Advanced Quantum Theory IV

1. (can be skipped) The symmetries of the three-dimensional Euclidean space \mathbb{R}^{3} are those which preserve the distance between any two points. Obviously this includes the translations,

$$
\begin{equation*}
\vec{x}^{\prime}=\vec{x}-\vec{a}, \tag{1}
\end{equation*}
$$

for some constant vector \vec{a}. We can also consider linear transformations,

$$
\begin{equation*}
\vec{x}^{\prime}=Q \vec{x}, \tag{2}
\end{equation*}
$$

where Q is a 3×3 matrix. This preserves the distance between two points if it preserves the dot product,

$$
\begin{equation*}
\vec{x}^{\prime} \cdot \vec{y}^{\prime}=\vec{x} \cdot \vec{y} . \tag{3}
\end{equation*}
$$

Show that this implies

$$
\begin{equation*}
Q^{\top} 0_{3 \times 3} Q=\rrbracket_{3 \times 3}, \tag{4}
\end{equation*}
$$

where $\rrbracket_{3 \times 3}$ is the 3×3 identity matrix.
Show that this condition implies:

$$
\begin{equation*}
\operatorname{det} Q= \pm 1 \tag{5}
\end{equation*}
$$

For the matrices Q with $\operatorname{det} Q=1$, we can make the ansatz

$$
\begin{equation*}
Q=e^{\theta J} \tag{6}
\end{equation*}
$$

where $\theta \in \mathbb{R}$ is a continuous parameter and J is a 3×3 matrix known as the generator of the transformation. By considering infinitesimal $\theta \ll 1$, show that the constraint (4) implies

$$
\begin{equation*}
J+J^{\top}=0, \tag{7}
\end{equation*}
$$

i.e. that the J must be anti-symmetric 3×3 matrices.

There are three independent anti-symmetric 3×3 matrices, so we can package the independent solutions to this constraint into a three-component vector:

$$
\begin{equation*}
\vec{J}=\left(J_{1}, J_{2}, J_{3}\right), \tag{8}
\end{equation*}
$$

where a useful basis is given by

$$
J_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{9}\\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad J_{2}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad J_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Show that these generate, respectively, rotations about the x^{1}, x^{2} and x^{3} axes.
2. Minkowski space-time is \mathbb{R}^{4} endowed with the Minkowski metric:

$$
\eta=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \tag{10}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The symmetries of Minkowski space-time include space-time translations:

$$
\begin{equation*}
x^{\prime}=x-a, \tag{11}
\end{equation*}
$$

for a constant four-vector a. In components $x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ and $a=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)$. The other symmetries are linear transformations Λ, the Lorentz transformations,

$$
\begin{equation*}
x^{\prime}=\Lambda x \tag{12}
\end{equation*}
$$

which preserve the scalar product of four-vectors,

$$
\begin{equation*}
\left(x^{\prime}\right)^{\top} \eta\left(y^{\prime}\right)=x^{\top} \eta y \tag{13}
\end{equation*}
$$

Show that this constraint implies

$$
\begin{equation*}
\Lambda^{\top} \eta \Lambda=\eta \tag{14}
\end{equation*}
$$

Show also that $\operatorname{det} \Lambda= \pm 1$.

Lorentz transformations with $\operatorname{det} \Lambda=1$ can be expressed in the form:

$$
\begin{equation*}
\Lambda=e^{\omega M} \tag{15}
\end{equation*}
$$

where is a continuous real parameter $\omega \in \mathbb{R}$. The 4×4 matrices M are the generators of the transformation. By considering infinitesimal transformations $\omega \ll 1$, show that the constraint (14) implies

$$
\begin{equation*}
M^{\top}=-\eta M \eta \tag{16}
\end{equation*}
$$

Show that there are six independent solutions to this equation. Why can each independent solution be labelled with a pair of anti-symmetric indices $M^{\rho \sigma}=-M^{\sigma \rho}$ with $\rho, \sigma=0,1,2,3$? Deduce that the most general solution to this equation is given by:

$$
M=\left(\begin{array}{cccc}
0 & \omega_{01} & \omega_{02} & \omega_{03} \tag{17}\\
\omega_{01} & 0 & -\omega_{12} & -\omega_{13} \\
\omega_{02} & \omega_{12} & 0 & -\omega_{23} \\
\omega_{03} & \omega_{13} & \omega_{23} & 0
\end{array}\right)=\sum_{\rho, \sigma=0}^{3} \omega_{\rho \sigma} M^{\rho \sigma}
$$

for six arbitrary constants $\omega_{\rho \sigma}=-\omega_{\sigma \rho}$, where

$$
M^{01}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{18}\\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad M^{02}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad M^{03}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

$$
M^{12}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{19}\\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad M^{13}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \quad M^{23}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Show that the solutions parameterised by ω_{12}, ω_{13} and ω_{23} respectively generate rotations around the x^{3}, x^{2} and x^{1} axes by angle ω_{12}, ω_{13} and ω_{23}. Show that solutions parameterised by ω_{01}, ω_{02} and ω_{03} correspond to Lorentz Boosts in the positive x^{1}, x^{2} and x^{3} directions.

The anti-symmetric indices ρ, σ labelling the different matrices $M^{\rho \sigma}$ are not to be confused with index notation which instead labels matrix elements. In index notation, the elements of each matrix $M^{\rho \sigma}$ are $\left(M^{\rho \sigma}\right)^{\mu}{ }_{\nu}$ with $\mu, \nu=0,1,2,3$. In this way, the pseudo-orthogonality constraint (16) reads:

$$
\begin{equation*}
\left(M^{\top}\right)_{\mu}^{\nu}=-\eta_{\mu \mu^{\prime}} M_{\nu^{\prime}}^{\mu^{\prime}} \eta^{\nu^{\prime} \nu}, \quad \mu, \nu, \mu^{\prime}, \nu^{\prime}=0,1,2,3 . \tag{20}
\end{equation*}
$$

Lower the upper index in $\left(M^{\top}\right)_{\mu}{ }^{\nu}$ and $M^{\mu^{\prime}}{ }_{\nu^{\prime}}$ using the Minkowski metric. Show that the pseudo-orthogonality constraint is equivalent to the anti-symmetry constraint - i.e. that for each independent solution $M^{\rho \sigma}$, we must have:

$$
\begin{equation*}
\left(M^{\rho \sigma}\right)_{\mu \nu}=-\left(M^{\rho \sigma}\right)_{\nu \mu} . \tag{21}
\end{equation*}
$$

Confirm that the matrices (18) and (19) indeed become anti-symmetric if we multiply them with the Minkowski metric η.

