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Welcome to Probability 1

Welcome to Probability 1! These lecture notes contain all the mathematical content you’ll need to know
to succeed in Probability this year.

If you have questions about any of the content here, try one of the following:

• ask a friend!

• ask me! I like to answer emails, and I am often in my office (MCS3060): you can (and should) pop
by to see if I’m around. You can do this during my official office hours (Mondays, 10-12) for a
guaranteed speedy response, but you definitely shouldn’t wait until then, especially if it’s a short or
quick question.

• Google it, or try a textbook. There are some good ones on the reading list (see below).

These notes have been developed over the years by several members of the Statistics and Probability
groups, including (most recently) Debleena Thacker and Andrew Wade.

Warning

There could still be typos. If you find one, let me know about it and you can have a free bag of
Skittles.

How to use these notes

The notes contain all the mathematical content for the course. In lectures, we will start at the beginning
and work our way through the whole document, until we reach the end (hopefully, this will happen exactly
at the end of term).

Throughout the notes, there are boxes like this one:

� Try it out

You can do the “Introductory” exercises on the problem sheet already.

These contain examples you can work through to check your understanding. Wherever possible, I’ve also
worked examples into the text, but there are some places where I want to give you an extra example.
These come in purple boxes.

Content that’s particularly important for the course is highlighted in red:

� Key idea

Probability is cooler than statistics

while advanced material is highlighted in blue:
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Advanced content

Probability is almost surely cooler than statistics.

You’ll also find textbook recommendations, with the relevant sections:

� Textbook references

If you want more help with this section, check out:

• Appendix A.1 in (Blitzstein and Hwang 2019);
• Appendix B in (Anderson, Seppäläinen, and Valkó 2018);
• or the Appendix to Chapter 0 in (Stirzaker 2003).

The library has lots of good books on introductory probability, and there are even more available online/to
buy. The following four textbooks are a good starting point:

• (Blitzstein and Hwang 2019) covers the material in depth and uses simulation code to illustrate the
theory.

• (Anderson, Seppäläinen, and Valkó 2018) covers just about everything in the course at about the
right level of detail.

• (Stirzaker 2003) is concise and the most mathematically advanced, and will be useful for students
taking 2H probability.

• (DeGroot and Schervish 2013) has a statistical perspective, covering this course as well as a lot of
Statistics.
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1 Axioms of probability

� Goals

1. Understand elementary set theory and how to use it to formulate probabilistic scenarios and to
describe the calculus of events.

2. Be familiar with the axioms of probability and their consequences, and how these properties
may be deduced from the axioms.

In this chapter, we lay the foundations of probability calculus, and establish the main techniques for
practical calculations with probabilities. The mathematical theory of probability is based on axioms, like
Euclidean geometry. In classical geometry, the fundamental objects posited by the axioms are points and
lines; in probability, they are events and their probabilities. The language and apparatus of set theory is
used to express these concepts and to work with them.

There is a lot of ambiguity inherent in probability, because we are often using mathematical approaches to
describe real-world scenarios. In some cases, there are several different ways to represent the real-world
scenario as a probabilistic model, and the choices we make could affect our conclusions. In others, an
unambiguous mathematical setup could have different real-world interpretations, depending on how we
view it. Either way, once we have a probabilistic model, the axioms help us to ensure that the maths
remains the same.

The axioms and properties of probability we develop in this chapter lay the foundations for all the rest of
the theory we will build later in the course.

1.1 Sets

One of the key tools we need in this chapter is a good understanding of set theory. You’ll see all of this
much more formally in Analysis, but in this section we give a quick rundown of the essentials we need for
Probability.

In essence, a set is an unordered collection of distinguishable objects; these objects can be numbers,
functions, other sets, and so on—any mathematical object can belong to a set.

The formal notation for a set is an opening curly bracket, followed by a list of elements that belong to
the set, followed by a closing curly bracket. For instance, the set containing the elements 2, 4, and 5 is
denoted by

{2, 4, 5}.

Because the ordering of the elements is irrelevant, {2, 4, 5} and {4, 5, 2} denote the same set.
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Definition: empty set

The set with no outcomes is called the empty set, and is denoted by ∅:

∅ ∶= {}.

A set is often denoted by a capital letter such as 𝐴, 𝐵, 𝐶, and so on.

Definition: subset

For two sets 𝐴 and 𝐵, we say that 𝐴 is a subset of 𝐵, and we write 𝐴 ⊆ 𝐵 (or 𝐵 ⊇ 𝐴), whenever
every element that belongs to 𝐴 also belongs to 𝐵, that is, for all 𝑥 ∈ 𝐴 we have 𝑥 ∈ 𝐵.

For instance, {2, 4, 5} ⊆ {1, 2, 3, 4, 5}. Note that for every set 𝐴, we have 𝐴 ⊆ 𝐴 and ∅ ⊆ 𝐴. We can also
use strict subsets, when the subset is not equal to the larger set: {2, 4, 5} ⊂ {1, 2, 3, 4, 5}.

Definition: power set

The set consisting of all subsets of a set 𝐴 is called the power set of 𝐴, and is denoted as 2𝐴:

2𝐴 ∶= {𝐵∶ 𝐵 ⊆ 𝐴}.

For example, the power set of the set 𝐴 = {1, 2, 3} is

2𝐴 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The notation 2𝐴 alludes to the size of the power set. When 𝐴 is a finite set, its power set contains 2|𝐴|

subsets. This can be proved by constructing a bijection from 2𝐴 to ordered |𝐴|-tuples of 0s and 1s, where
a 1 indicates that the corresponding element of 𝐴 is in the subset.

� Textbook references

If you want more help with this section, check out:

• Appendix A.1 in (Blitzstein and Hwang 2019);
• Appendix B in (Anderson, Seppäläinen, and Valkó 2018);
• or the Appendix to Chapter 0 in (Stirzaker 2003).

1.2 Sample space and events

Definition: scenarios, outcomes and sample space

Whenever we do some probability, it is based on a scenario in which there are various outcomes. We
assume that we know the (set of all) possible outcomes, but we are unsure about which outcome will
occur.
A sample space is a set of outcomes for this scenario with the property that one (and only one) of
these outcomes must occur.
In this course, we will usually denote the sample space by Ω, and a generic outcome by 𝜔 ∈ Ω.

For instance, suppose we roll a standard six-sided die.
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The most obvious sample space is Ω = {1, 2, 3, 4, 5, 6}, but if one was interested only in whether the die
was odd or even, or a six or not, one could use Ω = {odd, even}, or Ω = {not a 6, 6}.

Often, like in the above example, we may enumerate the elements of the sample space Ω in a finite or
infinite list Ω = {𝜔1, 𝜔2,…}, in which case we say the set Ω is countable or discrete.

A set is said to be countable when its elements can be enumerated in a (possibly infinite) sequence. Every
finite set is countable, and so is the set of natural numbers ℕ ∶= {1, 2, 3,…}. The set of integers ℤ is
countable as well. The set of real numbers ℝ is not countable, and neither is any interval [𝑎, 𝑏] when
𝑎 < 𝑏.

Definition: countable

A set 𝐴 is countable if either:

• 𝐴 is finite, or
• there is a bijection (one-to-one and onto mapping) between 𝐴 and the set of natural numbers

ℕ.

One can prove that the set of rational numbers ℚ is countable.

When we perform an experiment we are interested in the occurence, or otherwise, of events. An event is
just a collection of possible outcomes, i.e., a subset of Ω.

� Key idea: Definition: events

Associated to our sample space Ω is a collection ℱ of events:

𝐴 ⊆ Ω for every 𝐴 ∈ ℱ.

We say that an event 𝐴 occurs when the outcome that occurs at the end of the scenario is in the set
𝐴.

If Ω is discrete, we can always take ℱ = 2Ω, so that every subset of Ω is an event. If Ω is not discrete, we
need to be a little more careful: see Section 1.4 below.

The empty set ∅ represents the impossible event, i.e., it will never occur. The sample space Ω represents
the certain event, i.e., it will always occur. Most interesting events are somewhere in between.

The representation of an event as a set obviously depends on the choice of sample space Ω for the specific
scenario under study, as shown by the following two examples.

Examples

1. For rolling a standard cubic die (with Ω = {1, 2, 3, 4, 5, 6}), the event “throw an odd number”
is the subset 𝐴 = {1, 3, 5} consisting of three outcomes. If we roll the die and it comes up a 3,
then event 𝐴 has occurred.

2. For the same scenario, but with Ω = {odd, even}, the event ‘throw an odd number’ is the
subset 𝐴 = {odd} consisting of just one outcome.
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� Try it out

Suppose we roll three standard six-sided dice and record the outcome of the experiment by an ordered
triple (𝑖, 𝑗, 𝑘) where 𝑖, 𝑗, 𝑘 ∈ {1, 2,… , 6}. What is Ω? How big could ℱ be?
Answer:
In this case Ω = {1, 2,… , 6}3 has 63 = 216 individual outcomes.
The number of events (2216) is enormous! One is the event that the scores on the three dice are the
same: 𝐴 = {(1, 1, 1), (2, 2, 2),… , (6, 6, 6)}.

� Textbook references

If you want more help with this section, check out:

• Section 1.2 in (Blitzstein and Hwang 2019);
• Section 1.1 in (Anderson, Seppäläinen, and Valkó 2018);
• Sections 1.1 and 1.2 in (Stirzaker 2003);
• or Section 1.4 in (DeGroot and Schervish 2013).

1.3 Event calculus

Once we’ve defined our sample space and the set of all possible events, we need to be able to refer to
combinations of events. To do so, we use standard notation from set theory.

Definition: complements

For an event 𝐴 ∈ ℱ, we define its complement, denoted 𝐴c (or sometimes ̄𝐴) and read “not 𝐴”, to be

𝐴c ∶= Ω\𝐴 = {𝜔 ∈ Ω ∶ 𝜔 ∉ 𝐴}.

Notice that:

• the complement of 𝐴c is 𝐴: (𝐴c)c = 𝐴;
• there are no outcomes in both 𝐴 and 𝐴c: 𝐴 ∩ 𝐴c = ∅;
• and every outcome is in one or the other: 𝐴 ∪ 𝐴c = Ω.

� Key idea: event calculus

Given any two events 𝐴 and 𝐵 that are associated with the same sample space (i.e. 𝐴 ⊆ Ω and
𝐵 ⊆ Ω for the same Ω), here are some of the other events we can define, along with how we would
read them out:

Notation We say (as sets) We say (as events) Meaning (as events)

𝐴 ∪ 𝐵 𝐴 union 𝐵 𝐴 or 𝐵 𝐴 occurs or 𝐵 occurs or both 𝐴
and 𝐵 occur

𝐴 ∩ 𝐵 𝐴 intersect 𝐵 𝐴 and 𝐵 𝐴 occurs and 𝐵 occurs
𝐴c ∶= Ω\𝐴 𝐴 complement not 𝐴 𝐴 does not occur

𝐴\𝐵 𝐴 minus 𝐵 𝐴 but not 𝐵 𝐴 occurs but 𝐵 does not
𝐴 ⊆ 𝐵 𝐴 is a subset of 𝐵 𝐴 implies 𝐵 if 𝐴 occurs, then 𝐵 must occur
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(In the final row, “𝐴 ⊆ 𝐵” is not an event but rather a statement about how two events relate to
each other. I still wanted to include it because I think it’s helpful)

� Try it out

Prove that 𝐴\𝐵 = 𝐴 ∩ 𝐵c.
Answer:
We can do this by working with the events as sets. We have

𝐴\𝐵 = {𝜔 ∈ Ω ∶ 𝜔 ∈ 𝐴, 𝜔 ∉ 𝐵} = {𝜔 ∈ Ω ∶ 𝜔 ∈ 𝐴} ∩ {𝜔 ∈ Ω ∶ 𝜔 ∉ 𝐵} = 𝐴 ∩ 𝐵c.

� Key idea: Definition: disjoint

We say that events 𝐴 and 𝐵 are disjoint, mutually exclusive, or incompatible if 𝐴 ∩ 𝐵 = ∅, i.e., it is
impossible for 𝐴 and 𝐵 both to occur.

� Try it out

Consider the sample space Ω ∶= {1, 2, 3, 4, 5, 6}, and the events

𝐴 ∶= {2, 4, 6},
𝐵 ∶= {1, 3, 5},
𝐶 ∶= {1, 2, 3}.

In other words, 𝐴 is the event “throw an even number”, 𝐵 is the event “throw an odd number”, and
𝐶 is the event “throw at most three”. Use some of the ideas from the table above to combine events
𝐴, 𝐵, and 𝐶 in different ways. Are any of your new events disjoint?
Answer:
Some combinations:

𝐴 ∪ 𝐵 = Ω (even or odd)
𝐴 ∩ 𝐵 = ∅ (even and odd)

𝐴c = 𝐵 (not even)
𝐶\𝐴 = {1, 3} (at most 3 but not even)

𝐴 ∪ 𝐶 = {1, 2, 3, 4, 6} (even or at most 3)
𝐴 ∩ 𝐶 = {2} (even and at most 3).

The events 𝐴 and 𝐵 are disjoint as 𝐴 ∩ 𝐵 = ∅. We have also created two disjoint events: 𝐶\𝐴 and
𝐴 ∩ 𝐶. Think about why these two events would always be disjoint, however we define 𝐴 and 𝐶.
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� Try it out

Toss a coin twice and denote the sample space by Ω = {HH,HT,TH,TT}. Consider the events

𝐴 ∶= {HH,HT} (first toss H)
𝐵 ∶= {HT,TT} (second toss T)
𝐶 ∶= {HH} (both H).

How do these events relate to each other?
Answer:
Some things you might notice:

• 𝐶 ⊆ 𝐴, i.e., if 𝐶 occurs then 𝐴 must occur;
• 𝐴∪𝐵 = {HH,HT,TT} is the event that either the first toss is H, the second toss is T, or both;
• 𝐴 ∩ 𝐵 = {HT};
• 𝐴c = {TH,TT};
• 𝐵 ∩ 𝐶 = ∅.

� Try it out

Draw a card from a standard deck of 52 playing cards. Take Ω to consist of each of the 52 possible
draws: Ω = {A♣,A♢,… ,K♡,K♠}. Events in ℱ = 2Ω include

𝐸 = {eight} = {8♠, 8♡, 8♢, 8♣},
𝑆 = {spade} = {𝐴♠, 2♠,… ,𝐾♠},

and we can combine them to form other events, such as

𝐸 ∩ 𝑆 = {8♠},
𝐸\𝑆 = {8♡, 8♢, 8♣},
𝑆\𝐸 = {𝐴♠, 2♠,… , 7♠, 9♠,… ,𝐾♠}.

As with sums (∑) and products (Π) of multiple numbers, we also have shorthands for unions and
intersections of multiple sets:

𝑛
⋃
𝑖=1

𝐴𝑖 ∶= 𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛

is the event that at least one of 𝐴1, 𝐴2,…𝐴𝑛 occurs (or the set of all 𝜔 ∈ Ω which are contained in at
least one of the 𝐴𝑖s), and 𝑛

⋂
𝑖=1

𝐴𝑖 ∶= 𝐴1 ∩ 𝐴2 ∩ ⋯ ∩ 𝐴𝑛

is the event that all of 𝐴1, 𝐴2,…𝐴𝑛 occur (or the set of all 𝜔 ∈ Ω which are in every 𝐴𝑖).

Occasionally, we will also need to take infinite unions and intersections over sequences of sets:
∞
⋃
𝑖=1

𝐴𝑖 ∶= 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪…

∞
⋂
𝑖=1

𝐴𝑖 ∶= 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩… .

We will also sometimes need De Morgan’s Laws: for a (possibly infinite) collection of events 𝐴𝑖,
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a. The complement of the union is the intersection of the complements: (⋃𝑖 𝐴𝑖)
c
= ⋂𝑖 𝐴

c
𝑖 , and

b. The complement of the intersection is the union of the complements: (⋂𝑖 𝐴𝑖)
c
= ⋃𝑖 𝐴

c
𝑖 .

These could be more intuitive than they appear: the negation of “some of these things happened” is “none
of these things happened”, and the negation of “all of these things happened” is “some of these things did
not happen”.

It is often useful to visualize the sample space in a Venn diagram. Then events such as 𝐴 are subsets of
the sample space. It is a helpful analogy to imagine the probability of an event as the area in the Venn
diagram.

Figure 1.1: Venn diagram

Advanced content

This analogy is more apt than it first appears, since the mathematical foundations of rigorous
probability theory are built on measure theory, which is the same theory that gives rigorous foundation
to the concepts of length, area, and volume.

� Textbook references

If you want more help with this section, check out:

• Section 1.2 in (Blitzstein and Hwang 2019);
• Section 1.2 in (Stirzaker 2003);
• or Section 1.4 in (DeGroot and Schervish 2013).

1.4 Sigma-algebras

In the last section we described some of the ways in which events can be combined. Now we can set out
the rules for our collection of events, ℱ, to ensure that it’s possible to use these different combinations.

We said that in the case where Ω is discrete, one can take ℱ = 2Ω.
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In general, if Ω is uncountable, it is too much to demand that probabilities should be defined on all subsets
of Ω. The reason why this is a problem goes beyond the scope of this course (see the Bibliographical notes
at the end of this chapter for references), but the essence is that for uncountable sample spaces, such as
Ω = [0, 1], there exist subsets of Ω that cannot be assigned a probability in a way that is consistent. The
construction of such non-measurable sets is also the basis of the famous Banach–Tarski paradox.

Uncountable Ω are unavoidable: we will see an infinite coin-tossing space at the end of section Section 1.6,
and other examples occur whenever we have an experiment whose outcome is modelled by a continuous
distribution such as the normal distribution (more on this later).

The upshot of all this is that we can, in general, only demand that probabilities are defined for all events
in some collection ℱ of subsets of Ω (i.e., for some ℱ ⊆ 2Ω). What properties should the collection
ℱ of events possess? Consideration of the set operations in the previous section suggests the following
definition.

Definition: �-algebra

A collection ℱ of subsets of Ω is called a 𝜎-algebra over Ω if it satisfies the following properties.
(S1) Ω ∈ ℱ;
(S2) 𝐴 ∈ ℱ implies that 𝐴c ∈ ℱ;
(S3) if 𝐴1, 𝐴2,… ∈ ℱ then ⋃∞

𝑖=1 𝐴𝑖 ∈ ℱ.

Property S2 says that ℱ is closed under complementation, while S3 says that ℱ is closed under countable
unions.

We can combine S1 and S2 to see that we must have ∅ ∈ ℱ. Also note that, we can get to a finite-union
version of S3 by taking 𝐴𝑛+1 = 𝐴𝑛+2 = ⋯ = ∅: so ℱ is also closed under finite unions.

Examples

1. The power set 2Ω is a 𝜎-algebra over Ω, and in fact it is the biggest possible 𝜎-algebra over Ω.
As described above, for uncountable Ω the set 2Ω may be too unwieldy, in which case we would
consider a smaller 𝜎-algebra.

2. The trivial 𝜎-algebra {∅,Ω} is the smallest possible 𝜎-algebra over Ω. It’s very nicely behaved
(just two elements!) but it carries no information about the outcome of the experiment.

� Try it out

Consider the sample space Ω = {1, 2, 3, 4, 5, 6} for the experiment of rolling a fair die. The choice of
𝜎-algebra determines the resolution at which we observe the experiment, and may depend on exactly
what we are interested in:

• ℱ0 = {∅,Ω} (carries no information);
• ℱ1 = {∅, {1, 3, 5}, {2, 4, 6}, Ω} (if we only care whether the score is odd or even);
• ℱ2 = 2Ω (if we are interested in the exact score).

Note the inclusions ℱ0 ⊂ ℱ1 ⊂ ℱ2.
Let us check that ℱ1 is indeed a 𝜎-algebra.
S1 is immediate: we can see it from the definition of ℱ1.
For S2, we need that every 𝐴 ∈ ℱ1 is accompanied by its complement 𝐴c; we see that this is the
case.
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Since ℱ1 is a finite set it suffices to check S3 for finite unions. In other words, it is enough to check
that if 𝐴,𝐵 ∈ ℱ1, then 𝐴∪𝐵 ∈ ℱ1 too. Since there are only two sets, this is also quick: we see that
it is the case.

� Textbook references

If you want more help with this section, check out:

• Section 1.2 in (Stirzaker 2003).

1.5 The axioms of probability

� Key idea: Definition: probability

A probability ℙ on a sample space Ω with collection ℱ of events is a function mapping every event
𝐴 ∈ ℱ to a real number ℙ(𝐴), obeying the following axioms:
(A1) ℙ(𝐴) ≥ 0 for every 𝐴 ∈ ℱ;
(A2) ℙ(Ω) = 1; and
(A3) if 𝐴 and 𝐵 are disjoint events (i.e. if 𝐴,𝐵 ∈ ℱ have 𝐴 ∩ 𝐵 = ∅) then

ℙ(𝐴 ∪ 𝐵) = ℙ(𝐴) + ℙ(𝐵).

We call the number ℙ(𝐴) the probability of 𝐴.

We will see shortly that a consequence of these axioms is that the probabilities ℙ(𝐴) must lie between 0
and 1: 0 ≤ ℙ(𝐴) ≤ 1.

We can upgrade (A3) to a slightly more technical version:

(A4) For any infinite sequence 𝐴1, 𝐴2,… of pairwise disjoint events (so 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for all 𝑖 ≠ 𝑗),

ℙ(
∞
⋃
𝑖=1

𝐴𝑖) =
∞
∑
𝑖=1

ℙ(𝐴𝑖).

� Key idea: A small request

If you only take one thing away from this course, please let it be this:
Probabilities are numbers and events are sets.
We can add up numbers (but not sets) and we can take unions and intersections of sets (but not
numbers).

For the axioms to make sense, we can’t just use any old event set ℱ. For one thing, we need Ω ∈ ℱ; in
fact all the events in (A1-4) need to be in ℱ. Our definition of a 𝜎-algebra from the previous section
gives us exactly the event set we need.
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� Key idea: Definition: probability space

If Ω is a set and ℱ is a 𝜎-algebra of subsets of Ω, and if ℙ satisfies (A1–4) for events in ℱ, then the
triple (Ω,ℱ, ℙ) is called a probability space.

� Try it out

Consider a finite sample space Ω = {𝜔1,… , 𝜔𝑚} of size |Ω| = 𝑚. Then we can define a valid
probability ℙ by taking any numbers 𝑝1,… , 𝑝𝑚 with 𝑝𝑖 ≥ 0 for all 𝑖 and ∑𝑚

𝑖=1 𝑝𝑖 = 1 and declaring
that for any event 𝐴,

ℙ(𝐴) = ∑
𝑖∶𝜔𝑖∈𝐴

𝑝𝑖.

This satisfies the axioms (A1–4) (don’t just believe me - check them for yourself).
By considering the event 𝐴 = {𝜔𝑖}, we see that 𝑝𝑖 = ℙ(𝜔𝑖) is the probability of the elementary
outcome 𝜔𝑖.
In the simplest setting, we might assume that all the outcomes are equally likely, that is, 𝑝𝑖 = 1/𝑚
for all 𝑖. Note that in this case probability reduces to counting, since

ℙ(𝐴) = ∑
𝑖∶𝜔𝑖∈𝐴

1
𝑚

= |𝐴|
|Ω|

.

As a concrete example, for tossing a fair die we would have Ω = {1, 2,… , 6}, and ℙ(𝐴) = |𝐴|/6 so, for
example,

ℙ(score is odd) = ℙ({1, 3, 5}) = 3
6
= 1

2
.

We examine this setting in detail in Chapter 2.

� Try it out

Consider a countably infinite sample space Ω = {𝜔1, 𝜔2,…}. Then we can define a valid probability
ℙ by taking any numbers 𝑝1, 𝑝2,… with 𝑝𝑖 ≥ 0 for all 𝑖 and ∑∞

𝑖=1 𝑝𝑖 = 1 and declaring that for any
event 𝐴,

ℙ(𝐴) = ∑
𝑖∶𝜔𝑖∈𝐴

𝑝𝑖.

This definition of a probability satisfies all of the axioms (A1-A4).

For this course, we will usually assume that the probability distribution is given (and satisfies the axioms),
without worrying too much about how the important practical task of finding the probabilities was carried
out.

� Textbook references

If you want more help with this section, check out:

• Section 1.6 in (Blitzstein and Hwang 2019);
• Section 1.1 in (Anderson, Seppäläinen, and Valkó 2018);
• or Section 1.3 in (Stirzaker 2003).
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1.6 Consequences of the axioms

A host of useful results can be derived from A1–4.

� Key idea: Consequences of the axioms

(C1) For any two events 𝐴 and 𝐵,

ℙ(𝐵\𝐴) = ℙ(𝐵) − ℙ(𝐴 ∩ 𝐵).

(C2) For any event 𝐴, ℙ(𝐴c) = 1 − ℙ(𝐴).
(C3) The probability of ∅ is ℙ(∅) = 0.
(C4) For any event 𝐴, ℙ(𝐴) ≤ 1.
(C5) If 𝐴 ⊆ 𝐵 then ℙ(𝐴) ≤ ℙ(𝐵) (“monotonicity”).
(C6) For any two events 𝐴 and 𝐵,

ℙ(𝐴 ∪ 𝐵) = ℙ(𝐴) + ℙ(𝐵) − ℙ(𝐴 ∩ 𝐵).

(C7) If 𝐴1, 𝐴2,… ,𝐴𝑘 are pairwise disjoint (so 𝐴𝑖 ∩ 𝐴𝑗 = ∅ if 𝑖 ≠ 𝑗) then

ℙ(
𝑘
⋃
𝑖=1

𝐴𝑖) =
𝑘

∑
𝑖=1

ℙ(𝐴𝑖).

(This property is called “finite additivity” in textbooks.)
(C8) For any events 𝐴1, 𝐴2,…, (these need not be pairwise disjoint),

ℙ(
∞
⋃
𝑖=1

𝐴𝑖) ≤
∞
∑
𝑖=1

ℙ(𝐴𝑖).

(This one is sometimes referred to as “Boole’s inequality.”)
(C9) If 𝐴1 ⊆ 𝐴2 ⊆ ⋯ is an increasing sequence of events, then

ℙ(
∞
⋃
𝑛=1

𝐴𝑛) = lim
𝑛→∞

ℙ(𝐴𝑛).

If 𝐴1 ⊇ 𝐴2 ⊇ ⋯ is a decreasing sequence of events, then

ℙ(
∞
⋂
𝑛=1

𝐴𝑛) = lim
𝑛→∞

ℙ(𝐴𝑛).

(This property is a bit more sophisticated than the previous ones. It establishes the “continuity of
probability along monotone limits:” we can take limits, as long as the events in question form a
monotone sequence. It will be really important in Probability II.)

Just one more consequence to go! Before we get there, we need the following simple but extremely useful
idea: partitions.

� Key idea: Definition: partition

We say that the events 𝐸1, 𝐸2,… ,𝐸𝑘 ∈ ℱ form a (finite) partition of the sample space Ω if:

i. they all have positive probability, i.e., ℙ(𝐸𝑖) > 0 for all 𝑖;
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ii. they are pairwise disjoint, i.e., 𝐸𝑖 ∩ 𝐸𝑗 = ∅ whenever 𝑖 ≠ 𝑗; and
iii. their union is the whole sample space: ∪𝑘

𝑖=1𝐸𝑖 = Ω.

The definition extends to countably infinite partitions. We say that 𝐸1, 𝐸2,… ∈ ℱ form an infinite
partition of Ω if:

i. ℙ(𝐸𝑖) > 0 for all 𝑖;
ii. 𝐸𝑖 ∩ 𝐸𝑗 = ∅ whenever 𝑖 ≠ 𝑗; and
iii. ∪∞

𝑖=1𝐸𝑖 = Ω.

For example, consider the sample space Ω = {1, 2, 3, 4, 5, 6}. Some partitions are:

{1}, {2}, {3}, {4}, {5}, {6}
{1, 2}, {3, 4}, {5, 6}

{1, 2, 3}, {4, 5, 6}
{1}, {2, 3}, {4, 5, 6}

{1, 2, 3, 4, 5, 6}

and so on.

� Key idea

(C10) If 𝐸1, 𝐸2, …, 𝐸𝑘 form a partition then

𝑘
∑
𝑖=1

ℙ(𝐸𝑖) = 1.

These consequences have an enormous effect on the way we work with probability. In particular, it turns
out that we can solve most problems without ever having to explicitly write down the outcomes in our
sample space, as in the next example. In fact, some people do probability without even defining a sample
space.

� Try it out

Jimmy’s die has the numbers 2,2,2,2,5,5. Your die has numbers 1,1,4,4,4,4. You both throw and the
highest number wins. Assuming all outcomes are equally likely, what is the probability that Jimmy
wins?
Answer:
The event, 𝐽, that Jimmy wins happens if either Jimmy throws a 5 (call this event 𝐹), or if you
throw a 1 (call this event 𝐴). Therefore 𝐽 = 𝐴 ∪ 𝐹 and by C6,

ℙ(𝐽) = ℙ(𝐴) + ℙ(𝐹) − ℙ(𝐴 ∩ 𝐹).

As ℙ(𝐹) = 1/3, ℙ(𝐴) = 1/3 and ℙ(𝐴 ∩ 𝐹) = 4/36 = 1/9 (by counting equally likely outcomes) we
have

ℙ(𝐽) = 1/3 + 1/3 − 1/9 = 5/9.
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Finite sample spaces are a great way to build up our intuition for probability calculations. However, it is
surprisingly easy to end up in a situation where things start to get complicated.

� Try it out

What is the probability that, in an indefinitely long sequence of tosses of a fair coin, we will eventually
see heads?
Answer:
The sample space Ω is infinite and consists of all sequences 𝜔 = (𝜔1, 𝜔2,…) with 𝜔𝑖 ∈ {H,T}.
What is ℙ? Well, it certainly would be desirable that if we restrict to just a finite sequence of 𝑛
tosses, then each of the 2𝑛 possible outcomes (sequences) should be equally likely. It is a special case
of a general theorem that such a ℙ exists and is unique.
Now, let 𝐴 = {H occurs}. Then the only way 𝐴 can not occur is if there are no heads, i.e.,
𝐴c = {(TTT⋯)}. This is a single sequence, out of infinitely many, and it is intuitively clear that it
should have probability 0. To prove this, it is enough to observe that 𝐴c ⊆ {first 𝑛 tosses T}, so by
monotonicity (C5),

ℙ(𝐴c) ≤ ℙ({first 𝑛 tosses are T}) ≤ 2−𝑛.

But this is true for any 𝑛, so we must have ℙ(𝐴c) = 0.
Another way to see this is as follows. Consider events defined for 𝑛 = 1, 2,… by

𝐴𝑛 = {first H occurs on toss 𝑛} = {𝜔 ∶ 𝜔𝑘 = T, for all 𝑘 < 𝑛, 𝜔𝑛 = H}.

This means that 𝐴1 consists of sequences H⋯, 𝐴2 consists of sequences TH⋯, and so on.
Now the event we are interested in is 𝐴 = ∪∞

𝑛=1𝐴𝑛. So, by (A4),

ℙ(𝐴) =
∞
∑
𝑛=1

ℙ(𝐴𝑛) =
∞
∑
𝑛=1

2−𝑛 = 1.

Note that a similar argument works if the coin is biased with probability 𝑝 ∈ (0, 1) of heads.

Advanced content

In fact, the sequence space Ω in the previous example is not even countable! To see this, a sequence
(𝑑1, 𝑑2,…) with each 𝑑𝑖 ∈ {0, 1} is called a dyadic expansion of 𝑥 ∈ [0, 1] if 𝑥 = ∑∞

𝑖=1 2
−𝑖𝑑𝑖. For

example, (1, 0, 0,…) is a dyadic expansion of 1/2, (1, 1, 0, 0,…) is 3/4, and so on. The map between
𝑥 and (𝑑1, 𝑑2,…) is almost a bijection. It is not a bijection because of possible non-uniqueness of the
dyadic expansion: e.g. (0, 1, 1, 1,…) is another expansion of 1/2. It turns out that this problem only
occurs for rational 𝑥, and can be circumvented. Thus we have (essentially) a bijection between [0, 1]
and the space of infinite sequences of 0s and 1s, which is another name for our coin tossing space Ω.
This shows that Ω is uncountable.
It is remarkable that the probability ℙ on infinite sequences of coin tosses turns out to correspond
(under the bijection by dyadic expansion) to nothing other than the uniform distribution on [0, 1],
that is the measure defined by lengths of intervals. This is the famous Lebesgue measure.

� Textbook references

If you want more help with this section, check out:

• Section 1.6 in (Blitzstein and Hwang 2019);
• Section 1.4 in (Anderson, Seppäläinen, and Valkó 2018);
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• or Sections 1.4 and 1.5 in (Stirzaker 2003).

1.7 Historical context

Sets are important not only for probability theory, but for all of mathematics. In fact, all of standard
mathematics can be formulated in terms of set theory, under the assumption that sets satisfy the ZFC
axioms; see for instance this Wikipedia page.

The foundations of probability have a long and interesting history (Hacking 2006; Todhunter 2014). The
classical theory owes much to Pierre-Simon Laplace (1749–1827): see (Laplace 1825). However, a rigorous
mathematical foundation for the theory was lacking, and was posed as part of one of David Hilbert’s
(1862–1943) famous list of problems in 1900 (the 5th problem). After important work by Henri Lebesgue
(1875–1941) and 'Emile Borel (1871–1956), it was Andrey Kolmogorov who succeeded in 1933 in providing
the axioms that we use today (see the 1950 edition of his book (Kolmogorov 1950)). This approach declares
that probabilities are measures.

A measure 𝜇 can be defined on any set Ω with a 𝜎-algebra of subsets ℱ, and the defining axioms are
versions of A1 and A4. The special property of a probability measure is just that 𝜇(Ω) = 1. Measure
theory is the theory that gives mathematical foundation to the concepts of length, area, and volume. For
example, on ℝ the unique measure that has 𝜇(𝑎, 𝑏) = 𝑏 − 𝑎 for intervals (𝑎, 𝑏) is the Lebesgue measure.

(a) Laplace
(b) Boole (c) Venn

(d) Kolmogorov

Figure 1.2: Laplace, Boole, Venn, and Kolmogorov

George Boole (1815–1864) and John Venn (1834–1923) both wrote books concerned with probability
theory (Boole 1854), (Venn 1888); both were working before the formulation of Kolmogorov’s axioms.

As mentioned in Section 1.4, it is necessary in the general theory of probability to restricting events to
some 𝜎-algebra. The reason for this is that in standard ZFC set theory, when Ω is uncountable (such as
Ω = [0, 1] the unit interval), it follows from an argument by Vitali (1905) that many natural probability
assessments, such as the continuous uniform distribution, cannot be modelled by a probability defined on
all subsets of Ω satisfying A1–4: see for instance Chapter 1 of (Rosenthal 2007). In the case where Ω is
countable, one can always define ℙ on the whole of 2Ω. In the case where Ω is uncountable, we usually do
not explicitly mention Ω at all (when we work with continuous random variables, for example).
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The formulation of the infinite coin-tossing experiment in Section 1.6 leads to the connection between coin
tossing and the Lebesgue measure, as first described by Hugo Steinhaus in a 1923 paper.

An alternative approach to probability theory is to do away with axiom A4, in which case some of these
technical issues can be avoided, at the expense of certain pathologies; however, in the standard approach
to modern probability, based on measure theory, A4 is a central part of the theory.
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2 Equally likely outcomes and counting principles

� Goals

1. Understand the equally likely outcomes model of classical probability.
2. Know counting principles, and when and how to apply them on specific problems.

In Chapter 1 we have seen the abstract formulation of probability theory; next we turn to the question of
how the probabilities themselves may be assigned.

The most basic scenario occurs when our experiment has a finite number of possible outcomes which we
deem to be equally likely.

Such situations rarely—not to say never—occur in practice, but serve as good models in extremely
controlled environments such as in gambling or games of chance. However, this situation (which will
essentially come down to counting) gives us a good initial setting in which to obtain some very useful
insights into the nature and calculus of probability.

2.1 Classical probability

Suppose that we have a finite sample space Ω. Since Ω is finite, we can list it as a collection of 𝑚 = |Ω|
possible outcomes:

Ω = {𝜔1,… , 𝜔𝑚}.

In the equally likely outcomes model (also sometimes known as classical probability) we suppose that each
outcome has the same probability:

ℙ(𝜔) = 1
|Ω|

for each 𝜔 ∈ Ω,

or, in the notation above, ℙ(𝜔𝑖) = 1/𝑚 for each 𝑖.

The axioms of probability then allow us to determine the probability of any event 𝐴 ⊆ Ω: by C7,

ℙ(𝐴) = ∑
𝜔∈𝐴

ℙ(𝜔) = |𝐴|
|Ω|

for any event 𝐴 ⊆ Ω.

This is a particular case of the discrete sample space discussed in Chapter 1.

Definition: Equally likely outcomes

Consider a scenario with 𝑚 equally likely outcomes enumerated as Ω = {𝜔1,… , 𝜔𝑚}. In the equally
likely outcomes model, the probability of an event 𝐴 ⊆ Ω is declared to be

ℙ(𝐴) ∶= |𝐴|
|Ω|

.
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Using this definition, we meet all of the axioms (A1–A4) (checking each of them comes down to what we
know about counting). Remember that in the case of a finite state space, we always have the option to
take ℱ = 2Ω as our 𝜎-algebra.

Examples

1. Draw a card at random from a well-shuffled pack, so that each of the 52 cards is equally likely
to be chosen. Typical events are that the card is a spade (a set of 13 outcomes), the card is a
queen (a set of 4 outcomes), the card is the queen of spades (a set of a single outcome). In the
equally likely outcomes model, the probability of drawing the queen of spades (or any other
specified card) is 1/52, the probability of drawing a spade is 13/52, and the probability of
drawing a queen is 4/52.

2. Flip a coin and see whether it falls heads or tails, each assumed equally likely; then ‘heads’ or
‘tails’ each has probability 1/2.

3. Roll a fair cubic die to get a number from 1 to 6. Here the word ‘fair’ is used to mean
each outcome is equally likely. Then Ω = {1,… , 6} and ℙ(𝐴) = |𝐴|/6. For example, if
𝐴1 = {2} (the score is 2) we get ℙ(𝐴1) = 1/6, while if 𝐴2 = {1, 3, 5} (the score is odd) we get
ℙ(𝐴2) = 3/6 = 1/2.

4. If we roll a pair of fair dice then outcomes are pairs (𝑖, 𝑗) so there are 36 possible outcomes. If
we assume that the outcomes are equally likely, then the probability of getting a pair of 6’s is
1/36, for example.

The classical interpretation of probability is the most straightforward approach we can take, just as
counting can be seen as “basic” mathematics. It is a good place to start and there are many important
situations where intuitively it seems reasonable to say that each outcome of a particular collection is
equally likely.

To extend the theory or apply it in practice we have to address situations where there are no candidates
for equally likely outcomes or where there are infinitely many possible outcomes and work out how to find
probabilities to put into calculations that give useful predictions. We will come back to some of these
issues later; but bear in mind that however we come up with our probability model, the same system of
axioms that we saw in Chapter 1 applies.

� Textbook references

If you want more help with this section, check out:

• Section 1.3 in (Blitzstein and Hwang 2019);
• or Section 1.2 in (Anderson, Seppäläinen, and Valkó 2018).

2.2 Counting principles

Given a finite sample space and assuming that outcomes are equally likely, to determine probabilities of
certain events comes down to counting.

For example, in drawing a poker hand of five cards from a well-shuffled deck of 52 cards, the probability of
having a ‘full house’ (meaning two cards of one denomination and three of another, e.g., two Kings and
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three 7s) is given by the number of hands that are full houses divided by the total number of hands (each
hand being equally likely).

These counting problems need careful thought, and we will describe some counting principles for some of
the most common situations. There is some common ground with the Discrete Maths course; here we have
a slightly different emphasis.

2.2.1 The multiplication principle

Counting principle: Multiplication

Suppose that we must make 𝑘 choices in succession where there are:

• 𝑚1 possibilities for the first choice,

• 𝑚2 possibilities for the second choice,

• ⋮

• 𝑚𝑘 possibilities for the 𝑘th choice,

and the number of possibilities at each stage does not depend on the outcomes of any previous
choices. The total number of distinct possible selections is

𝑚1 ×𝑚2 ×𝑚3 ×⋯×𝑚𝑘 =
𝑘
∏
𝑖=1

𝑚𝑖.

For instance, in a standard deck of playing cards, each card has a denomination and a suit. There are 13
possible denominations: A(ce), 2, 3, …, 10, J(ack), Q(ueen), K(ing). There are 4 possible suits: ♡ (heart),
♢ (diamond), ♣ (club), ♠ (spade). Because all combinations of denomination and suit are allowed, the
multiplication principle applies: there are 13 × 4 = 52 cards in a standard deck.

We will see many applications of counting to dealing cards from a well-shuffled deck. Counting the
possibilities is affected by (i) whether the order of dealing is important, and (ii) how we distinguish the
cards: e.g. we may only be interested in their colour (so all red cards are the same) or their suit or their
denomination.

Examples

1. A hotel serves 3 choices of breakfast, 4 choices of lunch and 5 choices of dinner so a guest selects
from 3 × 4 × 5 different combinations of the three meals (assuming we opt to have all three).

2. A coffee bar has 5 different papers to choose from, 19 types of coffee and 7 different snacks.
This means there are 6 × 20 × 8 = 960 distinct selections of coffee, snack and paper. Of these 5
involve no coffee or snack (which the staff may object to) plus one has no coffee, snack or paper!

3. PINs are made up of 4 digits (0–9) with the exceptions that (i) they cannot be four repetitions
of a single digit; (ii) they cannot form increasing or decreasing consecutive sequences, e.g. 3456
and 8765 are excluded. How many possible four-digit PINs are there?
Ignoring restrictions there are 104 = 10, 000 distinct PINs. There are 10 PINs with the same
digit repeated, namely 0000, 1111, …, 9999. Increasing sequences start with 0, 1, 2, ..., 6 and
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decreasing sequences start with 9, 8, ..., 3, so there are seven options for each. This leaves
10, 000 − 24 = 9, 976 permitted PINs.

All of the following counting principles are effectively consequences of the multiplication principle.

2.2.2 Order matters; objects are distinct

First, we look at ordered choices of distinct objects. In this case, we distinguish between selection with
replacement, where the same object can be selected multiple times, and selection without replacement,
where each object can only be selected at most once.

Counting principle: Selection with replacement for ordered choices

Suppose that we have a collection of 𝑚 distinct objects and we select 𝑟 of them with replacement.
The number of different ordered lists (ordered 𝑟-tuples) is

𝑚×⋯×𝑚⏟⏟⏟⏟⏟
𝑟 times

= 𝑚𝑟.

Counting principle: Selection without replacement for ordered choices

Suppose that we have a collection of 𝑚 distinct objects and we select 𝑟 ≤ 𝑚 of them without
replacement. The number of different ordered lists (ordered 𝑟-tuples) is

(𝑚)𝑟 ∶= 𝑚× (𝑚− 1) × (𝑚 − 2) × ⋯× (𝑚− 𝑟 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟 terms

= 𝑚!
(𝑚 − 𝑟)!

.

The falling factorial notation (𝑚)𝑟 (sometimes also denoted 𝑚𝑟) is simply a convenient way to write 𝑚!
(𝑚−𝑟)! .

In the special case where 𝑟 = 𝑚 we set 0! = 1 and then (𝑚)𝑚 = 𝑚! is the number of permutations of the
𝑚 objects. If 𝑚 is large, and 𝑟 is much smaller than 𝑚, then (𝑚)𝑟 ≈ 𝑚𝑟.

Example

The number of ways we can deal out four cards in order from a pack of cards is (52)4 and the number
of ways we can arrange the four aces in order is 4! so the probability of finding the four aces on top
of a well-shuffled deck is

4!
(52)4

= 4 × 3 × 2 × 1
52 × 51 × 50 × 49

.

This probability is approximately 3.7 × 10−6 or about 1 in 270, 000.

� Try it out

There are 𝑛 < 365 people in a room. Let 𝐵 be the event that (at least) two of them have the same
birthday. (We ignore leap years.)
What is ℙ(𝐵)? How big must 𝑛 be so that ℙ(𝐵) > 1/2?
Answer:
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Here the equally likely outcomes are the ordered length-𝑛 lists of possible birthdays:

(person 1’s birthday,person 2’s birthday,… , person 𝑛’s birthday).

The number of possible outcomes is

365 × 365 × ⋯× 365 = 365𝑛.

This is the denominator in our probability.
For the numerator, we must work out how many outcomes are in 𝐵. In fact, it is easier to count
outcomes in 𝐵c, where everyone has a different birthday. There are

365 × 364 × ⋯× (365 − 𝑛 + 1) = (365)𝑛

of these. So
ℙ(𝐵) = 1 − ℙ(𝐵c) = 1 − (365)𝑛

365𝑛 .

It turns out that ℙ(𝐵) ≈ 1/2 for 𝑛 = 23.

Advanced content

Here’s one way to get this. Note that

(365)𝑛
365𝑛 = 1 × (1 − 1

365
) × (1 − 2

365
) × ⋯× (1 − 𝑛 − 1

365
) .

Now 1 − 𝑥 ≤ 𝑒−𝑥, and in fact the inequality is very close to equality for 𝑥 = 1/365, being close
to zero. In any case,

(365)𝑛
365𝑛 ≤ 𝑒−𝑥 𝑒−2𝑥 𝑒−3𝑥 ⋯ 𝑒−(𝑛−1)𝑥

= exp {−(1 + 2 + ⋯+ 𝑛 − 1)𝑥}

= exp{−(𝑛 − 1)𝑛
2 × 365

} .

2.2.3 Order doesn’t matter; objects are distinct

In this section, we move on to think about the scenario where the order in which objects are selected
doesn’t matter. This can arise in situations such as dealing a hand of cards, or separating a class into two
teams.

Counting principle: Selection without replacement for unordered choices

Suppose that we have a collection of 𝑚 distinct objects and we select a subset of 𝑟 ≤ 𝑚 of them
without replacement. The number of distinct subsets of size 𝑟 is

(𝑚
𝑟
) ∶= (𝑚)𝑟

𝑟!
= 𝑚!

𝑟! (𝑚 − 𝑟)!
.
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To see this, first count the number of distinct ordered lists of 𝑟 objects—this is (𝑚)𝑟. Each unordered
subset has been counted (𝑟)𝑟 = 𝑟! times as this is the number of distinct ways of arranging 𝑟 different
objects. Therefore the (𝑚)𝑟 ordered selections can be grouped into collections of size 𝑟!, each representing
a particular subset, and the result follows by dividing.

The expression (𝑚
𝑟 ) is the binomial coefficient for choosing 𝑟 objects from 𝑚 and is often called ‘𝑚-choose-𝑟’.

Note that

(𝑚
𝑟
) = ( 𝑚

𝑚− 𝑟
)

as we can choose to take 𝑟 objects from 𝑚 in exactly the same number of ways that we can choose to leave
behind 𝑟 objects i.e., take 𝑚− 𝑟 objects.

� Try it out

What is the probability of finding no aces in a four-card hand dealt from a well-shuffled deck?
Answer:
Let’s answer this by treating hands as unordered selections. Then there are

(52
4
) = 52 × 51 × 50 × 49

4 × 3 × 2 × 1
= 270, 725

distinct unordered hands of four cards. The number of these with no aces is

(48
4
) = 48 × 47 × 46 × 45

4 × 3 × 2 × 1
= 194, 580,

and so the probability of finding no aces in a four card hand is

(48
4
)/(52

4
) = 48 × 47 × 46 × 45

52 × 51 × 50 × 49
≈ 0.7187.

Alternatively, we could answer this by treating the hands as ordered selections (the order corresponding
to the order of the deal, say). Of course, this will give different numerator and denominator in our
calculation, but the final answer must be the same! As ordered selections, there are

(52)4 = 52 × 51 × 50 × 49

distinct hands. The number of these with no ace is

(48)4 = 48 × 47 × 46 × 45.

Our probability is then (48)4/(52)4 which is the same as before.

In this simple example, either method is relatively straightforward, but in many examples, it is much more
natural to treat the selections as ordered/undordered. For hands of cards, treating them as unordered
selections usually works best. For something like rolling dice, it usually makes sense to treat them as
ordered selections.

25



� Try it out

You are dealt five cards from a well-shuffled deck. Let 𝐴 be the event that exactly four cards are of
the same suit. What is ℙ(𝐴)?
Answer:
There are (52

5 ) different unordered selections for the hand, and all are equally likely. How many of
these unordered selections are in 𝐴? We need to describe a subset of 5 elements such that exactly 4
have the same suit. We build this up sequentially:

• We first choose the suit that we are going to use for the four cards: 4 possibilities.

• Then we choose the four denominations (unordered) for those cards: (13
4 ) possibilities.

• All that remains is to choose the last card, which must be of a different suit than the four
already chosen: 3 × 13 = 39 possibilities.

So the answer is

ℙ(𝐴) =
4 × (13

4 ) × 39
(52

5 )
≈ 0.0429.

� Try it out

In ‘Lotto Extra’ you have to select 6 numbers from 1 to 49. You win the big prize if 6 randomly
drawn numbers match your selection. Let 𝑊 be the event that you win. Let 𝑀4 be the event that
you match exactly 4 out of 6 numbers. Find the probabilities of 𝑊 and 𝑀4.
Answer:
We model the outcomes of the Lotto draw as unordered selections, so there are (49

6 ) = 13, 983, 816
outcomes in total. The event 𝑊 contains only one of them (your entry)! So ℙ(𝑊) = 1/13, 983, 816.
Now 𝑀4 uses any 4 of your numbers plus any 2 of the remaining 49 − 6 = 43 numbers. So the
number of outcomes in 𝑀4 is

(6
4
)×(43

2
) = 6 × 5

2 × 1
× 43 × 42

2 × 1
= 15 × 43 × 21 = 13, 545.

Then ℙ(𝑀4) = 13, 545/13, 983, 816 ≈ 0.001.

Advanced content

The same counting arguments can be used when we need to divide 𝑚 objects into 𝑘 > 2 groups:
arranging 𝑚 distinguishable objects into 𝑘 groups with sizes 𝑟1, … , 𝑟𝑘 where 𝑟1 +⋯+ 𝑟𝑘 = 𝑚 can
be done in

( 𝑚
𝑟1, … , 𝑟𝑘

) ∶= 𝑚!
𝑟1! ⋯ 𝑟𝑘!

ways. The expression ( 𝑚
𝑟1, … ,𝑟𝑘

) is called the multinomial coefficient (Anderson, Seppäläinen, and
Valkó 2018 Example 6.7).
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2.2.4 Separating objects into groups

In the final section of this chapter, we look into how we can group objects: either by combining different
types of onect into one big group, or by separating a big group into smaller ones.

Counting principle: Two types of object

Suppose that we have 𝑚 objects, 𝑟 of type 1 and 𝑚−𝑟 of type 2, where objects are indistinguishable
from others of their type. The number of distinct, ordered choices of the 𝑚 objects is

(𝑚
𝑟
).

For example, suppose we have four red tokens, and three black ones. Then there are 7!/(4! 3!) = 35
different ways to lay them out in a row. The probability that they will be alternately red and black is
1/35 as there is only one such ordering.

To see why, note that each distinct order for laying out all of the token in a row is precisely the same as
choosing 4 of the 7 positions for red ones. In other words, it is an unordered choice of 4 positions from the
7 distinct positions.

� Try it out

A coin is tossed 7 times. Let 𝐸 be the event that a total of 3 heads is obtained. What is ℙ(𝐸)?
Answer:
Consider ordered sequences of H and T: then there are 27 = 128 possible sequences, e.g. HTHTHTT.
How many of them are in 𝐸? We choose the 3 places where H occurs: (7

3) = 35 ways to do this. The
other places are taken by Ts. So the answer is

ℙ(𝐸) = 35
128

.

Advanced content

More generally, using the positions argument again, the multinomial coefficient is the number of
ordered choices of objects with 𝑘 types, 𝑟𝑖 of type 𝑖, which are indistinguishable within each type.

Counting principle: Separating into groups

The number of ways to divide 𝑚 indistinguishable objects into 𝑘 distinct groups is

(𝑚+ 𝑘 − 1
𝑚

) = (𝑚+ 𝑘 − 1
𝑘 − 1

).

This counting principle lets us work out how many different ways there are to divide one group into smaller
groups. My favourite example is a packet of Skittles: if there are 16 or 17 of them in a bag, how many
different combinations of the five different flavours could we have?

We can count the number of choices with the ‘sheep-and-fences’ method. Placing all the objects in a line,
separated into their groups, there are 𝑘 − 1 “fenceposts” between the 𝑘 groups of sheep (or Skittles).
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For example, with 6 objects in 4 groups, we could represent “three in group A, one in group B, none in
group C and two in group D” with the drawing ∗ ∗ ∗ ∣ ∗ ∣∣ ∗∗.

We draw 𝑚+ 𝑘 − 1 ‘things’ in total (stars and fences). This means that the number of groupings of the
objects is the same as the number of choices for the locations of the 𝑘 − 1 fences among the 𝑚+ 𝑘 − 1
‘things’, or (𝑚+𝑘−1

𝑘−1 ) = (𝑚+𝑘−1
𝑚 ).

� Textbook references

If you want more help with this section, check out:

• Section 1.4 in (Blitzstein and Hwang 2019);
• Appendix C in (Anderson, Seppäläinen, and Valkó 2018);
• or Chapter 3 in (Stirzaker 2003).

2.3 Historical context

Classical probability theory originated in calculation of odds for games of chance; as well as contributions
by Pierre de Fermat (1601–1665) and Blaise Pascal (1623–1662), comprehensive approaches were given
by Abraham de Moivre (1667–1754) (Moivre 1756), Laplace (1749–1827) (Laplace 1825), and Sim'eon
Poisson (1781–1840). A collection of these classical methods made just before the advent of the modern
axiomatic theory can be found in (Whitworth 1901).
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3 Conditional probability and independence

� Goals

1. Know the definition of conditional probability and its properties
2. Have a solid knowledge of the partition theorem and Bayes’ theorem, recognizing situations

where one can apply them.
3. Understand the concept of independence.

3.1 Conditional probability

Definition: conditional probability

For events 𝐴,𝐵 ⊆ Ω, the conditional probability of 𝐴 given 𝐵 is

ℙ(𝐴 ∣ 𝐵) ∶= ℙ(𝐴 ∩ 𝐵)
ℙ(𝐵)

whenever ℙ(𝐵) > 0.

In this course, when ℙ(𝐵) = 0, ℙ(𝐴 ∣ 𝐵) is undefined. The usual interpretation is that ℙ(𝐴 ∣ 𝐵) represents
our probability for 𝐴 after we have observed 𝐵. Conditional probability is therefore very important for
statistical reasoning, for example:

• In legal trials. How can we use DNA (or other) evidence to determine the chance that an accused
person is guilty?

• Medical screening. How can we make best use of the information from large scale cancer screening
programs?

Unfortunately, conditional probability is not always well understood. There are several well-known legal
cases that have involved a serious error in probabilistic reasoning: see e.g. Example 2.4.5 of (Anderson,
Seppäläinen, and Valkó 2018).

For example, if we roll a fair six-sided die, the conditional probability that the score is odd, given that the
score is at most 3, is

ℙ(odd ∣ at most 3) = ℙ({1, 3})
ℙ({1, 2, 3})

= 2/6
3/6

= 2
3
.

� Try it out

Throw three fair coins. What is the conditional probability of at least one head (event A) given at
least one tail (event B)?
Answer:
Let 𝐻 be the event ‘all heads’, 𝑇 the event ‘all tails’. Then ℙ(𝐵) = 1 − ℙ(𝐻) = 7/8 and ℙ(𝐴 ∩ 𝐵) =
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1 − ℙ(𝐻) − ℙ(𝑇 ) = 6/8 so that

ℙ(𝐴 ∣ 𝐵) = ℙ(𝐴 ∩ 𝐵)
ℙ(𝐵)

= 6/8
7/8

= 6
7
.

� Try it out

Consider a family with two children, whose sex we do not know. The possible sexes are listed by the
sample space Ω = {BB,BG,GB,GG}, with the eldest first. Assume that all outcomes are equally
likely. Consider the events

𝐴1 = {GG} = {both girls},
𝐴2 = {GB,BG,GG} = {at least one girl},
𝐴3 = {GB,GG} = {first child is a girl}.

Find ℙ(𝐴1 ∣ 𝐴2), ℙ(𝐴2 ∣ 𝐴1), and ℙ(𝐴1 ∣ 𝐴3).
Answer:
We compute

ℙ(𝐴1 ∣ 𝐴2) =
ℙ(𝐴1 ∩ 𝐴2)

ℙ(𝐴2)
= ℙ({GG})

ℙ({GB,BG,GG})

= 1/4
3/4

= 1
3
.

Similarly,

ℙ(𝐴2 ∣ 𝐴1) =
ℙ(𝐴1 ∩ 𝐴2)

ℙ(𝐴1)
= ℙ({GG})

ℙ({GG})
= 1,

and
ℙ(𝐴1 ∣ 𝐴3) =

ℙ(𝐴1 ∩ 𝐴3)
ℙ(𝐴3)

= ℙ({GG})
ℙ({GB,GG})

= 1/4
2/4

= 1
2
.

� Try it out

Consider throwing two standard dice. Consider the events 𝐹 = first die shows 6, and 𝑇 = total is 10.
Calculate ℙ(𝐹) and ℙ(𝐹 ∣ 𝑇 ). Before doing any calculation, do you expect ℙ(𝐹 ∣ 𝑇 ) to be higher or
lower than ℙ(𝐹)? (Hint: 10 is a high total. We’ll see later that the ‘average’ total score on two dice
is 7.)
Answer:
The possible outcomes are ordered pairs of the numbers 1 to 6, so |Ω| = 62 = 36. In 𝐹 are all
outcomes of the form (6, ?). There are 6 of those, so ℙ(𝐹) = 6/36 = 1/6.
Now 𝑇 = {(6, 4), (5, 5), (4, 6)} so 𝐹 ∩ 𝑇 = {(6, 4)}, and ℙ(𝐹 ∣ 𝑇 ) = (1/36)/(3/36) = 1/3 > 1/6.
Similarly, if the total had been 5 we would know that 𝐹 was impossible!

� Textbook references

If you want more help with this section, check out:

• Section 2.2 in (Blitzstein and Hwang 2019);
• Section 2.1 in (Anderson, Seppäläinen, and Valkó 2018);
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• or Section 2.1 in (Stirzaker 2003).

3.2 Properties of conditional probability

In this section, we’ll meet five key properties of conditional probability.

� Key idea: properties of conditional probability

(P1) For any event 𝐵 ⊆ Ω for which ℙ(𝐵) > 0, ℙ( ⋅ ∣ 𝐵) satisfies axioms A1–A4 (i.e., is a probability
on Ω) and therefore also satisfies C1–C10.

For example, C6 for conditional probabilities says that, if ℙ(𝐶) > 0,

ℙ(𝐴 ∪ 𝐵 ∣ 𝐶) = ℙ(𝐴 ∣ 𝐶) + ℙ(𝐵 ∣ 𝐶) − ℙ(𝐴 ∩ 𝐵 ∣ 𝐶).

� Key idea: properties of conditional probability: multiplication

(P2) For any events 𝐴 and 𝐵 with ℙ(𝐴) > 0 and ℙ(𝐵) > 0,

ℙ(𝐴 ∩ 𝐵) = ℙ(𝐵)ℙ(𝐴 ∣ 𝐵) = ℙ(𝐴)ℙ(𝐵 ∣ 𝐴).

More generally, for any 𝐴, 𝐵, and 𝐶,

ℙ(𝐴 ∩ 𝐵 ∣ 𝐶) = ℙ(𝐵 ∣ 𝐶)ℙ(𝐴 ∣ 𝐵 ∩ 𝐶), if ℙ(𝐵 ∩ 𝐶) > 0. (3.1)

Some people refer to P2 as the multiplication rule for probabilities.

Both P1 and P2 can be deduced from the definition of probability. For example, Equation 3.1 follows
from the fact that

ℙ(𝐵 ∣ 𝐶)ℙ(𝐴 ∣ 𝐵 ∩ 𝐶) = ℙ(𝐵 ∩ 𝐶)
ℙ(𝐶)

⋅ ℙ(𝐴 ∩ 𝐵 ∩ 𝐶)
ℙ(𝐵 ∩ 𝐶)

= ℙ(𝐴 ∩ 𝐵 ∩ 𝐶)
ℙ(𝐶)

= ℙ(𝐴 ∩ 𝐵 ∣ 𝐶).

� Try it out

Derek is playing Dungarees & Dragons. He rolls an octahedral die to generate the occupant of the
room he has just entered. He knows that with probability 3/8 it will be a Goblin, otherwise it will
be a Hobbit. A Goblin has a 1 in 4 chance of being equipped with a spiky club. What is the chance
that he encounters a Goblin with a spiky club?
Answer:
Let 𝐺 be the event that the occupant is a Goblin, and let 𝐶 be the event that the occupant has
a spiky club. We are told that ℙ(𝐺) = 3/8 and ℙ(𝐶 ∣ 𝐺) = 1/4, so ℙ(𝐺 ∩ 𝐶) = ℙ(𝐺)ℙ(𝐶 ∣ 𝐺) =
(3/8) × (1/4) = 3/32.

Our next property is a more general version of the multiplication rule.
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� Key idea: properties of conditional probability: multiplication (again)

(P3): For any events 𝐴0, 𝐴1,… ,𝐴𝑘 with ℙ (∩𝑘−1
𝑖=0 𝐴𝑖) > 0,

ℙ(
𝑘
⋂
𝑖=1

𝐴𝑖 ∣ 𝐴0) = ℙ(𝐴1 ∣ 𝐴0) × ℙ(𝐴2 ∣ 𝐴1 ∩ 𝐴0) × ⋯ × ℙ(𝐴𝑘−1 ∣
𝑘−2
⋂
𝑖=0

𝐴𝑖)× ℙ(𝐴𝑘 ∣
𝑘−1
⋂
𝑖=0

𝐴𝑖).

When 𝑘 = 2, we get P2; for 𝑘 = 3, this becomes

ℙ(𝐴 ∩ 𝐵 ∩ 𝐶) = ℙ(𝐴)ℙ(𝐵 ∣ 𝐴)ℙ(𝐶 ∣ 𝐴 ∩ 𝐵).

We can prove this by repeatedly applying Equation 3.1 (in this case, we use it twice).

� Try it out

If Derek encounters a Goblin armed with a spiky club, the Goblin will attack, causing a wound with
probability 1/2. A Goblin without a spiky club will flee. If Derek encounters a Hobbit, the Hobbit
will offer him a cup of tea. What is the probability that Derek is wounded by this encounter?
Answer: Let 𝑊 be the event that Derek is wounded. Then

ℙ𝑊 = ℙ(𝐺 ∩ 𝐶 ∩𝑊) = ℙ(𝐺)ℙ(𝐶 ∣ 𝐺)ℙ(𝑊 ∣ 𝐶 ∩ 𝐺) = 3
8
⋅ 1
4
⋅ 1
2
= 3

64
.

� Key idea: properties of conditional probability: partitions

(P4) If $ E_1, E_2, …, E_k$ form a partition then, for any event 𝐴, we have

ℙ(𝐴) =
𝑘

∑
𝑖=1

𝑃 (𝐸𝑖) 𝑃 (𝐴 ∣ 𝐸𝑖) . (3.2)

More generally, if ℙ(𝐵) > 0,

ℙ(𝐴 ∣ 𝐵) =
𝑘

∑
𝑖=1

𝑃 (𝐸𝑖 ∣ 𝐵) 𝑃 (𝐴 ∣ 𝐸𝑖 ∩ 𝐵) .

This result is often called the partition theorem, or the law of total probability. (If you’ve forgotten what a
partition is, head back to Section 1.6.)

To prove P4 is true, we first use P2 on the right-hand side of Equation 3.2 to get

𝑘
∑
𝑖=1

𝑃 (𝐸𝑖) 𝑃 (𝐴 ∣ 𝐸𝑖) =
𝑘

∑
𝑖=1

𝑃 (𝐴 ∩ 𝐸𝑖) .

But since the 𝐸𝑖 form a partition, they are pairwise disjoint, and hence so are the 𝐴 ∩ 𝐸𝑖, so by C7

𝑘
∑
𝑖=1

𝑃 (𝐴 ∩ 𝐸𝑖) = 𝑃 (∪𝑘
𝑖=1(𝐴 ∩ 𝐸𝑖)) = 𝑃 (𝐴 ∩ (∪𝑘

𝑖=1𝐸𝑖)) ,

but since the 𝐸𝑖 form a partition, ∪𝑘
𝑖=1𝐸𝑖 = Ω, giving the result. You should check that P4 remains true

(with 𝑘 = ∞) for infinite partitions.
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� Try it out

Back in the land of Dungarees and Dragons, suppose that the Goblin player has a special token that
he will play so that even unarmed Goblins will attack, rather than flee. An unarmed Goblin causes a
wound with probability 1/6. Now what is the chance that Derek is wounded?
Answer:
The partition we use is 𝐺c, 𝐺∩𝐶, and 𝐺∩𝐶c. We know from our previous examples that 𝑃 (𝐺c) = 5/8,
ℙ(𝐺 ∩ 𝐶) = 3/32, and 𝑃 (𝐺 ∩ 𝐶c) = ℙ(𝐺)𝑃 (𝐶c ∣ 𝐺) = 9/32.
We also know that 𝑃 (𝑊 ∣ 𝐺c) = 0, 𝑃 (𝑊 ∣ 𝐺 ∩ 𝐶) = 1/2, and, now, 𝑃 (𝑊 ∣ 𝐺 ∩ 𝐶c) = 1/6. So

ℙ𝑊 = 𝑃 (𝐺c) 𝑃 (𝑊 ∣ 𝐺c) + ℙ(𝐺 ∩ 𝐶)𝑃 (𝑊 ∣ 𝐺 ∩ 𝐶) + 𝑃 (𝐺 ∩ 𝐶c) 𝑃 (𝑊 ∣ 𝐺 ∩ 𝐶c)

= 0 + 3
32

⋅ 1
2
+ 9

32
⋅ 1
6
= 3

32
.

� Try it out

Three machines, A, B and C, produce components. 10% of components from A are faulty, 20% of
components from B are faulty and 30% of components from C are faulty. Equal numbers from each
machine are collected in a packet. One component is selected at random from the packet. What is
the probability that it is faulty?
Answer:
Let 𝐹 be the event that the component is faulty. Let 𝑀𝐴, 𝑀𝐵, 𝑀𝐶 be the events that the component
is from machines A, B, C respectively. Then 𝑀𝐴, 𝑀𝐵, 𝑀𝐶 form a partition so

𝑃 (𝐹) = 𝑃 (𝑀𝐴) 𝑃 (𝐹 ∣ 𝑀𝐴) + 𝑃 (𝑀𝐵) 𝑃 (𝐹 ∣ 𝑀𝐵) + 𝑃 (𝑀𝐶) 𝑃 (𝐹 ∣ 𝑀𝐶)

= 0.1 × 1
3
+ 0.2 × 1

3
+ 0.3 × 1

3
= 0.2.

The most important result in conditional probability is Bayes’ theorem. It allows us to express the
conditional probability of an event 𝐴 given 𝐵 in terms of the “inverse” conditional probability of 𝐵 given
𝐴.

� Key idea: properties of conditional probability: Bayes theorem

(P5) For any events 𝐴 and 𝐵 with ℙ(𝐴) > 0 and ℙ(𝐵) > 0,

ℙ(𝐴 ∣ 𝐵) = ℙ(𝐴)ℙ(𝐵 ∣ 𝐴)
ℙ(𝐵)

.

More generally, if ℙ(𝐴 ∣ 𝐶) > 0 and ℙ(𝐵 ∣ 𝐶) > 0, then

𝑃 (𝐴 ∣ 𝐵 ∩ 𝐶) = ℙ(𝐴 ∣ 𝐶)𝑃 (𝐵 ∣ 𝐴 ∩ 𝐶)
ℙ(𝐵 ∣ 𝐶)

.

� Try it out

Suppose that in the previous example, the component was indeed faulty. What is the probability
that it came from machine A?
Answer:

33



We have, by Bayes’ theorem (P5),

𝑃 (𝑀𝐴 ∣ 𝐹) = 𝑃 (𝐹 ∣ 𝑀𝐴) 𝑃 (𝑀𝐴)
𝑃 (𝐹)

= (1/10)(1/3)
1/5

= 1
6
.

� Try it out

Pat ends up in the pub of an evening with probability 3/10. If she goes to the pub, she will get
drunk with probability 1/2. If she stays in, she will get drunk with probability 1/5. What is the
probability that she gets drunk? Given that she does get drunk, what is the probability that she
went to the pub?
Answer:
Let 𝑃 be the event that she goes to the pub, and 𝐷 be the event that she gets drunk. Then we are
told that 𝑃 (𝑃) = 3/10, 𝑃 (𝐷 ∣ 𝑃) = 1/2 and 𝑃 (𝐷 ∣ 𝑃 c) = 1/5. Using the partition 𝑃 , 𝑃 c we get

ℙ(𝐷) = 𝑃 (𝑃)𝑃 (𝐷 ∣ 𝑃) + 𝑃 (𝑃 c) 𝑃 (𝐷 ∣ 𝑃 c) = 3
10

⋅ 1
2
+ 7

10
⋅ 1
5
= 29

100
.

Then, by Bayes’ theorem (P5),

𝑃 (𝑃 ∣ 𝐷) = 𝑃 (𝐷 ∣ 𝑃)𝑃 (𝑃)
ℙ(𝐷)

=
3

10 ⋅ 1
2

29
100

= 15
29

.

� Try it out

There are three regions (A,B,C) in a country with populations in relative proportions 5 ∶ 3 ∶ 2. In
region A, 5% of people own a rabbit. In region B, it is 10%, and in region C, it is 15%.
i.What proportion of people nationally own rabbits? ii. What proportion of rabbit-owners come
from region A?
Answer:
Let 𝐴,𝐵,𝐶 be the events that a randomly-chosen individual comes from regions A, B, C respectively.
Let 𝑅 be the event that the individual is a rabbit owner. Then

𝑃 (𝑅) = ℙ(𝐴)𝑃 (𝑅 ∣ 𝐴) + ℙ(𝐵)𝑃 (𝑅 ∣ 𝐵) + ℙ(𝐶)𝑃 (𝑅 ∣ 𝐶) = 5
10

⋅ 1
20

+ 3
10

⋅ 1
10

+ 2
10

⋅ 3
20

= 17
200

.

And, by Bayes’ theorem,

𝑃 (𝐴 ∣ 𝑅) = 𝑃 (𝑅 ∣ 𝐴)ℙ(𝐴)
𝑃 (𝑅)

=
5

10 ⋅ 1
20

17
200

= 5
17

.

� Try it out

One of a set of 𝑛 people committed a crime. A suspect has been arrested, and DNA evidence is
a match. Consider the events 𝐺 = suspect is guilty, and 𝐸 = DNA evidence is a match. Suppose
that we initially believe that ℙ(𝐺) = 𝛼/𝑛. The probability of a ‘false positive’ DNA match is
𝑃 (𝐸 ∣ 𝐺c) = 𝑝.
What is our new probability that the suspect is guilty, given the DNA evidence?
Answer:
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We use the partition 𝐺, 𝐺c. Then, by P4,

𝑃 (𝐸) = 𝑃 (𝐸 ∣ 𝐺)ℙ(𝐺) + 𝑃 (𝐸 ∣ 𝐺c) 𝑃 (𝐺c)

= 1 × 𝛼
𝑛

+ 𝑝 × (1 − 𝛼
𝑛
)

= 𝛼 + (𝑛 − 𝛼)𝑝
𝑛

.

Then by Bayes’ theorem (P5),

𝑃 (𝐺 ∣ 𝐸) = 𝑃 (𝐸 ∣ 𝐺)ℙ(𝐺)
𝑃 (𝐸)

= 𝛼/𝑛
(𝛼 + (𝑛 − 𝛼)𝑝)/𝑛

= 𝛼
𝛼 + (𝑛 − 𝛼)𝑝

.

Typically: 𝛼 ≈ 1 and 𝑛 is very large, and fairly easy to asses. On the other hand 𝑝 is very small, and
is difficult to assess as it requires a lot of information about the genetic make up of a (potentially
large) group of people. When 𝑛 is small it may be possible to test all of the group. A great variety of
mistakes have been made in using complex evidence of this type in courts. The famous ‘prosecutor’s
fallacy’ is pretending that 𝑃 (𝐺c ∣ 𝐸) = 𝑃 (𝐸 ∣ 𝐺c) (of course this is wrong).

We can also combine properties P4 and P5 to make a mega-property of conditional expectation: Bayes’
theorem for partitions.

Definition: properties of conditional probability: Bayes theorem for partitions

For any partition 𝐴1, …, 𝐴𝑘 and any 𝐵 with ℙ(𝐵) > 0,

𝑃 (𝐴𝑖 ∣ 𝐵) = 𝑃 (𝐴𝑖) 𝑃 (𝐵 ∣ 𝐴𝑖)
∑𝑘

𝑗=1 𝑃 (𝐴𝑗) 𝑃 (𝐵 ∣ 𝐴𝑗)
.

More generally, if ℙ(𝐵 ∣ 𝐶) > 0,

𝑃 (𝐴𝑖 ∣ 𝐵 ∩ 𝐶) = 𝑃 (𝐴𝑖 ∣ 𝐶) 𝑃 (𝐵 ∣ 𝐴𝑖 ∩ 𝐶)
∑𝑘

𝑗=1 𝑃 (𝐴𝑗 ∣ 𝐶)𝑃 (𝐵 ∣ 𝐴𝑗 ∩ 𝐶)
.

� Try it out

On any given day, it rains with probability 1/2. If it rains, Charlie the cat will go outside with
probability 1/10; if it is dry, the probability is 3/5. If Charlie goes outside, what is the conditional
probability that it has rained?
Answer:
Let 𝑅 = it rains, 𝐶 = Charlie goes outside. Then 𝑅,𝑅c form a partition with 𝑃 (𝑅) = 𝑃 (𝑅c) = 1/2.
Also, 𝑃 (𝐶 ∣ 𝑅) = 1/10 and 𝑃 (𝐶 ∣ 𝑅c) = 3/5. So, by Bayes’ theorem (P6),

𝑃 (𝑅 ∣ 𝐶) = 𝑃 (𝐶 ∣ 𝑅)𝑃 (𝑅)
𝑃 (𝐶 ∣ 𝑅)𝑃 (𝑅) + 𝑃 (𝐶 ∣ 𝑅c) 𝑃 (𝑅c)

=
1

10 ⋅ 1
2

1
10 ⋅ 1

2 + 3
5 ⋅ 1

2
= 1

7
.
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� Textbook references

If you want more help with this section, check out:

• Sections 2.3 and 2.4 in (Blitzstein and Hwang 2019);
• Sections 2.1 and 2.2 in (Anderson, Seppäläinen, and Valkó 2018);
• or Section 2.1 in (Stirzaker 2003).

3.3 Independence of events

Tied to the idea of conditional probability is the idea of independence: the property that two events are
unrelated, or have no bearing on each other’s likelihood.

� Key idea: Independence of two events

We say that two events 𝐴 and 𝐵 are independent whenever

𝑃 (𝐴 ∩ 𝐵) = ℙ(𝐴)ℙ(𝐵).

We say that two events 𝐴 and 𝐵 are conditionally independent given a third event 𝐶 with ℙ(𝐶) > 0
whenever

𝑃 (𝐴 ∩ 𝐵 ∣ 𝐶) = ℙ(𝐴 ∣ 𝐶)ℙ(𝐵 ∣ 𝐶).

For example, if we pick a card from a well-shuffled deck, the events “the card is red” (𝑅) and “the card is
an Ace” (𝐴) are independent.

By counting, we have that 𝑃 (𝑅) = 26
52 = 1

2 and ℙ(𝐴) = 4
52 = 1

13 . Now, 𝐴 ∩ 𝑅 = {𝐴♢,𝐴♡} so
𝑃 (𝐴 ∩ 𝑅) = 2

52 = 1
26 , We check that 1

26 = 1
2 ⋅ 1

13 , so 𝑅 and 𝐴 are indeed independent.

� Try it out

Roll two standard dice. Let 𝐸 be the event that we have an even outcome on the first die. Let 𝐹 be
the event that we have a 4 or 5 on the second die. Are 𝐸 and 𝐹 independent?
Answer:
We will verify using a counting argument.
There are 36 equally likely outcomes, namely:

Ω = {(𝑖, 𝑗) ∶ 𝑖 ∈ {1,… , 6} and 𝑗 ∈ {1,… , 6}}

Of those, 3 × 6 are in 𝐸, and 6 × 2 are in 𝐹, so 𝑃 (𝐸) = 18/36 = 1/2 and 𝑃 (𝐹) = 12/36 = 1/3.
Moreover, 3 × 2 of these outcomes belong to both 𝐸 and 𝐹, so 𝑃 (𝐸 ∩ 𝐹) = 6/36 = 1/6. Indeed,

𝑃 (𝐸 ∩ 𝐹) = 1/6 = 1/2 × 1/3 = 𝑃 (𝐸)𝑃 (𝐹) .

So 𝐸 and 𝐹 are independent.
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� Try it out

Roll a fair die. Consider the events

𝐴1 = {2, 4, 6}, 𝐴2 = {3, 6}, 𝐴3 = {4, 5, 6}, and 𝐴4 = {1, 2}.

Which pairs of events are independent?
Answer:
Note that 𝐴1 ∩ 𝐴2 = {6} so 𝑃 (𝐴1 ∩ 𝐴2) = 1

6 , while 𝑃 (𝐴1) 𝑃 (𝐴2) = 3
6 ⋅ 2

6 = 1
6 too. So 𝐴1 and 𝐴2

are independent.
On the other hand, 𝐴1 ∩ 𝐴3 = {4, 6} so 𝑃 (𝐴1 ∩ 𝐴3) = 2

6 = 1
3 , but 𝑃 (𝐴1) 𝑃 (𝐴3) = 3

6 ⋅ 3
6 = 1

4 . So 𝐴1
and 𝐴3 are not independent.

Never confuse disjoint events with independent events! For independent events, we have that 𝑃 (𝐴 ∩ 𝐵) =
ℙ(𝐴)ℙ(𝐵), but for disjoint events, 𝑃 (𝐴 ∩ 𝐵) = 0 because 𝐴 ∩ 𝐵 = ∅.

Disjointness is a property of the sets only (it can be seen from the Venn diagram). Independence is a
property of probabilities (it cannot be seen from the Venn diagram).

� Try it out

In the context of the previous example, 𝐴3 ∩ 𝐴4 = ∅, so 𝐴3 and 𝐴4 are disjoint. They are certainly
not independent, since 𝑃 (𝐴3 ∩ 𝐴4) = 0 but 𝑃 (𝐴3) 𝑃 (𝐴4) = 1

2 ⋅ 1
3 = 1

6 ≠ 0.

The next theorem explains why independence is called independence:

Consider any two events 𝐴 and 𝐵 with ℙ(𝐴) > 0 and ℙ(𝐵) > 0. The following statements are equivalent.

(i) 𝑃 (𝐴 ∩ 𝐵) = ℙ(𝐴)ℙ(𝐵).

(ii) ℙ(𝐴 ∣ 𝐵) = ℙ(𝐴).

(iii) ℙ(𝐵 ∣ 𝐴) = ℙ(𝐵).

In other words, learning about 𝐵 will not tell us anything new about 𝐴, and similarly, learning about 𝐴
will not tell us anything new about 𝐵.

For conditional independence, we have a similar result.

Consider any three events 𝐴, 𝐵, and 𝐶, with 𝑃 (𝐴 ∩ 𝐵 ∩ 𝐶) > 0. The following statements are equivalent.

(i) 𝑃 (𝐴 ∩ 𝐵 ∣ 𝐶) = ℙ(𝐴 ∣ 𝐶)ℙ(𝐵 ∣ 𝐶).

(ii) 𝑃 (𝐴 ∣ 𝐵 ∩ 𝐶) = ℙ(𝐴 ∣ 𝐶).

(iii) 𝑃 (𝐵 ∣ 𝐴 ∩ 𝐶) = ℙ(𝐵 ∣ 𝐶).

In other words, if we know 𝐶 then learning about 𝐵 will not tell us anything new about 𝐴, and similarly,
if we know 𝐶 then learning about 𝐴 will not tell us anything new about 𝐵.

Consider the card-shuffling example again. The probability that our card is an Ace is ℙ(𝐴) = 1/13 and
the probabilitiy that it is an Ace, given it is red, is

𝑃 (𝐴 ∣ 𝑅) = 𝑃 (𝐴 ∩ 𝑅)
𝑃 (𝑅)

= ℙ(𝐴),
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by independence. The ‘reason’ for the independence is that the proportion of aces in the deck (4/52) is
the same as that of aces among the red cards (2/26).

� Key idea

It is possible for two events to be conditionally independent on particular events, but not to be
(unconditionally) independent. We will see an example of this when we discuss genetics, in Section 5.2.

It can be extremely useful to recognize situations where (conditional) independence can be applied.
Of course, it is equally important not to assume (conditional) independence where there really are
dependencies.

Definition: independence for multiple events

A (possibly infinite) collection of events 𝒜 ⊆ ℱ are mutually independent if for every finite non-empty
𝒞 ⊆ 𝒜 (that is, ℬ is a finite subcollection of the events in question),

𝑃(⋂
𝐴∈𝒞

𝐴) = ∏
𝐴∈𝒞

ℙ(𝐴).

A collection of events 𝒜 ⊆ ℱ are mutually conditionally independent]{.alert}* given another event 𝐵
if for every finite non-empty subcollection 𝒞 ⊆ 𝒜,

𝑃(⋂
𝐴∈𝒞

𝐴 ∣ 𝐵) = ∏
𝐴∈𝒞

ℙ(𝐴 ∣ 𝐵).

The smallest case here is to consider three events. We say that the events 𝐴, 𝐵, and 𝐶 are mutually
independent if all of the following equalities are satisfied:

𝑃 (𝐴 ∩ 𝐵 ∩ 𝐶) = ℙ(𝐴)ℙ(𝐵)ℙ(𝐶),
𝑃 (𝐴 ∩ 𝐵) = ℙ(𝐴)ℙ(𝐵),
𝑃 (𝐵 ∩ 𝐶) = ℙ(𝐵)ℙ(𝐶),
𝑃 (𝐶 ∩ 𝐴) = ℙ(𝐶)ℙ(𝐴).

Suppose we roll 4 dice and their values are independent.

To find the probability that we throw no sixes let 𝐴𝑖 be the event ‘the 𝑖th throw is not a 6’. By assumption
𝐴1, …, 𝐴4 are independent so

𝑃 (no sixes on 4 dice) = 𝑃(
4
⋂
𝑖=1

𝐴𝑖) =
4
∏
𝑖=1

𝑃 (𝐴𝑖) = (5
6
)

4
.

The same result is obtained from the classical model, by selection with replacement.

It is possible for events to be pairwise independent without being mutually independent, as the next
example demonstrates.

Examples: Example

Toss two fair coins. The sample space is Ω = {𝐻𝐻,𝐻𝑇 , 𝑇𝐻, 𝑇𝑇} and each outcome has probability
1/4.
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Let 𝐴 = {𝐻𝐻,𝐻𝑇} be the event that the first coin comes up ‘heads’, 𝐵 = {𝐻𝐻,𝑇𝐻} the event that
the second coin comes up ‘heads’, and 𝐶 = {𝐻𝐻, 𝑇𝑇} the event that the coins come up the same.
Then since ℙ(𝐴) = ℙ(𝐵) = ℙ(𝐶) = 1/2 and each pairwise intersection has probability 1/4, it is easy
to see that the events are pairwise independent. However, 𝑃 (𝐴 ∩ 𝐵 ∩ 𝐶) = 𝑃 (𝐻𝐻) = 1/4 which is
not the same as ℙ(𝐴)ℙ(𝐵)ℙ(𝐶) = 1/8, so the three events are not mutually independent.
To interpret this in words, if we consider any two of the events, the occurrence of one tells us nothing
about the occurrence of the other. As soon as we consider statements involving all three events,
however, we see the dependence. For example,

𝑃 (𝐶 ∣ 𝐴 ∩ 𝐵) = 1,

since 𝐴 ∩ 𝐵 = {𝐻𝐻} and {𝐻𝐻} ⊆ 𝐶, compared to the unconditional probability ℙ(𝐶) = 1/2.

� Textbook references

If you want more help with this section, check out:

• Section 2.5 in (Blitzstein and Hwang 2019);
• Section 2.3 in (Anderson, Seppäläinen, and Valkó 2018);
• or Section 2.2 in (Stirzaker 2003).

3.4 Historical context

Bayes’ theorem is named after the Reverend Thomas Bayes (1701–1761); it was published after his death,
in 1763. In our modern approach to probability, the theorem is a very simple consequence of our definitions;
however, the result may be interpreted more widely, and is one of the most important results regarding
statistical reasoning.

Figure 3.1: Thomas Bayes
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4 Interpretations of probability

� Goals

1. Understand that there are different ways to interpret probability values.

This chapter covers some different ways in which we can interpret probabilities in the real world. The
axioms in Chapter 1 are helpful to determine a framework for mathematical probability, but they leave us
lots of room to choose a model within that framework.

We have already discussed one approach in Chapter 2: the “classical” approach, in which each outcome in
the sample space is assigned the same probability. This interpretation has some obvious limitations in
practice. Often we cannot find a set of outcomes that it is reasonable to think of as a priori equally likely.
Therefore, it is essential to have more widely applicable models to deal with uncertainty.

In this chapter, we discuss two more approaches to determining probabilities in real-world applications:
the relative frequencies approach and the subjective probability (or betting) approach. Either can be used,
depending on the context, to help us to assign probabilities to events.

The goal of this chapter is to help you to develop more intuition and probabilistic thinking. For the rest
of the course, we will assume that we “know” the probability of each event, without worrying too much
about how it was determined.

4.1 Relative frequency interpretation

This interpretation applies to trials giving chance outcomes of an experiment that can be repeated
indefinitely under essentially unchanged conditions and which exhibits long term regularity.

Suppose that we run 𝑛 trials of an experiment with a known list of possible outcomes and the number of
trials on which event 𝐴 occurs is 𝑛𝐴 (𝐴 is again a set of possible outcomes). The relative frequency of
occurrence of 𝐴 is 𝑛𝐴/𝑛.

For example, if we toss a coin 1000 times and observe 490 heads, then the relative frequency of heads is
490/1000.

For some experiments, it may be reasonable to suppose that relative frequencies are stable for very large
𝑛.

If we toss a fair coin one billion times, we might expect that the relative frequency of heads after the first
few thousand throws would remain very close to 1/2.

As a mathematical idealization, we suppose that there is a unique, empirical limiting value for 𝑛𝐴/𝑛, as 𝑛
tends to infinity, which we call the relative frequency probability of 𝐴.

For our coin, the statement 𝑃 (heads) = 1/2 means ‘if we tossed the coin an extremely large number of
times, then the proportion of heads would be arbitrarily close to 1/2’.
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This interpretation is widely used, especially in physics, where experiments are designed for repeatability
and we can expect future trials to behave like those in the past. In this view, probability is a property of
the experimental setup and may be “objectively’ ’ discovered by sufficient repetitions of the experiment.

Amongst the problems with this interpretation are:

• it is often impossible to decide what “essentially unchanged conditions’ ’ are;
• we often have no way of knowing when limiting frequencies become stable (how many trials should

we do to test this?);
• we can only use it in situations that are repeatable.

4.2 Betting interpretation

A very different way of interpreting probability goes by considering probability as a quantification of
someone’s (yours, mine, your neighbour, …) belief that an event will occur. There are various different
ways in which we can measure this belief numerically. Here is one of the simplest.

Your subjective probability that 𝐴 will occur is measured by the amount £𝑝𝐴 that you would consider
to be a fair price for the following gamble:

• if 𝐴 occurs, you receive £1;
• if 𝐴 does not occur, you receive nothing.

In this interpretation, there are no “true’ ’ probabilities. Different individuals will have different information
relevant to a problem and so may validly make different probability assessments.

For instance, if you say your probability that ‘Your Team’ wins its next match is 1/2 this means that you
view £1/2 as a fair price for the gamble winning you £1 if Your Team wins but otherwise nothing. Others
may disagree with you.

Subjective probability ideas are often used by decision makers who have to consider problems concerning
unique, non-repeatable events, based on their informed but subjective judgements. The advantages of this
interpretation are that probability measures the belief of a subject, and is no longer seen as a property of
the experimental setup. Potential issues are that the highest ‘buying price’ may differ from lowest ‘selling
price’; a subject may have reason to misrepresent their fair price; placing the bet itself might affect the
experiment.

4.3 Interpretation and the axioms

We claimed that the axioms of probability are the same regardless of the interpretation of the probabilities
that we are using. A1 and A2 are clearly very sensible in any interpretation. The justification of A3
(and, by extension, A4) needs some more thought.

A3 feels intuitive for the classical model of probability by its relation to counting: in the classical
model if 𝐴 contains 𝑚𝐴 outcomes and 𝐵 contains 𝑚𝐵 outcomes, with none in common with 𝐴, then
𝑚𝐴∪𝐵 = 𝑚𝐴 +𝑚𝐵. The argument is very similar for the relative frequency model and only slightly more
subtle for the betting model.
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� Textbook references

For more information on these ideas, check out:

• Section 1.2 in (DeGroot and Schervish 2013);
• Chapter 0 in (Stirzaker 2003);
• or (Hájek 2012).
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5 Some applications of probability

� Goals

1. Understand the meaning of a reliability network.
2. Know how to evaluate the reliability of networks.
3. Understand the probabilistic nature of genetics.
4. Know how to derive the probability of genotypes of children given the genotypes of parents.
5. Know how and when to exploit the general rules of (conditional) probability to solve complex

reliability networks and problems in genetics.

5.1 Reliability of networks

Reliability theory concerns mathematical models of systems that are made up of individual components
which may be faulty.

If components fail randomly, a key objective of the theory is to determine the probability that the system
as a whole works. This will depend on the structure of the system (how the components are organized).
This is an important problem in industrial (or other) applications, such as electronic systems, mechanical
systems, or networks of roads, railways, telephone lines, and so on.

Once we know how to work out (or estimate) failure probabilities of these systems, we can start to
ask more sophisticated questions, such as: How should the system be designed to minimize the failure
probability, given certain practical constraints? What is a good inspection, servicing and maintenance
policy to maximize the life of the system for a minimal cost?

In this course, to demonstrate an application of the probabilistic ideas we have covered so far, we address
the basic question: Given a system made up of finitely many components, what is the probability that the
system works? Whether the system functions depends on whether the components function, and on the
configuration of those components.

Example

The figure below shows (a) two components in series, (b) three in parallel, (c) a four component
system. In each case assume that the system works if it is possible to get from the left end to the
right through functioning components.

Figure 5.1: a) Two components in series
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Figure 5.2: b) Three components in parallel

Figure 5.3: c) A system with four components

The system in (a) works if and only if both components 1 and 2 work.
The system in (b) works if any of 1, 2, 3 work.
The system in (c) works if either both 1 and 2 work, or both 3 and 4 work (or all work).

Definition: reliability network

A reliability network is a diagram of nodes and arcs. The nodes represent components of a multi-
component system, where each node is either working or is broken, and where the entire system works
if it is possible to get from the left end to the right of the diagram through working components only.
Suppose the 𝑖th component functions with probability 𝑝𝑖, 𝑖 ∈ {1, 2,… , 𝑘}, and different components
are independent. The probability that the system works is then a function of the probabilities 𝑝1, …,
𝑝𝑘. We denote this function by 𝑟(𝑝1, 𝑝2,… , 𝑝𝑘), and call it the reliability function. It is determined
by the layout of the reliability network.

Looking at reliability networks, and determining their reliability functions, is a source of lots of good
examples to practice working with the axioms of probability (in particular A3, C1, and C6), as well
as building up some more intuition about independence. Let’s have one more example (and there are a
couple on the problem sheet, too).

� Try it out

Consider the three networks in the previous example. We consider the events

𝑊𝑖 = component 𝑖 works, 𝑆 = system works.

Calculate 𝑃 (𝑆) for each of the networks.
Suppose that the system in (c) works. What is the conditional probability that component 1 works?
Answer:
The first step is to represent 𝑆 in terms of the 𝑊𝑖 and the operations of set theory. Then we can
compute 𝑃 (𝑆) using our rules for probabilities.
In (a),

𝑆 = 𝑊1 ∩𝑊2.
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By independence, 𝑃 (𝑆) = 𝑃 (𝑊1) 𝑃 (𝑊2) = 𝑝1𝑝2.
For (b), we have

𝑆 = 𝑊1 ∪𝑊2 ∪𝑊3.

It is easiest to compute

𝑃 (𝑆c) = 𝑃 (𝑊 c
1 ∩𝑊 c

2 ∩𝑊 c
3 ) = 𝑃 (𝑊 c

1 ) 𝑃 (𝑊 c
2 ) 𝑃 (𝑊 c

3 ) = (1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3),

by independence. So
𝑃 (𝑆) = 1 − (1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3).

For (c), we have
𝑆 = (𝑊1 ∩𝑊2) ∪ (𝑊3 ∩𝑊4).

Then, by C6,
𝑃 (𝑆) = 𝑃 (𝑊1 ∩𝑊2) + 𝑃 (𝑊3 ∩𝑊4) − 𝑃 (𝑊1 ∩𝑊2 ∩𝑊3 ∩𝑊4)

= 𝑝1𝑝2 + 𝑝3𝑝4 − 𝑝1𝑝2𝑝3𝑝4.

To find the conditional probability that component 1 works, given that system (c) works, we go back
to the definition of conditional probability:

𝑃 (𝑊1 ∣ 𝑆) = 𝑃 (𝑊1 ∩ 𝑆)
𝑃 (𝑆)

= 𝑃 ((𝑊1 ∩𝑊2) ∪ (𝑊1 ∩𝑊3 ∩𝑊4))
𝑃 (𝑆)

= 𝑝1𝑝2 + 𝑝1𝑝3𝑝4 − 𝑝1𝑝2𝑝3𝑝4
𝑝1𝑝2 + 𝑝3𝑝4 − 𝑝1𝑝2𝑝3𝑝4

.

� Textbook references

If you want more help with this section, check out:

• Sections 4.1–4.4 in (Billinton and Allan 1996);
• or Chapter 9 in (Ross 2010).

5.2 Genetics

Inherited characteristics are determined by genes. The mechanism governing inheritance is random and so
the laws of probability are crucial to understanding genetics.

Your cells contain 23 pairs of chromosomes, each containing many genes (while 23 pairs is specific to
humans the idea is similar for all animals and plants). The genes take different forms called alleles and
this is one reason why people differ (there are also environmental factors). Of the 23 pairs of chromosomes,
22 pairs are homologous (each of the pair has an allele for any gene located on this pair). People with
different alleles are grouped by visible characteristics into phenotypes; often one allele, 𝐴 say, is dominant
and another, 𝑎, is recessive in which case 𝐴𝐴 and 𝐴𝑎 are of the same phenotype while 𝑎𝑎 is distinct.
Sometimes, the recessive gene is rare and the corresponding phenotype is harmful, for example haemophilia
or sickle-cell anaemia.
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For instance, in certain types of mice, the gene for coat colour (a phenotype) has alleles 𝐵 (black) or 𝑏
(brown). 𝐵 is dominant, so 𝐵𝐵 or 𝐵𝑏 mice are black, while 𝑏𝑏 mice are brown with no difference between
𝐵𝑏 and 𝑏𝐵.

With sickle-cell anaemia, allele 𝐴 produces normal red blood cells but 𝑎 produces deformed cells. Genotype
𝑎𝑎 is fatal but 𝐴𝑎 provides protection against malarial infection (which is often fatal) and so allele 𝑎 is
common in some areas of high malaria risk.

To apply probability theory to the study of genetics, we use the basic principle of genetics: For each
gene on a homologous chromosome, a child receives one allele from each parent, where each allele received
is chosen independently and at random from each parent’s two alleles for that gene.

Examples: Example

For example, in a certain type of flowering pea, flower colour is determined by a gene with alleles 𝑅
and 𝑊, with phenotypes 𝑅𝑅 (red), 𝑅𝑊 (pink) and 𝑊𝑊 (white). The table of offspring genotype
probabilities given parental genotypes is

Parental genotype RR RR RR RW RR WW RW RW RW WW WW WW

offspring RR 1 1/2 0 1/4 0 0
genotype RW 0 1/2 1 1/2 1/2 0

WW 0 0 0 1/4 1/2 1

How to read the table: for example, parents RR and RW produce RR offspring with chance 1/2 (the
RR parent must supply an R but the RW parent supplies either R or W, each with probability 1/2).
When we cross red and white peas, all the offspring will be pink but when we cross red and pink
peas, about half of the peas will be red, half pink. Mendel carried out experiments like these to
establish the genetic basis of inheritance.

Advanced content

Similar but larger tables are relevant when there are more than two alleles.

It is extremely important to note that genotypes of siblings are dependent unless we condition
on parental genotypes. For example, if two black mice (which may each be BB or Bb) have 100 black
offspring, you may conclude that the next offspring is overwhelmingly likely to also be black, because it is
very likely that at least one parent is BB.

Genes can also affect reproductive fitness, as we see in the next example.

� Try it out

A gene has alleles 𝐴 and 𝑎 but 𝑎 is recessive and harmful, so genotype 𝑎𝑎 does not reproduce while
𝐴𝐴, 𝐴𝑎 are indistinguishable. With proportions 1 − 𝜆, 𝜆 of 𝐴𝐴, 𝐴𝑎 in the healthy population, show
that the probability of an 𝑎𝑎 offspring is 𝜆2/4.
Answer: To show this we can use the partition 𝐹𝐴𝐴, 𝐹𝐴𝑎 (father 𝐴𝐴, 𝐴𝑎 respectively) to calculate

𝑃 (𝐹𝑎) = 𝑃 (𝐹𝐴𝐴) 𝑃 (𝐹𝑎 ∣ 𝐹𝐴𝐴) + 𝑃 (𝐹𝐴𝑎) 𝑃 (𝐹𝑎 ∣ 𝐹𝐴𝑎) = 0 + 𝜆 × (1/2) = 𝜆/2

for the event 𝐹𝑎 that the father provides allele 𝑎.
By symmetry, the mother also supplies allele 𝑎 with probability 𝜆/2 and by independence (random
mating) the probability that they both supply allele 𝑎 is 𝜆2/4 e.g. when 𝜆 ≈ 1/2, about 6% of
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offspring will be 𝑎𝑎. Over time the proportion of allele 𝑎 will decrease unless 𝐴𝑎 has a reproductive
advantage over 𝐴𝐴.

Things are slightly different for genes on the X or Y chromosomes (sex-linked genes).

These are the final chromosome pair, known as the sex chromosomes. Each may be X, a long chromosome,
or Y, a short chromosome. Most of the genes on X do not occur on Y. Most people have sex determined
as XX (female) or XY (male); YY is not possible.1

� Try it out

A gene carried on the 𝑋 chromosome has alleles 𝐴 and 𝑎 (so men have only one allele, while women
have two).

• 𝑎𝑎 women are unhealthy;

• 𝑎 men are unhealthy;

• otherwise the person is healthy.

A male child inherits his gene on the 𝑋 chromosome from his mother (as he must get his 𝑌 from
his father) with equal chance of the two alleles that the mother carries. A female child inherits her
father’s single allele as well as one of her mother’s two alleles.
Jane is healthy. Her maternal aunt has an unhealthy son (Jane’s cousin). Jane’s maternal grandparents
and her father are all healthy.

i. What is the probability that Jane is genotype 𝐴𝑎?

Now suppose that Jane has two healthy brothers.

ii. What now is the probability that Jane is genotype 𝐴𝑎?

Answer: We start with part i. From the information given, we can add some information to the
genetic tree. The healthy men are 𝐴. A male child receives his single (X-carried) allele as a random
selection from his mother’s two alleles (the genotype of his father has no bearing). Thus Jane’s Aunt
must carry an 𝑎. She cannot have inherited this from the healthy grandfather, so the grandmother
must also carry an 𝑎. This gives us the picture below.

Figure 5.4: Jane’s family tree, pt1

1X, XXX, XXY, and XYY can occur, but are very rare.
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Consider the events 𝐽 = {Jane is 𝐴𝑎}, 𝑀1 = {mother is 𝐴𝐴}, and 𝑀2 = {mother is 𝐴𝑎}. From the
tree above, we have 𝑀1 occurs if and only if Jane’s mother inherited an 𝐴 from her mother, i.e.,
𝑃 (𝑀1) = 1/2 and 𝑃 (𝑀2) = 1/2 too. Given the mother’s genotype, we can work out the probabilities
for Jane’s inheritance. Thus, by the partition theorem,

𝑃 (𝐽) = 𝑃 (𝑀1) 𝑃 (𝐽 ∣ 𝑀1) + 𝑃 (𝑀2) 𝑃 (𝐽 ∣ 𝑀2)

= 1
2
⋅ 0 + 1

2
⋅ 1
2
= 1

4
.

Now we move on to part ii. The tree is now augmented by the additional information about Jane’s
siblings:

Figure 5.5: Jane’s family tree, pt2

Let 𝐵 = {Two brothers are 𝐴}. We want 𝑃 (𝐽 ∣ 𝐵). Note that our knowledge of 𝐵 changes our
beliefs about the genotype of Jane’s mother. To see this more clearly, imagine that Jane had 100
brothers, all of whom were of type 𝐴. Then we would be very nearly sure that Jane’s mother was of
type 𝐴𝐴, and so Jane would be almost certainly of type 𝐴𝐴 too.
For the calculation, we use the partition theorem for conditional probabilities:

𝑃 (𝐽 ∣ 𝐵) = 𝑃 (𝑀1 ∣ 𝐵) 𝑃 (𝐽 ∣ 𝑀1 ∩ 𝐵) + 𝑃 (𝑀2 ∣ 𝐵) 𝑃 (𝐽 ∣ 𝑀2 ∩ 𝐵) .

But given 𝑀𝑖, 𝐽 is independent of 𝐵 so

𝑃 (𝐽 ∣ 𝐵) = 𝑃 (𝑀1 ∣ 𝐵) 𝑃 (𝐽 ∣ 𝑀1) + 𝑃 (𝑀2 ∣ 𝐵) 𝑃 (𝐽 ∣ 𝑀2) .

As above, we have 𝑃 (𝐽 ∣ 𝑀1) = 0 and 𝑃 (𝐽 ∣ 𝑀2) = 1/2. By Bayes’s theorem,

𝑃 (𝑀2 ∣ 𝐵) = 𝑃 (𝐵 ∣ 𝑀2) 𝑃 (𝑀2)
𝑃 (𝐵 ∣ 𝑀1) 𝑃 (𝑀1) + 𝑃 (𝐵 ∣ 𝑀2) 𝑃 (𝑀2)

= (1/2)2 ⋅ (1/2)
12(1/2) + (1/2)2 ⋅ (1/2)

= 1
5
.

So
𝑃 (𝐽 ∣ 𝐵) = 0 + 1

2
⋅ 1
5
= 1

10
.

So seeing that Jane has two healthy brothers significantly reduces the chance that Jane is carrying
an 𝑎.
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� Textbook references

If you want more help with this section, check out

• Section V.5 in (Feller 1968);
• or Section 5.6 in (Chung and AitSahlia 2003).

5.3 Hardy-Weinberg equilibrium

Consider a population of a large number of individuals evolving over successive generations. Consider
a gene (on a homologous chromosome) with two alleles 𝐴 and 𝑎 and genotypes {𝐴𝐴,𝐴𝑎, 𝑎𝑎}. Suppose
the genotype proportions in the population (uniformly for males and females) at generation 𝑛 = 0, 1, 2,…
are

𝐴𝐴 𝐴𝑎 𝑎𝑎

𝑢𝑛 2𝑣𝑛 𝑤𝑛

where we have 𝑢𝑛 +2𝑣𝑛 +𝑤𝑛 = 1. Suppose also that the proportions of the alleles in the population are

𝐴 𝑎

𝑝 𝑞

where 𝑝𝑛 + 𝑞𝑛 = 1. We see that

𝑝𝑛 = 2𝑢𝑛 + 2𝑣𝑛
2𝑢𝑛 + 4𝑣𝑛 + 2𝑤𝑛

= 𝑢𝑛 + 𝑣𝑛

and, similarly, 𝑞𝑛 = 𝑣𝑛 +𝑤𝑛.

Suppose that

• the gene is neutral, meaning that different genotypes have equal reproductive success;

• there is random mating with respect to this gene, meaning that each individual in generation 𝑛 + 1
draws randomly two parents whose genotypes are independently in the proportions 𝑢𝑛, 2𝑣𝑛, 𝑤𝑛.

How do the genotype proportions evolve over successive generations?

Consider the offspring of generation 0. Let 𝐹𝐴 = event that child gets allele 𝐴 from father, 𝑀𝐴 = event
that child gets allele 𝐴 from mother, 𝐹𝐴𝐴 = event that father is 𝐴𝐴, 𝐹𝐴𝑎 = event that father is 𝐴𝑎, 𝐹𝑎𝑎
= event that father is 𝑎𝑎. Then

𝑃 (𝐹𝐴) = 𝑃 (𝐹𝐴𝐴) 𝑃 (𝐹𝐴 ∣ 𝐹𝐴𝐴) + 𝑃 (𝐹𝐴𝑎) 𝑃 (𝐹𝐴 ∣ 𝐹𝐴𝑎) + 𝑃 (𝐹𝑎𝑎) 𝑃 (𝐹𝐴 ∣ 𝐹𝑎𝑎)

= 1 ⋅ 𝑢0 + 1
2
⋅ 2𝑣0 + 0 ⋅ 𝑤0 = 𝑢0 + 𝑣0 = 𝑝0.

Similarly, 𝑃 (𝑀𝐴) = 𝑝0. In particular, since parents contribute alleles independently, the probability
distribution of the genotype of an individual in generation 1 is
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𝐴𝐴 𝐴𝑎 𝑎𝑎

𝑝2
0 2𝑝0(1 − 𝑝0) (1 − 𝑝0)2

Provided that the population is large enough (see the law of large numbers in ?@sec-limits) these will
also be the generation 1 proportions of 𝐴𝐴, 𝐴𝑎, 𝑎𝑎, i.e.,

𝑢1 = 𝑝2
0, 𝑣1 = 𝑝0(1 − 𝑝0), 𝑤1 = (1 − 𝑝0)2.

Now let 𝑝1 = 𝑢1 + 𝑣1 be the proportion of 𝐴 in the gene pool at generation 1. Substituting the values of
𝑢1, 𝑣1 we find that

𝑝1 = 𝑢1 + 𝑣1 = 𝑝2
0 + 𝑝0(1 − 𝑝0) = 𝑝0,

i.e. the proportions of 𝐴 and 𝑎 in the gene pool are constant.

The same argument applies for later generations, so that 𝑝𝑛 = 𝑝0 for all 𝑛, i.e., the proportions of the two
alleles in the gene pool remain constant. This means that, for 𝑛 ≥ 1,

𝑢𝑛 = 𝑝2
0, 𝑣𝑛 = 𝑝0(1 − 𝑝0), 𝑤𝑛 = (1 − 𝑝0)2,

so that the proportions of the three genotypes in the population remain constant in every generation after
the first. This is called the Hardy–Weinberg equilibrium.

5.4 Historical context

Reliability for systems of infinitely many components is related to percolation.

On the infinite square lattice ℤ2, declare each vertex to be open, independently, with probability 𝑝 ∈ [0, 1],
else it is closed. Consider the open cluster containing the origin, that is, the set of vertices that can be
reached by nearest-neighbour steps from the origin using only open vertices. Percolation asks the question:
for which values of 𝑝 is the open cluster containing the origin infinite with positive probability? It turns
out that for this model, the answer is: for all 𝑝 > 𝑝c where 𝑝c ≈ 0.593.

The picture shows part of a percolation configuration, with open sites indicated by black dots and edges
between open sites indicated by unbroken lines.

Percolation is an important example of a probability model that displays a phase transition. You may see
more about it if you do later probability courses.
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Figure 5.6: A lattice, with some edges missing

The laws governing the statistical nature of inheritance were first observed and formulated by monk Gregor
Johann Mendel (1822–1884).

Biologist William Bateson (1861–1926)) coined the terms “genetics” and “allele”.

The Hardy of the Hardy–Weinberg law is G.H. Hardy (1877–1947), the famous mathematical analyst, who
published it in 1908.

The statistician R.A. Fisher (1890–1962) made significant contributions to genetics, and much early work
in statistics was concerned with genetical problems. A lot of this work contributed to a legacy of eugenics,
which was used as a justification for racial discrimination.

The Wright–Fisher model formulates a random model for the evolution of genes in a population with
mutation as an urn model (Mahmoud 2009, chap. 9).

The deep influence of probability theory on genetics has continued in recent times, with significant
developments including the coalescent of J.F.C. Kingman.
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(a) Mendel
(b) Hardy

(c) Fisher

Figure 5.7: Mendel, Hardy, and Fisher.
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