Advanced Quantum Theory IV

Assignment 2

Lorentz transformations of fields
Michaelmas 2021/22
1.
(a). Consider the infinitesimal Lorentz transformation

$$
\begin{equation*}
\Lambda=\square+\omega_{\rho \sigma} M^{\rho \sigma}+O\left(\omega_{\rho \sigma}^{2}\right) \tag{1}
\end{equation*}
$$

Under this transformation the coordinate x transforms by an infinitesimal amount δx :

$$
\begin{align*}
x \rightarrow x^{\prime} & =\Lambda x \tag{2}\\
& =x+\delta x+O\left(\omega_{\rho \sigma}^{2}\right) . \tag{3}
\end{align*}
$$

Show that

$$
\begin{equation*}
\delta x=\omega_{\rho \sigma} M^{\rho \sigma} x \tag{4}
\end{equation*}
$$

What is this in index notation?
(b). Now consider a scalar field $\phi(x)$. Keeping the coordinate x fixed, the field also transforms by an infinitesimal amount under the Lorentz transformation (1):

$$
\begin{equation*}
\phi(x) \rightarrow \phi^{\prime}(x)=\phi(x)+\delta \phi(x)+O\left(\omega_{\rho \sigma}^{2}\right) \tag{5}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\delta \phi(x)=\omega_{\rho \sigma} L^{\rho \sigma} \phi(x), \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
L^{\rho \sigma}=-\left(M^{\rho \sigma} x\right) \cdot \frac{\partial}{\partial x} \tag{7}
\end{equation*}
$$

What is this in index notation?
From your answer to the latter question, using:

$$
\begin{equation*}
\left(M^{\rho \sigma}\right)^{\mu}{ }_{\nu}=\eta^{\sigma \mu} \delta_{\nu}^{\rho}-\eta^{\rho \mu} \delta_{\nu}^{\sigma}, \tag{8}
\end{equation*}
$$

show that

$$
\begin{equation*}
L^{\rho \sigma}=x^{\sigma} \frac{\partial}{\partial x_{\rho}}-x^{\rho} \frac{\partial}{\partial x_{\sigma}} \tag{9}
\end{equation*}
$$

Show that $L^{\rho \sigma}$ satisfies the Lorentz algebra:

$$
\begin{equation*}
\left[L^{\mu \nu}, L^{\rho \sigma}\right]=-\eta^{\nu \rho} L^{\mu \sigma}+\eta^{\mu \rho} L^{\nu \sigma}+\eta^{\nu \sigma} L^{\mu \rho}-\eta^{\mu \sigma} L^{\nu \rho} \tag{10}
\end{equation*}
$$

This sheet continues on the next page.
(c). Consider the infinitesimal translation

$$
\begin{equation*}
x \rightarrow x^{\prime}=x-a . \tag{11}
\end{equation*}
$$

This means that the components of the four-vector a are infinitesimal, i.e. $\left|a^{\mu}\right| \ll 1$. This induces an infinitesimal transformation in the field ϕ :

$$
\begin{equation*}
\phi(x) \rightarrow \phi^{\prime}(x)=\phi(x)+\delta \phi(x)+O\left(a^{2}\right) . \tag{12}
\end{equation*}
$$

Show that

$$
\delta \phi(x)=a^{\mu} \frac{\partial}{\partial x^{\mu}} \phi(x) .
$$

From this we identify the generator of translations to be $P_{\mu}=\frac{\partial}{\partial x^{\mu}}$. Show that

$$
\begin{align*}
{\left[P^{\mu}, L^{\nu \rho}\right] } & =\eta^{\mu \rho} P^{\nu}-\eta^{\mu \nu} P^{\rho}, \tag{13}\\
{\left[P^{\mu}, P^{\nu}\right] } & =0 . \tag{14}
\end{align*}
$$

From this we see that, together with (10), $L^{\rho \sigma}$ and P^{μ} generate the Poincaré algebra!

