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45. Note: In this and subsequent exercises the Fourier transform will be denoted as F[f(x)] =
f̂(k), where F[f(x)] = f̂(k) =

∫∞
−∞ dx e−ikxf(x) and f(x) = 1

2π

∫∞
−∞ dk eikxf̂(k) . You

can use results from the Fourier transform handout such as δ(y) = 1
2π

∫∞
−∞ dz eiyz with-

out proof.
Some properties of Fourier transforms:

(a) The convolution of f and g is defined as

(f ∗ g)(x) =
∫ ∞

−∞
dz f(z) g(x− z) .

Prove that F[fg] = 1
2π
f̂(k) ∗ ĝ(k) and F[f ∗ g] = f̂(k)ĝ(k).

(b) The cross-correlation of f and g is defined as

(f ⊗ g)(x) =

∫ ∞

−∞
dz f ∗(z) g(x+ z) .

Prove the Weiner-Kinchin theorem, that F[f ⊗ g] = f̂ ∗(k)ĝ(k).

(c) The auto-correlation of f(x) is defined as

a(x) = (f ⊗ f)(x).

Using the answer to part b, verify that F[a] = |f̂(k)|2. This is called the energy
spectrum of f .

(d) Prove the FT version of Parseval’s theorem, which you may have already seen for
Fourier series: ∫ ∞

−∞
dx |f(x)|2 =

∫ ∞

−∞

dk

2π
|f̂(k)|2 .

(Strictly speaking this is Plancherel’s theorem; Parseval allows for two different
functions f and g and turns into Plancherel when f = g.)

The locations of the factors of 2π in these formulae depend on the conventions used
for the Fourier transform and its inverse, so they might look a little different in some
textbooks.

Solution To save space all integrals will henceforth be assumed to run from −∞ to ∞
unless otherwise stated.

(a) Convolution: (f ∗ g)(x) =
∫
dz f(z) g(x− z) .

We have

F[fg] =

∫
dx e−ikxf(x)g(x)

=

∫
dx

∫∫
dk1dk2
(2π)2

e−i(k−k1−k2)xf̂(k1)ĝ(k2)

=

∫∫
dk1dk2
2π

δ(k − k1 − k2)f̂(k1)ĝ(k2) (doing the
∫
dx)

=
1

2π

∫
dk1 f̂(k1)ĝ(k − k1) =

1

2π
(f̂ ∗ ĝ)(k) .
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and

F[f ∗ g] =
∫
dx e−ikx

∫
dz f(z)g(x− z)

=

∫
dx e−ikx

∫
dz

∫∫
dk1dk2
(2π)2

eik1z+ik2(x−z)f̂(k1)ĝ(k2)

=

∫
dz

∫∫
dk1dk2
2π

ei(k1−k2)zδ(k2 − k)f̂(k1)ĝ(k2) (doing the
∫
dx)

=

∫∫
dk1dk2 δ(k1 − k2)δ(k2 − k)f̂(k1)ĝ(k2) (doing the

∫
dz)

= f̂(k)ĝ(k) .

(b) Cross-correlation: (f ⊗ g)(x) =
∫
dz f ∗(z) g(x+ z) .

Note that (f ⊗ g)(x) =
∫
dy f ∗(−y) g(x− y), which is the convolution of f ∗(−x)

and g(x). So if we can show that F[f ∗(−x)](k) = f̂ ∗(k) it will follow from part (a)
that F[f ⊗ g] = f̂ ∗(k)ĝ(k). This holds since

F[f ∗(−x)](k) =
∫
dx f ∗(−x)e−ikx

=

(∫
dx f(−x)eikx

)∗

=

(∫
dy f(y)e−iky

)∗

(substituting y = −x)

= f̂ ∗(k)

(c) Auto-correlation: a(x) = (f ⊗ f)(x).
Using part (b), F[a] = F[f ⊗ f ] = f̂ ∗(k)f̂(k) = |f̂(k)|2.

(d) Parseval’s theorem:
∫
dx |f(x)|2 = 1

2π

∫
dk |f̂(k)|2 .∫

dx |f(x)|2 =
∫
dx

∫∫
dk1dk2
(2π)2

e−i(k1−k2)xf̂ ∗(k1)f̂(k2)

=

∫∫
dk1dk2
2π

δ(k1 − k2)f̂
∗(k1)f̂(k2) (doing the

∫
dz)

=

∫
dk1
2π

f̂ ∗(k1)f̂(k1) =

∫
dk

2π
|f̂(k)|2 .

46. Examples of Fourier transforms:

(a) Show that e−x2/2 is (up to a factor of
√
2π) its own FT.

(b) Find the FT of

f(x) =

{
1/(2ε) |x| ≤ ε

0 |x| > ε

and discuss the ε→ 0 limit.
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(c) Find the FT of

f(x) =

{
1− x2 |x| < 1

0 |x| > 1
.

Solution

(a)

F[e−x2/2](k) =

∫
dx e−ikxe−x2/2

=

∫
dx e−(x2+2ikx)/2

=

∫
dx e−((x+ik)2+k2)/2 (completing the square)

= e−k2/2

∫
dx e−(x+ik)2/2

= e−k2/2

∫
dx e−x2/2 (shifting x→ x+ ik as on the integrals sheet)

=
√
2π e−k2/2 (using the definite integral from the integrals sheet).

(b)

F[f(x)](k) =

∫ ϵ

−ϵ

dx e−ikx 1

2ϵ

=

[
e−ikx −1

2ikϵ

]ϵ
−ϵ

=
1

ϵk
sin(kϵ)

As ϵ → 0 with k fixed this tends to 1, a constant. Now consider the Fourier
transform of a Dirac delta function: F[δ(x)](k) =

∫
dx e−ikxδ(x) = 1 – it’s the

same! If you think about the shape of the original function f(x) in the limit, this
might seem reasonable.

(c) In this case F[f(x)](k) =
∫ 1

−1
dx e−ikx(1 − x2) . As a shortcut which avoids inte-

grating by parts, define

I(k) =

∫ 1

−1

dx e−ikx =
1

−ik
[
e−ikx

]1
−1

=
2

k
sin(k)

and notice, differentiating inside the integral for the first equality, that

d2

dk2
I(k) = −

∫ 1

−1

dx x2e−ikx =
d2

dk2

(
2

k
sin(k)

)
=

4

k3
sin(k)− 4

k2
cos(k)−2

k
sin(k) .

Thus

F[f(x)](k) =

(
I(k) +

d2

dk2
I(k)

)
=

4

k3

(
sin(k)− k cos(k)

)
.
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47. Solving the heat equation using Fourier transforms:

(a) Find the general solution of the heat equation ut = uxx in the form

u(x, t) =

∫ +∞

−∞
dk û(k, 0)f(k, x, t) ,

where û(k, 0) is the Fourier transform of the initial condition u(x, 0) and f(k, x, t)
is a function of k, x and t that you should determine.

(b) Evaluate the previous integral over k in the case where the initial condition is
u(x, 0) = δ(x), to obtain the corresponding solution u(x, t) for t > 0 explicitly.
[Hint: look at the definite integrals on the useful integrals sheet and read the note
below.]

(c) Finally, derive the general solution as in equation (7.2) in the lecture notes.

Solution

(a) Taking the Fourier transform of the heat equation and integrating by parts twice on
the uxx term, û(k, t) must solve

ût + k2û = 0

which is a first-order ODE, easily solved for any value of k:

û(k, t) = û(k, 0) e−k2t .

Transforming back,

u(x, t) =
1

2π

∫
dk û(k, t) eikx =

1

2π

∫
dk û(k, 0) e−k2t+ikx .

(b) For u(x, 0) = δ(x) it’s easy to compute that û(k, 0) = 1 . Substituting this into the
result from part (a),

u(x, t) =
1

2π

∫
dk e−k2t+ikx =

1

2π

∫
dk e−t(k−i x

2t
)2e−

x2

4t =
1

2
√
πt
e−

x2

4t

using the Gaussian integral from the integrals sheet for the definite integral, after
shifting the integration variable by a finite imaginary amount as in the note below
the integral.

(c) In the general case we want u(x, 0) = u0(x), so (using x′ instead of x for the
integration variable in the FT) û(k, 0) =

∫
dx′e−ikx′

u0(x
′) . Inserting this into the

formula found in part (a) and then doing the k integral just as in part (b), though
with x replaced by x− x′,

u(x, t) =
1

2π

∫∫
dk dx′ e−ikx′

u0(x
′) e−k2t+ikx

=
1

2π

∫∫
dk dx′ u0(x

′) e−k2t+ik(x−x′)

=
1

2
√
πt

∫
dx′ u0(x

′) e−
(x−x′)2

4t
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which is indeed formula (7.2) from lectures. Note, you can think of this as “adding
up” (using an integral) lots of solutions to the problem from part (b) – this is the
motivation for the idea of a Green’s function.

48. Find the general solution of the linearised KdV equation ut + uxxx = 0. Your answer
should be in the form of an integral involving û(k, 0), the Fourier transform of the initial
condition u(x, 0).

Solution Taking the Fourier transform of the linearised KdV equation ut + uxxx = 0,

ût = ik3û

which has the solution û(k, t) = eik
3tû(k, 0) . Transforming back,

u(x, t) =
1

2π

∫ ∞

−∞
û(k, t) eikx dk

=
1

2π

∫ ∞

−∞
eik

3tû(k, 0) eikx dk

=
1

2π

∫ ∞

−∞
eik(k

2t+x)û(k, 0) dk

where û(k, 0) =
∫∞
−∞ u(x, 0) e−ikx dx . Note that this is a superposition of waves trav-

elling leftwards, in line with numerical simulations of small-amplitude waves in the full
KdV equation.

49. Try to solve the full (non-linear) KdV equation using the same method, Fourier trans-
form. [Do not try too hard as it is impossible! Just convince yourself that it is impossible
and understand what goes wrong/why the Fourier transform doesn’t work in the non-
linear case.]

50. Show that if u(x, t) satisfies the KdV equation ut+6uux+uxxx = 0, and u = λ−v2−vx
where λ is a constant and v(x, t) some other function, then v satisfies(

2v +
∂

∂x

)(
vt + 6(λ− v2)vx + vxxx

)
= 0 .

(You might recognise this problem from last term!)

Solution Differentiating u = λ− v2 − vx yields:

ut = −2vvt − vtx

ux = −2vvx − vxx

uxx = −2v2x − 2vvxx − vxxx

uxxx = −6vxvxx − 2vvxxx − vxxxx .

Substituting into the KdV equation, and noting that (v2vx)x = v2vxx + 2vv2x , we find

−2v
[
vt + 6λvx − 6v2vx + vxxx

]
− ∂

∂x

[
vt + 6λvx − 6v2vx + vxxx

]
= 0,
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and thus (
2v +

∂

∂x

)(
vt + 6λvx − 6v2vx + vxxx

)
= 0 .

51. If λ is an eigenvalue of d2

dx2ψ(x)+u(x)ψ(x) = λψ(x), where we require
∫∞
−∞ |ψ(x)|2dx <

∞, and u(x) is real, prove that λ must also be real. (Hint: start by multiplying by ψ(x)∗

and integrating.)

Solution Following the hint, we find∫ ∞

−∞
ψ(x)∗

d2

dx2
ψ(x) + ψ(x)∗u(x)ψ(x) dx = λ

∫ ∞

−∞
|ψ(x)|2dx

and integrating the first term on the LHS by parts once,∫ ∞

−∞
−|dψ(x)/dx|2 + u(x)|ψ(x)|2 dx = λ

∫ ∞

−∞
|ψ(x)|2dx .

Since u(x) is real, the LHS is real; and dividing through by
∫∞
−∞ |ψ(x)|2dx (which is

finite, real and nonzero) shows that λ is real.

52. Let D = d/dx and let g(x) be a general function of x.

(a) Show that, as differential operators,

Dg = gx + gD , D2g = gxx + 2gxD + gD2 .

(b) Show more generally that

Dng =
n∑

m=0

(
n

m

)
dmg

dxm
Dn−m .

[Hint: to show that two differential operators are equal, you just have to show that they
have the same effect on any function f(x). For part (b), either try induction or think
about the formula for the differentiation of a product.]

Solution
(a) g as an operator sends f(x) to g(x)f(x); D sends f(x) to d

dx
f(x). Dg means ‘do g

then do D on the result’, so Dg f = d
dx
(gf) = gxf + gfx = (gx + gD)f . Hence on any

function f , the action of Dg is the same as that of gx + gD, which implies

Dg = gx + gD .

Likewise

D2g f =
d2

dx2
(gf) =

d

dx
(gxf + gfx) = gxxf + 2gxfx + gfxx
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which is the same as (gxx + 2gxD + gD2)f , from which the desired identity follows.

(b) The relevant formula for differentiating a product is

dn

dxn
(gf) =

n∑
m=0

(
n

m

)
g(m)f (n−m) .

53. Let D = ∂/∂x, and

L(u) = D2 + u(x, t) , B(u) = −(4D3 + 6uD + 3ux) .

Check that
L(u)t + [L(u), B(u)] = ut + 6uux + uxxx .

Solution This goes as in the lecture notes.

54. Let L(u) = D2 + u(x, t) and B(u) = αD for some constant α.

(a) Check that
L(u)t = [B(u), L(u)] ⇐⇒ ut = αux .

(b) Let ψ(x, 0) be an eigenfunction of L(u) at t = 0 with eigenvalue λ, so that

(D2 + u(x, 0))ψ(x, 0) = λψ(x, 0) .

If u(x, t) evolves according to the equation of part 1, find an eigenfunction ψ(x, t)
for each later time t, with the same eigenvalue λ, so that

(D2 + u(x, t))ψ(x, t) = λψ(x, t) .

Verify that ψ(x, t) can be arranged to satisfy ψt = B(u)ψ. (You can assume that the
eigenfunction is non-degenerate, namely that there is a single eigenfunction with
that eigenvalue. This is the case both for bound state solutions and for scattering
solutions.)

Solution
(a) We have L(u)t = ut, and

[B(u), L(u)] = α[D,D2 + u] = α[D, u] = αux .

Hence L(u)t = [B(u), L(u)] ⇔ ut = αux as required.

(b) If ut = αux then u(x, t) = f(x + αt); matching to the initial condition at t = 0,
u(x, t) = u(x+ αt, 0). Now suppose that

(D2 + u(x, 0))ψ(x, 0) = λψ(x, 0) .

Replacing x by x+ αt throughout,

(D2 + u(x+ αt, 0))ψ(x+ αt, 0) = λψ(x+ αt, 0)
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but since u(x, t) = u(x+ αt, 0) this is the same as

(D2 + u(x, t))ψ(x+ αt, 0) = λψ(x+ αt, 0)

and hence (D2 + u(x, t))ψ(x, t) = λψ(x, t) is solved by setting ψ(x, t) = ψ(x+ αt, 0).
For this solution we have

ψ(x, t)t =
∂

∂t
ψ(x+αt, 0) = α

∂

∂x
ψ(x+αt, 0) = α

∂

∂x
ψ(x, t) = αDψ(x, t) = B(u)ψ(x, t)

as required.

55. (a) Show that the differential operator D = ∂/∂x is anti-symmetric with respect to the
inner product

(ψ1, ψ2) :=

∫ +∞

−∞
dx ψ1(x)

∗ψ2(x)

on the space L2(R) of square integrable functions, that is (ψ1, Dψ2) = −(Dψ1, ψ2)
for all ψ1, ψ2 ∈ L2(R).

(b) Show that L(u) = D2 + u(x, t) is self-adjoint, given that u is real.

(c) Given a Lax pair L(u),B(u), show that the symmetric part ofB(u) commutes with
L(u) and therefore drops out of the Lax equation L(u)t = [B(u), L(u)].

(d) Now assume that B(u) is anti-symmetric. Show that (ψ1, ψ2) is independent of
time t if ψi(x; t) evolves according to the equation (ψi)t = B(u)ψi.

Solution

(a) We have

(ψ1, Dψ2) =

∫ +∞

−∞
dx ψ1(x)

∗ ∂
∂x
ψ2(x) = −

∫ +∞

−∞
dx ( ∂

∂x
ψ1(x)

∗)ψ2(x) = −(Dψ1, ψ2)

integrating by parts for the middle equality and using the fact that ψ1 and ψ2 tend
to zero at ±∞, so there’s no boundary term.

(b) This follows in much the same way as part (a), integrating by parts twice.

(c) Given that L and B form a Lax pair, we know that [L,B] is multiplicative (and
real) and so [L,B] = [L,B]†, and also L = L†. Hence

0 = [L,B]− [L,B]†

= LB −BL− (LB −BL)†

= LB −BL− (B†L† − L†B†)

= LB −BL− (B†L− LB†)

= L(B +B†)− (B +B†)L = [L, (B +B†)]

Since the symmetric part of B is 1
2
(B + B†) (and the commutator is linear) the

result follows.



Solitons III 2022-23: Epiphany solutions Solutions: page 9

(d) We have
∂

∂t
(ψ1, ψ2) = (

∂

∂t
ψ1, ψ2) + (ψ1,

∂

∂t
ψ2)

= (Bψ1, ψ2) + (ψ1, Bψ2)

= (Bψ1, ψ2)− (Bψ1, ψ2) (using antisymmetry of B)
= 0

as required.

56. (a) Show that the differential operator of order 2m− 1

B(u) =
m∑
j=1

(
βj(x)D

2j−1 +D2j−1βj(x)
)

is anti-symmetric if the functions βj(x) are real.
(b) If L(u) = D2 + u(x, t), compute the leading term of [L(u), B(u)] in the form

γ(x)D2m. If [L(u), B(u)] is to be purely multiplicative (forcing γ(x) to be zero),
deduce that βm(x) must be a constant.

Solution
(a) As in lectures, integration by parts shows that D† = −D, and hence (D2j−1)† =
(−1)2j−1D2j−1 = −D2j−1 if j ∈ N. Thus

B(u)† =
m∑
j=1

(
βj(x)D

2j−1 +D2j−1βj(x)
)†

=
m∑
j=1

(
(D2j−1)†βj(x)

∗ + βj(x)
∗(D2j−1)†

)
= −

m∑
j=1

(
(D2j−1)†βj(x) + βj(x)(D

2j−1)†
)

(since βj ∈ R)

= −B(u) .

(b) For L(u) = D2 + u , B(u) as above, we have

[L(u), B(u)] = [D2 + u,

m∑
j=1

(
βjD

2j−1 +D2j−1βj
)
]

= [D2, βmD
2m−1 +D2m−1βm] + (terms involving Dn with n < 2m)

= [D2, βm]D
2m−1 +D2m−1[D2, βm] + (terms involving Dn with n < 2m)

where the last step can be checked by writing out the terms. Since [D2, βm] = βm,xx +
2βm,xD we deduce

[L(u), B(u)] = 2βm,xD
2m + 2D2m−1βm,xD + (terms involving Dn with n < 2m)

= 2βm,xD
2m + 2βm,xD

2m + (terms involving Dn with n < 2m)

= 4βm,xD
2m + (terms involving Dn with n < 2m) .
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Now [L(u), B(u)] multiplicative implies in particular that the D2m derivative term must
vanish and hence βm,x = 0, so βm must be a constant (as a function of x) as required.

57. Consider them = 2 case of the equation from Ex 56 (a). Given the result of that question,
you can assume that β2 is a constant. Fix a normalization by imposing β2 = 1/2, and
find the most general form of β1 which allows [L(u), B(u)] to be multiplicative. Show
that the Lax equation L(u)t+[L(u), B(u)] = 0 is equivalent to the following alternative
version of the KdV equation

ut =
1

4
uxxx +

3

2
uux + 2kux , (*)

where k is an integration constant. Finally, check that the redefined field

ũ(x, t) = u(x+ 8kt,−4t)

solves the standard KdV equation ũt + 6ũũx + ũxxx = 0.

Solution The first part of this is as in example (iii) of section 10.1 in notes (Epiphany
term lecture 5). For the last part, using the chain rule for the derivatives we have

ũt = 8kux − 4ut , ũx = ux , ũxxx = uxxx ,

and so

ũt + 6ũũx + ũxxx = 8kux − 4ut + 6uux + uxxx

= 4
(
−ut +

1

4
uxxx +

3

2
uux + 2ku

)
= 0 ,

the term in brackets vanishing by (*).

58. Consider them = 3 case of the equation from Ex 56 (a). Given the result of that question,
you can assume that L(u)t + [L(u), B(u)] = 0 forces β3 to be a constant. Complete the
calculation to find the most general form of β2 and β1 which allow [L(u), B(u)] to be
multiplicative. Deduce from a special case of your result that a function u(x, t) evolving
according to the fifth-order KdV equation

ut + 30u2ux + 20uxuxx + 10uuxxx + uxxxxx = 0

leaves the eigenvalues of L(u) = D2 + u invariant.

Solution Assuming β3 is constant as in the question, we can set β3 = 1/2 by choice of
normalisation. Then

B(u) = D5 + (β2D
3 +D3β2) + (β1D +Dβ1) .
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Then [L(u), B(u)] = [D2+u,B(u)] and (long calculation – it is handy to use the formula
from question 52 to move all the D’s to the far right in every term) the terms here are

[D2, B(u)] = [D2, D5 + (β2D
3 +D3β2) + (β1D +Dβ1)]

= [D2, (β2D
3 +D3β2) + (β1D +Dβ1)]

= 2β2,xD
4 + β2,xxD

3 + β2,xxxxx + 5β2,xxxxD + 9β2,xxxD
2 + 7β2,xxD

3 + 2β2,xD
4

+ β1,xxD + 2β1,xD
2 + β1,xxx + 3β1,xxD + 2β1,xD

2

= β2,xxxxx + β1,xxx + (5β2,xxxx + 4β1,xx)D + (9β2,xxx + 4β1,x)D
2 + 8β2,xxD

3 + 4β2,xD
4

and

[u,B(u)] = [u,D5 + (β2D
3 +D3β2) + (β1D +Dβ1)]

= −uxxxxx − 5uxxxxD − 10uxxxD
2 − 10uxxD

3 − 5uxD
4

− β2uxxx − 3β2uxxD − 3β2uxD
2

− β2uxxx − 3β2,xuxx − 3β2,xxux

− 3(β2uxx + 2β2,xux)D − 3β2uxD
2

− 2β1ux

= −uxxxxx − 2β2uxxx − 3β2,xuxx − (3β2,xx + 2β1)ux

− (5uxxxx + 6β2uxx + 6β2,xux)D

− (10uxxx + 6β2ux)D
2

− 10uxxD
3 − 5uxD

4 .

Collecting the pieces:

[L(u), B(u)] = (4β2,x − 5ux)D
4 + (8β2,xx − 10uxx)D

3

+ (9β2,xxx + 4β1,x − 10uxxx − 6β2ux)D
2

+ (5β2,xxxx + 4β1,xx − 5uxxxx − 6β2uxx − 6β2,xux)D

+ β2,xxxxx + β1,xxx − uxxxxx − 2β2uxxx − 3β2,xuxx − (3β2,xx + 2β1)ux .

Next we must set the coefficients of the derivative terms to zero.

D4: (4β2 − 5u)x = 0 ⇒ β2 =
5
4
(u+ k) where k is a constant with respect to x.

D3: now automatic.

D2: 9β2,xxx + 4β1,x − 10uxxx − 6β2ux = 0

⇒ 45
4
uxxx + 4β1,x − 10uxxx − 15

2
(u+ k)ux = 5

4
uxxx + 4β1,x − 15

2
(u+ k)ux = 0 ,

⇒ (5
4
uxx + 4β1 − 15

4
u2 − 15

2
ku)x = 0 and hence β1 = − 5

16
(uxx − 3u2 − 6ku+ h)

where h is another constant.

D1: (5β2,xxxx + 4β1,xx − 5uxxxx − 6β2uxx − 6β2,xux) = 0.
It can be checked (bonus exercise!) that this is now automatic.

Finally(!) the D0 term gives us the general form of [L(u), B(u)], given that it has to be



Solitons III 2022-23: Epiphany solutions Solutions: page 12

multiplicative:

[L(u), B(u)] = β2,xxxxx + β1,xxx − uxxxxx − 2β2uxxx − 3β2,xuxx − 3β2,xxux − 2β1ux

= 5
4
uxxxxx − 5

16
(uxx − 3u2 − 6ku)xxx − uxxxxx

− 5
2
(u+ k)uxxx − 15

4
uxuxx − 15

4
uxxux +

5
8
(uxx − 3u2 − 6ku+ h)ux

= − 1
16
uxxxxx +

15
8
(3uxuxx + uuxxx) +

15
8
kuxxx

− 5
2
(u+ k)uxxx − 15

4
uxuxx − 15

4
uxxux +

5
8
(uxx − 3u2 − 6ku+ h)ux

= − 1
16
uxxxxx − 5

4
uxuxx − 5

8
(u+ k)uxxx − 15

8
u2ux − 15

4
kuux +

5
8
hux .

Rescaling B(u) → −16B(u) and setting k = h = 0, we have, applying the general
theorem about Lax pairs, that if

0 = L(u)t + [L(u), B(u)] = ut + uxxxxx + 20uxuxx + 10uuxxx + 30u2ux

then the spectrum of L(u) is independent of t, as required.

59. The functional derivative δF/δu of F [u] is defined by the equation

F [u+ δu] = F [u] +

∫ +∞

−∞
dx

δF [u]

δu(x)
δu(x) +O((δu)2) ,

where the infinitesimal variation δu(x) is small everywhere and goes to zero at the
boundaries of the integration range (the same applies to its derivatives δux, δuxx, . . . ).
If

F [u] =

∫ +∞

−∞
dx f(u, ux, uxx, uxxx, . . . ) ,

show that
δF [u]

δu
=
∂f

∂u
− ∂

∂x

∂f

∂ux
+

∂2

∂x2
∂f

∂uxx
− ∂3

∂x3
∂f

∂uxxx
+ . . .

Solution We have

F [u+ δu] =

∫ +∞

−∞
dx f(u+ δu, ux + δux, uxx + δuxx, . . . )

=

∫ +∞

−∞
dx f(u) +

∂f

∂u
δu+

∂f

∂ux
δux +

∂f

∂uxx
δuxx + · · ·+O((δu)2)

= F [u] +

∫ +∞

−∞
dx

∂f

∂u
δu− ∂

∂x

( ∂f
∂ux

)
δu+

∂2

∂x2

( ∂f

∂uxx

)
δu+ · · ·+O((δu)2)

= F [u] +

∫ +∞

−∞
dx

(
∂f

∂u
− ∂

∂x

( ∂f
∂ux

)
+

∂2

∂x2

( ∂f

∂uxx

)
+ . . .

)
δu+O((δu)2)

where to get from the second line to the third we integrated by parts once for the δux
term, twice for δuxx, and so on, each time using the fact that the variation and its dervi-
tives go to zero at the boundaries of the integration range. Comparing the last line with
the formula in the question gives the desired result.
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60. (a) Find a function f(u, ux, uxx) and a functional

F [u] =

∫ +∞

−∞
dx f(u, ux, uxx)

such that the equation

ut =
∂

∂x

δF

δu

is the same as the fifth-order KdV equation from question 58.

(b) Show that your F [u] is a conserved quantity if u evolves according to the standard
third order KdV equation.

(c) Show that
∫ +∞
−∞ dx u is a conserved quantity if u evolves according to the fifth-order

KdV equation (γ).

Solution See the handwritten solutions in ”lecture plan” folder.

61. The Wronskian W [f, g](x) of two differentiable functions f(x) and g(x) is defined as

W [f, g](x) = f ′(x)g(x)− f(x)g′(x) .

If the functions f and g are linearly dependent, then their Wronskian vanishes identi-
cally: W [f, g](x) = 0. (Equivalently, if W [f, g](x) ̸= 0, the functions f and g are
linearly independent.) Conversely, if the Wronskian vanishes identically for two ana-
lytic functions f and g, then f and g are linearly dependent.

(a) Write down the WronskianW [ψ∗
1, ψ2](x) of two eigenfunctions ψ1,2(x) of the time-

independent Schrödinger equation with the same potential V (x) and possibly dif-
ferent eigenvalues k2i :

ψ′′
i (x)− V (x)ψi(x) = −k2iψi(x) (i = 1, 2) . (**)

(This is just preparation for what follows, no computation is needed.)

(b) Show that the Wronskian is constant if the two eigenfunctions correspond to the
same eigenvalue.

(c) Show that two eigenfunctions with different eigenvalues are orthogonal with re-
spect to the (hermitian) inner product

(ψ1, ψ2) :=

∫ +∞

−∞
dx ψ∗

1(x)ψ2(x)

if at least one of the two eigenfunctions describes a bound state.

(d) Show that the Wronskian vanishes for two eigenfunctions with the same eigenvalue
in the discrete spectrum. (This implies the linear dependence of the two eigenfunc-
tions, provided that they are analytic.) [Hint: consider the limit x→ ±∞.]
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(e) The x→ ±∞ asymptotics of a scattering solution ψ(x) with eigenvalue k2 > 0 is

ψ(x) ≈

{
eikx +R(k) e−ikx , x→ −∞
T (k) eikx , x→ +∞

By evaluating the Wronskian W [ψ∗, ψ] at x → ±∞, show that the reflection and
transmission coefficients R(k) and T (k) satisfy

|R(k)|2 + |T (k)|2 = 1 .

Solution

(a) W [ψ∗
1, ψ2] = ψ∗

1
′(x)ψ2(x)− ψ∗

1(x)ψ
′
2(x)

(b) We have

d

dx
W [ψ∗

1, ψ2](x) = ψ∗
1
′′ψ2 + ψ∗

1
′ψ′

2 − ψ∗
1
′ψ′

2 − ψ∗
1ψ

′′
2 = ψ∗

1
′′ψ2 − ψ∗

1ψ
′′
2 .

Then use the differential equation (details should be given) to substitute for ψ∗
1
′′

and ψ′′
2 to see that the two terms on the RHS cancel when the eigenvalues are the

same, so the Wronskian is indeed constant.

(c) Multiply the complex conjugate of (**) with i = 1 by ψ2(x) and subtract ψ1(x)
∗

times (**) with i = 2 and integrate from −∞ to ∞ to find∫ ∞

−∞
(ψ∗

1
′′ψ2 − ψ∗

1ψ
′′
2) dx = (k22 − k21) (ψ1, ψ2) .

As in the solution to part 2, the integrand on the LHS of this equation is equal to
d
dx
W [ψ∗

1, ψ2](x), and integrates to zero since at least one of ψ1 and ψ2 is a bound
state and vanishes at ±∞ (while the other, even if not in the discrete spectrum,
must be bounded at infinity). Hence for k21 ̸= k22 , (ψ1, ψ2) = 0.

(d) From part 2, the Wronskian of the two eigenfunctions, sharing the same eigenvalue,
is constant. Since this eigenvalue is in the discrete spectrum these eigenfunctions
vanish at ±∞, and so their Wronskian vanishes there. It therefore vanishes for all
x, as required.

(e) As x→ +∞,

W [ψ∗, ψ] → (T (k)∗e−ikx)′ T (k)eikx − T (k)∗e−ikx (T (k)eikx)′ = −2ik|T (k)|2 .

Likewise, as x→ −∞

W [ψ∗, ψ] → (e−ikx +R(k)∗eikx)′ (eikx +R(k)e−ikx)− (e−ikx +R(k)∗eikx) (eikx +R(k)e−ikx)′

= −2ik + 2ik|R(k)|2 .

Since by part 2 this Wronskian is constant, these two limits must agree, and with a
little rearrangement the desired result follows.
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62. Consider the time independent Schrödinger equation(
− d2

dx2
+ V (x)

)
ψ(x) = k2ψ(x)

with energy E = k2 for the square barrier/well potential

V (x) =


0 , x < 0

V0 , 0 < x < a

0 , x > a

where a > 0 and V0 are constants.

(a) Show that the matching conditions to be imposed at x = 0 and a, where the square
well potential is discontinuous (but finite), are that ψ(x) and ψ′(x) are continuous.

(b) Solve the Schrödinger equation for this potential in the three given regions and
impose the matching conditions to find the scattering solutions associated to energy
eigenvalues k2 > 0 in the continuous spectrum, and determine the reflection and
transmission coefficients R(k) and T (k) in terms of a and l =

√
k2 − V0.

(c) For which values of the wavenumber k is the square well potential transparent, that
is R(k) = 0?

(d) Write down the bound state solutions corresponding to the discrete spectrum k2 =
−µ2 < 0. Find the equations that determine implicitly the allowed values of µ in
terms of a and l (or V0).

(e) Do bound state solutions exist for V0 > 0? And for V0 < 0? In the latter case, use
a graphical argument to show that a new bound state solution appears every time
that

√
−V0 crosses a non-negative integer multiple of π/a.

(f) Show that in the limit a → 0, V0 → +∞ with b = aV0 fixed, the reflection and
transmission coefficients reduce to those of the delta-function potential V (x) =
bδ(x).

Solution Check back later.

63. Consider the time independent Schrödinger equation

−ψ′′(x) + V (x)ψ(x) = k2ψ(x) ,

where the potential V (x) is the sum of two delta functions:

V (x) = −aδ(x)− bδ(x− r) .

Taking r > 0, the solution ψ(x) can be split into three pieces, ψ1(x), ψ2(x) and ψ3(x),
defined on (−∞, 0), (0, r), and (r,+∞) respectively.

(a) Write down the four matching conditions relating ψ1, ψ2 and ψ3, and their deriva-
tives, at x = 0 and x = r.
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(b) For a scattering solution describing waves incident from the left, ψ1 and ψ3 are
given by

ψ1(x) = eikx +R(k) e−ikx, ψ3(x) = T (k) eikx.

Write down the general form of ψ2, and then use the matching conditions found in
part 1 to eliminate the unknowns and determine R(k) and T (k).

(c) Show from the answer to part 2 that, for there to be a bound state pole at k = iµ, µ
must satisfy

e−2µr = (1− 2µ/a)(1− 2µ/b) . (***)

(d) The solutions to (***) can be analysed using a graphical method. Show that:
i. if both a and b are negative, then there are no bound states;

ii. if a and b have opposite signs, then there is at most one bound state, occurring
when a+ b > rab (note: since a and b have opposite signs, rab is negative);

iii. if a and b are positive, then the number of bound states is one if rab ≤ a + b,
and two otherwise.

Sketch on the ab-plane the regions which correspond to zero, one and two bound
states, and indicate the form of ψ(x) for each of the two bound states found when
ab/(a+ b) > r−1.

Solution See module webpage.

64. The time independent Schrödinger equation

−ψ′′(x) + V (x)ψ(x) = k2ψ(x)

is conjectured to have solutions in the form

ψ(x) = eikx(2k + iw(x)) ,

where w(x) is real, non-singular for all x, independent of k, and has finite limits as
x→ ±∞. Substituting in, deduce the equation

w′(x) +
1

2
w2(x) = 2µ2 ,

where µ is an integration constant. [Hint: take real and imaginary parts of an intermedi-
ate equation.] Solve this via the substitution w(x) = 2f ′(x)/f(x), and deduce that V (x)
must have the form

V (x) = −2µ2 sech2(µ(x− x0)) .

Show also that u = −V is a solution of the KdV equation provided that x0 depends on t
in a certain way that you should determine.

Solution Substituting in, we need

0 =

(
− d2

dx2
+ V (x)− k2

)(
eikx(2k + iw(x))

)
= eikx

(
2k3 + ik2w(x) + 2kw′(x)− iw′′(x) + 2kV (x) + iw(x)V (x)− 2k3 − ik2w(x)

)
= eikx

(
2kw′(x)− iw′′(x) + 2kV (x) + iw(x)V (x)

)
= eikx

(
2k(V (x) + w′(x)) + i(w(x)V (x)− w′′(x))

)
.
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Setting real and imaginary parts of the term in big brackets on the last line equal to zero
(and noting that w, V (x) and k are all real) implies{

V (x) = −w′(x)

w′′(x) = w(x)V (x) .

Substituting the first of these into the second,

0 = w′′(x) + w(x)w′(x) =
d

dx

(
w′(x) +

1

2
w2(x)

)
.

Integrating once and setting the constant of integration equal to 2µ2 gives us the claimed
result.
Substituting w(x) = 2f ′(x)/f(x) and cancelling some terms,

f ′′(x) = µ2f(x)

and hence f(x) = Aeµx +Be−µx for some A and B, and

w(x) = 2
f ′(x)

f(x)
= 2µ

Aeµx −Be−µx

Aeµx +Be−µx
.

Since (A,B) and (λA, λB) give the same w(x), we can take AB = 1 without loss of
generality, and set A = e−µx0 , B = eµx0 for some x0. Hence

w(x) = 2µ tanh(µ(x− x0)) , V (x) = −w′(x) = −2µ2 sech2(µ(x− x0)) .

As seen earlier in the course (so it won’t be repeated here), substituting u = −V into the
KdV equation leads to a solution provided that x0(t) = x0(0) + 4µ2t.

65. Using the results of the last question, show that V (x) = −2µ2 sech2(µ(x−x0)) is an ex-
ample of a reflectionless potential, for which R(k) = 0. By adjusting the normalisation
of the wavefunction ψ(x) correctly, find out what the transmission coefficient T (k) is for
this potential. Verify that |T (k)|2 = 1, consistent with the idea that for such a potential
an incident particle must certainly be transmitted.

Solution Substituting w = 2µ tanh(µ(x− x0)) into the given equation we have

ψ(x) = 2eikx(k + iµ tanh(µ(x− x0))) ∼

{
2eikx(k − iµ) x→ −∞
2eikx(k + iµ) x→ +∞ .

Dividing through by 2(k − iµ) gives us the correctly-normalised scattering solution:

ψscattering(x) = eikx
k + iµ tanh(µ(x− x0))

k − iµ
∼

{
eikx x→ −∞
k+iµ
k−iµ

eikx x→ +∞

from which we can read off that R(k) = 0 (so the potential is indeed reflectionless) and

T (k) =
k + iµ

k − iµ
.

Furthermore

|T (k)|2 = |k + iµ|2

|k − iµ|2
=
k2 + µ2

k2 + µ2
= 1

as expected.


