t1q 

ˇ

ˇ

ˇ

ˇ

x1“ x 

t1“ t 

. 

This is not an accident. It is related to the fact that the differential operator Bt ` B3 

x 

appears in 

the linearised KdV equation for u , and therefore the differential operator pBt ` B3 

xqBx 

appears 

in the linearisation of the equation for w (before integration with respect to x ).
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6.3 Solutions 

We will need two ideas to find multi-soliton solutions. The first idea is inspired by a rather 

basic observation: if we take f “ 1 , then the KdV field is the vacuum u “ 0 ; if instead we take 

f “ 1 ` e2 µ p x ́  x0´ 4 µ2 t q , 

then the KdV field u is the one-soliton solution (6.8). Since (6.19) is a bilinear equation, this 

suggests that multi-soliton solutions might be obtained from an f which is a sum of ex- 

ponentials of linear functions of x and t , with 1 “ e0 as the trivial case. But before we get 

to the general case, let us check the Hirota formalism by rederiving the one-soliton solution 

of the KdV equation. 

6.3.1 Example: 1-soliton 

Let’s try

 

f “ 1 ` eθ

 

(6.20) 

with

 

θ “ ax ` bt ` c

 

,

 

(6.21) 

where a, b, c are constants. 

Lemma 1. If θi “ ai 

x ` bi 

t ` ci 

( i “ 1 , 2 ), then [Ex 38]

 

D 

m 

t 

D 

n 

xp eθ1 , eθ2q “ p b1 ´ b2q
m

p a1 ´ a2q
n eθ1` θ2

 

.

 

(6.22) 

In particular

 

D 

m 

t 

D 

n 

xp eθ , eθq “ 0 (unless m “ n “ 0 ) 

D 

m 

t 

D 

n 

xp eθ , 1 q “ p´ 1 q
m ̀  n D 

m 

t 

D 

n 

xp 1 , eθq “ bm an eθ .

 

(6.23) 

Therefore the bilinear form of the KdV equation for f “ 1 ` eθ is

 

0 “ p Dt 

Dx ` D4 

xqp 1 ` eθ , 1 ` eθq 

“ 

bilinearity
p Dt 

Dx ` D4 

xq 

“

p 1 , 1 q ` p 1 , eθq ` p eθ , 1 q ` p eθ , eθq
‰ 

“ 

(6.23) 

2 p Dt 

Dx ` D4 

xqp eθ , 1 q 

“ 

(6.23) 

2 p ba ` a4q eθ 

“ 2 a p b ` a3q eθ .

 

(6.24) 

There are two ways to solve this algebraic equation:
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1. a “ 0 :

 

then f is independent of x , and u “ 0 . 

2. b “ ´ a3:

 

then 

f “ 1 ` eax ́  a3 t ̀  c , 

and

 

u “ 2 

B2

 

B x2 

log 

´ 

1 ` eax ́  a3 t ̀  c 

¯

 

,

 

(6.25) 

which is nothing but the one-soliton solution (6.8), up to a redefinitions of the constants. 

6.3.2 N -soliton solutions 

The second idea is to look for a power series solution (or a so called “perturbative expan- 

sion”) in an auxiliary parameter ϵ ,

 

f p x, t q “ 

8
ÿ 

n “ 0 

ϵn fnp x, t q with f0 “ 1

 

,

 

(6.26) 

and hope that the series terminates at some value of n , so that we can take ϵ to be finite and 

eventually set it to 1 . 

We will write the bilinear form of KdV as

 

B p f , f q “ 0

 

with B “ Dt 

Dx ` D4 

x

 

.

 

(6.27) 

Substituting (6.26) in (6.27), we find

 

0 “ B p 

8
ÿ 

n1“ 0 

ϵn1 fn1 

, 

8
ÿ 

n2“ 0 

ϵn2 fn2q 

“ 

8
ÿ 

n1“ 0 

8
ÿ 

n2“ 0 

ϵn1` n2 B p fn1 

, fn2q

 

(6.28) 

where in the second line we used the bilinearity of the Hirota operator B . Gathering terms of 

the same degree n “ n1 ` n2 

in ϵ , we can rewrite (6.28) as

 

0 “ 

8
ÿ 

n “ 0 

ϵn 

n
ÿ 

m “ 0 

B p fn ́  m 

, fmq “ 

B p 1 , 1 q“ 0 

8
ÿ 

n “ 1 

ϵn 

n
ÿ 

m “ 0 

B p fn ́  m 

, fmq

 

.

 

(6.29) 

Let’s solve this equation order by order in ϵ . We find that

 

n
ÿ 

m “ 0 

B p fn ́  m 

, fmq “ 0 @ n “ 1 , 2 , . . .

 

(6.30)
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with f0 “ 1 . Writing (6.30) as

 

B p fn 

, 1 q ` B p 1 , fnq “ p expression in f1 

, f2 

, . . . , fn ́  1q

 

,

 

(6.31) 

makes it clear that we can solve (6.30) recursively to determine the Taylor coefficients of f . 

We will need another lemma: 

Lemma 2. [Ex 39] For any function f ,

 

D 

m 

t 

D 

n 

xp f , 1 q “ p´ 1 q
m ̀  n D 

m 

t 

D 

n 

xp 1 , f q “ 

B 

m

 

B tm 

B 

n

 

B xn 

f

 

.

 

(6.32) 

Using this lemma, we can write the recursion relation (6.31) more explicitly as

 

B

 

B x 

ˆ

B

 

B t
` 

B3

 

B x3 

˙ 

fn “ ´
1

 

2 

n ́  1
ÿ 

m “ 1 

B p fn ́  m 

, fmq

 

,

 

(6.33) 

which is valid for all n “ 1 , 2 , . . . . In the following I will refer to this recursion relation, which 

determines fn 

in terms of all the fm 

with m ă n , as Eqn. 

For n “ 1 this reduces to 

B

 

B x 

ˆ

B

 

B t
` 

B3

 

B x3 

˙ 

f1 “ 0 

or, with appropriate boundary conditions,

 

ˆ

B

 

B t
` 

B3

 

B x3 

˙ 

f1 “ 0

 

,

 

(6.34) 

which is a linear equation. A simple solution is

 

f1 “ 

N
ÿ 

i “ 1 

eai 

x ́  a3 

i 

t ̀  ci ” 

N
ÿ 

i “ 1 

eθi

 

,

 

(6.35) 

where ai 

and ci 

are constants as usual. 

The higher fn 

are then determined recursively using Eqn 

(6.33). The amazing fact is that 

with f1 

as in equation (6.35), the expansion (6.26) terminates at order N . All the higher 

equations Eqn ą N 

are solved with fn ą N 

“ 0 ! This is quite non-trivial: it requires that f1 

, . . . , fN 

satisfy the consistency conditions that the RHS of Eqn 

vanish for n “ N ` 1 , . . . , 2 N . 

We then find that the N -soliton solution of KdV is given by

 

f “ 1 ` f1 ` f2 ` ¨ ¨ ¨ ` fN

 

,

 

(6.36)
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where we set ϵ “ 1 (or absorbed it in the constants ci). 

EXAMPLES

 

: 

N “ 1

 

In this case 

f1 “ ea1 

x ́  a3 

1 

t ̀  c1 ” eθ1 

and Eq2 

reads 

BxpBt ` B
3 

xq f2 “ ´
1

 

2 

B p eθ1 , eθ1q “ 

(6.23) 

0 . 

So we can take f2 

“ 0 (and f3 

“ f4 

“ ¨ ¨ ¨ “ 0 as well). Setting ϵ “ 1 , or absorbing ϵ in 

c1, we get 

f “ 1 ` eθ1 , 

the one-soliton solution as we found in (6.25). 

N “ 2

 

In this case 

f1 “ eθ1 ` eθ2 

and Eq2 

reads

 

BxpBt ` B
3 

xq f2 

“ ´
1

 

2 

B p eθ1 ` eθ2 , eθ1 ` eθ2q 

“ 

bilinearity 

` (6.22) 

´ B p eθ1 , eθ2q 

“ 

B “ Dt 

Dx` D4
x

` (6.22) 

´p a1 ´ a2qr´ a3 

1 ` a3 

1 ` p a1 ´ a2q
3
s eθ1` θ2s 

“ 3 a1 

a2p a1 ´ a2q
2 eθ1` θ2 . (6.37)

 

So let’s try 

f2 “ Aeθ1` θ2 

for some constant A to be determined. Substituting in the previous equation we find

 

p a1 ` a2qr´ a3 

1 ´ a3 

2 ` p a1 ` a2q
3
s Aeθ1` θ2 “ 3 a1 

a2p a1 ´ a2q
2 eθ1` θ2 

3 a1 

a2p a1 ` a2q
2 A “ 3 a1 

a2p a1 ´ a2q
2 

A “ 

ˆ 

a1 ´ a2

 

a1 ` a2 

˙2 

. (6.38)

 

So we get

 

f “ 1 ` eθ1 ` eθ2 ` 

ˆ 

a1 ´ a2

 

a1 ` a2 

˙2 

eθ1` θ2

 

(6.39) 

for the 2-soliton solution of KdV , where again we set ϵ “ 1 or absorbed into a shift 

of c1 

and c2.
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˚ EXERCISE

 

: Show that B p f1 

, f2q “ 0 and B p f2 

, f2q “ 0 , so that one can consistently set 

f3 “ f4 “ ¨ ¨ ¨ “ 0 . [Ex 40] 

General N

 

Let’s first massage the 2-soliton solution (6.39) that we have just found:

 

f “ p 1 ` eθ1qp 1 ` eθ2q ´ eθ1` θ2 ` 

ˆ 

a1 ´ a2

 

a1 ` a2 

˙2 

eθ1` θ2 

“ p 1 ` eθ1qp 1 ` eθ2q ´ 

4 a1 

a2

 

p a1 ` a2q2 

eθ1` θ2 

“ 

∣∣∣∣ 

1 ` eθ1 

2 a1

 

a1` a2 

eθ2 

2 a2

 

a1` a2 

eθ1 1 ` eθ2 

∣∣∣∣ 

.

 

So we can write

 

f “ det p S q

 

, where Sij 

“ δij ` 

2 ai

 

ai ` aj 

eθj

 

,

 

(6.40) 

where here i, j P t 1 , 2 u .2 

It turns out that formula (6.40) generalises to higher N , with S an N ˆ N matrix of 

the same form as in (6.40) but with i, j P t 1 , . . . , N u , giving the N -soliton solution of 

KdV . This can be proven by induction. One can also show that 

fn “ 

ÿ 

1 ď i1ă i2ă¨¨¨ă inď N 

eθi1` θi2`¨¨¨` θin 

ź 

1 ď j ă k ď n 

ˆ 

aij 

´ aik

 

aij 

` aik 

˙2 

. 

6.4 Asymptotics of 2-soliton solutions and phase shifts 

To see that the N “ 2 solution (6.39) does indeed involve two solitons, we can follow the same 

logic of section 5.7, where we studied the asymptotics of 2-soliton solutions of the sine-Gordon 

equation. Namely, we switch to an appropriate comoving frame and onlt then take t Ñ ˘8 . 

Recall that 

f “ 1 ` eθ1 ` eθ2 ` Aeθ1` θ2 

where 

θi “ ai 

x ´ a3 

i 

t ` ci 

, A “ 

ˆ 

a1 ´ a2

 

a1 ` a2 

˙2 

.

 

2Note that using eθi instead of eθj in the definition of the matrix element Sij 

produces the same determinant.
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We can take 0 ă a1 ă a2

 

without loss of generality3 so v1 

“ a2 

1 

ă v2 

“ a2 

2. Let’s follow the 

slower soliton first:

 

t Ñ ˘8 with Xa2 

1 

“ x ´ a2 

1 

t fixed

 

.

 

(6.41) 

Then

 

θ1 “ a1 

Xa2 

1
` c1 

θ2 “ a2 

´ 

Xa2 

1
´ p a2 

2 ´ a2 

1q t 

¯ 

` c2 

.

 

(6.42) 

Let us consider the two limits (6.41) in turn. 

1. t Ñ `8

 

: in this limit θ1 

stays fixed and θ2 Ñ ´8 , so

 

f ” 1 ` eθ1 .

 

(6.43) 

This describes a KdV soliton centred at

 

xcentrep t q “ a2 

1 

t ´ 

c1

 

a1

 

.

 

(6.44) 

2. t Ñ ´8

 

: in this limit θ1 

stays fixed and θ2 Ñ `8 , so

 

f ” eθ2p 1 ` Aeθ 

1q .

 

(6.45) 

The prefactor eθ2 does not matter, because

 

u “ 2 

B2

 

B x2 

log f ” 2 

B2

 

B x2 

“

θ2 ` log p 1 ` Aeθ1q
‰ 

“ 2 

B2

 

B x2 

log p 1 ` Aeθ1q 

“ 2 

B2

 

B x2 

log 

´ 

1 ` ea1 

x ́  a3 

1 

t ̀  c1` log A 

¯ 

.

 

(6.46) 

where in the second line we used that θ2 

is linear in x , and in the third line we expressed 

the result in the original p x, t q coordinates. This describes a KdV soliton centred at

 

xcentrep t q “ a2 

1 

t ´ 

c1 ` log A

 

a1

 

.

 

(6.47) 

Therefore the slower soliton has a negative phase shift :

 

PHASE SHIFTslower “ 

1

 

a1 

log A “ ´ 

2

 

a1 

log 

ˇ

ˇ

ˇ

ˇ 

a2 ` a1

 

a2 ´ a1 

ˇ

ˇ

ˇ

ˇ

ă 0

 

.

 

(6.48)

 

3Convince yourself of this statement.
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Next, let’s follow the faster soliton :

 

t Ñ ˘8 with Xa2 

2 

“ x ´ a2 

2 

t fixed

 

.

 

(6.49) 

Then

 

θ1 “ a1 

´ 

Xa2 

2
´ p a2 

1 ´ a2 

2q t 

¯ 

` c1 

θ2 “ a2 

Xa2 

2
` c2 

.

 

(6.50) 

Let us consider the two limits (6.49) in turn. 

1. t Ñ ´8

 

: in this limit θ1 Ñ ´8 and θ2 

stays fixed, so 

f ” 1 ` eθ2 . 

This describes a KdV soliton centred at

 

xcentrep t q “ a2 

2 

t ´ 

c2

 

a2

 

.

 

(6.51) 

2. t Ñ `8

 

: in this limit θ1 Ñ `8 and θ2 

stays fixed, so 

f ” eθ1p 1 ` Aeθ 

2q , 

which describes a KdV soliton centred at

 

xcentrep t q “ a2 

2 

t ´ 

c2 ` log A

 

a2

 

.

 

(6.52) 

Therefore the faster soliton has a positive phase shift :

 

PHASE SHIFTfaster “ ´ 

1

 

a2 

log A “ 

2

 

a2 

log 

ˇ

ˇ

ˇ

ˇ 

a2 ` a1

 

a2 ´ a1 

ˇ

ˇ

ˇ

ˇ

ą 0

 

.

 

(6.53) 

Summarising, from the analysis of the asymptotics of the 2-soliton solution we obtain the 

picture in Fig. 6.1. We have therefore verified that KdV solitons satisfy the third defining 

property of a soliton 3: when two KdV solitons collide, they emerge from the collision with 

the same shapes and velocities that they had before the collision. The effect of the interaction 

is in the phase shifts of the two solitons, which capture the advancement of the faster soliton 

and the delay of the slower soliton. 

We can also look at the exact 2-soliton solution (6.9) and (6.39) to get a better feel for what 

happens during the collision. Here is a plot of the 2-soliton solution with parameters a1 “ 0 . 7 

and a2 

“ 1 . The contour plot of its energy density clearly shows the trajectories of the two 

KdV solitons and how they repel each other and swap identities when they get close. Finally, 

here is an animation of their time evolution.

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/2-solitons_KdV.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/2-solitons_KdV_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/2-solitons_KdV_animation.gif
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Figure 6.1: Schematic summary of the 2-soliton solution of KdV.



 

Chapter 7 

Overview of the inverse scattering 

method 

7.1 Initial value problems 

So far, we have seen methods to construct particular solutions. 

Question

 

: can we find a general solution to these p.d.e.s? 

In more detail: given a wave equation and ‘enough’ initial data at t “ 0 , find u p x, t q at all later 

times t ą 0 . For there to be a unique solution, sufficient initial data must be given. 

• If p.d.e. is 1st order in time, (eg KdV) must specify u p x, 0 q 

• If 2nd order (eg sine-Gordon), need u p x, 0 q and utp x, 0 q 

• etc. 

[why? because we can use the p.d.e. to solve for higher t derivatives. Eg for KdV, if I tell you 

u p x, 0 q , you can use the p.d.e. to find out what utp x, 0 q must be – it’s not independent data.] 

But given that information, can we construct u p x, t q for all t ą 0 ? (analytically if possible). 

So far, the answer is no, unless the initial condition happens to be a snapshot of one of the 

special solutions seen before. 

96
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Eg in KdV, what if 

(a) u p x, 0 q “ 2 sech2
p x q 

(b) u p x, 0 q “ 2 . 1 sech2
p x q 

(c) u p x, 0 q “ 6 sech2
p x q ? 

Case (a) is a snapshot of a one-soliton solution at t “ 0 , so, assuming the uniqueness of 

solutions, the answer to (a) at all later times is

 

u p x, t ą 0 q “ 2sech2
p x ´ 4 t q .

 

But what about (b) and (c)? 

It turns out that 

(b) Ñ t 2 solitons, 1 very small, both moving right, ` some junk moving left u 

(c) Ñ t 2 solitons, both moving right, and that’s all u 

[so in fact, the initial condition for (c) is a snapshot of a “pure” 2-soliton solution] 

Inverse scattering will allow us to understand situations like (b), and give a much more com- 

plete understanding of when things like (a) and (c) occur. In fact (as you might remember 

seeing “experimentally” at the start of last term) whenever the height is N p N ` 1 q , N “ 1 , 2 , 

3 . . .we are in a situation like (a) or (c). . . but why? 

Inverse scattering gives analytic insight into this question. 

How might this go? 

7.2 Linear initial value problems 

For a linear wave equation, the general solution is a linear transformation of the initial data. 

Examples 

1. The heat equation

 

ut ` uxx “ 0 , ´8 ă x ă 8 , t ą 0 .

 

(7.1)
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Given u p x, 0 q ” u0p x q (the initial data), u p x, t q is

 

u p x, t q “ 

ż `8 

´8 

1

 

?

 

4 π t 

e´p x ́  x1q2{p 4 t q u0p x1
q dx1

 

(7.2) 

and this is a linear transform of u0p x q (it’s actually a “Green’s function” solution). 

2. The Klein-Gordon equation

 

utt ´ uxx ` u “ 0

 

(7.3) 

This is second-order in t , so we need to specify u p x, 0 q and utp x, 0 q :

 

u p x, 0 q “ α p x q , utp x, 0 q “ β p x q .

 

(7.4) 

With luck, t (7.3) + (7.4) u is a “good” initial value problem. 

It can be solved using a Fourier transform, which is like the Fourier series seen in AMV, but 

for functions on a infinite line. 

Given u p x, t q , set

 

pu p k , t q “ 

ż `8 

´8 

dx e´ ik x u p x, t q 

u p x, t q “ 

1

 

2 π 

ż `8 

´8 

dk e` ik x 

pu p k , t q (7.5)

 

where the second equation shows how to get u back from pu . 

Working with pu p k , t q instead of u p x, t q is a good move, because (7.3) for u implies

 

p utt ` p k2 ` 1 q pu “ 0

 

(7.6) 

for pu , and this equation is easier to solve – there are only t derivatives, so it can be treated as 

an ordinary differential equation rather than a partial one. 

Solving (7.6),

 

pu p k , t q “ A p k q eiω t
` B p k q e´ iω t

 

(7.7) 

where ω2 “ k2 ` 1 , and A and B can be fixed by matching with the initial condition at t “ 0 :

 

pu p k , 0 q “ A p k q ` B p k q “ pα p k q 

putp k , 0 q “ iω p A p k q ´ B p k qq “ 

pβ p k q . (7.8)
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Solving for A and B and simplifying the resulting expression for p u p k , t q ,

 

p u p k , t q “ p α p k q cos ω t ` 

1

 

ω 

pβ p k q sin ω t .

 

(7.9) 

Finally, a reverse Fourier transform allows u p x, t q to be found:

 

u p x, t q “ 

1

 

2 π 

ż `8 

´8 

p u p k , t q eik x dk 

“ . . . 

“ 

1

 

2 π 

ż `8 

´8 

ż `8 

´8 

eik p x ́  x1q 

ˆ 

u p x1 , 0 q cos ω t ` 

1

 

ω 

utp x1 , 0 q sin ω t 

˙ 

dx1 dk (7.10)

 

with ω “
?

 

k2 ` 1 . 

Again, this is a linear function of u p x, 0 q and utp x, 0 q , the initial data [this won’t be true for 

KdV]. 

Key feature: the data for each value of k evolved separately, in a simple way, in the “trans- 

formed” equation (7.6) [something like this will be true for KdV]. 

Summarising, the general picture for Klein-Gordon is:
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This will turn out to be the correct “big idea” for KdV also, but in a much more subtle way 

since KdV is nonlinear. 

Map of the general strategy for KdV:

 

Instead of doing step (d) directly, we will go the roundabout route of (a) Ñ (b) Ñ (c). 

This will be a long story, so it will be good to keep this “roadmap” in mind as we go, starting 

with step (a).



 

Chapter 8 

The KdV-Schrödinger connection 

We’ll follow the route of the original discoverers of the method, Gardner, Greene, Kruskal and 

Miura (GGKM), in the late 1960s. Their aim was to solve the KdV equation

 

ut ` 6 uux ` uxxx “ 0

 

(8.1) 

for t ą 0 on ´8 ă x ă 8 , with the initial condition

 

u p x, 0 q “ f p x q , ´8 ă x ă 8 .

 

Recall first the (generalised) Miura transformation: if v p x, t q solves

 

vt ` 6 p λ ´ v2q vx ` vxxx “ 0 (8.2a) 

then 

u “ λ ´ v2 ´ vx 

(8.2b)

 

solves the KdV equation (8.1). Now think about this backwards: take u to be known, and try 

to solve (8.2b) for v . There’s a standard trick for this: write

 

v “ ψx{ ψ

 

for some other function ψ , and try to find ψ first. With a small amount of rearrangement (8.2b) 

becomes

 

ψxx ` uψ “ λψ .

 

(8.3) 

Now (8.3) is interesting (and this is what attracted GGKM’s attention) because it’s a well- 

known equation: the time-independent Schrödinger equation, the quantum-mechanical equa- 

tion for a particle moving in a potential V p x q “ ´ u p x q . 
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The QM interpretation of the equation won’t be too important here, apart from the fact that a 

great deal was known about its solutions, and GGKM were able to exploit this. 

The important thing is that any field profile u can be associated with another function ψ by 

solving (8.3), which is sometimes called the associated linear problem . 

Some key facts: 

• t appears in (8.3) only as a parameter, in u p x, t q ; 

• for any t , it turns out to be possible to reconstruct u from a limited amount of information 

about ψ at the different values of λ . This information is called the scattering data ; 

• it further turns out that, if u p x, t q evolves by the KdV equation, then the scattering data 

evolves in a particularly simple way. 

The scattering data is “like” p α and 

pβ in the linear (Klein-Gordon) case, while λ is like k . 

Finding the scattering data for the initial configuration u p x, 0 q constitutes the ’disassembly’ 

step (a); we’ll come back to it later. But first we turn to step (b), the time dependence, using 

an idea due to Peter Lax.



 

Chapter 9 

Time evolution of the scattering data 

9.1 The idea of a Lax pair 

We’ll think of ψxx ` uψ “ λψ at some fixed time t as an eigenvalue problem :

 

L p u q ψ “ λψ

 

(9.1) 

where L p u q is the following differential operator:

 

L p u q “ 

d2

 

dx2 

` u p x, t q .

 

(9.2) 

Notes: 

1. You should think of differential operators such as L , or d { dx , or whatever, as acting on all 

functions sitting to their right. 

2. (9.1) does pick out “special” values of λ (the eigenvalues ) since we require that ψ p x q is square 

integrable (ie 

ş`8 

´8
| ψ p x q|2 dx ă 8 ) which in particular means ψ p x q Ñ 0 both as x Ñ ´8 and 

as x Ñ `8 . [Later, we will relax this a little to allow solutions ψ that are merely bounded , but 

for now we will require that the stronger condition holds.] 

3. The “ t ” in (9.2) has nothing to do with the time in the time-dependent Schrödinger equation 

you might see in quantum mechanics; rather, it’s the KdV time. 

4. Since L depends on u , and u depends on t , the eigenfunctions ψ and (in principle) the 

eigenvalues λ might be different at different times. 

But, we have two remarkable facts: 
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THEOREM

 

: 

(i) If u “ u p x, t q evolves by the KdV equation, then the set of eigenvalues t λ u of L p u q (the 

spectrum of L p u q ) is independent of t ; 

(ii) There is a set of eigenfunctions ψ of L p u q which evolves in t simply, as ψt 

“ B p u q ψ , 

where B p u q is another differential operator.

 

The result (i) is particularly striking – it says that the spectra of d2{ dx2 ` u p x, 0 q and d2{ dx2 ` 

u p x, t q are the same, which is very unexpected since u p x, 0 q and u p x, t q might look very dif- 

ferent. 

PROOF

 

: 

First, we’ll assume that a B p u q can be found such that the time evolution of L p u p x, t qq is given 

by

 

L p u qt “ B p u q L p u q ´ L p u q B p u q 

“ r B p u q , L p u qs (9.3)

 

when u evolves by KdV (we’ll find B later). 

Here, r B , L s : “ B L ´ B L is called the commutator of the two operators B and L . Since B 

and L can both involve x derivatives, B L ‰ LB is possible – see later for examples. 

Now let λ and ψ be an eigenvalue and eigenfunction of L , so that Lψ “ λψ . Taking B{B t of 

this equation,

 

Lt 

ψ ` Lψt “ λt 

ψ ` λψt 

.

 

Rearranging,

 

λt 

ψ “ λt 

ψ ` Lψt ´ λψt 

“ p B L ´ LB q ψ ` p L ´ λ q ψt 

(using (9.3)) 

“ p B λ ´ LB q ψ ` p L ´ λ q ψt 

(using Lψ “ λψ ) 

“ p L ´ λ q
`

ψt ´ B ψ 

˘

 

Now multiply both sides by ψ p x q˚ and integrate 

ş`8 

´8
dx to find

 

λt 

ż `8 

´8 

| ψ |
2 dx “ 

ż `8 

´8 

ψ p x q
˚
p L ´ λ q

`

ψt ´ B ψ 

˘

ψ p x q dx .

 

(*) 

(Note, the integral on the LHS of this equation is finite since that was part of the specification 

of the eigenvalue problem.)
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Now we’ll use a key property of L : for any pair of functions ϕ and χ , both tending to zero at 

x “ ˘8 ,

 

ż `8 

´8 

ϕ p x q
˚ L χ p x q dx “ 

ż `8 

´8 

p Lϕ p x qq
˚ χ p x q dx .

 

Such an L is called self-adjoint; more on this in the next section. 

Proof

 

of the key property: Recall L “ d2{ dx2 ` u p x q and u p x q is real. Then compute

 

ż 

ϕ˚ Lχ dx “ 

ż 

ϕ˚
p x q 

d2

 

dx2 

χ p x q ` ϕ˚
p x q u p x q χ p x q dx 

“ 

ż 

` d2

 

dx2 

ϕ˚
p x q

˘

χ p x q ` 

`

u p x q ϕ p x q
˘˚ 

χ p x q dx 

(integrating by parts twice for the first term, and using reality of u for the second) 

“ 

ż 

`

Lϕ p x q
˘˚ 

χ p x q dx

 

as required.

 

Since λ is real (the proof of this fact is left as an exercise!) the key property also holds for 

L ´ λ . Thus the earlier result (*) can be rewritten as

 

λt 

ż `8 

´8 

| ψ |
2 dx “ 

ż `8 

´8 

`

p L ´ λ q ψ 

˘˚ 

`

ψt ´ B ψ 

˘

ψ p x q dx .

 

But Lψ “ λψ , so p L ´ λ q ψ “ 0 , and the RHS of this equation is zero. Since 

ş

| ψ |2 dx is finite 

and nonzero, we deduce λt “ 0 , which is result (i).

 

For result (ii), we need to show that p L ´ λ q ψ “ 0 continues to be true if ψ changes according 

to ψt “ B ψ . Calculating,

 

B

 

B t 

`

p L ´ λ q ψ 

˘

“ Lt 

ψ ` Lψt ´ λt 

ψ ´ λψt 

“ Lt 

ψ ` Lψt ´ λψt 

(since we already know λt “ 0 ) 

“ Lt 

ψ ` LB ψ ´ λB ψ (using ψt “ B ψ ) 

“ Lt 

ψ ` LB ψ ´ B λψ (since λ is a number) 

“ Lt 

ψ ` LB ψ ´ B Lψ (using Lψ “ λψ ) 

“ 

`

Lt ´ r B , L s
˘

ψ 

“ 0 (using (9.3) )

 

This shows that if ψt 

“ B ψ and ψ starts of at t “ 0 as an eigenfunction, then it stays that 

way, which is result (ii).

 

L and B are called a Lax pair . All that remains now is to find a suitable B p u q .
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9.2 The Lax pair for KdV 

We’ve already decided that L p u q “ 

d2

 

dx2 

` u p x, t q . For now we’ll just make an inspired guess 

for B p u q , and check that it works; in the next chapter a more systematic approach will be 

explained. The guess is to set

 

B p u q “ ´ 

`

4 D3
` 6 uD ` 3 ux 

˘

 

(9.4) 

where to save ink the notation D ” 

d

 

dx
, D2 ” 

d2

 

dx2 , etc has been adopted. 

Notice that operators like D act on everything to their right, and that differential operators are 

defined by their actions on functions. So for example r u, D s is defined by how it would act on 

any function f p x q . Calculating,

 

r u, D s f “ 

ˆ 

u 

d

 

dx
´ 

d

 

dx 

u 

˙ 

f 

“ u 

df

 

dx
´ 

d

 

dx
p uf q 

“ u 

df

 

dx
´ 

` du

 

dx 

˘

f ´ u 

df

 

dx 

(using the product rule) 

“ ´
` du

 

dx 

˘

f

 

Thus the effect of r u, D s on f p x q is to multiply it by ´ uxp x q . Since this is true for all functions 

f p x q we have that r u, D s “ ´ ux 

as an identity between differential operators. Perhaps more 

usefully, this can be rephrased as

 

D u “ uD ` ux

 

which shows how to “shuffle” D s past other functions. This can be used to rewrite expressions 

in a form where all D s are on the far right in all terms, making cancellations easier to spot. 

Now just calculate! We have

 

L “ D2
` u , B “ ´p 4 D3

` 6 uD ` 3 uxq

 

so

 

LB “ ´ D2
p 4 D3

` 6 uD ` 3 uxq ´ u p 4 D3
` 6 uD ` 3 uxq 

“ . . . 

“ ´
`

4 D5
` 6 uD3

` 12 ux 

D2
` 6 uxx 

D ` 3 ux 

D2 

` 6 uxx 

D ` 3 uxxx ` 4 uD3
` 6 u2 D ` 3 uux 

˘
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while

 

B L “ ´ 4 D3
p D2

` u q ´ 6 uD p D2
` u q ´ 3 uxp D2

` u q 

“ . . . 

“ ´p 4 D5
` 4 uD3

` 12 ux 

D2
` 12 uxx 

D ` 4 uxxx 

` 6 uD3
` 6 u2 D ` 6 uux 

` 3 ux 

D2
` 3 uuxq .

 

Hence

 

LB ´ B L “ uxxx ` 6 uux

 

and somewhat surprisingly all of the D s have gone. 

Also, Lt “ ut 

and so

 

Lt ` r L, B s “ ut ` 6 uux ` uxxx

 

which is zero, as required, if u p x, t q satisfies the KdV equation. 

This completes the proof of properties (i) and (ii) of the associated linear problem for solutions 

of the KdV equation.

 

Notes 

1. L and B were both differential operators, since they involved D “ 

d

 

dx
, but in some senses 

r L, B s wasn’t: r L, B s acting on some function f p x q doesn’t do any differentiating, but just 

multiplies f pointwise by p uxxx ` 6 uuxq . For this reason r L, B s is called multiplicative . 

2. The equation for the time evolution of ψ , ψt 

“ B p u q ψ , is linear (good news!), but since 

B depends on u p x, t q , the thing we’re trying to find, it’s not yet clear we have made too 

much progress on step (b) (bad news). We will fix this later, once we have developed a better 

understanding of the scattering data. But first, a diversion to explore other options for B p u q . . .



 

Chapter 10 

Interlude: the KdV hierarchy and 

conservation laws 

10.1 Deriving the KdV equation (and generalising it) 

It’s natural to ask whether there are any other evolution equations for u p x, t q such that the 

eigenvalues of L “ D2 ` u p x, t q are constant. In more fancy language, we’re looking for 

equations such that the L p u q ’s at different times are isospectral ; these are called an isospectral 

flows . 

The answer is yes, there are more such equations, and the Lax pair idea allows us to find them. 

Key point

 

: the proof in section 9.1 only used the fact that, when u evolves by KdV, we have 

Lt “ r B , L s – no other details of B were needed, so some other B p u q should work just as well. 

However, B p u q is not completely arbitrary: since Lt 

“ ut, and is a multiplicative operator, 

r B , L s must also be multiplicative. This means all the D ’s must cancel out when computing 

the commutator. If they do cancel, what’s left in r B , L s will be a polynomial in u , ux, uxx 

etc, 

and setting this equal to ut 

will give us the desired evolution equation. We can see this in 

action via some examples. 

Example (i) 

Try B p u q “ α p x q for some function α p x q . Then, leaving it as an exercise to fill in the missing 

steps,

 

r L, B s “ r D2
` u, α s “ ¨ ¨ ¨ “ αxx ` 2 αx 

D .
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For this to be multiplicative, the “ D ” bit has to be zero, which requires αx 

“ 0 . Hence α is 

constant, αxx “ 0 , and r L, B s “ 0 . Hence the equation we get is

 

ut “ 0 .

 

This clearly is an answer to the question of what evolution equation for u will leave the spec- 

trum of L p u q unchanged, but it’s not a very interesting one! 

Example (ii) 

Next up, let’s try B p u q “ α p x q D ` β p x q . Then

 

(a) r D2 , α D ` β s “ ¨ ¨ ¨ “ 2 αx 

D2
` p αxx ` 2 βxq D ` βxx ; 

(b) r u, α D ` β s “ ¨ ¨ ¨ “ ´ α ux 

,

 

and (a) + (b) ñ

 

r L, B s “ r D2
` u, α D ` β s “ 2 αx 

D2
` p αxx ` 2 βxq D ` βxx ´ α ux 

.

 

For this to be multiplicative, the coefficients of D2 and D must be zero.

 

p q D2
“ 0 ñ 2 αx “ 0 ; 

p q D “ 0 ñ 2 βx “ 0 .

 

Hence α and β are both constants, and r L, B s “ ´ α ux 

. The evolution equation is thus

 

0 “ Lt ` r L, B s “ ut ´ α ux 

.

 

Sadly this is also a bit trivial: it’s the advection equation, and the solution for initial data 

u p x, 0 q “ u0p x q is

 

u p x, t q “ u0p x ` α t q .

 

This just translates the initial data sideways with velocity ´ α , so the shape of the function is 

unchanged and it’s easy to see that the same is true of the spectrum (exercise!). 

Example (iii) 

Finally, we try B p u q “ α p x q D2 ` β p x q D ` γ p x q . Then

 

(a) r D2 , α p x q D2
` β p x q D ` γ p x qs “ ¨ ¨ ¨ “ 2 αx 

D4
` αxx 

D3
` 2 βx 

D2
` p βxx ` 2 γxq D ` γxx ; 

(b) r u, α p x q D2
` β p x q D ` γ p x qs “ ¨ ¨ ¨ “ ´ α p uxxx ` 3 uxx 

D ` 3 ux 

D2
q ` β ux 

,

 

and so

 

r L, B s “ (a) ` (b) 

“ 2 αx 

D4 

` αxx 

D3 

` p 2 βx ´ 3 α uxq D2 

` p βxx ` 2 γx 

u ´ 3 α uxxq D 

` γxx ´ α uxxx ´ β ux 

.
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Equating the coefficients of the powers of D to zero:

 

p q D4
“ 0 ñ 2 αx “ 0 ñ α “ constant ; 

p q D3
“ 0 (now automatic) ; 

p q D2
“ 0 ñ 2 βx ´ 3 α ux “ 0 ñ p β ´ 

3

 

2 

α u qx “ 0 ñ β “ 

3

 

2 

α u ` k1 ; 

p q D “ 0 ñ . . . ñ γ “ 

3

 

2 

α ux ` k2

 

where k1 

and k2 

are constants. The remaining (multiplicative) bit of r L, B s is then ´1

 

4 

α uxxx ´ 

3

 

2 

α uux ´ k1 

ux 

and so in this case

 

Lt ` r L, B s “ 0 ô ut ´ 

3

 

2 

α uux ´ 

1

 

4 

α uxxx ´ k1 

ux “ 0 .

 

For α “ 0 and k1 “ 0 this is the KdV equation. 

10.2 Hints for the general case 

To go further, introduce some new technology: 

(i) (Hermitian) inner product 

For two functions ϕ p x q and χ p x q , define

 

p ϕ, χ q “ 

ż `8 

´8 

ϕ˚
p x q χ p x q dx .

 

(10.1) 

(The complex conjugation on the first term ensures p ϕ, ϕ q ą 0 for ϕ ‰ 0 even when ϕ is 

complex.) 

In this notation, the key property of L “ D2 ` u used in the Lax proof was that

 

p ϕ, Lχ q “ p Lϕ, χ q

 

(10.2) 

for all ϕ and χ . 

(ii) The adjoint of an operator 

If M is a differential operator, define M : (“ M dagger”) to be the operator such that

 

p ϕ, M χ q “ p M : ϕ, χ q

 

(10.3) 

for all ϕ and χ . M : is called the adjoint of M ; it’s a bit like a matrix transpose and, like the 

matrix transpose, satisfies

 

p M :
q

:
“ M , p M N q

:
“ N : M :
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(exercise: check!). The key property of L was

 

L:
“ L

 

(10.4) 

and such operators are called self-adjoint (or symmetric ). Other important operators have

 

M :
“ ´ M

 

(10.5) 

and are called antisymmetric , or skew . 

Now if M is just multiplication by a (real) function, then M : “ M . (Exercise: why?) This 

must be true of r L, B s as it is supposed to be a (real) multiplicative operator, so B must be 

such that that r L, B s: “ r L, B s . 

What can we deduce about B from this? 

We have r L, B s “ LB ´ B L , so r L, B s “ r B , L s: implies

 

LB ´ B L “ p LB ´ B L q
: 

“ B: L:
´ L: B: 

“ B: L ´ LB: (since L is self-adjoint)

 

which implies

 

L p B ` B:
q ´ p B ` B:

q L

 

or

 

r L, p B ` B:
qs “ 0 .

 

Otherwise stated, the symmetric part of B must commute with L . (As with matrices, any B 

can be written as

 

B “ 

1

 

2
p B ` B:

q ` 

1

 

2
p B ´ B:

q

 

where the first term is called the symmetric part of B , and the second the antisymmetric part.) 

Since it’s only the bit of B which doesn’t commute with L that makes a difference to the 

equation Lt ` r L, B s “ 0 , this means that B can be assumed to be antisymmetric

 

. 

How to write such a B ? 

Instead of writing a general B as

 

B “ 

m
ÿ 

0 

αjp x q D 

j ,
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we’ll choose a different basis by writing

 

B “ 

m
ÿ 

0 

p βjp x q D 

j
` D 

j βjp x qq .

 

(It can be checked that this is always possible.) 

Now if β p x q is real, p β p x qq: “ β p x q , and also D: “ ´ D (this is proved by integration by 

parts), which implies

 

p D2 j
q

:
“ D2 j (self-adjoint) 

p D2 j ´ 1
q

:
“ ´ D2 j ´ 1 (skew)

 

and replacing B by its antisymmetric part, 

1

 

2
p B ´ B:q , it becomes

 

B “ 

ÿ 

0 ă 2 j ´ 1 ď m 

p β2 j ´ 1p x q D2 j ´ 1
` D2 j ´ 1 β2 j ´ 1p x qq .

 

(10.6) 

It can also be checked that r L, B s being multiplicative forces the coefficient of the leading term 

in D to be a constant, so the general guess is

 

Bnp u q “ D2 n ́  3
` 

n ́  2
ÿ 

j “ 1 

p βjp x q D2 j ´ 1
` D2 j ´ 1 βjp x qq .

 

(10.7) 

Notes: 

• the degree 2 n ´ 3 of the leading term was picked for later convenience; 

• the βj’s have been relabelled going from (10.6) and (10.7); 

• setting the coefficient of the leading term to 1 in (10.7) does not lose any generality, since an 

overall rescaling of B p u q can be “undone” in Lt ` r L, B s “ 0 by rescaling time. 

There’s now no alternative but to calculate. When the dust settles, Knp u q ” r Bn 

, L s will be 

a polynomial in u , ux, uxx 

etc, and setting Lt ` r L, Bns “ 0 , that is ut 

“ Knp u q , will give a 

KdV-like equation with x derivatives up to order 2 n ´ 3 . 

The first few cases:

 

n “ 1 : ut “ 0 

n “ 2 : ut ` ux “ 0 

n “ 3 : ut ` 6 uux ` uxxx “ 0 

n “ 4 : ut ` 30 u2 ux ` 20 ux 

uxx ` 10 uuxxx ` uxxxxx “ 0 (10.8)

 

These are the first equations of the KdV hierarchy , and in each case, they evolve u p x, t q forward 

in time in such a way as to leave the spectrum of L p u q “ D2 ` u unchanged.
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10.3 Connection with conservation laws 

Recall from last term that the KdV equation has an infinite sequence of conserved charges:

 

Qn “ 

ż `8 

´8 

Tn 

dx

 

where the conservation of Qn, 

dQn

 

dt 

“ 0 , is proved by showing that 

B Tn

 

B t 

` 

B Xn

 

B x 

“ 0 when the 

KdV equation holds, for some Xn 

with r Xns8 

´8 

“ 0 . Normalising the Tn’s as Tn 

“ un ` . . . , 

the first few examples are

 

T1 “ u 

T2 “ u2 

T3 “ u3 ´ 

1

 

2 

u2 

x 

T4 “ u4 ´ 2 uu2 

x ` 

1

 

5 

u2 

xx 

T5 “ u5 ´ 

105

 

21 

u2 u2 

x ` uu2 

xx ´ 

1

 

21 

u2 

xxx 

(10.9)

 

So we now have two

 

infinite sequences: 

• For the KdV equation itself, the sequence T1, T2, T3,. . . 

• Going beyond KdV, an infinite sequence K1, K2, K3,. . . of polynomials in u and its x deriva- 

tives such that setting ut “ Knp u q leaves the eigenvalues of D2 ` u p x, t q constant. 

How do these two sequences tie together, if at all? 

The most boring possibility: each evolution equation ut 

“ Knp u q has its “own” set of Tn’s, 

conserved densities for that equation alone. In fact the answer, found by Gardner, is more 

clever. To explain it, a new concept is needed. . . 

The functional derivative 

(Also known as the variational, or Fréchet, derivative.) 

Suppose f is some function of u and its x derivatives. Then

 

F r u s “ 

ż `8 

´8 

dxf p u, ux 

, uxx 

. . . q

 

(10.10) 

is an example of a functional of u : it takes a function u p x q and yields a number F r u s . In 

practice u might also depend on the time t , in which case the formula should be taken at fixed 

t , which is not

 

integrated over. Since t is a spectator for most of the following considerations, 

for now we won’t write it explicitly in formulae.
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Now consider a small variation δ u p x q of u p x q , so that u p x q Ñ u p x q ` δ u p x q , with δ u p x q Ñ 0 

as x Ñ ˘8 . 

This changes F r u s to

 

F r u ` δ u s “ 

ż `8 

´8 

dxf p u ` δ u, p u ` δ u qx 

, p u ` δ u qxx 

, . . . q 

“ 

ż `8 

´8 

dxf p u ` δ u, ux ` δ ux 

, uxx ` δ uxx 

, . . . q 

“ 

ż `8 

´8 

dx 

ˆ 

f p u, ux 

, uxx 

, . . . q `
B f

 

B u 

δ u ` 

B f

 

B ux 

δ ux ` 

B f

 

B uxx 

δ uxx ` . . . 

˙ 

(Taylor expanding) 

“ F r u s ` 

ż `8 

´8 

dx 

ˆ

B f

 

B u 

δ u ` 

B f

 

B ux 

δ ux ` 

B f

 

B uxx 

δ uxx ` . . . 

˙ 

` O p δ u2q 

“ F r u s ` 

ż `8 

´8 

dx 

ˆ

B f

 

B u 

´ 

B

 

B x 

ˆ

B f

 

B ux 

˙ 

` 

B2

 

B x2 

ˆ 

B f

 

B uxx 

˙ 

` . . . 

˙ 

δ u ` O p δ u2q 

(integrating by parts)

 

and the term multiplying δ u p x q in the last line is called the functional derivative of F r u s , 

written as 

δ F r u s

 

δ u 

. More precisely, 

δ F r u s

 

δ u 

is defined by

 

F r u ` δ u s “ F r u s ` 

ż `8 

´8 

dx 

δ F r u s

 

δ u 

δ u ` O p δ u2q

 

(10.11) 

which is like f p x ` δ x q “ f p x q ` 

df

 

dx 

δ x ` O p δ x2q for ordinary functions. 

For functionals defined as in (10.10) the calculation just completed shows that

 

δ F r u s

 

δ u 

“ 

B f

 

B u 

´ 

B

 

B x 

ˆ

B f

 

B ux 

˙ 

` 

B2

 

B x2 

ˆ 

B f

 

B uxx 

˙ 

` . . .

 

(10.12) 

Examples 

(a) f “ u ñ 

δ F r u s

 

δ u 

“ 1 

(b) f “ u3 ñ 

δ F r u s

 

δ u 

“ 3 u2 

(c) f “ u2 

x 

ñ 

δ F r u s

 

δ u 

“ ´ 2 uxx 

(Exercise: check these results.)
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The conserved quantities Qn 

“ 

ş 

Tn 

dx are examples of functionals of u , and so we can also 

calculate their functional derivatives: 

(a) 

δ Q1

 

δ u 

“ 

δ u

 

δ u 

“ 1 

(b) 

δ Q2

 

δ u 

“ 

δ u2

 

δ u 

“ 2 u 

(c) 

δ Q3

 

δ u 

“ 

δ

 

δ u 

`

u3 ´ 

1

 

2 

u2 

x 

˘

“ 3 u2 ` uxx 

Taking 

B

 

B x 

of each of these,

 

B (a)

 

B x 

“ 0 , 

B (b)

 

B x 

“ 2 ux 

, 

B (c)

 

B x 

“ 6 uux ` uxxx

 

and these match, up to an overall scale, the first three equations of the KdV hierarchy:

 

ut “ 0 , ut “ ´ ux 

, ut “ ´ 6 uux ´ uxxx 

.

 

The normalisations of the charges, or else the scale of t , can be adjusted to make these matches 

precise. They are the first three examples of Gardner’s general result:

 

ut “ 

B

 

B x 

ˆ 

δ Qn

 

δ u 

˙

 

ÐÑ ut “ Knp u q

 

connecting the nth KdV conservation law with the nth equation of the KdV hierarchy. Thus 

the two sequences are the same! 

Furthermore: 

• If ump x, t q evolves by the mth KdV equation, all the Tn’s are conserved densities for it. 

• Imagine we have one “time” for each equation in the hierarchy, so that instead of ump x, t q 

with 

B

 

B t 

um 

“ Kmp u q we have u p x, tt 

, t2 

, t3 

. . . q with 

B

 

B tm 

um 

“ Kmp u q . Then if we evolve 

(or ‘flow’) u p x, tt 

, t2 

, t3 

. . . q for a while in ti, then for a while in tj , we end up with the same

 

function of x as if we’d evolved in tj 

first followed by ti 

. This is the idea of commuting flows : 

it’s very important in “modern” soliton theory. 

Now back to KdV. . .
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The story so far

 

The ‘big idea’ was to encode u p x, 0 q as ψ , [step (a)], then evolve it forward in time by ψt 

“ 

B p u q ψ , [step (b)], then decode u p x, t q [step (c)] a time t later. 

One problem

 

: to evolve ψ , we seem to need to know how u p x, t q evolves, since B depends on 

u p x, t q (recall, for KdV, B p u q “ ´ 4 D3 ´ 6 uD ´ 3 ux). 

This looks to be fatal. . . 

But, just how much of ψ p x, t q do we really need to reconstruct u p x, t q ? The method might be 

saved if we only needed to know ψ p x, t q at | x | Ñ 8 , since in this limit u Ñ 0 and B p u q Ñ 

´ 4 D3, which is independent of u . 

If we could get away with only this, the idea would be saved. In fact GGKM already knew 

this to be true, which is perhaps why they persisted. To understand how it goes, some more 

information on the solutions to problems like p 

d2

 

dx2 

` u p x qq ψ “ λψ is required, and this is the 

subject of the next chapter.



 

Chapter 11 

The basics of scattering theory 

Aim

 

: to analyse the possible solutions to Lψ “ λψ , that is

 

ˆ 

d2

 

dx2 

` u p x q 

˙ 

ψ “ λψ

 

(11.1) 

with ψ p x q bounded

 

for all x (which restricts the possible λ ’s). Note this relaxes slightly the 

previous requirement that 

ş`8 

´8
| ψ |2 dx ă 8 , ie ψ P L2p R q . 

Note, in this chapter the KdV time t just appears as a parameter in u p x, t q and stays fixed (and 

will be dropped from the notation). 

11.1 Overview: the physical interpretation 

FACT: the equation

 

i 

B

 

B τ
Ψ p x, τ q “ 

ˆ 

´ 

B2

 

B x2 

` V p x q 

˙ 

Ψ p x, τ q

 

(11.2) 

(the time-dependent Schrödinger equation ) describes a particle (of mass 

1

 

2
) moving on a line in 

a potential V p x q in quantum mechanics. The wavefunction Ψ tells you where the particle is 

likely to be: | Ψ p x, τ q|2 is the probability to find it in the interval r x, x ` dx s at time τ . (Note, 

this time τ is not

 

the same as the KdV time t .) 

To solve (11.2), separate variables

 

Ψ p x, τ q “ ψ p x q ϕ p τ q

 

(11.3) 

117
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and substitute in and rearrange to find

 

i 

9ϕ

 

ϕ 

“ 

´ ψ2 ` V ψ

 

ψ 

“ constant ” k2

 

(11.4) 

where the dot denotes 

d

 

dτ 

, the dash 

d

 

dx
, and the constant was called k2 for later convenience. 

Solving first the equation for ϕ ,

 

9ϕ “ ´ ik2 ϕ ñ ϕ p τ q “ e´ ik2 τ

 

(11.5) 

while ψ p x q satisfies

 

ˆ 

´ 

d2

 

dx2 

` V p x q 

˙ 

ψ p x q “ k2 ψ p x q

 

(11.6) 

(the time independent Schrödinger equation ) which is the same as (9.1) with the identifications

 

u “ ´ V ; λ “ ´ k2 .

 

(11.7) 

In quantum mechanics, (11.6) describes a particle with energy E “ k2 “ ´ λ moving in the 

potential V p x q “ ´ u p x q . 

With the link to KdV in mind, we’ll consider potentials which tend to zero (sufficiently fast) 

as x Ñ ˘8 :

 

In classical mechanics, a particle with total (kinetic plus potential) energy E “ T ` V is 

localised, and bounces off the potential at the “turning points” x˚ 

where V p x˚q “ E . 

By contrast, in quantum mechanics, there’s a non-zero chance to find the particle anywhere 

(if V is finite), and it can ‘tunnel’ through potential barriers.
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The scattering data will be encoded in the asymptotics (limiting behaviour) of ψ p x q as x Ñ 

˘8 . 

Since V p x q Ñ 0 as x Ñ ˘8 , (11.6) in these regions reduces to

 

´ 

d2

 

dx2 

ψ “ k2 ψ

 

(11.8) 

with two independent solutions e˘ ik x. 

So the general solution with eigenvalue E “ k2 has the asymptotics

 

ψ p x q « A p k q eik x
` B p k q e´ ik x x Ñ ´8 

ψ p x q « C p k q eik x
` D p k q e´ ik x x Ñ `8 (11.9)

 

and, restoring the τ -dependence,

 

Ψ p x, τ q « A p k q eik x ́  ik2 τ 

` B p k q e´ ik x ́  ik2 τ x Ñ ´8 

Ψ p x, τ q « C p k q eik x ́  ik2 τ 

` D p k q e´ ik x ́  ik2 τ x Ñ `8 (11.10)

 

showing that for real k ą 0 the ‘ A ’ and ‘ C ’ terms correspond to right-moving waves, while 

the ‘ B ’ and ‘ D ’ terms correspond to left-moving waves:

 

This solution will be bounded

 

for any values for A , B , C and D if E “ k2 ą 0 .
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As we’ll see in examples, solving (11.6) in the middle region where V p x q ‰ 0 interpolates 

between the two asymptotic regions and imposes two relations among A , B , C and D , leaving 

two undetermined coefficients, as expected for a 2nd order ODE. 

To fix these remaining coefficients, for k2 ą 0 we will impose

 

A p k q “ 1 , D p k q “ 0

 

(11.11) 

and write

 

B p k q ” R p k q (the reflection coefficient ) 

C p k q ” T p k q (the transmission coefficient ) (11.12)

 

so that the resulting scattering solution has asymptotics

 

ψ p x q « eik x
` R p k q e´ ik x x Ñ ´8 

ψ p x q « T p k q eik x x Ñ `8 (11.13)

 

and represents a unit flux (since A p k q “ 1 ) of incoming particles from the left, partially re- 

flected from the potential and partially transmitted through it:

 

It can be shown (exercise) that

 

| R p k q|
2

` | T p k q|
2

“ 1

 

(11.14) 

meaning that with probability 1 the particle is either reflected or transmitted (conservation of 

probability). 

Aside: the Wronskian 

Results such as | R p k q|2 ` | T p k q|2 “ 1 , proved in exercise 60, are proved using a gadget called 

the Wronskian . For two functions f p x q and g p x q , their Wronskian is

 

W r f , g sp x q “ f 1
q x q g p x q ´ f p x q g1

p x q .

 

(11.15)
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Two facts about W : 

1) If f and g are linearly dependent, the W r f , g s “ 0 identically. 

(It’s easy to see that W is antisymmetric, and linear in each of its arguments. Then if, say, 

f p x q “ α g p x q with α a constant, W r f , g s “ W r α g , g s “ α W r g , g s “ 0 .) 

2) The converse statement, that W r f , g s “ 0 implies that f and g are linearly dependent, is 

more tricky. The following is easily proved: if 

a) W r f , g sp x q “ 0 on some interval, and 

b) one or other of f and g is nonzero on that interval, 

then f and g are linearly dependent on that interval. 

(Say it’s g that is nonzero. Dividing W r f , g sp x q “ 0 through by g2 shows that 

d

 

dx
p f { g q “ 0 , 

so f { g “ constant, and f and g are linearly dependent.) 

Notes: 

• Some sort of extra condition such as b) is needed: consider, as suggested by Peano in 1889,

 

f p x q “ x2 , g p x q “ x | x | “ x2sign p x q .

 

Then f and g are not linearly dependent on R , even though W r f , g s “ 0 everywhere. (Exer- 

cise: check this!) 

• In fact, though it won’t be proved here, the result that W r f , g sp x q “ 0 everywhere implies f 

and g are linearly dependent does hold if both f and g are analytic. This is true of solutions to 

the ODEs we are dealing with here, so we will therefore assume that the converse statement 

to 1) does hold in all cases we will need. 

Now back to the time independent Schrödinger equation

 

ˆ 

´ 

d2

 

dx2 

` V p x q 

˙ 

ψ p x q “ E ψ p x q “ k2 ψ p x q .

 

So far we have looked at cases with k2 “ E ą 0 . For k2 ă 0 , let k “ iµ with µ ą 0 real, so 

E “ ´ µ2. Then the asymptotics of the general solution (11.9) become

 

ψ p x q « a p µ q e´ µx
` b p µ q eµx x Ñ ´8 

ψ p x q « c p µ q e´ µx
` d p µ q eµx x Ñ `8 (11.16)

 

and it follows that

 

ψ bounded

 

ô a p µ q “ d p µ q “ 0

 

(11.17) 

In such cases ψ is not only bounded, it also tends to zero at ˘8 and satisfies 

ş

| ψ |2 dx ă 0 . 

Note that there might be no

 

values for µ at which this happens. But if it does, the correspond- 

ing ψ is called a bound state solution .
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Fact: Given a potential V p x q tending to zero at ˘8 , bound state solutions only exist for a 

finite

 

(possibly empty) set of µ ’s:

 

␣

µk 

(N 

k “ 1
“ 

␣

µ1 

, µ2 

, . . . µN 

( 

, µ1 ă µ2 ă . . . µN 

.

 

(11.18) 

Summary 

Bounded solutions to

 

ˆ 

´ 

d2

 

dx2 

` V p x q 

˙ 

ψ p x q “ E ψ p x q “ k2 ψ p x q ,

 

or equivalently 

` 

d2

 

dx2 

` u p x q
˘

ψ p x q “ λψ p x q with u p x q “ ´ V p x q and λ “ ´ E , come in two 

flavours when V p x q Ñ 0 as x Ñ ˘8 : 

1) E “ k2 “ ´ λ P p 0 , `8q : the “continuous spectrum”, leading to scattering solutions which 

are bounded, and have oscillatory asymptotics; 

2) E “ ´ µ2 “ ´ λ P t´ µ2 

1 

, ´ µ2 

2 

, . . . ´ µ2 

Nu : the “discrete spectrum”, leading to bound state 

solutions which are square integrable ( i.e. 

ş`8 

´8
| ψ p x q|2 dx ă 8 ), and have damped asymptotics. 

(Note: for some rather-special, slowly-decaying potentials, at least in higher dimensions, there 

may also be some square integrable solutions with k2 ą 0 . These so-called ‘bound states in 

the continuum’ (BICs) crop up in a number of physical applications, but won’t be relevant for 

the current discussion.) 

11.2 Examples 

Example 1

 

V p x q “ 0 .

 

This was already done, essentially, when looking at the asymptotics for general V . We must 

solve ´ 

d2

 

dx2 

ψ “ k2 ψ for all x P R . There are two cases to consider. 

(a) k2 ą 0 . 

The general solution, valid for all

 

x , not just asymptotically, is

 

ψ p x q “ Aeik x
` B e´ ik x .

 

(11.19) 

Restoring the τ dependence, it’s a left or right moving wave, bounded for all real values of k . 

Comparing with (11.9) shows that in this case C p k q “ A p k q and D p k q “ B p k q . Imposing 

A p k q “ 1 and D p k q “ 0 then gives us the scattering solution:

 

ψ p x q “ eik x .

 

(11.20)
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from which it follows that

 

R p k q “ 0 , T p k q “ 1

 

(11.21) 

If you think about it this should seem reasonable – with no potential, a particle incident from 

the left is transmitted through to the right with probability 1 . 

(b) k2 “ ´ µ2 ă 0 . 

The general solution from part (a) turns into

 

ψ p x q “ ae“ µx
` beµx .

 

(11.22) 

and the only way to keep this bounded as x Ñ ˘8 is to set a “ b “ 0 . Thus there are no

 

bound state solutions for this problem. 

Summary 

For u “ 0 , the problem L p u q ψ “ λψ , ψ bounded, has a ‘scattering’ solution for all real λ ă 0 , 

and no solutions for λ ą 0 :

 

Example 2

 

V p x q “ aδ p x q

 

where a is a real constant and δ p x q is the Dirac delta function. Recall that δ p x q can be viewed 

as the limit of a sequence (a ‘delta sequence’) of unit-area functions which are increasingly 

concentrated at the origin, so that for any (test) function f p x q ,

 

ż `8 

´8 

δ p x q f p x q dx “ f p 0 q .



 

CHAPTER 11. THE BASICS OF SCATTERING THEORY 124

 

We seek a single solution ψ p x q , solving the equation in regions (1) and (2), and also consistent 

with the potential at x “ 0 . 

(a) k2 ą 0 . 

In regions (1) and (2), V p x q “ 0 , so ψ satisfies ´ 

d2

 

dx2 

ψ “ k2 ψ and as in example 1, the solutions 

in the two regions are

 

ψp 1 qp x q “ Aeik x
` B e´ ik x 

ψp 2 qp x q “ C eik x
` D e´ ik x

 

(11.23) 

To finish, we must match the two parts of the solution at x “ 0 , and this will determine the 

relation(s) between A , B , C and D . 

• First, even for “funny” potentials like this one, ψ p x q should be continuous at x “ 0 :

 

r ψ p x q s
0` 

0´ 

“ 0

 

(11.24) 

• But ψ1p x q is forced by the equation to be discontinuous at x “ 0 . The equation is

 

´ ψ2
p x q ` aδ p x q ψ p x q “ k2 ψ p x q .

 

(11.25) 

Integrating from x “ ´ ϵ to x “ ` ϵ ,

 

ż ` ϵ 

´ ϵ 

dx r´ ψ2
p x q ` aδ p x q ψ p x qs “ k2 

ż ` ϵ 

´ ϵ 

dx ψ p x q

 

ñ ´ r ψ1
p x qs

` ϵ 

´ ϵ ` aψ p 0 q “ k2 

ż ` ϵ 

´ ϵ 

dx ψ p x q .

 

(11.26) 

Provided that ψ is bounded (which it is), the RHS of this equation Ñ 0 as ϵ Ñ 0 , and taking 

this limit implies ´ r ψ1p x q s
0` 

0´ ` aψ p 0 q “ 0 , or

 

r ψ1
p x q s

0` 

0´ 

“ aψ p 0 q

 

(11.27)
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Applying the matching conditions (11.24) and (11.27) to (11.23) we have

 

A ` B “ C ` D 

ik p C ´ D q ´ ik p A ´ B q “ a p A ` B q “ a p C ` D q

 

which in turn implies

 

A ` B “ C ` D 

A ´ B “ 

`

1 ´ 

a

 

ik 

˘

C ´ 

`

1 ´ 

a

 

ik 

˘

D .

 

Adding and subtracting,

 

A “ 

`

1 ´ 

a

 

2 ik 

˘

C ´ 

a

 

2 ik 

D 

B “ 

a

 

ik 

C ` 

`

1 ` 

a

 

2 ik 

˘

D . (11.28)

 

Substituting into (11.23) gives the general solution, with, as expected, two undetermined con- 

stants. 

To get to the scattering solution , set D “ 0 and then divide through so that A “ 1 :

 

ψ p x q “ 

# 

eik x ` 

a

 

2 ik ´ a 

e´ ik x x ă 0 

2 ik

 

2 ik ´ a 

eik x x ą 0

 

(11.29) 

and from this the reflection and transmission coefficients can be read off:

 

R p k q “ 

a

 

2 ik ´ a 

T p k q “ 

2 ik

 

2 ik ´ a 

(11.30)

 

and it’s easy to see that

 

| R p k q|
2

` | T p k q|
2

“ 1

 

(11.31) 

as expected. 

(b) k2 “ ´ µ2 ă 0 . 

Setting k “ iµ in (11.23), (11.28) with µ ą 0 we obtain the general solution in this regime:

 

ψ p x q “ 

# 

A p iµ q e´ µx ` B p iµ q eµx x ă 0 

C p iµ q e´ µx ` D p iµ q eµx x ą 0

 

(11.32) 

Given that we chose µ ą 0 , this is bounded

 

as x Ñ ˘8 iff

 

A p iµ q “ B p iµ q “ 0 .

 

(11.33)
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Substituting into (11.28),

 

0 “ 

`

1 ` 

a

 

2 µ 

˘

C 

B “ ´ 

a

 

µ 

C

 

giving two options: 

1) C “ B “ A “ D “ 0 (trivial) 

2)

 

µ “ ´ 

a

 

2 

, B “ C

 

(11.34) 

Given that we took µ ą 0 , option 2 means that there is a bounded solution with k2 ă 0 only 

for a ă 0

 

. The bound state solution is then

 

ψ p x q “ e 

a

 

2
| x |

“ 

# 

e´ 

a

 

2 

x , x ă 0 

e 

a

 

2 

x , x ą 0

 

(11.35) 

and for this case

 

k2 “ ´ 

a2

 

4

 

(11.36)

 

Summary 

For V p x q “ ´ u p x q “ aδ p x q , the problem L p u q ψ “ λψ , ψ bounded, has a scattering solution 

for all real λ ă 0 , and either no solutions for λ ą 0 if a ě 0 , or one solution for λ ą 0 if a ă 0 :
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The general story 

For potentials V p x q which tend to zero as x Ñ ˘8 , bounded solutions to 

`

´ 

d2

 

dx2 ` V p x q
˘

ψ “ 

k2 ψ come in two flavours: 

(a) For all k2 ą 0 (taking k ą 0 ) we can find a bounded scattering solution with asymptotics

 

ψ p x q „ 

# 

eik x ` R p k q e´ ik x x Ñ ´8 

T p k q eik x x Ñ `8

 

(11.37) 

(b) For k2 “ ´ µ2 ă 0 , set k “ iµ , µ ą 0 , in the above scattering solution to find a solution to 

the ODE with asymptotics

 

ψ p x q „ 

# 

e´ µx ` R p iµ q eµx x Ñ ´8 

T p iµ q e´ µx x Ñ `8

 

(11.38) 

but since e´ µx is unbounded as x Ñ ´8 this looks to be unacceptable. 

However, dividing through by T p iµ q gets to the following situation:

 

ψ p x q „ 

# 

1

 

T p iµ q 

e´ µx ` 

R p iµ q

 

T p iµ q 

eµx x Ñ ´8 

e´ µx x Ñ `8

 

(11.39) 

and at a pole

 

of T p iµ q , 1 { T p iµ q “ 0 and (11.39) turns into a bounded (and in fact square 

integrable) solution:

 

ψ p x q „ 

# 

R p iµ q

 

T p iµ q 

eµx x Ñ ´8 

e´ µx x Ñ `8

 

(11.40) 

(Exercise: check that this procedure recovers the bound state solution found above for the 

delta-function potential V p x q “ aδ p x q , a ă 0 .) 

Conclusion 

Bound state solutions can be obtained from scattering solutions by 

(1) dividing the scattering solution through by T p k q ; 

(2) setting

 

k “ iµ “ position of a pole of T p k q on the positive imaginary axis .

 

(11.41) 

Depending on T p k q , there will be 0 , 1 , 2 . . . such poles, and hence 0 , 1 , 2 . . . bound states in 

the discrete spectrum. 

More examples are on the problem sheet, and there’s one more in the next section.
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11.3 Reflectionless potentials 

We return to the initial field configurations u p x, 0 q “ a sech2
p x q that were tried for the KdV 

field earlier. These seemed to lead to interesting field evolutions whenever a was equal to 

n p n ` 1 q with n a positive integer, and it’s natural to wonder whether interesting behaviour 

is also apparent in the correpsonding scattering problem. 

The relevant potential is

 

V p x q “ ´ a sech2
p x q

 

(11.42) 

as illustrated below:

 

The time independent Schödinger equation (T.I.S.E.) to be solved is

 

´ ψ2
p x q ´ a sech2

p x q ψ p x q “ k2 ψ p x q

 

(11.43) 

and we’re after bounded

 

solutions to this problem. 

Substituting

 

y “ tanh p x q P p´ 1 , 1 q

 

(11.44) 

so that

 

d

 

dx 

“ sech2
p x q 

d

 

dy 

“ p 1 ´ y2q 

d

 

dy

 

(11.45) 

the T.I.S.E. becomes

 

d

 

dy 

” 

p 1 ´ y2q 

dψ

 

dy 

ı 

` 

´ k2

 

1 ´ y2 

` a 

¯ 

ψ “ 0

 

(11.46) 

and putting

 

k2 “ ´ m2 , a “ n p n ` 1 q

 

(11.47) 

this becomes

 

d

 

dy 

” 

p 1 ´ y2q 

dψ

 

dy 

ı 

` 

´ 

n p n ` 1 q ´ 

m2

 

1 ´ y2 

¯ 

ψ “ 0

 

(11.48) 

which is the standard form of the general (or associated) Legendre equation . This equation has 

been much studied, and in particular its solutions are known in general in terms of certain 

special functions.
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Fact 1 : 

If n “ 1 , 1 , 2 . . . ( i.e. n P Zě 0 

) and m “ 0 (so k “ 0 ), then (11.48) becomes the Legendre 

equation and its bounded solution for y P r´ 1 , 1 s is

 

ψ “ Pnp y q “ 

1

 

n ! 2n 

dn

 

dy 

n
p y2 ´ 1 q

n ,

 

(11.49) 

the nth Legendre polynomial of the first kind . The first few examples are:

 

P1p y q “ y 

P2p y q “ ´1

 

2
` 

3

 

2 

y2 

P3p y q “ ´3

 

2 

y ` 

5

 

2 

y3 

P4p y q “ 

3

 

8
´ 

15

 

4 

y2 ` 

35

 

8 

y4

 

In general, Pjp´ x q “ p´ 1 qj Pjp x q and Pjp 1 q “ 1 . Since y “ ˘ 1 corresponds to x “ ˘8 , this 

means that these are bounded

 

solutions to the Schrödinger equation (tending to 1 or maybe 

´ 1 as x Ñ ˘8 ) but they are not bound states

 

(for which ψ would have to tend to zero as 

x Ñ ˘8 ). 

(The second solutions, the Legendre functions of the second kind , Qnp y q , blow up at y “ ˘ 1 .) 

Fact 2 : 

If n P Zě 0 

, bounded solutions to (11.48) only exist for

 

m “ 0 , 1 , 2 . . . n

 

(11.50) 

and are

 

P 

m 

n 

p y q “ p´ 1 q
m

p 1 ´ y2qm { 2 

dm

 

dy 

m 

Pnp y q .

 

(11.51) 

These are the associated Legendre ‘polynomials’ of the first kind (the word polynomials is in 

quotes since for m odd, m { 2 is not an integer so they aren’t strictly speaking polynomials). 

Fact 3 : 

Even when m and n are not integers (and in fact even when they are complex), solutions to 

(11.48) can be written explicitly using certain special functions. We have that

 

P 

m 

n 

p y q “ 

1

 

Γ p 1 ´ m q 

ˆ

1 ` y

 

1 ´ y 

˙m { 2 

2 

F1 

`

´ m, n ̀  1; 1 ́  m ; 

1 ́  y

 

2 

˘

 

(11.52) 

solves (11.48), and reduces to (11.51) if n P Zě 0 

and m “ 0 , 1 , . . . n . 

Here

 

Γ p z q “ 

ż 8 

0 

dt tz ´ 1 e´ t

 

(11.53)
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is Euler’s Gamma function and satisfies

 

Γ p N ` 1 q “ N ! if N P Zě 0

 

(11.54) 

(and, for general N , Γ p N ` 1 q “ N Γ p N q )

 

Γ p z q ‰ 0 @ z , 

1

 

Γ p z q 

“ 0 iff z P t 0 , ´ 1 , ´ 2 , . . . u

 

(11.55)

 

Γ p z q Γ p 1 ´ z q 

π

 

sin p π z q

 

(11.56) 

while 2 

F1 

is the hypergeometric function and has the Taylor expansion

 

2 

F1p a, b ; c ; z q “ 

Γ p c q

 

Γ p a q Γ p b q 

8
ÿ 

k “ 0 

Γ p k ` a q Γ p k ` b q

 

Γ p k ` c q 

z 

k

 

k !

 

(11.57) 

for | z | ă 1 . The first few terms are

 

2 

F1p a, b ; c ; z q “ 1 ` 

ab

 

c 

z

 

1!
` 

a p a ̀  1 q b p b ̀  1 q

 

c p c ̀  1 q 

z2

 

2! 

` . . . .

 

So, up to normalisation, a potentially bounded solution to (11.46) is

 

ψ “ P 

m 

n 

p y q

 

(11.58) 

with

 

m “ ik , n “ 

?

 

1 ` 4 a

 

2 

´ 

1

 

2 

.

 

(11.59) 

(a) k2 ą 0 – the continuous spectrum. 

• x Ñ `8 :

 

In this limit y “ tanh p x q „ 1 ´ 2 e´ 2 x Ñ 1´ and so

 

2 

F1p . . . ; 

1 ́  y

 

2 

q Ñ 2 

F1p . . . ; 0 q “ 1 ; 

1 ` y

 

1 ´ y 

„ e2 x .

 

Putting these bits together,

 

ψ „ 

1

 

Γ p 1 ´ ik q 

eik x

 

(11.60) 

as x Ñ `8 . 

• x Ñ ´8 :

 

In this limit y “ tanh p x q „ ´ 1 ` 2 e2 x Ñ ´ 1` and 

1 ̀  y

 

1 ́  y 

„ e2 x, and it turns out 

that

 

1

 

Γ p 1 ́  m q 

2 

F1p´ n, n ̀  1; 1 ́  m ; 

1 ́  y

 

2 

q „ 

Γ p´ m q

 

Γ p 1 ́  m ̀  n q Γ p´ m ́  n q
` 

Γ p m q

 

Γ p´ n q Γ p n ̀  1 q 

e´ 2 mx .
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This asymptotic can be proved using the already-mentioned properties of the hypergeometric 

function together with the identity

 

sin p π p c ́  a ́  b qq

 

π 

2 

F1p a, b ; c ; z q “ 

2 

F1p a, b ; c ; 1 ́  z q

 

Γ p c ́  a q Γ p c ́  b q Γ p a ̀  b ́  c ̀  1 q
´ p 1 ́  z q

c ́  a ́  b 

2 

F1p c ́  a, c ́  b ; c ́  a ́  b ̀  1; 1 ́  z q

 

Γ p a q Γ p b q Γ p c ́  a ́  b ̀  1 q 

.

 

Hence

 

ψ „ 

Γ p´ ik q

 

Γ p 1 ́  ik ` n q Γ p´ ik ´ n q 

eik x
` 

Γ p ik q

 

Γ p´ n q Γ p n ̀  1 q 

e´ ik x

 

(11.61) 

as x Ñ ´8 . 

Normalising this solution so that the coefficient of eik x at ´8 is 1 , we can read off the values 

of R p k q and T p k q :

 

R p k q “ 

Γ p ik q Γ p 1 ́  ik ` n q Γ p´ ik ´ n q

 

Γ p´ ik q Γ p 1 ̀  n q Γ p´ n q 

“ ´
sin p π n q

 

π 

Γ p ik q Γ p 1 ́  ik ` n q Γ p´ ik ´ n q

 

Γ p´ ik q 

T p k q “ 

Γ p 1 ́  ik ` n q Γ p´ ik ´ n q

 

Γ p 1 ́  ik q Γ p´ ik q 

. (11.62)

 

Note: The sin p π n q factor in R p k q means that it vanishes for all k if n is an integer. The 

corresponding potentials

 

V p x q “ ´ n p n ̀  1 q sech2
p x q

 

(11.63) 

with n P Zě 0 

are called reflectionless : no particles are reflected for any

 

value of k . 

(b) k2 ă 0 – the discrete spectrum. 

To find the discrete spectrum, set k “ iµ , µ ą 0 and divide the scattering solution through by 

T p iµ q to find a possible eigenfunction

 

ψ p x q „ 

# 

1

 

T p iµ q 

e´ µx ` 

R p iµ q

 

T p iµ q 

eµx x Ñ ´8 

e´ µx x Ñ `8

 

(11.64) 

This is automatically bounded as x Ñ `8 ; it will be bounded as x Ñ ´8 if (and only if) 

µ ě 0 is such that 1 { T p iµ q “ 0 . (In fact we’ll require µ ą 0 , since 

ş`8 

´8
| ψ |2 dx should be finite 

for the discrete spectrum.) This in turn requires

 

1

 

T p iµ q 

“ 

Γ p 1 ` µ q Γ p mu q

 

Γ p 1 ` µ ` n q Γ p µ ´ n q 

“ 0 .

 

Given that µ must be a posiitve real number, there are two options:
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(1) 1 ` µ ` n “ ´ j , j P Zě 0 

(2) µ ´ n “ ´ h , h P Zě 0 

• If n R R then there are no real solutions for µ . 

• If n P R we can take n ě ´ 1 { 2 without losing generality, since (1) Ø (2) when n Ñ ´ 1 ´ n . 

Then (1) never holds, while solutions for poisitive µ do exist for option (2) provided n ě 0 :

 

µ “ n, n ´ 1 , n ´ 2 . . . n ´ t n u

 

(11.65) 

where t n u “ ‘floor’ of n “ {largest integer ď n }. So

 

Total number of bound states “ r n s

 

(11.66) 

where r n s “ {smallest integer ě n }. (If n is an integer, then the last eigenvalue, for µ “ 0 , 

should be discarded as the corresponding ψ is not squuare integrable and so is not a bound 

state – it’s in the continuous spectrum instead.) 

Summary for V p x q “ ´ a sech2
p x q “ ´ n p n ̀  1 q sech2

p x q : 

‚ a ă 0 :

 

‚ a “ n p n ` 1 q ą 0 : 

( n not an integer (say n “ 2 . 5 ) on the left, n P Zą 0 

(say n “ 2 ) on the right)
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11.4 Scattering data for general potentials 

So far we’ve seen that for any localised initial data u p x, 0 q for KdV, the auxiliary time-independent 

Schrödinger equation

 

´ ψ2
p x q ` V p x q ψ p x q “ k2 ψ p x q

 

(11.67) 

with potential V p x q “ ´ u p x, 0 q has 

(a) A continuous spectrum of non-negative eigenvalues E with E “ k2 ě 0 and eigenfunctions

 

ψ p x q „ 

# 

eik x ` R p k q e´ ik x x Ñ ´8 

T p k q eik x x Ñ `8

 

(11.68) 

normalised so that the incoming flux is one; 

(b) A (maybe empty) discrete spectrum of negative eigenvalues E “ k2 “ ´ µ2 

n 

ă 0 , indexed 

by n “ 1 , 2 . . . N . These look like

 

ψnp x q „ 

# 

cn 

eµn 

x x Ñ ´8 

dn 

e´ µn 

x x Ñ `8

 

(11.69) 

So far the ψn’s we’ve found have been normalised so that dn 

“ 1 , but now we will instead 

normalise them so that

 

p ψn 

, ψnq “ 

ż `8 

´8 

| ψnp x q|
2 dx “ 1 .

 

(11.70) 

Once ψn 

has been normalised in this way, the number cn 

is called the normalising coefficient 

and it will be needed later, to reconstruct V p x q “ ´ u p x q . More precisely, to reconstruct V p x q 

we will need to know

 

! 

R p k q , t µn 

, cnu
N 

n “ 1 

)

 

(11.71) 

This is called the scattering data , refining the notion of scattering data given earlier. 

• Clearly, u (or V “ ´ u ) determines the scattering data completely (this was step (a) , disas- 

sembly, of the roadmap). 

• Amazingly, the converse also holds: u (or V “ ´ u ) can be reconstructed uniquely from the 

scattering data (step (c) , reassembly). 

• The next major task is to return to step (b) , time evolution, to see precisely how the scattering 

data evolves. 

Before going there, let’s make precise the scattering data for two sets of potentials studied 

earlier.
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Examples of scattering data 

1) V p x q “ a δ p x q : 

• For all values of a we have

 

R p k q “ 

a

 

2 ik ´ a

 

• For a ě 0 that’s all. 

• For a ă 0 there is also a single bound state ψ p x q “ Ae´ µ | x | with µ “ ´ a { 2 ą 0 . Normalising 

determines A2{ µ “ 1 so A “
?

 

µ “ 

a

 

´ a { 2 . 

Thus the general scattering data for u p x, 0 q “ ´ aδ p x q , V p x q “ aδ p x q , is

 

$ 

’

& 

’

% 

! 

R p k q “ 

a

 

2 ik ´ a 

) 

if a ě 0 

! 

R p k q “ 

a

 

2 ik ´ a 

␣

µ1 “ ´ a { 2 , c1 “ 

a

 

´ a { 2 

( 

) 

if a ă 0

 

(11.72) 

2) V p x q “ ´ n p n ̀  1 q sech2
p x q , n P Zě 0 

: 

(a) Scattering states: R p k q “ 0 (since the potential is reflectionless). 

(b) Bound states: we have ψmp x q “ A P 

m 

n 

p tanh p x qq , m “ 1 , 2 . . . n , where A is a normalisa- 

tion constant that can be fixed by imposing

 

1 “ 

ż `8 

´8 

| ψmp x q|
2 dx “ A2 

ż 1 

´ 1 

P 

m 

n 

p y q
2 

dy

 

1 ´ y2 

“ A2 

p n ̀  m q !

 

m p n ́  m q !

 

where the last equality makes use of one of the standard properties of P 

m 

n 

. 

In addition P has the asymptotic

 

P 

m 

n 

p tanh p x qq „ p´ 1 q
n 

p n ̀  m q !

 

m ! p n ́  m q ! 

emx , x Ñ ´8 .

 

Hence the asymptotic of the normalised bound state is

 

ψmp x q „ p´ 1 q
n 

1

 

m ! 

d

 

m p n ̀  m q !

 

p n ́  m q ! 

emx , x Ñ ´8

 

and the full scattering data is

 

" 

R p k q “ 0 , 

" 

µm “ m , cm “ p´ 1 q
n 1

 

m ! 

b

 

m p n ̀  m q !

 

p n ́  m q ! 

*n 

m “ 1 

*

 

(11.73)



 

CHAPTER 11. THE BASICS OF SCATTERING THEORY 135 

11.5 Time evolution of the scattering data – concluded 

We have seen that if u evolves by the KdV equation, then 

1) the eigenvalues λ of L p u q “ D2 ` u remain constant in t ; 

2) the eigenfunctions ψ evolve by ψt “ B p u q ψ . 

Question:

 

how does the scattering data associated to V “ ´ u evolve in time? 

Answer:

 

We need to look at the asymptotics of the time-evolution equation ψt 

“ B p u q ψ as 

x Ñ ˘8 . Recall that for KdV

 

B p u q “ ´p 4 D3
` 6 uD ` 3 uxq

 

and so, since u , ux Ñ 0 as x Ñ ˘8 for all t , as follows from the boundary conditions on u ,

 

B p u q „ ´ 4 D3 as x Ñ ˘8

 

(11.74) 

and is independent of u p x, t q . This is the key point: we can evolve the scattering data forward 

in t without knowing in advance what u evolves to! 

[You might worry about the bound state normalisation condition p ψm 

, ψmq “ 1 . Is this pre- 

served under time evolution? It turns out that the answer is yes: this follows, with a little 

work, from the antisymmetry of B , that is B p u q: “ ´ B p u q .] 

Next, we need to work out explicitly the t evolution of the asymptotics of the scattering and 

bound state solutions. 

(a) The continuous spectrum

 

( ́  λ “ k2 ą 0 ) 

Start with an un-normalised scattering solution:

 

ψkp x ; t q „ 

# 

A p k ; t q eik x ` B p k ; t q e´ ik x x Ñ ´8 

C p k ; t q eik x x Ñ `8

 

(11.75) 

Imposing 

B

 

B t 

ψkp x ; t q “ B p u q ψkp x ; t q „ ´ 4 D3 ψkp x ; t q as x Ñ ˘8 , we have

 

Atp k ; t q eik x
` Btp k ; t q e´ ik x

“ 4 ik3 

“

A p k ; t q eik x
´ B p k ; t q e´ ik x 

‰ 

Ctp k ; t q eik x
“ 4 ik3 C p k ; t q eik x

 

and, hence, equating coefficients of e˘ ik x,

 

Atp k ; t q “ 4 ik3 A p k ; t q 

Btp k ; t q “ ´ 4 ik3 B p k ; t q (11.76) 

Ctp k ; t q “ 4 ik3 C p k ; t q
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Solving,

 

A p k ; t q “ A p k ; 0 q e4 ik3 t 

B p k ; t q “ B p k ; 0 q e´ 4 ik3 t (11.77) 

C p k ; t q “ C p k ; 0 q e4 ik3 t

 

Dividing the un-normalised solution at time t through by A p k ; t q so that it continues to be 

correctly normalised with unit incoming flux, R p k ; t q and T p k ; t q can be read off as follows:

 

R p k ; t q “ R p k ; 0 q e´ 8 ik3 t (11.78) 

T p k ; t q “ T p k ; 0 q .

 

This can be summed up in the asymptotics of the normalised scattering solution:

 

ψkp x ; t q „ 

# 

eik x ` R p k ; 0 q e´ ik p x ̀  8 k2 t q x Ñ ´8 

T p k ; 0 q eik x x Ñ `8

 

(11.79) 

The reflected waves for ψk, encoded in R p k ; t q , translate into a dispersive component

 

of u p x, t q , 

moving to the left as t increases. 

(b) The discrete spectrum

 

( ́  λ “ ´ µ2 

n ă 0 ) 

The nth bound state wave function has asymptotics

 

ψnp x ; t q „ 

# 

cnp t q eµn 

x x Ñ ´8 

dnp t q e´ µn 

x x Ñ `8

 

(11.80) 

Imposing 

B

 

B t 

ψnp x ; t q “ B p u q ψkp x ; t q „ ´ 4 D3 ψnp x ; t q as x Ñ ˘8 , we have

 

#

B

 

B t 

cnp t q “ ´ 4 µ3 

n 

cnp t q 

B

 

B t 

dnp t q “ ` 4 µ3 

n 

dnp t q

 

and, solving,

 

cnp t q “ cnp 0 q e´ 4 µ3
n 

t 

dnp t q “ dnp 0 q e` 4 µ3
n 

t (11.81)

 

Again, this can be summarised as

 

ψnp x ; t q „ 

# 

cnp 0 q eµnp x ́  4 µ2
n 

t q x Ñ ´8 

dnp 0 q e´ µnp x ́  4 µ2
n 

t q x Ñ `8

 

(11.82) 

This will translate into a soliton for u p x, t q , moving to the right with velocity 4 µ2 

n 

. 

These results describe the time evolution of the scattering data, completing step (b) of the 

inverse scattering method.



 

Chapter 12 

The Marchenko equation 

12.1 Introduction 

To conclude the inverse scattering method, we need to reassemble the KdV field u p x, t q , or 

equivalently the Schrödinger potential V p x ; t q “ ´ u p x, t q , from the time-evolved scattering 

data. This is step (c) : “reassembly / inverse scattering”. 

This touches on a general question: if all you were allowed to do was sit at infinity and chuck 

particles at your potential, and measure how they come back, could you deduce the form of 

V p x q ? 

This question is of practical importance, for example when looking for oil using seismic re- 

flection, or in medicine (one example there being deducing the shape of the inner ear from 

reflected sound waves). It belongs to the category of “inverse problems”: deducing the form 

of an operator (here D2 ` u ) from information about its spectrum ( µi, cn 

and so on): “can you 

hear the shape of a drum?” 

For this one-dimensional (Schrödinger) case, the result was already known, found by Marchenko 

(following earlier work by Gelfand and Levitan), some years before GGKM. 

In fact you don’t need to know T p k q , just R p k q for real k , together with the N discrete eigen- 

values ´ µ2 

j , j “ 1 , . . . N , and the normalising coefficients cj , j “ 1 , . . . N . The full set
! 

R p k q , , t µn 

, cnu
N 

n “ 1 

) 

is precisely the scattering data we evolved forward in time in the last 

chapter. 

137
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There are two important special cases: 

(1) N “ 0 : V p x q has no bound states; 

(2) R p k q “ 0 @ k : V p x q is reflectionless, but there is still information about V p x q hidden in 

the bound state eigenvalues and normalisation coefficients. 

It turns out that 

(1) ñ initial data contains no solitons; 

(2) ñ initial data contains only solitons. 

12.2 The recipe for inverse scattering: the Marchenko equa- 

tion 

We want to solve the inverse scattering problem for given scattering data at x “ ´8 to 

determine the potential V p x q , and hence the KdV field u p x q “ ´ V p x q , at any fixed KdV 

time t . 

The derivation is long and we’ll skip it here – see for example section 3.3 of Drazin and Johnson. 

But a warning: everything in Drazin and Johnson is phrased in terms of scattering solutions 

with waves arriving from `8 , and asymptotics also at `8 , while we do the opposite:

 

Once the not inconsiderable quantity of dust has settled, the upshot is the following recipe: 

(1) Construct the function

 

F p ξ q “ 

ż `8 

´8 

dk

 

2 π 

R p k q e´ ik ξ
` 

N
ÿ 

n “ 1 

c2 

n 

eµn 

ξ

 

(12.1)
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from the scattering data

 

! 

R p k q , t µn 

, cnu
N 

n “ 1 

)

 

(12.2) 

(2) Solve the Marchenko equation

 

K p x, z q ` F p x ̀  z q ` 

ż x 

´8 

dy K p x, y q F p y ` z q “ 0

 

(12.3) 

to determine the unknown function K p x, z q for all z ď x (and set K p x, z q “ 0 for x ă z ). 

(3) Finally determine the Schrödinger potential from

 

V p x q “ 2 

d

 

dx 

K p x, x q

 

(12.4) 

The KdV field is then given by u “ ´ V . 

This all applies at one fixed KdV time t . But using the results of the last section of the last 

chapter, we know that

 

R p k ; t q “ R p k ; 0 q e´ 8 ik3 t 

cnp t q “ cnp 0 q e´ 4 µ3
n 

t

 

while k2 and µ2 

n 

are independent of time. 

So to find the field at time t , we just apply the above recipe starting from

 

F p ξ ; t q “ 

ż `8 

´8 

dk

 

2 π 

R p k ; t q e´ ik ξ
` 

N
ÿ 

n “ 1 

cnp t q
2 eµn 

ξ 

“ 

ż `8 

´8 

dk

 

2 π 

R p k ; 0 q e´ ik p ξ ` 8 k2 t q
` 

N
ÿ 

n “ 1 

cnp 0 q
2 eµnp ξ ´ 8 µ2

n 

t q (12.5)

 

At least in principle, this solves the problem! In practice the term involving R in the definition 

of F , with the integral over k , makes the calculation of F hard when t ą 0 . But for reflec- 

tionless potentials this term is absent, and F p ξ , t q can be read off at any time t . This turns out 

to yield the ‘pure’ multisoliton solutins that can also be found via Bäcklund or Hirota. Even 

when R is nonzero, it can be shown that the term involving R goes to zero as t Ñ 8 . All of 

which leads to the following ‘big picture’:



 

CHAPTER 12. THE MARCHENKO EQUATION 140 

(A) t µn 

, cnuN 

n “ 1 Ø N right-moving solitons hidden inside the initial data:

 

(B) R p k q Ø a superposition of dispersive left-moving waves hidden inside the initial data:

 

The net result is a sort of “nonlinear Fourier analysis” (which reverts to the usual Fourier 

solution in the limit of small-amplitude waves). 

12.3 Example 1: the single KdV soliton 

Consider a reflectionless potential, so R p k q “ 0 , with just one bound state encoded in t µ1 

, c1u ” 

t µ, c u . Then (at fixed t )

 

F p ξ q “ c2 eµξ

 

(12.6) 

and the Marchenko equation (12.3) reads

 

K p x, z q ` c2 eµ p x ̀  z q
` 

ż x 

´8 

dy K p x, y q c2 eµ p y ` z q
“ 0

 

(12.7) 

This needs to be solved for z ď x . As a first step, factorise eµz from the last two terms:

 

K p x, z q ` eµz 

ˆ 

c2 eµx ` 

ż x 

´8 

dy K p x, y q c2 eµy 

˙ 

“ 0 ,

 

(12.8) 

and note that the terms in brackets are independent of z , meaning that

 

K p x, z q “ h p x q eµz

 

(12.9) 

for some h p x q . Substituting back into (12.8) and dividing through by eµz , h p x q must satisfy

 

0 “ h p x q ` c2 eµx ` c2 

ż x 

´8 

dy h p x q e2 µy 

“ h p x q 

ˆ 

1 ` c2 

ż x 

´8 

dy e2 µy 

˙ 

` c2 eµx

 

and hence

 

h p x q “ ´ 

c2 eµx

 

1 ` 

c2

 

2 µ 

e2 µx 

.

 

(12.10)
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If we set

 

c2 “ 2 µ e´ 2 µx0

 

(12.11) 

(thereby trading c for x0) we obtain

 

h p x q “ ´ 2 µ 

eµ p x ́  2 x0q

 

1 ` 

c2

 

2 µ 

e2 µ p x ́  x0q

 

(12.12) 

and so

 

K p x, z q “ ´ 2 µ 

eµ p x ̀  z ´ 2 x0q

 

1 ` 

c2

 

2 µ 

e2 µ p x ́  x0q 

.

 

(12.13) 

Hence

 

V p x q “ 2 

d

 

dx 

K p x, x q “ ´ 2 µ2sech2
p µ p x ´ x0qq

 

(12.14) 

and u “ ´ V is indeed a snapshot of a single KdV soliton, at a time (say t “ 0 ) when its centre 

is at x “ x0. 

Time evolution is easily included using

 

c p t q
2

“ cp0 q e´ 8 µ3 t
“ 2 µ e´ 2 µ p x0´ 4 µ2 t q

 

(12.15) 

which has the effect of translating the centre of the soliton as

 

x0 Ñ x0 ` 4 µ2 t

 

(12.16) 

and the KdV field at time t is

 

u p x, t q “ ´ V p x, t q “ 2 µ2sech2
p µ p x ´ x0 ´ 4 µ2 t qq

 

(12.17) 

which is a single moving soliton just as found earlier in the course:

 

12.4 Example 2: the N -soliton solution 

Now let’s consider a siutation with R p k q “ 0 but with N bound states, encoded in t µn 

, cnuN 

n “ 1 

. 

Then

 

F p ξ q “ 

N
ÿ 

n “ 1 

c2 

n 

eµn 

ξ .

 

(12.18)
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Since

 

F p x ̀  z q “ 

N
ÿ 

n “ 1 

c2 

n 

eµn 

x eµn 

z

 

is a sum of factorised terms, we will look for a solution where K p x, z q is also a sum of factorised 

terms. This is best encoded using a vector and matrix notation, setting

 

E p x q “ 

¨ 

˚

˝ 

eµ1 

x 

... 

eµN 

x 

˛ 

‹

‚ 

, L p x q “ 

¨ 

˚

˝ 

c2 

1 

eµ1 

x 

... 

c2 

N 

eµN 

x 

˛ 

‹

‚ 

, H p x q “ 

¨ 

˚

˝ 

h1p x q 

... 

hNp x q 

˛ 

‹

‚ 

,

 

(12.19) 

where H p x q is yet to be determined. With this notation set up, we have

 

F p x ̀  z q “ E 

T
p x q L p z q

 

(12.20) 

(where the T superscript denotes a transpose) and we’ll look for a K p x, z q of the form

 

K p x, z q “ H 

T
p x q L p z q .

 

(12.21) 

Substituting into the Marchenko equation, we find

 

0 “ K p x, z q ` F p x ̀  z q ` 

ż x 

´8 

dy K p x, y q F p y ` z q 

“ H 

T
p x q L p z q ` E 

T
p x q L p z q ` H 

T
p x q 

ż x 

´8 

dy L p y q E 

T
p y q L p z q 

“ 

´ 

H p x q ` E p x q ` 

ż x 

´8 

dy E p y q E 

T
p y q H p x q 

¯T 

L p z q . (12.22)

 

If the term in brackets on the last line can be made to vanish, we’ll have a solution. In turn 

this will be true if

 

Γ p x q H p x q “ ´ E p x q

 

(12.23) 

where Γ p x q is not the gamma function seen earlier, but rather the N ˆ N matrix

 

Γ p x q “ 1N ˆ N 

` 

ż x 

´8 

dy E p y q LT
p y q

 

(12.24) 

with matrix elements

 

Γ p x qmn “ δmn ` 

ż x 

´8 

dy eµm 

y c2 

n 

eµn 

y 

“ δmn ` c2 

n 

ep µm` µnq y

 

µm ` µn 

. (12.25)

 

Note also we have

 

d

 

dx
Γ p x q “ E p x q LT

p x q ,

 

(12.26)
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a formula that will be useful shortly. 

From (12.23) we have

 

H p x q “ ´ Γ p x q
´ 1 E p x q

 

(12.27) 

and so

 

K p x, z q “ LT
p z q H p x q “ ´ LT

p z q Γ p x q
´ 1 E p x q 

“ ´ tr
`

Γ p x q
´ 1 E p x q LT

p z q
˘ 

. (12.28)

 

Therefore

 

K p x, x q “ ´ tr
`

Γ p x q
´ 1 E p x q LT

p x q
˘ 

“ ´ tr
`

Γ p x q
´ 1 

d

 

dx
Γ p x q

˘ 

“ ´ tr
` d

 

dx 

log Γ p x q
˘ 

“ ´ 

d

 

dx 

tr
`

log Γ p x q
˘ 

“ ´ 

d

 

dx 

log 

`

det Γ p x q
˘ 

(12.29)

 

using the matrix identities

 

d

 

dx 

log Γ “ Γ´ 1 

d

 

dx
Γ , tr p log Γ q “ log p det Γ q .

 

(12.30) 

This implies that the KdV field is

 

u “ ´ 2 

d

 

dx 

K p x, x q “ 2 

d2

 

dx2 

log p det Γ p x qq

 

(12.31) 

or, putting back the t -dependence hidden in Γ (through the cn),

 

u p x, t q “ 2 

B2

 

B x2 

log p det Γ p x ; t qq

 

(12.32) 

with

 

Γ p x ; t qmn “ δmn ` c2 

np t q 

ep µm` µnq x

 

µm ` µn 

.

 

(12.33) 

These formulae are very similar to the N -soliton KdV solutions found by Hirota. To see that 

they are in fact exactly the same, we can use Sylvester’s determinant theorem , which states that

 

det p 1N ˆ N 

` AB q “ det p 1N ˆ N 

` B A q

 

(12.34) 

for any pair of N ˆ N matrices A , B .
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Taking

 

Amn “ eµm 

x δmn 

, Bmn “ 

c2 

n 

eµn 

x

 

µm ` µn

 

we have

 

p AB qmn “ 

c2 

n 

ep µm` µnq x

 

µm ` µn 

, p B A qmn “ 

c2 

n 

e2 µn 

x

 

µm ` µn 

,

 

and so we can equivalently write

 

u p x, t q “ 2 

B2

 

B x2 

log p det S p x ; t qq

 

(12.35) 

with

 

S p x ; t qmn “ δmn ` 

1

 

µm ` µn 

c2 

np t q e2 µn 

x 

“ δmn ` 

2 µn

 

µm ` µn 

e2 µnp x ́  x0 ,n´ 4 µ2
n 

t q (12.36)

 

where, just as done above for the one-soliton solution, we traded cnp 0 q for x0 ,n 

by setting

 

cnp 0 q
2

“ 2 µn 

e´ 2 µn 

x0 ,n .

 

(12.37) 

These equations give the general form of the N -soliton solution of the KdV equation.



 

Chapter 13 

Integrable systems in classical 

mechanics 

So far, we’re (secretly) been looking at infinite-dimensional systems: classical field theories 

in one space and one time dimension, though these can often be thought of as the continuum 

limits (see last term) of systems with finitely-many degrees of freedom. 

Many of the methods we’ve seen, in particular the idea of a Lax pair, can also apply to finite- 

dimensional systems, and more precisely to finite-dimensional classical integrable Hamiltonian 

systems . To understand what these words mean, some definitions are needed. 

• A finite-dimensional Hamiltonian system is defined by: 

- A set of (generalised) coordinates qi “ 1 ...n 

and momenta pi “ 1 ...n, which completely specify 

the configuration of the system at time t (the space parametrised by these so-called canonical 

coordinates q , p is called the 2 n -dimensional phase space of the system); 

- A function H p q , p q defined on phase space called the Hamiltonian . 

The time evolution equations are then, with the dots denoting time derivatives,

 

9qi “ 

B H

 

B pi 

9pi “ ´
B H

 

B qi

 

(13.1) 

These are called Hamilton’s equations . 

145
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Example:

 

for n particles with masses mi 

moving in one dimension under conservative forces 

associated with a potential energy V p q1 

, . . . qnq , the Hamiltonian is

 

H p q , p q “ 

n
ÿ 

i “ 1 

p2 

i

 

2 mi 

` V p q1 

, . . . qnq

 

(13.2) 

and Hamilton’s equations are

 

9qi “ 

pi

 

mi 

, 9pi “ ´
B V p q1 

, . . . qnq

 

B qi 

.

 

(13.3) 

These are the same as Newton’s equations,

 

mi:qi “ ´
B V p q1 

, . . . qnq

 

B qi 

,

 

(13.4) 

put into a first-order form. 

• One can associate to a Hamiltonian system a Poisson bracket t , u , a bilinear antisymmetric 

form on the space of functions of q and p :

 

t f , g u : “ 

n
ÿ 

i “ 1 

ˆ

B f

 

B pi 

B g

 

B qi 

´ 

B f

 

B qi 

B g

 

B pi 

˙

 

(13.5) 

Clearly t f , g u “ ´t g , f u and t f , f u “ 0 . 

• Hamilton’s equations (13.1) imply that any f p q , p q which does not depend explicitly on time, 

but only implicitly via q p t q and p p t q , evolves as

 

d

 

dt 

f p q p t q , p p t qq “ 

n
ÿ 

i “ 1 

ˆ 

9qi
B f

 

B qi 

` 9 pi
B f

 

B pi 

˙ 

“ 

n
ÿ 

i “ 1 

ˆ

B H

 

B pi 

B f

 

B qi 

´
B H

 

B qi 

B f

 

B pi 

˙

 

That is,

 

d

 

dt 

f p q , p q “ t H p q , p q , f p q , p qu

 

(13.6) 

(If f also depends explicitly on t , so f “ f p q p t q , p p t q , t q , then 

d

 

dt 

f p q , p q “ 

B

 

B t 

f `t H p q , p q , f p q , p qu . ) 

• Functions F p q , p q which don’t depend explicitly on time and have vanishing Poisson bracket 

with the Hamilton H p q , p q are conserved

 

:

 

d

 

dt 

F p q p t q , p p t qq “ t H p q , p q , F p q , p qu “ 0

 

(13.7)
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In particular, the antisymmetry of the Poisson bracket means that the Hamiltonian is always 

conserved:

 

d

 

dt 

H “ t H , H u “ 0 .

 

(13.8) 

Hence

 

H p q p t q , p p t qq “ E “ constant

 

(13.9) 

which is nothing but the conservation of energy. 

Note:

 

If t F , H u “ 0 , then not only is F p q , p q conserved under the time evolution (13.1), but 

also H p q , p q is conserved under a different time evolution with a different time, s say, and 

Hamiltonian F p q , p q :

 

$ 

’

’

& 

’

’

% 

d

 

ds 

qi “ 

B F

 

B pi 

d

 

ds 

pi “ ´
B F

 

B qi 

, 

/

/

. 

/

/

- 

ñ 

d

 

ds 

H p q , p q “ t F p q , p q , H p q , p qu “ 0 .

 

(13.10) 

It also means (via the Jacobi identity) that we can evolve along the two times, along t and then 

s , or vice versa, and we will end up at the same point in phase space:

 

In fancy language, F and H such that t F , H u “ 0 are said to be in involution and they generate 

commuting flows , where one flow is t -evolution with Hamiltonian H , and the other flow is s - 

evolution with Hamiltonian F . We saw this idea earlier, in section 10.3, when discussing the 

KdV hierarchy. 

Definition:

 

A Hamiltonian system t qi “ 1 ...n 

, pi “ 1 ...n 

, H p qi 

, piq u is called completely integrable if 

it has n independent conserved quantities Qip q , p q satisfying t Qi 

, H u “ 0 , which are mutually 

in involution , that is

 

t Qi 

, Qju “ 0 @ i, j “ 1 . . . n

 

(13.11) 

One of these conserved quantities is always the original Hamiltonian H . 

For such systems it is possible to find a new set of coordinates φi 

and momenta Qi 

on phase
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space such that the Hamiltonian only depends of the Qi 

and not on the φi:

 

H “ H p Q q ñ 

$ 

’

’

& 

’

’

% 

9φ “ 

B H

 

B Qi 

9Q “ ´
B H

 

B φi 

“ 0

 

(13.12) 

These are called action-angle variables ( φi: angle variables; Qi: action variables). The name is 

because if the surfaces of constant H are compact, then the φi 

parametrise periodic orbits and 

can therefore be thought of as angular variables. 

• The n conserved quantities Qi 

are the finite-dimensional analogues of the infinitely-many 

conserved charges of the KdV hierarchy discussed in section 10.3. 

• What is interesting for us here is that the integrability of such classical systems can be es- 

tablished by constructing a Lax pair L , M , satisfying

 

9L “ r M , L s

 

(13.13) 

This is as we saw with L and B for KdV, but now L and M will be n ˆ n matrices instead of 

differential operators. We’ll see that the n conserved quantitites are the eigenvalues λi “ 1 ...n 

of 

the Lax matrix L (though as we’ll also see, it may be more convenient sometimes to use some 

functions of those eigenvalues instead, such as the sums of their powers). 

(To show that the conservation laws are in involution is a bit more tricky, and won’t be dis- 

cussed here.) 

• In general, if there are n q ’s, qi “ 1 ...n, L and M will be n ˆ n matrices and the n conserved 

quantities will be coded up in the n eigenvalues λ1. . . λn 

of the Lax matrix L . 

• The Lax equation (13.13), with L and M functions of time, can be solved formally by

 

L p t q “ U p t q L p 0 q U p t q
´ 1

 

(13.14) 

where the time evolution operator U p t q is the unique solution of the following (matrix) ordi- 

nary differential equation:

 

9U p t q “ M p t q U p t q 

U p 0 q “ 1

 

(13.15)
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This can be proved as follows:

 

9L “ 

d

 

dt 

`

U L p 0 q U´ 1 

˘ 

“ 

9U L p 0 q U´ 1
` U L p 0 q 

9p U´ 1q 

“ 

9U L p 0 q U´ 1
´ U L p 0 q U´ 1 9U U´ 1 

“ 

9U U´ 1 U L p 0 q U´ 1
´ U L p 0 q U´ 1 9U U´ 1 

“ M L ´ M L 

“ r M , L s (13.16)

 

(where the result 

9p U´ 1q “ U´ 1 9U U´ 1 used in going from the second line to the third can be 

proved by differentiating U U´ 1 “ 1 ). 

The formal solution (13.14) can be used to prove that the eigenvalues of the Lax matrix L do 

not depend on time, just as was the case for KdV in infinitely-many dimensions. To see this, 

consider the characteristic polynomial of L :

 

PLp λ q “ det p λ 1 ´ L q

 

(13.17) 

This is a degree n monic polynomial (“monic”: λn ` . . . ) whose roots are the n eigenvalues 

λi “ 1 ...n 

of L . Now L is going to be a Hermitian – often real – matrix which can be diagonalised 

by conjugating it with some unitary matrix V :

 

L “ V Λ V ´ 1 , Λ “ 

¨ 

˚

˚

˚

˝ 

λ1 

λ2 

. . . 

λn 

˛ 

‹

‹

‹

‚

 

(13.18) 

Thus (in a sequence of equalities that you might have seen before)

 

PLp λ q “ det p λ 1 ´ L q 

“ det p λ 1 ´ V Λ V ´ 1
q 

“ det p λV V ´ 1
´ V Λ V ´ 1

q 

“ det p V p λ 1 ´ Λ q V ´ 1
q 

“ det p V q det p λ 1 ´ Λ q det p V ´ 1
q 

“ det p λ 1 ´ Λ q 

“ 

n
ź 

i “ 1 

p λ ´ λiq 

“ λn ´ c1 

λn ́  1
` c2 

λn ́  2
´ ¨ ¨ ¨ ` p´ 1 q

n 

n
ź 

i “ 1 

λi 

. (13.19)
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(The signs of the coefficients on the last line are chosen for later convenience.) 

Since time evolution is also given by conjugation (this time by U p t q instead of V ), the same 

argument shows that

 

PL p t qp λ q “ det p λ 1 ´ U p t q L p 0 q U p t q
´ 1

q 

“ det p λ 1 ´ L p 0 qq 

“ PL p 0 qp λ q (13.20)

 

which implies that the eigenvalues λi 

of L p t q are independent of time, as claimed. 

Equivalently, we can take the n conserved quantities to be the coefficients ck 

of the character- 

istic polynomial

 

ck 

“ 

ÿ 

1 ď i1ă i2¨¨¨ă ikď n 

λi1 

λi2 

. . . λik 

, k “ 1 . . . n ,

 

(13.21) 

or as

 

sk 

“ 

n
ÿ 

i “ 1 

λk 

i 

“ tr p Lk
q , k “ 1 . . . n .

 

(13.22) 

Note that the conservation of sk 

can be proved directly, taking d { dt of tr p Lkq , expanding out, 

and using the Lax pair and then the cyclic property of the trace. 

As a final remark about the general formalism, note that the eigenvalue equation for L p t q , 

namely

 

L p t q ψ p t q “ λψ p t q

 

(13.23) 

is solved formally by

 

ψ p t q “ U p t q ψ p 0 q

 

(13.24) 

where ψ p 0 q is an eigenfunction at t “ 0 :

 

L p t q ψ p t q “ U p t q L p 0 q U p t q
´ 1 ψ p t q 

“ U p t q L p 0 q U p t q
´ 1 U p t q ψ p 0 q 

“ U p t q L p 0 q ψ p 0 q 

“ U p t q λψ p 0 q 

“ λU p t q ψ p 0 q 

“ λψ p t q . (13.25)
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13.1 The Lax pair for the simple harmonic oscillator 

The Hamiltonian for the S.H.O. (which has n “ 1 ) is

 

H p q , p q “ 

p2

 

2 m
` 

1

 

2 

mω2 q2 .

 

(13.26) 

Hamilton’s equations are then

 

9q “ 

p

 

m 

, 9p “ ´ mω2 q .

 

(13.27) 

These equations are equivalent to a Lax equation of the form (13.13) with

 

L “ 

ˆ 

p mω q 

mω q ´ p 

˙ 

, M “ 

ω

 

2 

ˆ

0 ´ 1 

1 0 

˙ 

.

 

(13.28) 

Indeed

 

9L “ 

ˆ 

9p mω 9q 

mω 9 q ´ 9 p 

˙ 

, r M , L s “ 

ˆ

´ mω2 q ω p 

ω p mω2 q 

˙

 

(13.29) 

and so 

9L “ r M , L s Ø (13.27). 

• Since in this case M is independent of t , the time evolution operator defined by (13.15) is 

simply

 

U p t q “ eM t

 

(13.30) 

where the exponential of the matrix M t is defined by its Taylor expansion:

 

eM t
“ 

8
ÿ 

n “ 0 

tn

 

n ! 

M 

n .

 

(13.31) 

This can be calculated explicitly, noting that

 

M2
“ ´p 

ω

 

2
q
2
1

 

and so

 

M2 k 

“ p´ 1 q
k
p 

ω

 

2
q
2 k 

1 , M2 k ` 1
“ p´ 1 q

k
p 

ω

 

2
q
2 k M

 

(13.32) 

and so (splitting (13.31) into sums over even and odd terms and then spotting the Taylor series 

for cosine and sine)

 

U p t q “ 

ˆ

cos p ω t { 2 q ´ sin p ω t { 2 q 

sin p ω t { 2 q cos p ω t { 2 q 

˙ 

.

 

(13.33)
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Hence

 

L p t q “ 

ˆ 

p p t q mω q p t q 

mω q p t q ´ p p t q 

˙ 

“ U p t q L p 0 q U p t q
´ 1 

“ 

ˆ

cos p ω t { 2 q ´ sin p ω t { 2 q 

sin p ω t { 2 q cos p ω t { 2 q 

˙ ˆ 

p p 0 q mω q p 0 q 

mω q p 0 q ´ p p 0 q 

˙ ˆ 

cos p ω t { 2 q sin p ω t { 2 q 

´ sin p ω t { 2 q cos p ω t { 2 q 

˙ 

“ . . . 

“ 

ˆ

p p 0 q cos p ω t q ´ mω q p 0 q sin p ω t q p p 0 q sin p ω t q ` mω q p 0 q cos p ω t q 

p p 0 q sin p ω t q ` mω q p 0 q cos p ω t q ´ p p 0 q cos p ω t q ` mω q p 0 q sin p ω t q 

˙ 

(13.34)

 

and hence

 

q p t q “ q p 0 q cos p ω t q ` 

p p 0 q

 

mω 

sin p ω t q 

p p t q “ p p 0 q cos p ω t q ´ mω q p 0 q sin p ω t q

 

(13.35) 

This shows that, up to a scaling of the axes, the time evolution is uniform rotation in the S.H.O. 

phase space:

 

In this case n “ 1 , and there is just one nontrivial conserved quantity, which should be the 

Hamiltonian. Indeed tr p L q “ 0 (so this is trivially conserved) while

 

tr p L2
q “ tr 

ˆ

p2 ` m2 ω2 q2 0 

0 p2 ` m2 ω2 q2 

˙ 

“ 2 p p2 ` m2 ω2 q2 “ 4 m H p q , p q

 

(13.36) 

is the only independent conserved quantity. While this case is a bit easy, it does illustrate the 

general point that it’s simpler to work with traces of powers of the Lax matrix, rather than 

with the individual eigenvalues themselves. 

13.2 The Lax pair for the Toda lattice 

The last example was a bit trivial. Much less trivial, and still the subject of research, is the 

finite Toda lattice which describes in particles on a line, each one interacting with its nearest 

neighbours. Let’s take the particles to have equal masses, mi “ 1 . Toda’s Hamiltonian is

 

H p q , p q “ 

n
ÿ 

i “ 1 

ˆ 

p2 

i

 

2 

` e´p qi´ qi ́  1q 

˙

 

(13.37)
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where, at least at t “ 0 ,

 

q0 ” ´8 ă q1 ă q2 ¨ ¨ ¨ ă qn ă qn ̀  1 ” `8 .

 

Hamilton’s equations for this system are:

 

9 qi “ pi 

9pi “ e´p qi´ qi ́  1q
´ e´p qi ̀  1´ qiq

 

(13.38) 

Note

 

that it follows from these equations that 

d

 

dt 

řn 

i “ 1 

pi “ 0 , so 

řn 

i “ 1 

pi “ constant “ P , say, 

and 

d

 

dt 

řn 

i “ 1 

qi “ P . This in turn implies that 

řn 

i “ 1 

qi “ P t ` const, thus solving a part of the 

equations of motion. 

The Lax pair is most simply formulated in terms of Flaschka’s variables :

 

ai “ 

1

 

2 

e´p qi ̀  1´ qiq{ 2 , bi “ ´1

 

2 

pi

 

(13.39) 

which satisfy

 

9 ai “ 

1

 

4 

e´p qi ̀  1´ qiq{ 2
p pi ̀  1 ´ piq “ aip bi ̀  1 ´ biq 

9bi “ ´1

 

2
p e´p qi´ qi ́  1q

´ e´p qi ̀  1´ qiqq “ 2 p a2 

i 

´ a2 

i ́  1q

 

(13.40) 

(It might be objected that Flaschka’s variables only encode the differences of the qis, but given 

the note

 

above, we already know their overall sum, so the differences are all that we need.) 

Then the Lax pair is

 

L “ 

¨ 

˚

˚

˚

˚

˚

˚

˚

˝ 

b1 

a1 

a1 

b2 

a2 

a2 

b3 

a3 

. . . 

. . . 

. . . 

an ́  2 

bn ́  1 

an ́  1 

an ́  1 

bn 

˛ 

‹

‹

‹

‹

‹

‹

‹

‚ 

M “ 

¨ 

˚

˚

˚

˚

˚

˚

˚

˝ 

0 a1 

´ a1 

0 a2 

´ a2 

0 a3 

. . . 

. . . 

. . . 

´ an ́  2 

0 an ́  1 

´ an ́  1 

0 

˛ 

‹

‹

‹

‹

‹

‹

‹

‚

 

(13.41)
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(Exercise: check for yourself that 

9L “ r M , L s ñ (13.40).) 

This implies that the eigenvalues of L , or equivalently the traces of the powers of L , are all 

conserved! This gives us n conserved quantities,

 

Qk 

“ tr p Lk
q , k “ 1 . . . n .

 

(13.42) 

The first few are

 

Q1 “ tr p L q 

“ 

n
ÿ 

i “ 1 

bi “ ´1

 

2 

n
ÿ 

i “ 1 

pi 

(total momentum) 

Q2 “ tr p L2
q 

“ 

n
ÿ 

i “ 1 

b2 

i 

` 2 

n ́  1
ÿ 

i “ 1 

a2 

i 

“ 

1

 

2 

˜ 

1

 

2 

n
ÿ 

i “ 1 

p2 

i 

` 

n ́  1
ÿ 

i “ 1 

e´p qi ̀  1´ qiq 

¸ 

(the Hamiltonian, or total energy) 

Q3 “ tr p L3
q 

“ 

n
ÿ 

i “ 1 

b3 

i 

` 3 

n ́  1
ÿ 

i “ 1 

a2 

i p bi ` bi ̀  1q 

“ 

1

 

8 

˜ 

n
ÿ 

i “ 1 

p3 

i 

´ 3 

n ́  1
ÿ 

i “ 1 

e´p qi ̀  1´ qiqp pi ` pi ̀  1q 

¸

 

(13.43) 

Interestingly, the limit n Ñ 8 yields the infinite Toda lattice , which describes an infinite 

number of particles on a line, and this system has solitons. 

The index i P Z for the infinite Toda lattice is analogous to x P R for KdV, while qip t q P R 

corresponds to u p x, t q P R . Thus space has been discretised, while time remains continuous, 

as does the field value. (In the ball and box model the process of discretisation goes two steps 

further, with both time and the field values also becoming discrete.) 

The solitons of the infinite Toda lattice can be derived in a number of ways, including inverse 

scattering. The following turns out to be a solution, for any γ , k ą 0 :

 

qlp t q “ q0 ´ log 

1 ` γ e´ 2 k l ˘ 2 sinh p k q t

 

1 ` γ e´ 2 k p l ´ 1 q˘ 2 sinh p k q t

 

(13.44)
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This is a single soliton moving through Z with

 

velocity “ ˘ sinh p k q{ k , 

width „ 1 { k .

 

(13.45) 

As for KdV, the faster a soliton is moving, the narrower it becomes. 

Here’s a plot comparing three of these solitons at t “ 0 , taking the ‘+’ option with q0 

“ 0 in 

(13.44), with p k , γ q “ p 0 . 2 , 0 . 2 q (red), p k , γ q “ p 0 . 25 , 1 q (blue) and p k , γ q “ p 0 . 3 , 5 q (green) :

 

Note that the horizontal axis here is the index l , while in the sketch between equations (13.37) 

and (13.38) it was the ‘field value’ ql. 

It is also possible to find N -soliton solutions, which turn out to have a form similar to those 

we found earlier for the KdV equation:

 

qlp t q “ q0 ´ log 

det p 1N ˆ N 

` Clp t qq

 

det p 1N ˆ N 

` Cl ´ 1p t qq

 

(13.46) 

where 1N ˆ N 

is the N ˆ N identity matrix, and t Clp t qu is a family of N ˆ N matrices depending 

on the space coordinate l and the time coordinate t as follows:

 

p Clp t qqij 

“ 

?

 

γi 

γj

 

1 ´ e´p ki` kjq 

e´p ki` kjq l ´p σi 

sinh p kiq` σj 

sinh p kjqq t

 

(13.47) 

with ki 

, γi ą 0 and σi “ ˘ 1 .

 

The end
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