
Advanced Quantum Theory IV Assignment 1
Lorentz transformations Michaelmas 2021/22

1. (can be skipped) The symmetries of the three-dimensional Euclidean space R3 are
those which preserve the distance between any two points. Obviously this includes the
translations,

~x ′ = ~x− ~a, (1)

for some constant vector ~a. We can also consider linear transformations,

~x ′ = Q~x, (2)

where Q is a 3× 3 matrix. This preserves the distance between two points if it preserves
the dot product,

~x ′ · ~y ′ = ~x · ~y. (3)

Show that this implies
QTI3×3Q = I3×3, (4)

where I3×3 is the 3× 3 identity matrix.

Show that this condition implies:

detQ = ±1. (5)

For the matrices Q with detQ = 1, we can make the ansatz

Q = eθJ , (6)

where θ ∈ R is a continuous parameter and J is a 3 × 3 matrix known as the generator
of the transformation. By considering infinitesimal θ � 1, show that the constraint (4)
implies

J + JT = 0, (7)

i.e. that the J must be anti-symmetric 3× 3 matrices.
There are three independent anti-symmetric 3 × 3 matrices, so we can package the

independent solutions to this constraint into a three-component vector:

~J = (J1, J2, J3) , (8)

where a useful basis is given by

J1 =

0 0 0
0 0 −1
0 1 0

 , J2 =

0 0 −1
0 0 0
1 0 0

 , J3 =

0 −1 0
1 0 0
0 0 0

 . (9)

Show that these generate, respectively, rotations about the x1, x2 and x3 axes.
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2. Minkowski space-time is R4 endowed with the Minkowski metric:

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (10)

The symmetries of Minkowski space-time include space-time translations:

x′ = x− a, (11)

for a constant four-vector a. In components x =
(
x0, x1, x2, x3

)
and a =

(
a0, a1, a2, a3

)
.

The other symmetries are linear transformations Λ, the Lorentz transformations,

x′ = Λx, (12)

which preserve the scalar product of four-vectors,(
x′
)T
η
(
y′
)

= xTη y. (13)

Show that this constraint implies
ΛTηΛ = η. (14)

Show also that detΛ = ±1.

Lorentz transformations with detΛ = 1 can be expressed in the form:

Λ = eωM , (15)

where is a continuous real parameter ω ∈ R. The 4× 4 matrices M are the generators of
the transformation. By considering infinitesimal transformations ω � 1, show that the
constraint (14) implies

MT = −ηMη. (16)

Show that there are six independent solutions to this equation. Why can each inde-
pendent solution be labelled with a pair of anti-symmetric indices Mρσ = −Mσρ with
ρ, σ = 0, 1, 2, 3? Deduce that the most general solution to this equation is given by:

M =


0 ω01 ω02 ω03

ω01 0 −ω12 −ω13

ω02 ω12 0 −ω23

ω03 ω13 ω23 0

 =
3∑

ρ,σ=0

ωρσM
ρσ, (17)

for six arbitrary constants ωρσ = −ωσρ, where

M01 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , M02 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , M03 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , (18)
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M12 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , M13 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 , M23 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 . (19)

Show that the solutions parameterised by ω12, ω13 and ω23 respectively generate ro-
tations around the x3, x2 and x1 axes by angle ω12, ω13 and ω23. Show that solutions
parameterised by ω01, ω02 and ω03 correspond to Lorentz Boosts in the positive x1, x2

and x3 directions.

The anti-symmetric indices ρ, σ labelling the different matrices Mρσ are not to be
confused with index notation which instead labels matrix elements. In index notation,
the elements of each matrix Mρσ are (Mρσ)µ ν with µ, ν = 0, 1, 2, 3. In this way, the
pseudo-orthogonality constraint (16) reads:(

MT
)
µ

ν = −ηµµ′Mµ′
ν′η

ν′ν , µ, ν, µ′, ν ′ = 0, 1, 2, 3. (20)

Lower the upper index in
(
MT

)
µ
ν and Mµ′

ν′ using the Minkowski metric. Show that
the pseudo-orthogonality constraint is equivalent to the anti-symmetry constraint – i.e.
that for each independent solution Mρσ, we must have:

(Mρσ)µν = − (Mρσ)νµ . (21)

Confirm that the matrices (18) and (19) indeed become anti-symmetric if we multi-
ply them with the Minkowski metric η.
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