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Welcome to Single Maths B

Welcome to Single Maths B! These lecture notes contain all the mathematical content you’ll need to
know to succeed in Maths this year.

If you have questions about any of the content here, try one of the following:

• ask a friend!

• ask me! I like to answer emails, and I am often in my office (MCS3060): you can (and should) pop
by to see if I’m around. You can do this during my official office hours (Mondays, 1-2pm) for a
guaranteed speedy response, but you definitely shouldn’t wait until then, especially if it’s a short or
quick question.

• Google it, or try a textbook. There are some good ones on the reading list (see below).

These notes have been developed over the years by several members of the Maths department, including
(most recently) Martin Kerin, Nabil Iqbal, and Steve Abel.

Warning

There could still be typos. If you find one, let me know about it and you can have a free bag of
Skittles.

How to use these notes

The notes contain all the mathematical content for the course. In lectures, we will start at the beginning
and work our way through the whole document, until we reach the end (hopefully, this will happen exactly
at the end of term).

Throughout the notes, there are boxes like this one:

� Try it out

You might be able to do some of the questions on the problem sheet already.

These contain examples you can work through to check your understanding. Wherever possible, I’ve also
worked examples into the text, but there are some places where I want to give you an extra example.
These come in purple boxes.
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1 Probability

1.1 Introduction to Probability

1.1.1 What is probability?

Probability is how we quantify uncertainty; it is the extent to which an event is likely to occur. We use it
to study events whose outcomes we do not (yet) know, whether this is because they have not happened
yet, or because we have not yet observed them.

We quantify this uncertainty by assigning each event a number between 0 and 1. The higher the probability
of an event, the more likely it is to occur.

Historically, the early theory of probability was developed in the context of gambling. In the seventeenth
century, Blaise Pascal, Pierre de Fermat, and the Chevalier de Méré were interested in questions like “If
I roll a six-sided die four times, how likely am I to get at least one six?” and “if I roll a pair of dice
twenty-four times, how likely am I to get at least one pair of sixes?” Many of the examples we’ll see in
this course still use situations like rolling dice, drawing cards, or sticking your hand into a bag filled with
differently-coloured tokens.

Nowadays, probability theory helps us to understand how the world around us works, such as in the study
of genetics and quantum mechanics; to model complex systems, such as population growth and financial
markets, and to analyse data, via the theory of statistics.

We’ll see a bit of statistical theory at the end of this chapter, but will mostly stay on the probabilistic side
of that line.

1.1.2 Events

Definition

We use probability theory to describe scenarios in which we don’t know what the outcome will be.
We call these scenarios experiments or trials.
The set of all possible outcomes of an experiment is its sample space, 𝑆. Subsets of 𝑆 are called
events, and may contain several different outcomes.

Examples

In the experiment in which we roll a single six-sided die, we have:

• The sample space is 𝑆 = {1, 2, 3, 4, 5, 6}

• An example of a possible outcome is 5 (or “we roll a five”)

• An example of an event is 𝐴 = {2, 4, 6} (or “we roll an even number”).
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Because events are subsets of the sample space, we can treat them as sets.

1.1.2.1 Set operations

There are three basic operations we can use to combine and manipulate sets.

Definition

If 𝐴 and 𝐵 are events, then

• The event not 𝐴, which we write 𝐴𝑐 (the 𝑐 is for complement), is the set of all outcomes in 𝑆
which are not in 𝐴.

• The event 𝐴 or 𝐵, which we write 𝐴 ∪ 𝐵 and call the union of 𝐴 and 𝐵, is the set of all
outcomes which are in at least one of 𝐴 and 𝐵.

• The event 𝐴 and 𝐵, which we write 𝐴 ∩ 𝐵 and call the intersection of 𝐴 and 𝐵, is the set of all
outcomes which are in both 𝐴 and 𝐵.

(a) (a) (b) (b)

(c) (c) (d) (d)

Figure 1.1: Pictures illustrating: (a) 𝐴; (b) 𝐴 ∪ 𝐵; (c) 𝐴 ∩ 𝐵; and (d) 𝐴 𝐵.
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1.1.2.2 Working with events

When we want to consider all the outcomes in an event 𝐴 which are not in 𝐵, we write 𝐴 ∩ 𝐵𝑐 = 𝐴 𝐵.

We say that two events are disjoint (or incompatible, or mutually exclusive) if they cannot occur at the
same time; in other words, if 𝐴 and 𝐵 are disjoint, then 𝐴 ∩ 𝐵 contains no outcomes.

We write 𝐴 ∩ 𝐵 = ∅, and we call ∅ the empty set.

If every outcome in an event 𝐴 is also in an event 𝐵, we say that 𝐴 is a subset of 𝐵, and we write 𝐴 ⊆ 𝐵.

Examples

For example, since all Single Maths students are fans of probability,

{Single Maths students} ⊆ {Fans of probability}.

We can depict this in a diagram: see Figure 1.2 below.

Figure 1.2: Notice that the circle of “probability fans“ takes up quite a lot of the sample space.

The following set of basic rules will be helpful when working with events.

Commutativity:
𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴, 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴

Associativity:
(𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶), (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶)

Distributivity:

(𝐴 ∩ 𝐵) ∪ 𝐶 = (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶), (𝐴 ∪ 𝐵) ∩ 𝐶 = (𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)

De Morgan’s laws:
(𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐, (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐
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Example

For example, if 𝐴 = {Dinner is on time} and 𝐵 = {Dinner is delicious}, then

(𝐴 ∩ 𝐵)𝑐 = {Dinner is either late or disappointing},

and
(𝐴 ∪ 𝐵)𝑐 = {Dinner is both late and disappointing}.

1.1.3 Axioms of Probability

Once we have decided what our experiment (and hence our sample space) should be, we assign a probability
to each event 𝐴 ⊆ 𝑆. This probability is a number, which we write ℙ(𝐴).

Remember that 𝐴 is an event, which is a set, and that ℙ(𝐴) is a probability, which is a number. It
makes sense to take the union of sets, or to add numbers together - but not the other way around!

We need a system of rules (the axioms) for how the probabilities are assigned, to make sure everything
stays consistent. There are lots of such systems, but we will use Kolmogorov’s axioms, from 1933. There’s
no particular reason to choose one system over another, but these are a popular choice.

Definition

The axioms are:

1. The probability of any event is a real number in the interval [0, 1]: 0 ≤ ℙ(𝐴) ≤ 1.

2. The probability that something in 𝑆 happens is 1: ℙ(𝑆) = 1.

3. If 𝐴 and 𝐵 are disjoint events, then ℙ(𝐴 ∪ 𝐵) = ℙ(𝐴) + ℙ(𝐵).

We can use set operations to see some immediate consequences of the axioms:

• Since 𝐴 and 𝐴𝑐 are disjoint, we have ℙ(𝐴𝑐) = ℙ(𝑆) − ℙ(𝐴) = 1 − ℙ(𝐴).

• Impossible events have probability zero: ℙ(∅) = 0.

• For (not necessarily disjoint) events 𝐴 and 𝐵, we have ℙ(𝐴 ∪ 𝐵) = ℙ(𝐴) + ℙ(𝐵) − ℙ(𝐴 ∩ 𝐵).

• If 𝐴 ⊆ 𝐵, then ℙ(𝐴) ≤ ℙ(𝐵).

Suggested exercises: Q1 – Q10.

1.2 Counting principles

� Key idea

When our experiment has 𝑚 outcomes, each of which is equally likely, then each outcome 𝑠 in the
sample space 𝑆 has probability

ℙ({𝑠}) = 1
𝑚
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and each event 𝐴 ⊆ 𝑆 has probability

ℙ(𝐴) = |𝐴|
𝑚

= number of ways A can occur
total no. of outcomes

.

In this section, we look at some different ways to count the number of outcomes in an event, when the
events are more complex than, say, a roll of a die.

1.2.1 The multiplication principle

If our experiment can be broken down into 𝑟 smaller experiments, in which

• the first experiment has 𝑚1 equally likely outcomes

• the second experiment has 𝑚2 equally likely outcomes

• ⋯

• the 𝑟th experiment has 𝑚𝑟 equally likely outcomes,

then there are
𝑚1 × 𝑚2 × ⋯ × 𝑚𝑟 =

𝑟
∏
𝑗=1

𝑚𝑗

possible, equally likely, outcomes for the whole experiment.

� Try it out

• If there are four different routes from Newcastle to Durham, and three different routes from
Durham to York, how many different routes are there from Newcastle to York?

• If I toss six coins (1p, 2p, 5p, 10p, 15p, and 20p), how many different ways are there to get one
‘heads’ and five ‘tails’?

In general, sampling 𝑟 times with replacement from 𝑚 options gives 𝑚𝑟 different possiblities.

1.2.2 Permutations

When we select 𝑟 items from a group of size 𝑛, in order and without replacement, we call the result a
permutation of size 𝑟 from 𝑛.

� Key idea

The number of permutations of size 𝑟 from 𝑛 is

𝑛 × (𝑛 − 1) × ⋯ × (𝑛 − 𝑟 + 1) = 𝑛!
(𝑛 − 𝑟)!

.

A special case is when we want to arrange the whole list. Then, there are

𝑟 × (𝑟 − 1) × ⋯ × 1 = 𝑟!
0!

= 𝑟!
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different permutations.

� Try it out

• How many different ways are there to arrange six books on a shelf?

• In a society with twenty members, which must choose one president and one secretary, how
many different ways can these roles be filled?

• If six (six-sided) dice are rolled, what is the probability that each of the numbers 1-6 appears
exactly once?

1.2.3 Combinations

When we select 𝑟 items from a group of size 𝑛, without replacement, but not in any particular order, then
we have a combination of size 𝑟 from 𝑛.

� Key idea

There are

(𝑛
𝑟
) = (𝑛!)

(𝑛 − 𝑟)!𝑟!

different ways to choose a combination of size 𝑟 from 𝑛 objects.

Two useful ways of thinking about combinations:

• You might notice that (𝑛
𝑟) = ( 𝑛

𝑛−𝑟). This is because we can also look at the combination of items we
don’t pick. It’s much easier (psychologically, at least) to list the different ways to leave 3 cards in the
deck than it is to list the different ways to draw 49 cards!

• There is a relationship between combinations and permutations:

the number of combinations = 1
𝑟!

× the number of permutations.

This is because each combination counted when the order doesn’t matter comes up 𝑟! different times
when the order does matter.

� Try it out

• How many different ways are there to form a subcommittee of eight people, from a group of
twenty?

• If I have 𝑛 points on the circumference of a circle, how many different triangles can I form with
vertices among these points?

Remember: If we’re allowed repeated values, the only tool we need is the multiplication principle.

If there can be no repeats (sampling without replacement), then we use permutations if the objects are
all distinct, and combinations if they are not. Usually if we’re dealt a hand of cards, or draw a bunch of
things out of a bag, then they’re indistinguishable. But if we’re rolling several dice, or assigning objects to
people, then we can (hopefully) tell the dice or people apart.
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You might find the flowchart in Figure 1.3 helpful.

Figure 1.3: A decision-making flowchart for permutations, combinations, and the multiplication principle.

1.2.4 Multinomial coefficients

When we want to separate a group of size 𝑛 into 𝑘 ≥ 2 groups of possibly different sizes, we use multinomial
coefficients.

� Key idea

If the group sizes are 𝑛1, 𝑛2, … , 𝑛𝑘, with 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘 = 𝑛, then the number of different ways to
arrange the groups is given by the multinomial coefficient

( 𝑛
𝑛1, 𝑛2, … , 𝑛𝑘

) = 𝑛!
𝑛1!𝑛2! … 𝑛𝑘!

.

To see how this works, think about choosing the groups in order. There are ( 𝑛
𝑛1

) ways to choose the first
group; then, there are (𝑛−𝑛1

𝑛2
) ways to choose the second group from the remaining objects. Continuing

like this until all the groups are selected, by the multiplication principle there are

( 𝑛
𝑛1

) × (𝑛 − 𝑛1
𝑛2

) × (𝑛 − 𝑛1 − 𝑛2
𝑛3

) × ⋯ × (𝑛𝑘−1 + 𝑛𝑘
𝑛𝑘−1

) × (𝑛𝑘
𝑛𝑘

)

ways to choose all the groups. Writing each binomial coefficient in terms of factorials, and doing (lots of
nice) cancelling, we end up with our expression for the multinomial coefficient.
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As it turns out, the multinomial coefficient ( 𝑛
𝑛1,𝑛2,…,𝑛𝑘

) is also the number of different (i.e. distinguishable)
permutations of 𝑛 objects of which 𝑛1 are identical and of type 1, 𝑛2 are identical and of type 2, …, 𝑛𝑘 are
identical and of type 𝑘 (where 𝑛 = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘).

Example

The number of different ways to distribute 10 toys among 3 children, ensuring that the youngest gets
exactly one more than its older siblings, is

( 10
4, 3, 3

) = 10!
4!3!3!

= 4, 200.

� Try it out

• In how many different (i.e. distinguishable) ways can you arrange the letters in STATISTICS?

• If you arrange the letters S,S,S,T,T,T,I,I,A,C in a random order, what is the probability that
they spell ‘Statistics’?

Suggested exercises: Q11 – Q17.

1.3 Conditional Probability and Bayes’ Theorem

Sometimes, knowing whether or not one event has occurred can change the probability of another event.
For example, if we know that the score on a die was even, there is a one in three chance that we rolled a
two (rather than one in six). Gaining the knowledge that our score is even affects how likely it is that we
got each possible score.

Definition

We write ℙ(𝐴 ∣ 𝐵) for the conditional probability of 𝐴, given 𝐵; it is defined by

ℙ(𝐴 ∣ 𝐵) = ℙ(𝐴 ∩ 𝐵)
ℙ(𝐵)

.

� Key idea

We can rearrange the definition of conditional probability to get

ℙ(𝐴 ∩ 𝐵) = ℙ(𝐴 ∣ 𝐵) ℙ(𝐵) = ℙ(𝐵 ∣ 𝐴) ℙ(𝐴),

which leads to Bayes’ theorem:

ℙ(𝐴 ∣ 𝐵) = ℙ(𝐵 ∣ 𝐴)ℙ(𝐴)
ℙ(𝐵)

.

Writing conditional probabilities in this way allows us to “invert” them; quite often, one of ℙ(𝐴 ∣ 𝐵) and
ℙ(𝐵 ∣ 𝐴) is easier to spot than the other.
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1.4 Independence

Definition

We say that two events are independent if the occurrence of one has no bearing on the occurrence of
the other, that is,

ℙ(𝐴 ∣ 𝐵) = ℙ(𝐴).

Examples

• The scores obtained from rolling two separate dice are independent.

• Height and shoe size of people are usually not independent.

• Lecture attendance and exam grades are not independent!

When events 𝐴 and 𝐵 are independent, we have

ℙ(𝐴 ∩ 𝐵) = ℙ(𝐴)ℙ(𝐵).

1.5 Partitions

Suppose we can separate our sample space into 𝑛 mutually disjoint events 𝐸1, 𝐸2, … , 𝐸𝑛: we know that
exactly one of these events must happen. We call the collection {𝐸1, 𝐸2, … , 𝐸𝑛} a partition, and we can
use it to break down the probabilities of different events 𝐴 ⊆ 𝑆.

First, we can write
𝐴 = (𝐴 ∩ 𝐸1) ∪ (𝐴 ∩ 𝐸2) ∪ ⋯ ∪ (𝐴 ∩ 𝐸𝑛),

so that
ℙ(𝐴) = ℙ(𝐴 ∩ 𝐸1) + ℙ(𝐴 ∩ 𝐸2) + ⋯ + ℙ(𝐴 ∩ 𝐸𝑛).

We can also introduce conditional probability, to get the partition theorem:

ℙ(𝐴) = ℙ(𝐴 ∣ 𝐸1) ℙ(𝐸1) + ℙ(𝐴 ∣ 𝐸2) ℙ(𝐸2) + ⋯ + ℙ(𝐴 ∣ 𝐸𝑛) ℙ(𝐸𝑛).

The partition theorem is useful whenever we can break an event down into cases, each of which is
straightforward.

� Try it out

One of the most well-known (especially recently!) examples of the partition theorem is in testing for
diseases.
Suppose that a disease affects one in 10,000 people. We have a test for this disease which correctly
identifies 90% of people who do have the disease (so gives false negatives to 10% of people with the
disease), and gives false positives to 1% of people who do not have the disease.
If a randomly chosen person is tested, what is the probability that their test result is positive?
Given that the test result is positive, what is the probability that they have the disease?

Suggested exercises: Q18 – Q26.
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1.6 Random variables

Definition

A random variable 𝑋 is a function 𝑋 ∶ 𝑆 → ℝ which assigns a numerical value to each possible
outcome of an experiment (i.e. to each element of the sample space 𝑆), such that the probability
ℙ(𝑋 ≤ 𝑏) is well defined for all 𝑏 ∈ ℝ (i.e. the event {𝑋 ≤ 𝑏} = ℙ({𝑠 ∈ 𝑆 ∣ 𝑋(𝑠) ≤ 𝑏} can always be
assigned a probability).
We say that a random variable is discrete if we can list its possible values, or continuous if it can
take any value in a range.

We won’t ever need to worry about the “well-defined” part of the definition in this module, but, strictly
speaking, there do exist complicated real-valued functions on certain sample spaces which are not random
variables.

Example

If the experiment is “toss four coins”, then some of the elements of the sample space are HHHH,
HHHT, HHTH, HHTT,... . One random variable we can define is

𝑋 = Number of heads.

Then if our outcome is HHTT, we have 𝑋(HHTT) = 2.

1.6.1 Discrete random variables

To describe a discrete random variable 𝑋 ∶ 𝑆 → ℝ, we can use its probability distribution, which is
sometimes called a probability mass function.

� Key idea

The probability distribution is often displayed in a table, which shows the different values 𝑋 can
take, along with the associated probabilities:

values 𝑥1 𝑥2 … 𝑥𝑛

probabilities ℙ(𝑋 = 𝑥1) ℙ(𝑋 = 𝑥2) … ℙ(𝑋 = 𝑥𝑛)

Recall here that the event {𝑋 = 𝑥} is given by {𝑋 = 𝑥} = {𝑠 ∈ 𝑆 ∣ 𝑋(𝑠) = 𝑥} ⊆ 𝑆. In a probability
distribution, the probabilities must be non-negative and must sum to 1. To find the probability that 𝑋
takes values in an interval [𝑎, 𝑏], we have

ℙ(𝑎 ≤ 𝑋 ≤ 𝑏) = ∑
𝑎≤𝑥𝑖≤𝑏

ℙ(𝑋 = 𝑥𝑖).
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1.6.1.1 Joint and marginal distributions

Definition

When we have two (or more) discrete random variables, 𝑋 and 𝑌 (and 𝑍 and...), the joint probability
distribution is the table of probabilities ℙ(𝑋 = 𝑥, 𝑌 = 𝑦) of every possible combination of values 𝑥
for 𝑋 and 𝑦 for 𝑌:

𝑥1 … 𝑥𝑛

𝑦1 ℙ(𝑋 = 𝑥1, 𝑌 = 𝑦1) … ℙ(𝑋 = 𝑥𝑛, 𝑌 = 𝑦1)
⋮ ⋮ ⋱ ⋮
𝑦𝑚 ℙ(𝑋 = 𝑥1, 𝑌 = 𝑦𝑚) … ℙ(𝑋 = 𝑥𝑛, 𝑌 = 𝑦𝑚)

Recall here that the event {𝑋 = 𝑥, 𝑌 = 𝑦} is given by {𝑋 = 𝑥, 𝑌 = 𝑦} = {𝑋 = 𝑥} ∩ {𝑌 = 𝑦} ⊆ 𝑆.
Moreover, as in the case of the probability distribution of a single random variable, the probabilities in a
joint probability distribution must be non-negative and must sum to 1.

We can find the marginal probability distributions of 𝑋 and 𝑌 from the joint distribution, by summing
across the rows or columns:

ℙ(𝑋 = 𝑥𝑘) = ∑
𝑗

ℙ(𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑗),

ℙ(𝑌 = 𝑦𝑗) = ∑
𝑘

ℙ(𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑗).

Two discrete random variables 𝑋 and 𝑌 are said to be independent if

ℙ(𝑋 = 𝑥𝑘, 𝑌 = 𝑦𝑗) = ℙ(𝑋 = 𝑥𝑘) ℙ(𝑌 = 𝑦𝑗)

for all possible pairs (𝑥𝑘, 𝑦𝑗) of values of 𝑋 and 𝑌.

� Try it out

Let 𝑋 be the random variable which takes value 3 when a fair coin lands heads up, and takes value 0
otherwise. Let 𝑌 be the value shown after rolling a fair die. Write down the distributions of 𝑋 and 𝑌,
and the joint distribution of 𝑋 and 𝑌. You may assume that 𝑋 and 𝑌 are independent. Use your
table to find the probability that 𝑋 > 𝑌.

Example

Let 𝑆 = {(𝑎, 𝑏) ∣ 𝑎, 𝑏 ∈ {1, … , 6}} be the sample space when a pair of fair dice is tossed. Let
𝑋 ∶ 𝑆 → ℝ and 𝑌 ∶ 𝑆 → ℝ be the (discrete) random variables defined by

𝑋(𝑎, 𝑏) = 𝑎 + 𝑏 and 𝑌 (𝑎, 𝑏) = max{𝑎, 𝑏}

respectively. Then the joint distribution of 𝑋 and 𝑌 is

2 3 4 5 6 7 8 9 10 11 12

1 1
36 0 0 0 0 0 0 0 0 0 0

2 0 2
36

1
36 0 0 0 0 0 0 0 0

3 0 0 2
36

2
36

1
36 0 0 0 0 0 0

4 0 0 0 2
36

2
36

2
36

1
36 0 0 0 0
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5 0 0 0 0 2
36

2
36

2
36

2
36

1
36 0 0

6 0 0 0 0 0 2
36

2
36

2
36

2
36

2
36

1
36

For example, the event that both 𝑋 = 5 and 𝑌 = 3 occurs only for the outcomes (2, 3) and (3, 2),
yielding a probability ℙ(𝑋 = 5, 𝑌 = 3) = 2

36 . The (marginal) probability that 𝑋 = 5 is

ℙ(𝑋 = 5) =
6

∑
𝑘=1

ℙ(𝑋 = 5, 𝑌 = 𝑘)

= ℙ(𝑋 = 5, 𝑌 = 3) + ℙ(𝑋 = 5, 𝑌 = 4)

= 2
36

+ 2
36

= 4
36

as expected, since 𝑋 = 5 occurs only for the outcomes (1, 4), (2, 3), (3, 2) and (4, 1). Similarly, the
(marginal) probability that 𝑌 = 3 is

ℙ(𝑌 = 3) =
12

∑
𝑚=2

ℙ(𝑋 = 𝑚, 𝑌 = 3)

= ℙ(𝑋 = 4, 𝑌 = 3) + ℙ(𝑋 = 5, 𝑌 = 3) + ℙ(𝑋 = 6, 𝑌 = 3)

= 2
36

+ 2
36

+ 1
36

= 5
36

since 𝑌 = 3 occurs only for the outcomes (1, 3), (2, 3), (3, 3), (3, 2) and (3, 1).
Finally, observe that 𝑋 and 𝑌 are not independent random variables since, for example, ℙ(𝑋 =
2, 𝑌 = 3) = 0, whereas ℙ(𝑋 = 2) = 1

36 and ℙ(𝑌 = 3) = 5
36 , so that ℙ(𝑋 = 2) ℙ(𝑌 = 3) ≠ 0.

1.6.2 Continuous random variables

When our random variable is continuous, we cannot describe its probability distribution using a list of
probabilities. Instead, we use a probability density function (pdf), 𝑓𝑋(𝑥).

� Key idea

The density function 𝑓𝑋(𝑥) describes a curve over the possible values taken by the random variable
𝑋. In a density function, the values must be non-negative and integrate to 1.

To find the probability that 𝑋 lies in an interval [𝑎, 𝑏], we have

ℙ(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫
𝑏

𝑎
𝑓𝑋(𝑥) 𝑑𝑥.

Remember that the density 𝑓𝑋(𝑥) is not the same thing as ℙ(𝑋 = 𝑥). In fact, for every 𝑥, we have
ℙ(𝑋 = 𝑥) = 0.

Another way of specifying the distribution of a continuous random variable is through its cumulative
distribution function (cdf) 𝐹𝑋 ∶ ℝ → [0, 1], given by

𝐹𝑋(𝑥) = ℙ(𝑋 ≤ 𝑥) = ∫
𝑥

−∞
𝑓𝑋(𝑡) 𝑑𝑡.
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Example

A random variable 𝑋 is said to have a uniform distribution (often denoted Unif(𝑎, 𝑏)) on an interval
[𝑎, 𝑏] if its probability density function 𝑓𝑋 satisfies

𝑓𝑋(𝑥) = {
1

𝑏−𝑎 , for 𝑥 ∈ [𝑎, 𝑏] ,
0 , otherwise.

If [𝑐, 𝑑] ⊂ [𝑎, 𝑏] is another interval (that is, if 𝑎 ≤ 𝑐 < 𝑑 ≤ 𝑏), then

ℙ(𝑐 ≤ 𝑋 ≤ 𝑑) = ∫
𝑑

𝑐
𝑓𝑋(𝑥) 𝑑𝑥 = 1

𝑏 − 𝑎
∫

𝑑

𝑐
𝑑𝑥 = 𝑑 − 𝑐

𝑏 − 𝑎
.

Similarly, if the interval [𝑐′, 𝑑′] has 𝑐′ < 𝑎 ≤ 𝑑′ ≤ 𝑏, then, since 𝑓𝑋(𝑥) = 0 for all 𝑥 < 𝑎,

ℙ(𝑐′ ≤ 𝑋 ≤ 𝑑′) = ∫
𝑑′

𝑐′

𝑓𝑋(𝑥) 𝑑𝑥 = ∫
𝑑′

𝑎
𝑓𝑋(𝑥) 𝑑𝑥 = 1

𝑏 − 𝑎
∫

𝑑′

𝑎
𝑑𝑥 = 𝑑′ − 𝑎

𝑏 − 𝑎
.

Via similar calculations, we see that the cumulative distribution function 𝐹𝑋 ∶ ℝ → [0, 1] is given by

𝐹𝑋(𝑥) =
⎧{
⎨{⎩

0, for 𝑥 < 𝑎,
𝑥−𝑎
𝑏−𝑎 , for 𝑎 ≤ 𝑥 ≤ 𝑏,
1 , for 𝑏 < 𝑥.

� Try it out

Let 𝑋 be a continuous random variable with probability density function:

𝑓𝑋(𝑥) = {
𝛽𝑒−𝛽𝑥 , for 𝑥 > 0,
0 , for 𝑥 ≤ 0.

Check that 𝑓𝑋(𝑥) is a valid probability density function when 𝛽 > 0. Find the cumulative distribution
function of 𝑋 and, hence, find ℙ(𝑋 > 3).

1.6.2.1 Joint and marginal distributions

Definition

The joint probability distribution of two (or more) continuous random variables 𝑋 and 𝑌 (and 𝑍
and...) can be described using their joint probability density function 𝑓𝑋,𝑌(𝑥, 𝑦). This is a
function of two variables describing how the pair of random variables 𝑋 and 𝑌 are “spread out”.

As it is a density, the function 𝑓𝑋,𝑌 is non-negative and must integrate to 1. The probability that 𝑋
and 𝑌 take values in a region 𝐴 of the 𝑥𝑦-plane is given by the double integral (to be discussed in
?@sec-integration

ℙ((𝑋, 𝑌 ) ∈ 𝐴) = ∬
𝐴

𝑓𝑋,𝑌(𝑥, 𝑦) 𝑑𝑥𝑑𝑦.

We can find the marginal probability distributions of 𝑋 and 𝑌 from the joint distribution, by

17



integrating out one of the variables:

𝑓𝑋(𝑥) = ∫
∞

−∞
𝑓𝑋,𝑌(𝑥, 𝑦) 𝑑𝑦

𝑓𝑌(𝑦) = ∫
∞

−∞
𝑓𝑋,𝑌(𝑥, 𝑦) 𝑑𝑥.

Suggested exercises: Q27 – Q32.

1.7 Expectation and Variance

While the probability distribution or probability density function tells us everything about the distribution
of a random variable, this can often be too much information. Quantities which instead summarise the
distribution can be useful to convey information about our random variable without trying to describe it
in its entirity.

Summaries of a distribution include the expectation, the variance, the skewness and the kurtosis. In this
course, we’re only interested in the expectation, which tells us about the location of the distribution, and
the variance, which tells us about its spread. The skewness tells us about the symmetry of the distribution
about its expectation, while the kurtosis tells us about the likelihood of the random variable taking values
far away from the mean.

1.7.1 Expectation

Definition

The expectation of a random variable 𝑋 is given by

𝔼[𝑋] =
⎧{
⎨{⎩

∑𝑥 𝑥 ℙ(𝑋 = 𝑥) , if 𝑋 is discrete,

∫∞
−∞

𝑥𝑓𝑋(𝑥) 𝑑𝑥 , if 𝑋 is continuous.

The expectation is sometimes called the mean or the average of the random variable 𝑋.

1.7.1.1 Properties of Expectation

Linearity: If 𝑋 is a random variable and 𝑎 and 𝑏 are (real) constants, then

𝔼[𝑎𝑋 + 𝑏] = 𝑎 𝔼[𝑋] + 𝑏.

Additivity: If 𝑋1, 𝑋2, … , 𝑋𝑛 are random variables, then

𝔼[𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛] = 𝔼[𝑋1] + 𝔼[𝑋2] + ⋯ + 𝔼[𝑋𝑛].

Positivity: If 𝑋 is a positive random variable (that is, if ℙ(𝑋 ≥ 0) = 1), then 𝔼[𝑋] ≥ 0.

Independence: If 𝑋 and 𝑌 are independent random variables, then

𝔼[𝑋𝑌 ] = 𝔼[𝑋] 𝔼[𝑌 ].
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Expectation of a function: If 𝑋 is a random variable and 𝑟 is a (nice1) function, then 𝑟(𝑋) = 𝑟 ∘ 𝑋 is a
random variable with expectation

𝔼[𝑟(𝑋)] =
⎧{
⎨{⎩

∑𝑥 𝑟(𝑥) ℙ(𝑋 = 𝑥) , if 𝑋 is discrete,

∫∞
−∞

𝑟(𝑥)𝑓𝑋(𝑥) 𝑑𝑥 , if 𝑋 is continuous.

1.7.2 Variance

Definition

For a random variable 𝑋 with expectation 𝔼[𝑋] = 𝜇, the variance of 𝑋 is given by

Var(𝑋) = 𝔼[(𝑋 − 𝜇)2].

By expanding out the brackets and using the linearity of the expectation, we can rewrite the variance as

Var(𝑋) = 𝔼[𝑋2] − 𝔼[𝑋]2.

The variance is always positive, because it is the expectation of a positive random variable. The standard
deviation is the square root of the variance:

𝜎𝑋 = √Var(𝑋).

1.7.2.1 Properties of Variance

Affine transformations: If 𝑋 is a random variable and 𝑎 and 𝑏 are (real) constants, then

Var(𝑎𝑋 + 𝑏) = 𝑎2Var(𝑋).

Independence: If 𝑋 and 𝑌 are independent random variables, then

Var(𝑋 + 𝑌 ) = Var(𝑋) + Var(𝑌 ).

� Try it out

• Let 𝑋 be a continuous random variable with probability density function:

𝑓𝑋(𝑥) = { 𝛽𝑒−𝛽𝑥 for 𝑥 > 0,
0 for 𝑥 ≤ 0.

What are the expectation and variance of 𝑋?

• Let 𝑌 be a random variable with the following probability distribution:

1Actually this is generally only true locally, i.e. the function 𝑓(𝑥, 𝑦) that we build might have some problems if we try to
define it in all space. In fact this works only when the spaces we are considering are “simple”; if they have holes in them
etc. then we cannot globally define 𝑓. This is thus a connection between “topology” (i.e. global properties of spaces) and
calculus. It is also a surprisingly important subject to physicists: google “de Rham cohomology” to find out more.
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𝑦 1 2 3

ℙ(𝑌 = 𝑦) 1
6

2
6

3
6

Find 𝔼[𝑋], Var(𝑋), and 𝔼 [ 1
𝑋 ].

Suggested exercises: Revisit Q30; Q33 – Q37.

1.8 The Binomial Distribution

Definition

If 𝑋 is the number of successes (i.e. 0 or 1) from a single experiment which succeeds with probability
𝑝 and fails with probability 1 − 𝑝, then the random variable 𝑋 has probability distribution

$x$ $0$ $1$
------------------ ------- -----
$\mathbb{P}(X=x)$ $1-p$ $p$

In such a case, we say that 𝑋 has a Bernoulli distribution with parameter 𝑝 and write 𝑋 ∼ Bern(𝑝).

The expectation and variance of 𝑋 ∼ Bern(𝑝) are:

𝔼[𝑋] = 𝑝
Var(𝑋) = 𝑝(1 − 𝑝).

Suppose we have 𝑛 Bernoulli-style trials, which succeed or fail independently of each other, and such that
all trials have the same probability 𝑝 of succeeding. We count the total number of successes across all the
trials.

Definition

If 𝑌 is the total number of successes from 𝑛 independent Bernoulli trials (each with parameter 𝑝), we
say that 𝑌 has a binomial distribution with parameters 𝑛 and 𝑝, and we write 𝑌 ∼ Bin(𝑛, 𝑝).

If 0 ≤ 𝑘 ≤ 𝑛, we have

ℙ(𝑌 = 𝑘) = (𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−𝑘.

This is because each configuration of 𝑘 successes and 𝑛 − 𝑘 successes has probability 𝑝𝑘(1 − 𝑝)𝑛−𝑘, by the
multiplication principle; and there are (𝑛

𝑘) different ways of arranging the 𝑘 successes and 𝑛 − 𝑘 failures
among the trials.

� Try it out

Check that the probabilities in the binomial distribution are all non-negative and sum to 1.
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The expectation and variance of 𝑌 ∼ Bin(𝑛, 𝑝) are:

𝔼[𝑌 ] = 𝑛𝑝
Var(𝑌 ) = 𝑛𝑝(1 − 𝑝).

Examples

• If I toss six coins, the total number of heads has a Bin(6, 1
2) distribution.

• If each SMB student decides to skip a lecture with probability 0.2, then the number of students
who turn up has a Bin(217, 0.8) distribution (assuming you all decide independently of each
other!). In particular, the expected number of students at each lecture is 217 × 0.8 ≈ 174.

1.9 The Poisson Distribution

While the binomial distribution is about counting successes in a fixed number of trials, the Poisson
distribution lets us count how many times something happens without a fixed upper limit. This is useful
in a lot of real-world contexts, for example:

• the number of people who visit a website

• the number of yeast cells in a sample (such as in experiments by Gossett at Guinness in the 1920s)

• the number of particles emitted from a radioactive sample.

Definition

The Poisson distribution is used to model scenarios in which events happen randomly, independently,
and at a constant rate 𝑟. If 𝑋 is the total number of these events that happen in a time period of
length 𝑠, then 𝑋 has a Poisson distribution with parameter 𝜆 = 𝑟𝑠, and we write 𝑋 ∼ Po(𝜆).
If 𝑘 ∈ ℕ, we have

ℙ(𝑋 = 𝑘) = 𝑒−𝜆 𝜆𝑘

𝑘!
.

� Try it out

Check that the probabilities in the Poisson distribution are all non-negative and sum to 1.

The expectation and variance of 𝑋 are

𝔼[𝑋] = Var(𝑋) = 𝜆.

1.9.1 Using the Poisson distribution to approximate the binomial distribution

Instead of thinking about our time period [0, 𝑠] as one long interval, we can split it up into 𝑛 smaller ones
(each one will have length 𝑠

𝑛).

Suppose we count the number of sub-intervals in which events occur. If the sub-intervals are small enough,
it is very unlikely that there will be multiple events in any of them, and the probability that there is one
event will be 𝑝 ≈ 𝑟𝑠

𝑛 = 𝜆
𝑛 .
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We can view the sub-intervals as 𝑛 independent trials, and the total number of successes becomes binomially
distributed.

This is a good approximation because the probabilities ℙ(𝑋 = 𝑘) in the binomial distribution Bin(𝑛, 𝜆
𝑛)

and the Poisson distribution Po(𝜆) are similar as long as 𝑛 is big enough. That is, for large 𝑛 we have

(𝑛
𝑘

) (𝜆
𝑛

)
𝑘

(1 − 𝜆
𝑛

)
𝑛−𝑘

= 𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)
𝑘!

𝜆𝑘

𝑛𝑘 (1 − 𝜆
𝑛

)
𝑛−𝑘

= 𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)
𝑛𝑘 × (1 − 𝜆

𝑛
)

𝑛−𝑘
× 𝜆𝑘

𝑘!

≈ 1 × 𝑒−𝜆 × 𝜆𝑘

𝑘!
,

This approximation is good if 𝑛 ≥ 20 and 𝑝 ≤ 0.05, and excellent if 𝑛 ≥ 100 and 𝑛𝑝 ≤ 10.

Suggested exercises: Revisit Q38–Q41.

1.10 The Normal Distribution

Unlike the binomial and Poisson distributions, the normal (or Gaussian) distribution is continuous. It is
one of the most used (and most useful) distributions. A random variable whose “large-scale” randomness
comes from many small-scale contributions is usually normally distributed: for example, people’s heights
are determined by many different genetic and environmental factors. All of these different factors have
tiny impacts on your final height; overall, the distribution of the height of a random person is roughly
normal.

1.10.1 The standard normal distribution

The first version of the normal distribution we will meet is the standard normal.

Definition

We say that a continuous random variable 𝑍 has a standard normal distribution, and we write
𝑍 ∼ 𝒩(0, 1), if its probability density function is given by

𝑓𝑍(𝑥) = 1√
2𝜋

𝑒− 𝑥2
2

for all 𝑥 ∈ ℝ.

Properties of the standard normal distribution

• The probability density function 𝑓𝑍 of a random variable with standard normal distribution is
symmetric about 0. Then

ℙ(𝑍 ≤ 𝑧) = ℙ(𝑍 ≥ −𝑧) = ℙ(−𝑍 ≤ 𝑧),

which implies, in particular, that the random variable −𝑍 has the same (normal) distribution as 𝑍.

• This symmetry also means that 𝑥𝑓𝑍(𝑥) is an odd function; so the expectation of 𝑍 is zero.
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• The variance of 𝑍 is
Var(𝑍) = 𝔼[𝑍2] − 0

= ∫
∞

−∞
𝑥2𝑓𝑍(𝑥) 𝑑𝑥

= 1√
2𝜋

∫
∞

∞
𝑥2𝑒− 𝑥2

2 𝑑𝑥 = 1.

(You can find this via integration by parts.)

The cumulative distribution function for 𝑍

Definition

The cumulative distribution function for 𝑍 is denoted Φ(𝑧) and is given by

Φ(𝑧) = ℙ(𝑍 ≤ 𝑧) = ∫
𝑧

−∞

1√
2𝜋

𝑒− 𝑥2
2 𝑑𝑥.

There is no neat (“algebraic”) expression for Φ(𝑧): in practice, when we need to evaluate it we use
numerical methods to get (usually very good) approximations. These values are traditionally recorded in
tables but usually, they’re built into computer software and some calculators.

Some useful properties of Φ(𝑧), which reduce the number of values we need in the tables, are:

• Because 𝑓𝑍(𝑥) is symmetric, we have

Φ(𝑧) = ℙ(𝑍 ≤ 𝑧) = ℙ(𝑍 ≥ −𝑧) = 1 − Φ(−𝑧) .

• We have Φ(0) = 1
2 .

• ℙ(𝑎 ≤ 𝑍 ≤ 𝑏) = Φ(𝑏) − Φ(𝑎).

Interpolation: When the value we need to find isn’t in a table we have access to, we can interpolate. If
𝑎 < 𝑏 < 𝑐 and we know Φ(𝑎) and Φ(𝑏), we approximate:

Φ(𝑏) ≈ Φ(𝑎) + 𝑏 − 𝑎
𝑐 − 𝑎

(Φ(𝑐) − Φ(𝑎)) .

For example, most normal tables only go to two decimal places, but Φ(0.553) will be approximately
(0.553 − 0.55)/(0.56 − 0.55) = 0.3 of the way between Φ(0.55) and Φ(0.56).

1.10.2 General normal distributions

Definition

We say that a continuous random variable 𝑋 has a normal distribution with parameters 𝜇 and 𝜎2,
and we write 𝑋 ∼ 𝒩(𝜇, 𝜎2), if the random variable 𝑍 = 𝑋−𝜇

𝜎 has a standard normal distribution.

We can also write this in the other direction: 𝑋 ∼ 𝒩(𝜇, 𝜎2) if 𝑋 = 𝜎𝑍 + 𝜇. Since the distribution of 𝑍 is
symmetric, we use the convention 𝜎 > 0.
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Properties of general normal distributions

• The expectation of 𝑋 is
𝔼[𝑋] = 𝔼[𝜎𝑍 + 𝜇]

= 𝜇 + 𝜎 𝔼[𝑍]
= 𝜇 + 0 = 𝜇.

• The variance of 𝑋 is
Var(𝑋) = Var(𝜎𝑍 + 𝜇)

= 𝜎2 Var(𝑍)
= 𝜎2.

• The probability density function of 𝑋 is

𝑓𝑋(𝑥) = 1
𝜎

𝑓𝑍 (𝑥 − 𝜇
𝜎

) = 1
𝜎

√
2𝜋

exp {−1
2

(𝑥 − 𝜇
𝜎

)
2
} .

• The cumulative distribution function of 𝑋 is given by

ℙ(𝑋 ≤ 𝑥) = ℙ (𝜎𝑍 + 𝜇 ≤ 𝑥 − 𝜇
𝜎

)

= ℙ (𝑍 ≤ 𝑥 − 𝜇
𝜎

)

= Φ (𝑥 − 𝜇
𝜎

) .

We can use the table for the standard normal distribution to evaluate the cumulative distribution
function of any normal distribution, by using this transformation.

� Try it out

1. If 𝑋 ∼ 𝒩(12, 25), what is ℙ(𝑋 ≤ 3)?

2. If 𝑌 ∼ 𝒩(1, 4), what is ℙ(−1 < 𝑌 < 2)?

1.10.3 Using the normal distribution to approximate the binomial and Poisson distributions

Just as we can use the Poisson distribution to approximate specific probabilities in the binomial distribution,
we can use the normal distribution to approximate cumulative probabilities. If 𝑛 is large and 𝑋 ∼ Bin(𝑛, 𝑝),
then approximately we have 𝑋 ∼ 𝒩(𝑛𝑝, 𝑛𝑝(1 − 𝑝)).

In particular,

ℙ(𝑋 ≤ 𝑘) ≈ Φ ( 𝑘 − 𝑛𝑝
√𝑛𝑝(1 − 𝑝)

) .

This is a useful approximation when both 𝑛𝑝 and 𝑛𝑝(1 − 𝑝) are at least 10; as the two values increase, the
approximation gets better.
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� Try it out

A machine produces 𝑛 = 1500 gadgets every day. Each individual gadget is defective with probability
𝑝 = 0.02. Find (approximately) the probability that more than 40 of the items produced in one day
are defective.

Similarly, we can use the normal distribution to approximate the cumulative probabilities in the Poisson
distribution: if 𝑋 ∼ Po(𝜆), then approximately we have 𝑋 ∼ 𝒩(𝜆, 𝜆) and

ℙ(𝑋 ≤ 𝑘) ≈ Φ (𝑘 − 𝜆√
𝜆

) .

This is a useful approximation when 𝜆 is at least 5, and gets better as 𝜆 increases.

Suggested exercises: Q42 – Q45.

1.11 The Central Limit Theorem

1.11.1 Experimental errors

Definition

When we are measuring a quantity whose “true value” is 𝜇, our measurement takes the form 𝑋 = 𝜇+𝜀,
where 𝜀 is the experimental error. Before we do the experiment, we can think of both 𝜀 and 𝑋 as
random quantities. Afterwards, 𝑋 is a fixed and known quantity, and 𝜇 and 𝜀 are fixed but unknown
quantities (to us). Our goal is to use 𝑋 to infer something about 𝜇.

Assumption: We will assume that there are no systematic errors or bias in the experiment; in other
words, 𝔼[𝜀] = 0.

If the variance of 𝜀 is Var(𝜀) = 𝜎2, then

𝔼[𝑋] = 𝜇 + 𝔼[𝜀] = 𝜇 + 0 = 𝜇
Var(𝑋) = 0 + Var(𝜀) = 𝜎2.

This means that, on average, the value of our measurement is a good estimate of the value of 𝜇; however,if
the variance of 𝜀 is large, our measurement will have quite a high probability of being far from the true
value.

To improve our estimate, we can do one of two things:

• try to improve our measurement technique, to reduce the variance

• take more measurements!
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1.11.2 The sample mean

Definition

When we take 𝑛 independent random variables 𝑋1, 𝑋2, … , 𝑋𝑛 which all have the same distribution,
we say that 𝑋1, 𝑋2, … , 𝑋𝑛 are independent and identically distributed (i.i.d.).

Example

We might obtain i.i.d. samples by repeating our measurement, or experiment, 𝑛 times, or by sampling
𝑛 people from a large population.

Definition

If 𝑋1, 𝑋2, … , 𝑋𝑛 are random variables, then the sample mean is the average

𝑋 = 1
𝑛

𝑛
∑
𝑗=1

𝑋𝑗.

Before we take our measurements, this is also a random variable; afterwards, it is just a number. To
distinguish between the two situations, we use 𝑋 for the random variable, and 𝑥 for the number.

It is perhaps worth remarking that the definition of the sample mean is a little ambiguous, as 𝑋 is not
defined on the same sample space as 𝑋1, 𝑋2, … , 𝑋𝑛. Indeed, if 𝑆 is the sample space on which each
𝑋𝑗 is defined (i.e. 𝑋𝑗 ∶ 𝑆 → ℝ), then the sample mean is defined on the 𝑛-fold product sample space
𝑆 ×𝑆 ×⋯×𝑆 via 𝑋(𝑠1, 𝑠2, … , 𝑠𝑛) = 1

𝑛 ∑𝑛
𝑗=1 𝑋𝑗(𝑠𝑗). That is, we take the list (𝑠1, 𝑠2, … , 𝑠𝑛) ∈ 𝑆 ×𝑆 ×⋯×𝑆

of 𝑛 outcomes (e.g. of an experiment repeated 𝑛 times), then evaluate the 𝑗th random variable 𝑋𝑗 on the
𝑗th outcome 𝑠𝑗 and, finally, compute the average of the values obtained. Let’s look at an example.

� Try it out

We toss a pair of fair dice eight times. For each toss, the sample space is given by 𝑆 = {(𝑎, 𝑏) ∣
𝑎, 𝑏 ∈ {1, … , 6}}. Let 𝑋1, 𝑋2, … , 𝑋8 be random variables, where 𝑋𝑗 ∶ 𝑆 → ℝ is defined as the sum
𝑋𝑗(𝑎𝑗, 𝑏𝑗) = 𝑎𝑗 + 𝑏𝑗 of the outcome (𝑎𝑗, 𝑏𝑗) ∈ 𝑆 of the 𝑗th toss. If the outcomes of the eight tosses are

(1, 3), (5, 2), (3, 3), (5, 6), (1, 1), (4, 3), (2, 3) and (1, 3)

, respectively, find the sample and population means.
Answer: The sample mean (i.e. its value after all tosses have been completed) is given by

𝑥 = 1
8

(𝑋1(1, 3) + 𝑋2(5, 2) + 𝑋3(3, 3) + 𝑋4(5, 6) + 𝑋5(1, 1) + 𝑋6(4, 3) + 𝑋7(2, 3) + 𝑋8(1, 3))

= 1
8

(4 + 7 + 6 + 11 + 2 + 7 + 5 + 4)

= 46
8

= 5.75.

On the other hand, the population mean/expectation in this case would be 252
36 = 7, since the total

of the sums 𝑎 + 𝑏 of all 36 possible outcomes (𝑎, 𝑏) ∈ 𝑆 is 252. (It’s not hard to check directly that
𝔼[𝑋𝑗] = 7 for each 𝑗.) With a much larger number of tosses, we could expect that the sample mean
would be close to the population mean/expectation.
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Assumption: We assume that 𝑋1, 𝑋2, … , 𝑋𝑛 are i.i.d. with shared mean 𝜇 and variance 𝜎2. Then

𝔼[𝑋] = 1
𝑛

𝑛
∑
𝑗=1

𝔼[𝑋𝑗] = 𝑛
𝑛

𝜇 = 𝜇

Var(𝑋) = 1
𝑛2

𝑛
∑
𝑗=1

Var(𝑋𝑗) = 𝑛
𝑛2 𝜎2 = 𝜎2

𝑛
.

So the expectation of the sample mean is always 𝜇: we call it an unbiased estimator for the mean. On the
other hand, the variance is always smaller than 𝜎2 , and decreases as we increase 𝑛. By taking a large
enough sample size, we can get as small a variance as we want.

If 𝑛 is large enough, the sample mean will give an accurate estimate for the true mean 𝜇. This result is
called the Law of Large Numbers, which says that 𝑋 converges2 to 𝜇 as 𝑛 → ∞.

1.11.3 The Central Limit Theorem

We know that the sample mean will be quite close to the true value 𝜇 on average. The Central Limit
Theorem tells us more about the distribution of the error.

� Key idea: The Central Limit Theorem

If 𝑋1, 𝑋2, … , 𝑋𝑛 are i.i.d. random variables with shared mean 𝜇 and variance 𝜎2, then, for large 𝑛,
the sample mean 𝑋 is approximately normally distributed with mean 𝜇 and variance 𝜎2

𝑛 ; that is, 𝑋
is approximated by 𝒩(𝜇, 𝜎2

𝑛 ).
In other words, for large 𝑛, the random variable

𝑍 = 𝑋 − 𝜇
𝜎√
𝑛

is approximately a standard normal distribution.

Here, when we say that the distribution is approximately normal, we mean that

ℙ(𝑎 ≤ 𝑋 ≤ 𝑏) ≈ Φ ( 𝑏 − 𝜇
𝜎/

√
𝑛

) − Φ ( 𝑎 − 𝜇
𝜎/

√
𝑛

) ,

whatever the values of 𝑎 and 𝑏.

� Try it out

• If the random variables 𝑋1, 𝑋2, … , 𝑋10 are independent, and all are uniformly distributed on
the interval [0, 1], use the Central Limit Theorem to estimate ℙ(𝑋1 + 𝑋2 + ⋯ + 𝑋10 > 7).

• A manufacturing process is designed to produce bolts with a 0.5cm diameter. Once a day, a
random sample of 36 bolts is selected and the diameters recorded. If the average of the 36 values
is less than 0.49cm or greater than 0.51cm, then the process is shut down for inspection and
adjustment. The standard deviation for individual diameters is 0.02cm. Find approximately
the probability that the line will be shut down unnecessarily (i.e., if the true process mean
really is 0.5cm).

Suggested exercises: Q46–Q50.
2There’s quite a lot of probability theory hiding behind this “converges”!
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2 Partial derivatives

2.1 Functions of several variables

Our course now builds on the calculus that you have learnt in Single Maths B. There you worked with
functions of just one variable; in this part of the course we will extend the idea of differentiation and
integration to functions of more than one variable. This is both great fun and of fundamental importance
to many applications of mathematics.

2.1.1 Examples of functions of several variables

To orient ourselves, let’s just remind ourselves that in ordinary life it is really quite common to have
functions of more than one variable.

Examples

1. Areas and volumes:

a. The volume 𝑉 of a circular cylinder of radius 𝑟 (cm) and height ℎ (cm) is 𝑉 (𝑟, ℎ) = 𝜋𝑟2ℎ,
which is clearly a function of two variables, 𝑟 and ℎ. The cylinder gets larger if we increase
𝑟 or ℎ.

b. A rectangular box with sides 𝑥, 𝑦, 𝑥 has volume 𝑉 (𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧, a function of 3 variables.

2. Heights above a surface: The surface of the earth is a two-dimensional sphere; we call this
𝑆2. The position of a point on the earth can be specified by two coordinates (𝜙, 𝜃), which
roughly map to the concepts of latitude and longitude. The height above sea level can be
expressed as ℎ(𝜃, 𝜙).

3. Atmospheric temperature: This is again a function of 𝜃, 𝜙 but also (quite obviously) time
dependent 𝑇 (𝑡, 𝜃, 𝜙). You can clearly have things depending on four variables as well, for
example the variation of temperature with height 𝑟 would be 𝑇 (𝑡, 𝑟, 𝜃, 𝜙).

2.1.2 Graphs of functions

We understand that an equation 𝑦 = 𝑓(𝑥) describes a curve in a plane. Given 𝑥 we can compute 𝑦 if we
know the function 𝑓. The equation 𝑦 = 𝑓(𝑥) describes how (𝑥, 𝑦) moves as we vary 𝑥. The relation may
be expressed implicitly as 𝑔(𝑥, 𝑦) = 0. Let’s discuss a few examples:
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Examples

1. 𝑥2 + 𝑦2 = 1 describes a circle of unit radius.

𝑦2 = 1 − 𝑥2,

so 𝑦 = ±
√

1 − 𝑥2 for |𝑥| ≤ 1. Thus in the language above, 𝑔(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1. We can write
two equations of the form 𝑦 = 𝑓(𝑥), one for the lower half of the circle, and one for the upper
half.

2. Now let’s generalize this to higher dimensions. In three dimensional space, the equation

𝑥2 + 𝑦2 + 𝑧2 = 25

describes a sphere of radius 5. This can be inverted for 𝑧 as a function of (𝑥, 𝑦). This gives

𝑧2 = 25 − 𝑥2 − 𝑦2

so 𝑧 = ±√25 − 𝑥2 − 𝑦2 for 𝑥2 + 𝑦2 ≤ 25. Note that for fixed 𝑦 it describes circles in 𝑥, 𝑧 plane.
(How big are the circles if 𝑦 = 4, i.e. if we take a slice 4 units from the origin? With 𝑦 = 4, we
have 𝑧 = ±

√
9 − 𝑥2, so we get a circle of radius 3.) Now we have two distinct equations of form

𝑧 = 𝑓(𝑥, 𝑦). Then every 𝑥, 𝑦 gives us two points lying on the sphere, one for each equation.

3. An equation of the form 𝑧 = 𝑓(𝑥, 𝑦) thus describes a surface. We can think of 𝑧 as the height of
the surface above the 𝑥, 𝑦 plane (or the depth below if 𝑧 is negative). As in the lower-dimensional
case, we can often represent this surface implicitly as 𝑔(𝑥, 𝑦, 𝑧) = 0 for some choice of 𝑔(𝑥, 𝑦, 𝑧):
in the case above we have

𝑔(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 25

The function 𝑓 may be defined for all 𝑥, 𝑦 or a restricted set as in the sphere. (What does
𝑥2 + 𝑦2 > 25 correspond to?)

Thinking about curves and surfaces in higher dimensions, we have two new helpful ideas:

Definition

A level curve (or contour line) is a curve given by taking a horizontal slice of the surface 𝑔(𝑥, 𝑦, 𝑧) = 0;
that is, by setting 𝑧 to some fixed value. For example, if we choose 𝑧 = 𝑐 it is the set of all (𝑥, 𝑦)
such that 𝑔(𝑥, 𝑦, 𝑐) = 0. Level curves can be viewed as curves in the 𝑥𝑦-plane by forgetting about
the 𝑧-direction.
A section curve is a curve given by instead taking a vertical slice; that is, by freezing one of the other
variables. For example, we set 𝑔(𝑐, 𝑦, 𝑧) = 0. This gives a curve in either the 𝑦𝑧- or the 𝑥𝑧-plane.

Examples

Contour lines on a map represent height above sea level - lines of constant 𝑧 = ℎ(𝑥, 𝑦); isobars on a
weather map represent lines of constant atmospheric pressure (at sea level) 𝑝(𝑥, 𝑦).
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2.1.3 Examples of graphs of functions

Using this Desmos link, explore the properties of the graphs of some of these functions:

1. 𝑧 = 5: for some range of 𝑥, 𝑦. - a flat roof.

2. 𝑧 = 𝑥2 + sin 𝑦: Defined for finite 𝑥 and 𝑦. For fixed 𝑦 we get a parabola, and for fixed 𝑥 we have a
𝑠𝑖𝑛 curve whose height is shifted.

3. 𝑧 = cos(𝑥𝑦): Again the function is defined for all 𝑥, 𝑦. 𝑧 = 𝑐𝑜𝑛𝑠𝑡 for 𝑥𝑦 = 𝑐𝑜𝑛𝑠𝑡. Contours of
constant height would be hyperbolas. Keeping e.g. 𝑦 constant gives a cosine in 𝑥 with a period
determined by 𝑦.

4. 𝑧 = sin √𝑥2+𝑦2

√𝑥2+𝑦2 the sombrero: Note the rotational symmetry about the 𝑧 axis through the origin. 𝑧
has the same value for all 𝑥2 + 𝑦2 = 𝑟2 with 𝑟 constant. This is the equation for a circle in the 𝑥, 𝑦
plane; the rotational symmetry is quite evident in the picture.

5. 𝑧 = 𝑥3 − 3𝑥𝑦2 the monkey saddle: Cubic curve for fixed 𝑦 and parabolic for fixed 𝑥.

6. 𝑧 = (𝑥2 + 𝑦2)/𝑎2 satellite dish: This is a circular paraboloid. Parallel rays are focussed onto the
focus of the dish at (0, 0, 𝑎).

Suggested questions: Q1-2.

2.2 Partial derivatives

We now embark on a program of extending things that we know from single-variable calculus to multiple
variables. The first thing we study is the partial derivative.

Definition

Suppose we have a function 𝑓(𝑥, 𝑦) of two variables. The partial derivative of 𝑓 with respect to 𝑥 is
the slope when we move in the 𝑥 direction but keep 𝑦 constant:

𝜕𝑓(𝑥, 𝑦)
𝜕𝑥

= lim
ℎ→0

𝑓(𝑥 + ℎ, 𝑦) − 𝑓(𝑥, 𝑦)
ℎ

,

while the partial derivative of 𝑓 with respect to 𝑦 is the slope of the function when we move in the 𝑦
direction but keep 𝑥 constant:

𝜕𝑓(𝑥, 𝑦)
𝜕𝑦

= lim
𝑘→0

𝑓(𝑥, 𝑦 + 𝑘) − 𝑓(𝑥, 𝑦)
𝑘

.

At a point (𝑎, 𝑏), the partial derivative gives the slope of the relevant section curve (i.e. either 𝑧 = 𝑓(𝑥, 𝑏)
or 𝑧 = 𝑓(𝑎, 𝑦)). It’s called “partial” because we are only differentiating with respect to one of the variables
(not all of them), and it is denoted with 𝜕, not d. The result is simply the same as taking the derivative
with respect to 𝑥 (or 𝑦) and treating 𝑦 (or 𝑥 respectively) as a constant. For any function 𝑓(𝑥, 𝑦) we get

𝜕𝑓
𝜕𝑥

by differentiating with respect to x and keeping y constant

𝜕𝑓
𝜕𝑦

by differentiating with respect to y and keeping x constant
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Similarly for a function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) ∶ ℝ𝑛 → ℝ, the partial derivative 𝜕𝑓
𝜕𝑥𝑖

is the derivative keeping all
but 𝑥𝑖 constant.

Example

The volume of a can of radius 𝑟 and height ℎ is 𝑉 (𝑟, ℎ) = 𝜋𝑟2ℎ.
If we keep the height fixed what is the rate of change of 𝑉 relative to the radius 𝑟? We take the
partial derivative with respect to 𝑟:

𝜕𝑉
𝜕𝑟

= 2𝜋𝑟ℎ.

Sometimes 𝜕𝑓
𝜕𝑥 is written 𝑓𝑥 and 𝜕𝑓

𝜕𝑦 is written 𝑓𝑦. Differentiating again we get

𝜕
𝜕𝑥

( 𝜕𝑓
𝜕𝑥

) = 𝜕2𝑓
𝜕𝑥2 (also written as 𝑓𝑥𝑥); 𝜕

𝜕𝑦
( 𝜕𝑓

𝜕𝑥
) = 𝜕2𝑓

𝜕𝑦𝜕𝑥
(also written as 𝑓𝑥𝑦)

𝜕
𝜕𝑥

(𝜕𝑓
𝜕𝑦

) = 𝜕2𝑓
𝜕𝑥𝜕𝑦

(also written as 𝑓𝑦𝑥); 𝜕
𝜕𝑦

(𝜕𝑓
𝜕𝑦

) = 𝜕2𝑓
𝜕𝑦2 (also written as 𝑓𝑦𝑦) .

This is a crucial (and rather simple) concept for the rest of the course, so before going any further let’s
work out another example.

Example

Consider 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + 𝑦3.
We have

𝜕𝑓
𝜕𝑥

= 2𝑥𝑦 𝜕𝑓
𝜕𝑦

= 𝑥2 + 3𝑦2

Let’s keep going and work out the second partial derivatives:

𝜕2𝑓
𝜕𝑥 𝜕𝑦

≡ 𝑓𝑦𝑥 = 2𝑥 𝜕2𝑓
𝜕𝑦 𝜕𝑥

= 𝑓𝑥𝑦 = 2𝑥

It looks like in this example it did not matter in which order I took the partial derivatives! It turns
out this is always true, provided 𝑓 is a sufficiently nice function.

Clairault’s Theorem (or Schwarz’s Theorem):1 Consider a function 𝑓 ∶ ℝ𝑛 → ℝ; that is, a real-
valued function 𝑓(𝑥1, … , 𝑥𝑛) depending on 𝑛 variables. If the second-order partial derivatives exist and
are continuous on a small open disc centred at a point 𝑎 = (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ ℝ𝑛, then

𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑎) = 𝜕2𝑓
𝜕𝑥𝑗𝜕𝑥𝑖

(𝑎) ,

for all 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}.

Here, “small open disc centred at 𝑎” means the subset {𝑥 ∈ ℝ𝑛 ∣ ‖𝑥 − 𝑎‖ < 𝑟} ⊆ ℝ𝑛 of all points in ℝ𝑛 of
distance (strictly) less that some fixed 𝑟 > 0 from 𝑎. The radius 𝑟 of the disc can be arbitrarily small: the
important thing is that some choice of radius works, not precisely which one. Moreover, the continuity
condition is automatically satisfied if the second-order partial derivatives are themselves differentiable
(i.e. if the third-order partial derivatives exist).

1...but why don’t you like matrices?
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Clairault’s Theorem holds for all familiar functions: polynomials, trigonometric functions, exponential
functions, …. If you’d like to see a relatively simple function for which the second-order partial derivatives
do not commute, then check out the function found by Peano here.

We sometimes express Clairault’s Theorem in words by saying that “partial derivatives commute”: the
word “commutative” means that the order in which you do the two operations (i.e. partial differentiation
with respect to 𝑥𝑖 and with respect to 𝑥𝑗) does not matter.

More (Somewhat Tedious) Examples

You probably get the idea by now, but here are a few more examples:

� Try it out

Calculate all the first and second partial derivatives of:

a. 𝑓(𝑥, 𝑦) = 𝑥3 − 3𝑥𝑦2.
b. 𝑓(𝑥, 𝑦) = cos 𝑦 + sin(𝑥𝑦).
c. 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + 𝑦𝑧 + 𝑧2𝑥.

Answers:

a. We have
𝑓𝑥 = 3𝑥2 − 3𝑦2

𝑓𝑦 = −6𝑥𝑦
𝑓𝑥𝑥 = 6𝑥
𝑓𝑦𝑦 = −6𝑦

𝑓𝑥𝑦 = 𝑓𝑦𝑥 = −6𝑦.

b. Let 𝑓(𝑥, 𝑦) = cos 𝑦 + sin(𝑥𝑦).

Then
𝑓𝑥 = 𝑦 cos(𝑥𝑦)
𝑓𝑦 = − sin 𝑦 + 𝑥 cos(𝑥𝑦)

𝑓𝑥𝑥 = −𝑦2 sin(𝑥𝑦)
𝑓𝑦𝑦 = − cos 𝑦 − 𝑥2 sin(𝑥𝑦)

𝑓𝑥𝑦 = 𝑓𝑦𝑥 = cos(𝑥𝑦) − 𝑥𝑦 sin(𝑥𝑦).

c. When 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + 𝑦𝑧 + 𝑧2𝑥, we have

𝑓𝑥 = 2𝑥𝑦 + 𝑧2

𝑓𝑦 = 𝑧 + 𝑥2

𝑓𝑧 = 𝑦 + 2𝑥𝑧.

Suggested questions: Q3-13.
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2.3 Differentials and Directional Derivatives

How can we find the rate of change of a function 𝑓(𝑥) when moving in some arbitrary direction? When we
have a single variable, the gradient gives us the infinitesimal change of the function d𝑓 with an infinitesimal
change in d𝑥, that is we have an equation which looks like this:

d𝑓 = d𝑓
d𝑥

d𝑥. (2.1)

The objects representing small changes, d𝑓, d𝑥 are called differentials.

Let us now generalise this to the multivariable case. When we have more than one variable we can imagine
moving in an arbitrary direction. Let’s consider two variables (𝑥, 𝑦) for concreteness and imagine that we
move along by d𝑥 in the 𝑥 direction, and d𝑦 in the 𝑦 direction:

(𝑥, 𝑦) ↦ (𝑥 + d𝑥, 𝑦 + d𝑦).

Definition

Now if we have a function 𝑓(𝑥, 𝑦), then the change d𝑓 is given by the sum of the contributions from
each of the directions, and d𝑓 is called the total differential:

d𝑓 = 𝜕𝑓
𝜕𝑥

d𝑥 + 𝜕𝑓
𝜕𝑦

d𝑦. (2.2)

Examples

� Try it out

1. Find the total differential of 𝑓(𝑥, 𝑦) = 𝑥2𝑦3 + cos 𝑥𝑦.

Answer: We have
𝑓𝑥 = 2𝑥𝑦3 − 𝑦 sin 𝑥𝑦
𝑓𝑦 = 3𝑥2𝑦2 − 𝑥 sin 𝑥𝑦

so
d𝑓 = 𝑓𝑥 d𝑥 + 𝑓𝑦 d𝑦

= [2𝑥𝑦3 − 𝑦 sin 𝑥𝑦] d𝑥 + [3𝑥2𝑦2 − 𝑥 sin 𝑥𝑦] d𝑦.

Example

Let’s look at an example from physics. Recall the First Law of Thermodynamics

d𝑈 = 𝑇 d𝑆 − 𝑃 d𝑉

where the state variables 𝑆 and 𝑉 are the entropy and volume of a closed homogeneous system,
respectively, and where 𝑈(𝑆, 𝑉 ) is the internal energy, 𝑇 (𝑆, 𝑉 ) is the temperature and 𝑃(𝑆, 𝑉 ) is
the pressure. Comparing with Equation 2.2, we see that

𝑇 ≡ 𝜕𝑈
𝜕𝑆

and 𝑃 ≡ −𝜕𝑈
𝜕𝑉

.
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(Note: in thermodynamics it is often helpful to use an alternative notation for partial derivatives to
make it explicit which variable is being held fixed, but we won’t do that here.)
The formal equivalence of the mixed 𝑆, 𝑉 derivatives gives an interesting relation:

𝜕𝑇
𝜕𝑉

= 𝜕
𝜕𝑉

(𝜕𝑈
𝜕𝑆

) = 𝜕2𝑈
𝜕𝑆𝜕𝑉

= 𝜕2𝑈
𝜕𝑉 𝜕𝑆

= 𝜕
𝜕𝑆

(𝜕𝑈
𝜕𝑉

) = −𝜕𝑃
𝜕𝑆

.

The identity 𝜕𝑇
𝜕𝑉 = −𝜕𝑃

𝜕𝑆 is a property of any physical thermodynamic system. Those of you who are
physicists will likely encounter it again: it is called a Maxwell relation.

2.3.1 Exact and Inexact differentials

Let us generalise slightly in the case of two variables: the most general differential can be written as

d𝑓 = 𝑎(𝑥, 𝑦) d𝑥 + 𝑏(𝑥, 𝑦) d𝑦. (2.3)

There is something slightly misleading about the notation d𝑓: it suggests that all differentials can be
written as “d of a function 𝑓”. As it turns out, this is not true, and there are actually two different kind of
differentials: exact and inexact.

Definition

A differential d𝑓 = 𝑎(𝑥, 𝑦) d𝑥 + 𝑏(𝑥, 𝑦) d𝑦 is said to be exact if there exists a function 𝑓(𝑥, 𝑦) such
that d𝑓 is the total differential of 𝑓; that is, if there exists a function 𝑓(𝑥, 𝑦) such that

𝑎(𝑥, 𝑦) = 𝑓𝑥 and 𝑏(𝑥, 𝑦) = 𝑓𝑦 .

(You should imagine that this means that the functions 𝑎(𝑥, 𝑦) and 𝑏(𝑥, 𝑦) above have been correctly
chosen so that we can integrate to obtain 𝑓(𝑥, 𝑦).)
If this cannot be done – i.e. if there does not exist any 𝑓 that makes this possible – then d𝑓 is an
inexact differential.

It should seem intuitively reasonable that a random choice of functions 𝑎(𝑥, 𝑦) and 𝑏(𝑥, 𝑦) will probably
result in an inexact differential.

Examples

� Try it out

Show that d𝑓 = 𝑦 d𝑥 + 𝑥 d𝑦 is an exact differential.
Answer:
The question is whether 𝑓𝑥 = 𝑦 and 𝑓𝑦 = 𝑥 can be integrated to find 𝑓. We have

𝑓𝑥 = 𝑦 ⟹ 𝑓(𝑥, 𝑦) = 𝑥𝑦 + 𝐴(𝑦),
𝑓𝑦 = 𝑥 ⟹ 𝑓(𝑥, 𝑦) = 𝑥𝑦 + 𝐵(𝑥).

Note that in the first line 𝐴(𝑦) can be an arbitrary function of 𝑦, but not of 𝑥. The second line is the
opposite, 𝐵(𝑥) can be an arbitrary function of 𝑥 but not of 𝑦. These two statements together imply
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that it must just be a constant, i.e. 𝐴(𝑦) = 𝐵(𝑥) = 𝐶. So

𝑓(𝑥, 𝑦) = 𝑥𝑦 + 𝐶.

As we have succeeded in finding 𝑓, the differential d𝑓 is indeed exact. (Note that 𝑓 is not uniquely
defined! It will always be ambiguous up to a constant).
An alternative way to find 𝑓 is the following: from 𝑓𝑥 = 𝑦 we integrate as above to find 𝑓(𝑥, 𝑦) =
𝑥𝑦 + 𝐴(𝑦). Now, we can use this expression to compute 𝑓𝑦 and the outcome must agree with 𝑓𝑦 = 𝑥.
That is, we have

𝑓𝑦 = 𝑥 (from d𝑓)
and 𝑓𝑦 = 𝑥 + 𝐴′(𝑦) (from differentiating 𝑓(𝑥, 𝑦) = 𝑥𝑦 + 𝐴(𝑦)) ,

so we can conclude that 𝐴′(𝑦) = 0. By integration, this means that 𝐴(𝑦) (a function of one variable!)
must be constant, so 𝑓(𝑥, 𝑦) must be of the form 𝑓(𝑥, 𝑦) = 𝑥𝑦 + 𝐶, as before.

� Try it out

Show that d𝑓 = 𝑦 d𝑥 − 𝑥 d𝑦 is an inexact differential.
Answer:
Note that the differential d𝑓 differs from the previous example only in the sign of the d𝑦 component,
so you might initially think that this differential should also be exact. Again, the question is whether
𝑓𝑥 = 𝑦 and 𝑓𝑦 = −𝑥 can be integrated to find 𝑓. Suppose that we can do this. Then we have that

𝑓𝑥 = 𝑦 ⟹ 𝑓(𝑥, 𝑦) = 𝑥𝑦 + 𝐴(𝑦),
𝑓𝑦 = 𝑥 ⟹ 𝑓(𝑥, 𝑦) = −𝑥𝑦 + 𝐵(𝑥).

As before, note that 𝐴(𝑦) can be an arbitrary function of 𝑦, but does not depend on 𝑥, while 𝐵(𝑥)
can be an arbitrary function of 𝑥, but does not depend on 𝑦. These two statements together imply
that 𝐵(𝑥) = 2𝑥𝑦 + 𝐴(𝑦), which is nonsense, since we know that the function 𝐵(𝑥) on the left-hand
side does not depend on 𝑦, while equality with the right-hand side says that it does. Hence, there is
no function 𝑓(𝑥, 𝑦) whose total differential is 𝑑𝑓.

� Try it out

Show that d𝑓 = 3𝑦 d𝑥 + 𝑥 d𝑦 is an inexact differential.
Answer:
Let us imagine that d𝑓 is exact. Then we would have

𝑓𝑥 = 3𝑦 ⟹ 𝑓 = 3𝑥𝑦 + 𝐴(𝑦)
𝑓𝑦 = 𝑥 ⟹ 𝑓 = 𝑥𝑦 + 𝐵(𝑥)

For similar reasons to the previous example, the two lines are contradictory, so there is no function
𝑓(𝑥, 𝑦) whose total differential is 𝑑𝑓.
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2.3.1.1 Testing for exactness

We may use Clairault’s Theorem (i.e. the commutativity of mixed partials) to test for an exact differential.
i.e. suppose that we are given a differential

d𝑓 = 𝑎(𝑥, 𝑦) d𝑥 + 𝑏(𝑥, 𝑦) d𝑦.

If this is exact, it means that 𝑎 ≡ 𝑓𝑥 and 𝑏 ≡ 𝑓𝑦 for some choice of 𝑓(𝑥, 𝑦). Therefore by Clairault’s
Theorem

𝑎𝑦 = 𝑓𝑥𝑦 = 𝑓𝑦𝑥 = 𝑏𝑥. (2.4)

Thus we see that if the differential is exact, then this condition on 𝑎, 𝑏 is satisfied. We will not prove the
converse statement here, but it turns out the converse is true, i.e. if Equation 2.4 is true, then a function
𝑓(𝑥, 𝑦) exists2 so that 𝑎 = 𝑓𝑥, 𝑏 = 𝑓𝑦. It should make sense to see how this generalises to more dimensions;
for example for three dimensions we would write:

d𝑓 = 𝑎(𝑥, 𝑦, 𝑧) d𝑥 + 𝑏(𝑥, 𝑦, 𝑧) d𝑦 + 𝑐(𝑥, 𝑦, 𝑧) d𝑧 ,

and then to check for exactness we need to check all pairs, 𝑎𝑦 = 𝑏𝑥, 𝑎𝑧 = 𝑐𝑥, 𝑏𝑧 = 𝑐𝑦. (Check that this is
enough if this is not clear).

Suggested questions: Q14-19.

2.4 The gradient of a function and a first look at vector calculus

Recall that in vector notation, a point is specified by: 𝑥 = 𝑥𝑖 + 𝑦𝑗. Now let’s again imagine changing the
position as (𝑥, 𝑦) → (𝑥 + d𝑥, 𝑦 + d𝑦). Note that we can write this in a vector form as:

𝑥 → 𝑥 + d𝑥

where d𝑥 is the infinitesimal vector d𝑥 = 𝑑𝑥 𝑖 + d𝑦 𝑗. Note carefully what’s happening here – d𝑥 is a
vector, and we move a distance d𝑥 in the 𝑖 direction and d𝑦 in the 𝑗 direction.

Now recall we had the following expression for the change of the function 𝑓(𝑥, 𝑦)

d𝑓 = 𝜕𝑓
𝜕𝑥

d𝑥 + 𝜕𝑓
𝜕𝑦

d𝑦 .

Let’s write the differential in a fancy vector notation:

d𝑓 = 𝜕𝑓
𝜕𝑥

d𝑥 + 𝜕𝑓
𝜕𝑦

d𝑦

= d𝑥 ⋅ ( 𝜕𝑓
𝜕𝑥

𝑖 + 𝜕𝑓
𝜕𝑦

𝑗) .

Here the dot is the usual dot product. In practice, when dealing with vectors we typically suppress the 𝑖
and 𝑗 notation, writing instead 𝑥 = (𝑥, 𝑦), d𝑥 = (𝑑𝑥, 𝑑𝑦), 𝜕𝑓

𝜕𝑥 𝑖 + 𝜕𝑓
𝜕𝑦𝑗 = ( 𝜕𝑓

𝜕𝑥 , 𝜕𝑓
𝜕𝑦), etc.

The expression Equation 2.5 now suggests that we define a new vector object ∇𝑓.

2Actually this is generally only true locally, i.e. the function 𝑓(𝑥, 𝑦) that we build might have some problems if we try to
define it in all space. In fact this works only when the spaces we are considering are “simple”; if they have holes in them
etc. then we cannot globally define 𝑓. This is thus a connection between “topology” (i.e. global properties of spaces) and
calculus. It is also a surprisingly important subject to physicists: google “de Rham cohomology” to find out more.
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Definition

The “gradient of 𝑓”, (or “grad 𝑓” or “del 𝑓” for short) is given by

∇𝑓 = ( 𝜕𝑓
𝜕𝑥

, 𝜕𝑓
𝜕𝑦

) .

It is a vector (field) whose components are the partial derivatives of 𝑓. Note that the gradient can
also be written in terms of basis vectors as

∇𝑓 = 𝜕𝑓
𝜕𝑥

𝑖 + 𝜕𝑓
𝜕𝑦

𝑗.

It is also convenient to think of ∇ as an object in its own right – it is a vector differential operator
∇ = ( 𝜕

𝜕𝑥 , 𝜕
𝜕𝑦) and is called del, grad, or nabla.

In terms of the gradient, we can write the expression for the differential of the function 𝑓 as:

d𝑓 = d𝑥 ⋅ ∇𝑓.

Let’s introduce one more bit of terminology.

Definition

The directional derivative of 𝑓 in the direction of a vector 𝑢 is

∇𝑢𝑓 = 1
|𝑢|

𝑢 ⋅ ∇𝑓.

It is a scalar quantity, representing the rate of change of 𝑓 in the direction of u.

2.4.1 What do ∇𝑓 and ∇𝑢𝑓 mean?

We now have quite a lot of formalism. Let us work out an example. Consider the “bowl” function

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2.

What is ∇𝑓? We have

∇𝑓(𝑥, 𝑦) = ( 𝜕𝑓
𝜕𝑥

, 𝜕𝑓
𝜕𝑦

) = (2𝑥, 2𝑦) or ∇𝑓 = 2𝑥 𝑖 + 2𝑦 𝑗.

Let us draw a picture; we see that the gradient points outwards, which is also the direction in which the
function 𝑓(𝑥, 𝑦) gets bigger and bigger. This is always true – the gradient always points in the direction
of greatest increase.

Let us now prove this with equations. For any direction 𝑢, the directional derivative is

∇𝑢𝑓 = 1
|𝑢|

𝑢 ⋅ ∇𝑓

= 1 ⋅ |∇𝑓| cos 𝜃,

where 𝜃 is the angle between the two vectors 𝑢 and ∇𝑓. The directional derivative is therefore a maximum
when cos 𝜃 = 1; that is, when 𝜃 = 0, meaning that 𝑢 and ∇𝑓 point in the same direction – in other words,
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the gradient always points in the direction of greatest increase, as claimed. Notice, also, that the rate of
change of 𝑓 in the direction of ∇𝑓 (i.e.the maximal rate of change) is

∇∇𝑓𝑓 = 1
|∇𝑓|

∇𝑓 ⋅ ∇𝑓 = |∇𝑓|2

|∇𝑓|
= |∇𝑓|.

The function 𝑓(𝑥, 𝑦) is, by definition, constant along the level curves (contours) of the surface described
by 𝑧 = 𝑓(𝑥, 𝑦). This means that in directions tangent to the level curves the directional derivative should
be 0 (as 𝑓(𝑥, 𝑦) is not changing in this direction); that is, we should have 𝑢 ⋅ ∇𝑓 = 0 (i.e. cos 𝜃 = 0) – in
other words the level curves are at right angles to ∇𝑓.

Moreover, if we look at the level curves (contours) of the surface on the 𝑥𝑦-plane, then the fact that ∇𝑓 is
the direction of greatest increase means that it should always point “up the slope”.

Examples

Let 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 as before and consider the paraboloid or “bowl” described by 𝑧 = 𝑥2 + 𝑦2. The
gradient of 𝑓 is

∇𝑓(𝑥, 𝑦) = (2𝑥, 2𝑦).

The level curves to the surface are all of the form 𝑥2 + 𝑦2 = 𝑐. That is, if 𝑐 > 0 then the level curve is
a circle, if 𝑐 = 0 then the level curve consists of a single point (the origin), while if 𝑐 < 0 then the level
curve is empty. Viewed in the 𝑥𝑦-plane, the level curves look like a collection of concentric circles
around the origin (with 𝑐 ≥ 0 being the square of the radius). Let’s focus on the interesting case
where the level curves are circles, i.e. where 𝑐 > 0. As we just learned, the gradient ∇𝑓 = (2𝑥, 2𝑦)
must always be perpendicular to the level curves (circles), and this is clear in this case from drawing
a simple sketch. Moreover, the gradient points in the direction (outwards, perpendicular to the level
curves) of greatest increase of the function 𝑓; that is, the level curves are the circles 𝑓(𝑥, 𝑦) = 𝑐 and,
hence, 𝑓 increasing is the same as the radius of the circles increasing.
Can we write down unit vectors ̂𝑡 tangent to the level curves? By inspection (which means guessing
from looking at the pictures, but sounds fancier), we can see that suitable unit vectors are given by

̂𝑡 = 1
√𝑥2 + 𝑦2

(−𝑦, 𝑥) .

� Try it out

Find the rate of change of 𝑓(𝑥, 𝑦) = 𝑦4 + 𝑥2𝑦2 + 𝑥 at (0, 1) in the direction of the vector 𝑖 + 2𝑗.
Answer:
First find ∇𝑓. We have

𝑓𝑥 = 1 + 2𝑥𝑦2 = 1
𝑓𝑦 = 4𝑦3 + 2𝑦𝑥2 = 4

∇𝑓 = (1 + 2𝑥𝑦2)𝑖 + (4𝑦3 + 2𝑦𝑥2)𝑗,

so ∇𝑓(0, 1) = 𝑖 + 4𝑗. Now we need the unit vector in the direction of 𝑖 + 2𝑗. This is

𝑛̂ = (𝑖 + 2𝑗)/(1 + 22)

= 1√
5

(𝑖 + 2𝑗)
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Therefore, the rate of change of 𝑓 at (0, 1) in the direction 𝑖 + 2𝑗 is

𝑛̂ ⋅ ∇𝑓(0, 1) = 1√
5

(𝑖 + 2𝑗) ⋅ (𝑖 + 4𝑗) = 9√
5

.

� Try it out

The temperature on a metal plate is 𝑇 (𝑥, 𝑦) = 𝑥2𝑒−𝑦. At the point (2, 1), in what direction does the
temperature increase most rapidly?
Answer:
First find ∇𝑇. We have

𝑇𝑥 = 2𝑥𝑒−𝑦 = 4/𝑒 ,
𝑇𝑦 = −𝑥2𝑒−𝑦 = −4/𝑒 ,

∇𝑇 = 2𝑥𝑒−𝑦𝑖 − 𝑥2𝑒−𝑦𝑗,

so ∇𝑇 (2, 1) = 4
𝑒 (𝑖 − 𝑗). Therefore, (a unit vector in) the direction of greatest increase at (2, 1) is

1√
2

(𝑖 − 𝑗),

and the rate of increase in this direction at (2, 1) is

|∇𝑇 (2, 1)| = 4
√

2
𝑒

.

� Try it out

Find the level curve of 𝑓(𝑥, 𝑦) = 𝑦4 + 𝑥2𝑦2 + 𝑥 through the point (0, 1) and verify that its tangent at
this point is orthogonal to ∇𝑓.
Answer:
The level curves are defined by 𝑐 = 𝑓(𝑥, 𝑦) = 𝑦4 + 𝑥2𝑦2 + 𝑥. At (0, 1) you can easily verify that
𝑓(0, 1) = 1, so we must have 𝑐 = 1. Thus, the equation of the level curve is 𝑦4 + 𝑥2𝑦2 + 𝑥 = 1. A
tangent vector to this level curve at to this point (0, 1) has “slope” d𝑦

d𝑥(0, 1) in the 𝑥𝑦-plane. Hence,
differentiating we find

d𝑦
d𝑥

(4𝑦3 + 2𝑦𝑥2) + 2𝑥𝑦2 + 1 = 0,

and, thus, d𝑦
d𝑥

(0, 1) = −1
4

.

So the corresponding unit vector in the 𝑥𝑦-plane (i.e. having this slope) is

̂𝑝= 1√
17

(4, −1).

Next ∇𝑓 is given by
∇𝑓 = (2𝑥𝑦2 + 1, 4𝑦3 + 2𝑦𝑥2),

so ∇𝑓(0, 1) = (1, 4) and, therefore, ∇𝑓(0, 1)⋅ ̂𝑝= 0, as desired.
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2.4.2 ∇𝑓 in arbitrary dimensions

We’ve been working in two dimensions, but of course all of the concepts generalise to any number of
dimensions. Let 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) be a function depending on 𝑛 variables and let 𝑒1, 𝑒2, … , 𝑒𝑛 be the
standard basis of ℝ𝑛 (i.e. one unit vector along each coordinate axis). Then the gradient of 𝑓 is a function
∇𝑓 ∶ ℝ𝑛 → ℝ𝑛 such that

∇𝑓 =
𝑛

∑
𝑖=1

𝜕𝑓
𝜕𝑥𝑖

𝑒𝑖 = ( 𝜕𝑓
𝜕𝑥1

, 𝜕𝑓
𝜕𝑥2

, … , 𝜕𝑓
𝜕𝑥𝑛

) , (2.5)

and the directional derivative (i.e. rate of change) of 𝑓 in the direction of a unit vector 𝑢̂ = ∑𝑛
𝑖=1 𝑢𝑖 𝑒𝑖 =

(𝑢1, 𝑢2, … , 𝑢𝑛) is given by
∇𝑢̂𝑓 = 𝑢̂ ⋅ ∇𝑓 .

For example, the temperature in this room can be written 𝑇 (𝑥, 𝑦, 𝑧) and we can define the rate of change
of 𝑇 when moving in some arbitrary direction 𝑢̂ in the same fashion.

Finally, note that the gradient operator satisfies the following two properties when acting on scalar
functions:

1. Distributivity: ∇(𝑓 + 𝑔) = ∇𝑓 + ∇𝑔.

2. Product rule: ∇(𝑓𝑔) = (∇𝑓)𝑔 + 𝑓∇𝑔.

Both of these properties should be familiar from ordinary derivatives: they follow from the definition of
the gradient in a particular basis, i.e. Equation 2.5.

Suggested questions: Q20-23.
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3 Applications of Partial Derivatives

In this chapter we will discuss a few applications of partial derivatives.

3.1 The chain rule in multiple variables

Suppose we have functions 𝑓(𝑥) and 𝑔(𝑥), each depending on a single variable. Then we can compose them
to get either a function (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) (first do 𝑔, then do 𝑓) or a function (𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) (first
do 𝑓, then do 𝑔), each of which also depends on only one variable. For example, the functions 𝑓(𝑥) = 𝑥2

and 𝑔(𝑥) = sin(𝑥) can be composed in to give either (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) = (sin(𝑥))2 (first 𝑔, then 𝑓) or
(𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)) = sin(𝑥2) (first 𝑓, then 𝑔).

Recall that the chain rule (in one variable) tells us how to differentiate compositions of functions (of one
variable). More precisely, recall that

d
d𝑥

(𝑓 ∘ 𝑔)(𝑥) = d
d𝑥

𝑓((𝑔(𝑥)) = 𝑓 ′(𝑔(𝑥)) 𝑔′(𝑥).

You might be more familiar with thinking about the chain rule in the following (equivalent) way, which is
perhaps more aesthetically pleasing (because we can imagine “canceling the ‘d𝑥’ ”): suppose you have a
function 𝑓(𝑥) and suppose that the variable 𝑥 also depends on another variable 𝑡 (so that we have function
𝑥(𝑡)). Then we can write the chain rule as

d𝑓
d𝑡

= d𝑓
d𝑥

d𝑥
d𝑡

.

We can derive this formula by noting that the total differentials of 𝑓(𝑥) and 𝑥(𝑡) are given by

d𝑓 = d𝑓
d𝑥

d𝑥 and d𝑥 = d𝑥
d𝑡

d𝑡,

which can then be combined to yield
d𝑓 = d𝑓

d𝑥
d𝑥
d𝑡

d𝑡.

Dividing across by d𝑡 now gives us the chain rule
d𝑓
d𝑡

= d𝑓
d𝑥

d𝑥
d𝑡

.

If we want to generalise the chain rule to functions 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) of several variables, there are two
scenarios we need to deal with:

1. all the variables 𝑥1, 𝑥2, … , 𝑥𝑛 are functions of a single variable 𝑡; i.e. we have a composition
𝑓(𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)) depending on a single variable.

2. all the variables 𝑥1, 𝑥2, … , 𝑥𝑛 are functions of several variables 𝑢1, 𝑢2, … , 𝑢𝑚; i.e. we have a composi-
tion 𝑓(𝑥1(𝑢1, 𝑢2, … , 𝑢𝑚), 𝑥2(𝑢1, 𝑢2, … , 𝑢𝑚), … , 𝑥𝑛(𝑢1, 𝑢2, … , 𝑢𝑚)) depending on several variables.

In the first case, the chain rule will give the (ordinary) derivative d𝑓
d𝑡 , while, in the second case, we will

obtain the partial derivatives 𝜕𝑓
𝜕𝑢1

, 𝜕𝑓
𝜕𝑢2

, … , 𝜕𝑓
𝜕𝑢𝑚

.
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3.1.1 The chain rule for dependence on only one variable

Consider a function 𝑓(𝑥, 𝑦), where and 𝑥(𝑡) and 𝑦(𝑡) are both functions of just a single variable 𝑡.

You should imagine that we move through a curve (𝑥(𝑡), 𝑦(𝑡)) in ℝ2 which is parametrised by 𝑡, and we
evaluate 𝑓(𝑥, 𝑦) at our instantaneous position, i.e. we compute 𝑓(𝑥(𝑡), 𝑦(𝑡)). We then would like to ask
how the combined function 𝑓(𝑥(𝑡), 𝑦(𝑡)) changes as a function of 𝑡. We begin with the change in 𝑓 (the
total differential), which is given by Equation 2.2:

d𝑓 = 𝜕𝑓
𝜕𝑥

d𝑥 + 𝜕𝑓
𝜕𝑦

d𝑦.

We also have
d𝑥 = d𝑥

d𝑡
d𝑡 and d𝑦 = d𝑦

d𝑡
d𝑡.

So, just as in the case of the usual chain rule, we can now combine these expressions to obtain

d𝑓 = 𝜕𝑓
𝜕𝑥

d𝑥
d𝑡

d𝑡 + 𝜕𝑓
𝜕𝑦

d𝑦
d𝑡

d𝑡. (3.1)

By dividing across by d𝑡, we find the final expression for the chain rule in two dimensions.

� Key idea

For a composed function 𝑓(𝑥(𝑡), 𝑦(𝑡)) depending on a single variable 𝑡, the chain rule is

d𝑓
d𝑡

= 𝜕𝑓
𝜕𝑥

d𝑥
d𝑡

+ 𝜕𝑓
𝜕𝑦

d𝑦
d𝑡

= (d𝑥
d𝑡

, d𝑦
d𝑡

) ⋅ ∇𝑓.

Let’s understand what this formula is saying: as we change 𝑡 and we move along the path, there are two
ways in which 𝑓(𝑥, 𝑦) can change: that arising from the change in 𝑥, and that arising from the change
in 𝑦. That is why there are two terms. Note that it is quite easy to generalise to the 𝑛-variable case, as
follows.

� Key idea

For a composed function 𝑓(𝑥(𝑡)), where 𝑥(𝑡) = (𝑥1(𝑡), ...𝑥𝑛(𝑡)), the chain rule (describing how 𝑓
changes as 𝑡 varies) is

d𝑓
d𝑡

= 𝜕𝑓
𝜕𝑥1

d𝑥1
d𝑡

+ 𝜕𝑓
𝜕𝑥2

d𝑥2
d𝑡

+ ⋯ + 𝜕𝑓
𝜕𝑥𝑛

d𝑥𝑛
d𝑡

= d𝑥
d𝑡

⋅ ∇𝑓,

where d𝑥
d𝑡 = (d𝑥1

d𝑡 , d𝑥2
d𝑡 , … , d𝑥𝑛

d𝑡 ).

As usual, we now work out some examples:

� Try it out

Consider a cylinder of radius 𝑥 and height 𝑦. Suppose that the cylinder changes its size as 𝑥 = 3𝑡
and 𝑦 = 4 + 𝑡2. What is the rate of change of 𝑉 with respect to 𝑡?
Answer:
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Method 1: Direct substitution, i.e. just write everything in terms of 𝑡.

𝑉 = 𝜋𝑥2𝑦
= 𝜋9𝑡2(4 + 𝑡2).

Then
d𝑉
d𝑡

= 72𝜋𝑡 + 36𝜋𝑡3.

Method 2: Use the chain rule,
d𝑉
d𝑡

= 𝜕𝑉
𝜕𝑥

d𝑥
d𝑡

+ 𝜕𝑉
𝜕𝑦

d𝑦
d𝑡

= 2𝜋𝑥𝑦 ⋅ 3 + 𝜋𝑥2 ⋅ 2𝑡
= 𝜋18𝑡(4 + 𝑡2) + 𝜋18𝑡3

= 72𝜋𝑡 + 36𝜋𝑡3.

� Try it out

For 𝑓 = sin(𝑥𝑦) find d𝑓
d𝑡 along the curve parametrised by 𝑥 = 𝑡2, 𝑦 = 𝑡3.

Answer:
We have

d𝑓
d𝑡

= 𝜕𝑓
𝜕𝑥

d𝑥
d𝑡

+ 𝜕𝑓
𝜕𝑦

d𝑦
d𝑡

= 𝑦 cos(𝑥𝑦)(2𝑡) + 𝑥 cos(𝑥𝑦)(3𝑡2)
= 5𝑡4 cos(𝑡5).

Note that we could have again substituted and used 𝑓(𝑡) = sin(𝑡5).

� Try it out

For 𝑓(𝑥, 𝑦, 𝑧) = 3𝑥𝑒𝑦𝑧 find the value of d𝑓
d𝑡 at the point on the curve 𝑥 = cos 𝑡, 𝑦 = sin 𝑡, 𝑧 = 𝑡 where

𝑡 = 0.
Answer:
We have

d𝑓
d𝑡

= 𝜕𝑓
𝜕𝑥

d𝑥
d𝑡

+ 𝜕𝑓
𝜕𝑦

d𝑦
d𝑡

+ 𝜕𝑓
𝜕𝑧

d𝑧
d𝑡

= 𝑒𝑦𝑧(−3 sin 𝑡 + 3𝑥𝑧 cos 𝑡 + 3𝑦𝑥).

Then
d𝑓
d𝑡

∣
𝑡=0

= −3,

since at 𝑡 = 0, (𝑥, 𝑦, 𝑧) = (1, 0, 0).

� Try it out

Let 𝑓 = 𝑓(𝑥, 𝑡) where 𝑥 = 𝑥(𝑡). What is d𝑓
d𝑡 ?

Answer:
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The chain rule tells us that for functions 𝑓(𝑥, 𝑦) we have

d𝑓
d𝑡

= 𝜕𝑓
𝜕𝑥

d𝑥
d𝑡

+ 𝜕𝑓
𝜕𝑦

d𝑦
d𝑡

.

For this example we can take 𝑦(𝑡) = 𝑡. Then we have

d𝑓
d𝑡

= 𝜕𝑓
𝜕𝑥

d𝑥
d𝑡

+ 𝜕𝑓
𝜕𝑡

.

since d𝑡
d𝑡 = 1. Note the crucial difference between the two operations d

d𝑡 and 𝜕
𝜕𝑡 ; the first one also

takes into account the implicit change arising from the fact that 𝑓 depends on 𝑥 which depends on 𝑡,
whereas the second only takes into account the explicit change arising from the direct dependence on
𝑡 in the second argument.

3.1.2 The chain rule for dependence on several variables

Up till now everything ultimately depended only on a single variable 𝑡.

Suppose instead that as before we consider a function 𝑓(𝑥, 𝑦), where 𝑥 = 𝑥(𝑢, 𝑣) and 𝑦 = 𝑦(𝑢, 𝑣) are
functions of two other variables 𝑢 and 𝑣. We may then consider the following composite function
𝑓(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣)), and we might be interested in computing the partial derivatives 𝜕𝑓

𝜕𝑢 and 𝜕𝑓
𝜕𝑣 .

� Key idea

By the chain rule,
𝜕𝑓
𝜕𝑢

= 𝜕𝑓
𝜕𝑥

𝜕𝑥
𝜕𝑢

+ 𝜕𝑓
𝜕𝑦

𝜕𝑦
𝜕𝑢

,

𝜕𝑓
𝜕𝑣

= 𝜕𝑓
𝜕𝑥

𝜕𝑥
𝜕𝑣

+ 𝜕𝑓
𝜕𝑦

𝜕𝑦
𝜕𝑣

.
(3.2)

� Try it out

Work through the calculations in terms of d𝑓s, as in Equation 3.1, to derive Equation 3.2.

Note that to find 𝜕𝑓
𝜕𝑥 we hold 𝑦 constant, but to find 𝜕𝑥

𝜕𝑢 , we need to hold 𝑣 constant.

The generalization to 𝑛 variables 𝑥1, 𝑥2, … , 𝑥𝑛 which depend on 𝑚 other variables 𝑢1, 𝑢2, … , 𝑢𝑚 is straight-
forward: for each 𝑖 ∈ {1, 2, … , 𝑛} we have a function 𝑥𝑖 = 𝑥𝑖(𝑢1, 𝑢2, … , 𝑢𝑚), so for each variable 𝑢𝑗,
𝑗 ∈ {1, 2, … , 𝑚}, we have a chain rule

𝜕𝑓
𝜕𝑢𝑗

=
𝑛

∑
𝑖=1

𝜕𝑓
𝜕𝑥𝑖

𝜕𝑥𝑖
𝜕𝑢𝑗

for each 𝑗 ∈ {1, 2, … , 𝑚}.

For those of you who like matrices, this is a good time to note that we can write all 𝑚 of these chain rules
concisely as a single matrix equation

( 𝜕𝑓
𝜕𝑢1

, 𝜕𝑓
𝜕𝑢2

, … , 𝜕𝑓
𝜕𝑢𝑚

) = ( 𝜕𝑓
𝜕𝑥1

, 𝜕𝑓
𝜕𝑥2

, … , 𝜕𝑓
𝜕𝑥𝑛

) [𝜕𝑥
𝜕𝑢

] = ∇𝑓 [𝜕𝑥
𝜕𝑢

] ,
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where we consider the object [𝜕𝑥
𝜕𝑢] as an (𝑛 × 𝑚)-matrix with (𝑖, 𝑗)th entry 𝜕𝑥𝑖

𝜕𝑢𝑗
. For those of you who don’t

like matrices1, you may happily ignore this for now.

Examples

� Try it out

Let 𝑓(𝑥, 𝑦) = 𝑥𝑦 where 𝑥 = 𝑢 cos 𝑣 and 𝑦 = 𝑢 sin 𝑣. Compute 𝜕𝑓
𝜕𝑢 both from direct substitution and

using the chain rule.
Answer:
Substituting gives 𝑓(𝑢, 𝑣) = 𝑢2 sin 𝑣 cos 𝑣 and 𝑓𝑢 = 𝑢 sin 2𝑣. So we should expect 𝑓𝑢 = 2𝑢 sin 𝑣 cos 𝑣.
Let’s check: the chain rule gives

𝑓𝑢 = 𝑓𝑥𝑥𝑢 + 𝑓𝑦𝑦𝑢

= 𝑦 cos 𝑣 + 𝑥 sin 𝑣
= 2𝑢 sin 𝑣 cos 𝑣

as required.

� Try it out

If 𝑓 is a function of 𝑥, 𝑦 where 𝑥 = 𝑢2 − 𝑣2 and 𝑦 = 2𝑢𝑣 show that 𝑢𝑓𝑢 + 𝑣𝑓𝑣 = 2𝑥𝑓𝑥 + 2𝑦𝑓𝑦 and that
𝑓𝑢𝑣 = 2𝑓𝑦 − 2𝑦𝑓𝑥𝑥 + 4𝑥𝑓𝑥𝑦 + 2𝑦𝑓𝑦𝑦.
Answer:
Note that since we do not know the explicit form of 𝑓, there is no possibility of computing its partial
derivatives 𝑓𝑢 and 𝑓𝑣 via a substitution. Nevertheless, from

𝜕𝑓
𝜕𝑢

= 𝜕𝑓
𝜕𝑥

𝜕𝑥
𝜕𝑢

+ 𝜕𝑓
𝜕𝑦

𝜕𝑦
𝜕𝑢

and 𝜕𝑓
𝜕𝑣

= 𝜕𝑓
𝜕𝑥

𝜕𝑥
𝜕𝑣

+ 𝜕𝑓
𝜕𝑦

𝜕𝑦
𝜕𝑣

= 2𝑢𝑓𝑥 + 2𝑣𝑓𝑦 = −2𝑣𝑓𝑥 + 2𝑢𝑓𝑦

we conclude that
𝑢𝑓𝑢 + 𝑣𝑓𝑣 = (2𝑢2𝑓𝑥 + 2𝑢𝑣𝑓𝑦) + (−2𝑣2𝑓𝑥 + 2𝑢𝑣𝑓𝑦)

= 2𝑥𝑓𝑥 + 2𝑦𝑓𝑦.
Now, to compute 𝑓𝑢𝑣, observe first that

𝑓𝑢𝑣 = 𝜕
𝜕𝑣

(2𝑢𝑓𝑥 + 2𝑣𝑓𝑦) = 2𝑢 (𝑓𝑥)𝑣 + 2𝑓𝑦 + 2𝑣 (𝑓𝑦)
𝑣

.

From the chain rule (together with Clairault’s Theorem) we have

(𝑓𝑥)𝑣 = 𝑓𝑥𝑥𝑥𝑣 + 𝑓𝑥𝑦𝑦𝑣 = −2𝑣𝑓𝑥𝑥 + 2𝑢𝑓𝑥𝑦 ,

(𝑓𝑦)
𝑣

= 𝑓𝑦𝑥𝑥𝑣 + 𝑓𝑦𝑦𝑦𝑣 = −2𝑣𝑓𝑥𝑦 + 2𝑢𝑓𝑦𝑦 .

Therefore, substituting these into 𝑓𝑢𝑣 we find that

𝑓𝑢𝑣 = 2𝑢 (−2𝑣𝑓𝑥𝑥 + 2𝑢𝑓𝑥𝑦) + 2𝑓𝑦 + 2𝑣 (−2𝑣𝑓𝑥𝑦 + 2𝑢𝑓𝑦𝑦)
= 2𝑓𝑦 − 4𝑢𝑣𝑓𝑥𝑥 + 4(𝑢2 − 𝑣2)𝑓𝑥𝑦 + 4𝑢𝑣𝑓𝑦𝑦

= 2𝑓𝑦 − 2𝑦𝑓𝑥𝑥 + 4𝑥𝑓𝑥𝑦 + 2𝑦𝑓𝑦𝑦 .

1...but why don’t you like matrices?
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I will highlight one application of the chain rule: recall that there are multiple coordinate systems we can
use for ℝ2; we can use the regular Cartesian (𝑥, 𝑦), or the polar coordinates (𝑟, 𝜃). These are related by

𝑥 = 𝑟 cos
𝑦 = 𝑟 sin

and you have seen in the earlier part that the unit vectors are also related by

𝑒𝑟 = cos 𝑖 + sin 𝑗
𝑒𝜃 = − sin 𝑖 + cos 𝑗.

Now let’s think about the gradient; up till now, we have only discussed the gradient of a scalar function 𝑓
in Cartesian coordinates:

∇𝑓(𝑥, 𝑦) = 𝜕𝑓
𝜕𝑥

𝑖 + 𝜕𝑓
𝜕𝑦

𝑗.

What happens in polar coordinates? It turns out that it is possible to express everything above in polar
coordinates – we do this by using the chain rule to replace 𝜕𝑓

𝜕𝑥 with 𝜕𝑓
𝜕𝑟 and so on. The derivation is spelled

out at the end of the lecture notes if you are interested; when you do it you find the gradient in polar
coordinates:

∇𝑓(𝑟, ) = 𝜕𝑓
𝜕𝑟

𝑒𝑟 + 1
𝑟

𝜕𝑓
𝜕𝜃

𝑒. (3.3)

This is basically what you would expect except for the interesting factor of 1
𝑟 on the last term – do you

understand why this is there? I will leave you to ponder the geometry and figure out what this is saying.

Suggested questions: Q1-8

3.2 Multivariate Taylor expansions

In this section we will learn how to do a Taylor expansion in multiple variables, as well as understanding
how to classify the different sorts of critical points that can happen for a function of multiple variables.

Recap: The single-variable case

In principle this is a recap, but in practice it may very well be the first time you see this. Let us understand
the idea of a Taylor series expansion. Suppose that we have a smooth function of a single variable 𝑥
(that is infinitely differentiable at a point 𝑎).

The Taylor series expansion tries to find a polynomial expression that approximates the function in the
neighbourhood of 𝑎. The higher the order of polynomial we choose the better the approximation can be,
and the further we can get from 𝑥 = 𝑎 while still having a reasonable approximation. In order to derive
the general form for these polynomials, suppose that such a thing exists and has the form

𝑓(𝑥) ≈ 𝑃𝑛(𝑥) = 𝑐0 + 𝑐1(𝑥 − 𝑎) + 𝑐2(𝑥 − 𝑎)2 + 𝑐3(𝑥 − 𝑎)3 + … + 𝑐𝑛(𝑥 − 𝑎)𝑛.

That is we are taking a polynomial of order 𝑛 to approximate the function 𝑓(𝑥). If |𝑥 − 𝑎| ≪ 1 then the
approximation should improve as we increase 𝑛 (the condition for this is known as Taylor’s Theorem which
we won’t discuss in this course).

Before showing you how to find the 𝑐’s, I feel I should address the basic philosophical question: why on
earth would you want to do this? In full honesty this is one of the most useful things we will learn in
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this course. The reason is that generally if you are trying to solve a real-life problem of any sort, the
kinds of 𝑓(𝑥) that you get are just insanely hideous and impossible to work with. On the other hand, if
it can be well approximated by a polynomial, usually you can make some progress. It is not a terrible
oversimplification to say that the vast majority of physics consists of solving a system where only 𝑐1 and
𝑐2 are nonzero (which you can usually do), and then spending your entire career trying to figure out how
to put back 𝑐3.

Returning to mathematics: what are the values of the coefficients 𝑐𝑘? If 𝑃𝑛(𝑥) is to be an approximation
to 𝑓(𝑥) near 𝑥 = 𝑎, then the very least we might expect is that 𝑃𝑛(𝑎) = 𝑓(𝑎), i.e. that they agree when
𝑥 = 𝑎. But 𝑃𝑛(𝑎) = 𝑐0, so we set the constant 𝑐0 = 𝑓(𝑎). In a similar way, it is reasonable to expect that,
for 𝑃𝑛(𝑥) to be a good approximation to 𝑓(𝑥) near 𝑥 = 𝑎, all of the derivatives (up to the 𝑛th) of these
functions must agree when 𝑥 = 𝑎. For the first derivative, this means that

𝑐1 = 𝑃 ′
𝑛(𝑎) = 𝑓 ′(𝑎),

and continuing in this fashion we find that

𝑐𝑘 = 1
𝑘!

d𝑘𝑃𝑛
d𝑥𝑘 ∣

𝑥=𝑎

= 1
𝑘!

d𝑘𝑓
d𝑥𝑘 ∣

𝑥=𝑎

, 𝑘 ∈ {1, 2, … , 𝑛}.

Note that it is often convenient to write 𝑓 (𝑘)(𝑥) as a shorthand notation for the 𝑘th derivative of 𝑓(𝑥) (since
the ′ notation gets messy for higher-order derivatives), and with this notation we can write 𝑐𝑘 = 1

𝑘!𝑓
(𝑘)(𝑎)

for all 𝑘 ∈ {1, 2, … , 𝑛}.

Definition

If a function 𝑓(𝑥) is 𝑛-times differentiable at a point 𝑎 ∈ ℝ, then the degree-𝑛 polynomial

𝑃𝑛(𝑥) = 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓″(𝑎)
2

(𝑥 − 𝑎)2 + 𝑓‴(𝑎)
3!

(𝑥 − 𝑎)3 + ⋯ + 𝑓 (𝑛)(𝑎)
𝑛!

(𝑥 − 𝑎)𝑛

= 𝑓(𝑎) +
𝑛

∑
𝑘=1

𝑓 (𝑘)(𝑎)
𝑘!

(𝑥 − 𝑎)𝑘

is called the Taylor polynomial of degree 𝑛 for 𝑓(𝑥) around 𝑎 ∈ ℝ and, for 𝑥 near 𝑎 (i.e.|𝑥 − 𝑎| ≪ 1),
we have (Taylor’s Theorem)

𝑓(𝑥) ≈ 𝑃𝑛(𝑥).

If 𝑓(𝑥) is infinitely differentiable at 𝑥 = 𝑎, then the Taylor series expansion of 𝑓(𝑥) around 𝑎 ∈ ℝ is
the infinite series

𝑇𝑓,𝑎(𝑥) = 𝑓(𝑎) +
∞

∑
𝑘=1

𝑓 (𝑘)(𝑎)
𝑘!

(𝑥 − 𝑎)𝑘.

It is tempting to believe that, by letting 𝑛 go to infinity and, hence, getting better and better approximations,
we should end up in a situation where the Taylor series expansion is equal to the function itself (near 𝑎),
i.e. that we should obtain an equality 𝑓(𝑥) = 𝑇𝑓,𝑎(𝑥) near 𝑎. While this is true in many familiar settings,
it is not true in general, as we shall see below. Functions 𝑓(𝑥) which are equal to their Taylor series
expansions (around a point 𝑎) are said to be real analytic.

The Taylor series expansion 𝑇𝑓,𝑎(𝑥) around 𝑥 = 𝑎 of a function 𝑓(𝑥) will always converge for at least one
value of 𝑥, since 𝑇𝑓,𝑎(𝑎) = 𝑓(𝑎). If there exists some number 𝑅 > 0 such that 𝑇𝑓,𝑎(𝑥) converges for every
𝑥 ∈ (𝑎 − 𝑅, 𝑎 + 𝑅) (i.e. for every 𝑥 ∈ ℝ such that |𝑥 − 𝑎| < 𝑅), then we say that 𝑇𝑓,𝑎(𝑥) has radius of
convergence 𝑅.
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(NB: All the coefficients in the Taylor polynomial and Taylor series are numbers obtained from evaluating
the derivatives of 𝑓(𝑥) at 𝑥 = 𝑎. The end result should involve only summations of scalar multiples of
terms of the form (𝑥 − 𝑎)𝑘. If you ever find yourself writing anything other than such terms (e.g. 𝑒𝑥 or
sin 𝑥) when computing the Taylor polynomial or Taylor series, then this is not the right idea.)

Examples

We would like to approximate the infinitely differentiable function 𝑓(𝑥) = 𝑒𝑥 around 𝑥 = 0 (i.e. 𝑎 = 0).
Observe first that, since 𝑓 (𝑛)(𝑥) = 𝑒𝑥 for every 𝑛 ∈ ℕ = {1, 2, 3, … }, we have 𝑓 (𝑛)(0) = 1 for all ∈ ℕ.
Then the Taylor polynomial of degree 𝑛 for 𝑒𝑥 around 𝑥 = 0 is

𝑃𝑛(𝑥) = 1 + 𝑥 + 𝑥2

2
+ 𝑥3

3!
+ ⋯ + 𝑥𝑛

𝑛!
,

while the Taylor series expansion of 𝑒𝑥 around 𝑥 = 0 is

𝑇𝑓,0(𝑥) =
∞

∑
𝑘=0

𝑥𝑘

𝑘!
.

It is a fact (and, indeed, in some places this is used as the definition of the exponential function)
that, in this case, we have

𝑒𝑥 =
∞

∑
𝑘=0

𝑥𝑘

𝑘!

for all 𝑥 ∈ ℝ (so 𝑒𝑥 is a real analytic function and its Taylor series has radius of convergence ∞).

� Try it out

Let 𝑓(𝑥) = sin 𝑥 around 𝑥 = 0. Then 𝑓(0) = sin 0 = 0, 𝑓 ′(0) = cos 0 = 1,𝑓″(0) = − sin 0 = 0,
𝑓‴(0) = − cos 0 = −1, 𝑓 (4)(0) = sin 0 = 0 and so on. Thus, for each 𝑛 ∈ ℕ and for 𝑥 near 0 we have

sin 𝑥 ≈ 𝑥 − 𝑥3

3!
+ 𝑥5

5!
− ⋯ + (−1)𝑛 𝑥2𝑛+1

(2𝑛 + 1)!
.

It can once again be shown that sin 𝑥 is equal to its Taylor series expansion around 0, so that

sin 𝑥 =
∞

∑
𝑘=0

(−1)𝑘𝑥2𝑘+1

(2𝑘 + 1)!

for all 𝑥 ∈ ℝ.
To illustrate how the Taylor polynomials around 𝑥 = 0 approximate sin 𝑥, here is an image showing
the Taylor polynomial of degree 61 for sin 𝑥 (the red curve), together with sin 𝑥 itself (the blue dashed
curve).
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Figure 3.1: image

Similarly, it can be shown that the following functions equal their Taylor series expansions:

cos 𝑥 =
∞

∑
𝑘=0

(−1)𝑘𝑥2𝑘

(2𝑘)!
for all 𝑥 ∈ ℝ,

log(1 + 𝑥) =
∞

∑
𝑘=1

(−1)𝑘+1𝑥𝑘

𝑘
for all 𝑥 ∈ ℝ with |𝑥| < 1,

1
1 − 𝑥

=
∞

∑
𝑘=0

𝑥𝑘 for all 𝑥 ∈ ℝ with |𝑥| < 1.

In the latter two cases, the radius of convergence of the Taylor series is 1 (think about what happens
if you choose a particular 𝑥 ∈ {±1}, i.e. |𝑥| = 1, in each case), which coincides with the fact that the
functions themselves are undefined for certain values of 𝑥.

� Try it out

The function

𝑓(𝑥) = {
𝑒− 1

𝑥2 , if 𝑥 ≠ 0,
0 if 𝑥 = 0,

is infinitely differentiable at 𝑥 = 0, with 𝑓 (𝑘)(0) = 0 for all 𝑘 ∈ ℕ. Therefore, the Taylor series
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expansion of 𝑓(𝑥) around 𝑥 = 0 is the constant zero function 𝑇𝑓,0(𝑥) ≡ 0. Since 𝑓(𝑥) ≠ 0 whenever
𝑥 ≠ 0, by definition, it follows that

𝑓(𝑥) ≠ 𝑇𝑓,0(𝑥),

except at 𝑥 = 0. Nevertheless, if you look at the graph of 𝑓(𝑥), you will see that the Taylor series
expansion 𝑇𝑓,0(𝑥) ≡ 0 is a very, very good approximation of 𝑓(𝑥) near 𝑥 = 0.

Critical points in 1 dimension

A “critical point” is the generic name for an extreme point in the system.

Definition

Let 𝑓(𝑥) be a differentiable function of one variable. A point 𝑎 ∈ ℝ is a critical point of 𝑓(𝑥) if

d𝑓
d𝑥

(𝑎) = 0 (i.e. 𝑓 ′(𝑎) = 0).

A critical point 𝑎 can be of one of three types:

• a (local) minimum (and stable) if 𝑓(𝑥) > 𝑓(𝑎) for all 𝑥 near 𝑎 (𝑥 ≠ 𝑎);

• a (local) maximum (and unstable) if 𝑓(𝑥) < 𝑓(𝑎) for all 𝑥 near 𝑎 (𝑥 ≠ 𝑎);

• an inflection point, if it is neither a (local) maximum nor a (local) minimum.

We can use the Taylor polynomial/series to help determine which types of critical point we have.

Before doing this, perhaps it is helpful to indicate where the terminology “stable” and “unstable” comes
from – this is from physics.

Examples

Let 𝑉 (𝑥) be the potential energy at position 𝑥 ∈ ℝ, and suppose that 𝑥(𝑡) is the position of a particle
at time 𝑡. Recall that the force 𝐹 due to the potential energy satisfies the equation

𝐹(𝑥) = −d𝑉
d𝑥

and, from Newton’s Second Law, we have that 𝑥(𝑡) satisfies

𝑚d2𝑥
d𝑡2 = 𝐹(𝑥(𝑡)) .

Consider the graph of the potential energy 𝑉. We can think of the position 𝑥(𝑡) as telling us how we
move along the 𝑥-axis, and then we can imagine following the graph of 𝑉 to understand the behaviour
of the potential energy of the particle as time evolves. Observe now that the two equations above
tell us that, at each time 𝑡, there is a force 𝐹(𝑥(𝑡)) on the particle induced by the potential energy
𝑉 (𝑥(𝑡)) which points down the slope of the graph of 𝑉.
Let 𝑥0 = 𝑥(𝑡0) be a critical point of 𝑉 (so that 𝐹(𝑥0) = 0) and consider what happens if the position of
the particle is perturbed slightly away from 𝑥0. If 𝑥0 is a local maximum of 𝑉, then this perturbation
will cause the corresponding point on the graph to roll “down the hill” away from the top. If we look
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at the 𝑥-axis while this is happening, we see that the force 𝐹 induced on the particle pushes it away
from the position 𝑥0, never to return; that is, the position 𝑥0 is an unstable equilibrium point. On
the other hand, if 𝑥0 is a local minimum of 𝑉, then the perturbation will cause the corresponding
point on the graph to oscillate a little and eventually return to its starting point. If we again look at
the 𝑥-axis while this is happening, we see that the force 𝐹 induced on the particle keeps pushing it
back towards the position 𝑥0 until it comes to rest; that is, the position 𝑥0 is a stable equilibrium
point.

� Try it out

Let 𝑓(𝑥) = cos 𝑥. It is easy to check that 𝑥 = 0 is a critical point of cos 𝑥. If we move a little away
from 𝑥 = 0 to 𝑥 = 0 + ℎ, we have (from the quadratic Taylor approximation to cos 𝑥)

cos(0 + ℎ) = cos ℎ ≈ 1 − ℎ2

2
.

Clearly, the ℎ2 term is always negative. Thus, if we go a little away from the critical point 𝑥 = 0,
the value of cos 𝑥 will always be less than 1, and we can conclude that cos 𝑥 has a local maximum at
𝑥 = 0.

In general, if 𝑓(𝑥) has a critical point at 𝑥 = 𝑎, then we have

𝑓(𝑥) ≈ 𝑓(𝑎) + 𝑓″(𝑎)
2

(𝑥 − 𝑎)2,

and we conclude that 𝑥 = 𝑎 is a local maximum if 𝑓″(𝑎) < 0 (even if we cannot be bothered to plot 𝑓),
and that 𝑥 = 𝑎 is a local minimum if 𝑓″(𝑎) > 0. Therefore, we can discover and classify the critical points
of a differentiable function 𝑓(𝑥) as follows.

• Find all points 𝑎 where 𝑓 ′(𝑎) = 0.

• Find the numerical value of 𝑃 = 𝑓″(𝑎).

• If 𝑃 < 0 it is a maximum, if 𝑃 > 0 it is a minimum. If 𝑃 = 0 we cannot conclude what type of
critical point it is, and we need more information.

An example where 𝑃 = 0 occurs at the cricial point 𝑥 = 0 of the function 𝑓(𝑥) = 𝑥4. Although 𝑓(𝑥) = 𝑥4

has a minimum at 𝑥 = 0, we have 𝑃 = 𝑓″(0) = 0. On the other hand, 𝑥 = 0 is also a critical point of the
function 𝑔(𝑥) = 𝑥3 and, again, 𝑃 = 𝑔″(0) = 0, but in this case 𝑔(𝑥) has an inflection point at 𝑥 = 0.

Back to SMB Term 2.…

3.2.1 Multivariate Taylor expansions

Let me first slightly rephrase the Taylor series as a function of ℎ, the displacement from 𝑥 = 𝑎:

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ𝑓 ′(𝑎) + ℎ2

2!
𝑓″(𝑎) + …

We can also write it as an operator equation using the fact that, as we just saw, 𝑒𝐴 = 1 + 𝐴 + 𝐴2

2! + …

𝑓(𝑎 + ℎ) = 𝑒ℎ d
d𝑥 𝑓(𝑥)|𝑥=𝑎 .
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This last equation makes it obvious how to generalise: a function of two variables expanded about
(𝑥, 𝑦) = (𝑎, 𝑏) can be found by first expanding about 𝑥 = 𝑎 and then about 𝑦 = 𝑏; doing this explicitly we
first get

𝑓(𝑎 + ℎ, 𝑏 + 𝑘) = 𝑓(𝑎, 𝑏 + 𝑘) + ℎ𝑓𝑥(𝑎, 𝑏 + 𝑘) + ℎ2

2!
𝑓𝑥𝑥(𝑎, 𝑏 + 𝑘) + …

Next we approximate 𝑓(𝑎, 𝑏 + 𝑘) and the derivatives in 𝑥, by in turn expanding them as Taylor series in 𝑦
about 𝑦 = 𝑏. That is

𝑓(𝑎, 𝑏 + 𝑘) = 𝑓(𝑎, 𝑏) + 𝑘𝑓𝑦(𝑎, 𝑏) + 𝑘2

2!
𝑓𝑦𝑦(𝑎, 𝑏) …

𝑓𝑥(𝑎, 𝑏 + 𝑘) = 𝑓𝑥(𝑎, 𝑏) + 𝑘𝑓𝑥𝑦(𝑎, 𝑏) + …
𝑓𝑥𝑥(𝑎, 𝑏 + 𝑘) = 𝑓𝑥𝑥(𝑎, 𝑏) + 𝑘𝑓𝑥𝑥𝑦(𝑎, 𝑏) + …

Keeping terms up to quadratics (obviously we can extend but it gets a bit laborious) we have:

Definition

The Taylor expansion of 𝑓(𝑥, 𝑦) in two dimensions, up to quadratic terms, is:

𝑓(𝑎 + ℎ, 𝑏 + 𝑘) = 𝑓 + ℎ𝑓𝑥 + 𝑘𝑓𝑦 + 1
2

(ℎ2𝑓𝑥𝑥 + 2ℎ𝑘𝑓𝑥𝑦 + 𝑘2𝑓𝑦𝑦) + ... (3.4)

with the understanding that 𝑓 and all its derivatives on the right-hand side are evaluated at (𝑎, 𝑏).

I now present an alternative way to arrive at this formula, which may or may not help you in understanding
it. This form uses the operator understanding of the Taylor expansion. That is

𝑓(𝑎 + ℎ, 𝑏 + 𝑘) = 𝑒ℎ𝜕𝑥𝑒𝑘𝜕𝑦𝑓(𝑥, 𝑦)|𝑥=𝑎,𝑦=𝑏

= 𝑒ℎ𝜕𝑥+𝑘𝜕𝑦𝑓(𝑥, 𝑦)|𝑥=𝑎,𝑦=𝑏

= (1 + ℎ𝜕𝑥 + 𝑘𝜕𝑦 + 1
2

(ℎ𝜕𝑥 + 𝑘𝜕𝑦)2 + …) 𝑓(𝑥, 𝑦)|𝑥=𝑎,𝑦=𝑏

= 𝑓 + ℎ𝑓𝑥 + 𝑘𝑓𝑦 + 1
2

(ℎ2𝑓𝑥𝑥 + 2ℎ𝑘𝑓𝑥𝑦 + 𝑘2𝑓𝑦𝑦) + ...

Note that we have arrived at the same result. This approach is powerful but we will not use it too much in
these lectures. As an aside, it is worth mentioning that the reason that we can combine the exponentials
trivially, 𝑒ℎ𝜕𝑥𝑒𝑘𝜕𝑦 ≡ 𝑒ℎ𝜕𝑥+𝑘𝜕𝑦 , is that the operators in the exponent “commute”, by which we mean that
it doesn’t matter which way round they go, namely 𝜕𝑥𝜕𝑦 = 𝜕𝑦𝜕𝑥. This is thanks to Clairault’s theorem
again.

Note that in a space of variables x = (𝑥1, … , 𝑥𝑛) we can write the expansion of 𝑓 at x = x0 + h as

𝑓(x0 + h) = 𝑒h.∇𝑓|x0
.

� Try it out

Compute the Taylor polynomial ofcos(𝑥 + 𝑦) about (0,0) up to and including quadratic terms
Answer:
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In the above we have 𝑎 = 0 = 𝑏 and ℎ = 𝑥 and 𝑘 = 𝑦: so we have

𝑓 = cos(𝑥 + 𝑦)
𝑓𝑥 = 𝑓𝑦 = − sin(𝑥 + 𝑦)

𝑓𝑥𝑥 = 𝑓𝑥𝑦 = 𝑓𝑦𝑦 = − cos(𝑥 + 𝑦).

Then
𝑓(𝑥, 𝑦) = 𝑓 + 𝑥𝑓𝑥 + 𝑦𝑓𝑦 + 1

2
(𝑥2𝑓𝑥𝑥 + 2𝑥𝑦𝑓𝑥𝑦 + 𝑦2𝑓𝑦𝑦)|0,0

= 1 − 1
2

(𝑥 + 𝑦)2 + ...

Note this is slightly trivial since we could have just expanded 𝑧 = 𝑥 + 𝑦.

� Try it out

For 𝑓(𝑥, 𝑦) = log(𝑥 + 2𝑦), find the Taylor expansion about (1,0).
In the above notation we can take 𝑎 = 1, 𝑏 = 0, ℎ = 𝑥 − 1 and 𝑘 = 𝑦. We have

𝑓|(1,0) = log(𝑥 + 2𝑦)|(1,0) = 0

𝑓𝑥|(1,0) = 1
𝑥 + 2𝑦

|(1,0) = 1

𝑓𝑥𝑥|(1,0) = − 1
(𝑥 + 2𝑦)2 |(1,0) = −1

𝑓𝑦|(1,0) = 2
𝑥 + 2𝑦

|(1,0) = 2

𝑓𝑦𝑦|(1,0) = − 4
(𝑥 + 2𝑦)2 |(1,0) = −4

𝑓𝑥𝑦|(1,0) = − 2
(𝑥 + 2𝑦)2 |(1,0) = −2,

so that
𝑓(𝑥, 𝑦) = (𝑥 − 1) + 2𝑦 − 1

2
((𝑥 − 1)2 + 4(𝑥 − 1)𝑦 + 4𝑦2) + ...

= 𝑧 − 𝑧2

2
+ ... [𝑧 = 𝑥 + 2𝑦 − 1].

Again, we could have done this more simply. This is because we can combine all of the functional
dependence of the function into a single variable 𝑧.

� Try it out

Given 𝑓(𝑥, 𝑦) = 𝑦𝑒𝑥𝑦, find the Taylor expansion of 𝑓 about (2,3).
Answer:
This finally cannot be done so simply. Here we have 𝑎 = 2, 𝑏 = 3, ℎ = 𝑥 − 2 and 𝑘 = 𝑦 − 3.
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Hence we have
𝑓|(2,3) = 𝑦𝑒𝑥𝑦 = 3𝑒6

𝑓𝑥|(2,3) = 𝑦2𝑒𝑥𝑦|(2,3) = 9𝑒6

𝑓𝑥𝑥|(2,3) = 𝑦3𝑒𝑥𝑦|(2,3) = 27𝑒6

𝑓𝑦|(2,3) = 𝑒𝑥𝑦 + 𝑥𝑦𝑒𝑥𝑦|(2,3) = 7𝑒6

𝑓𝑦𝑦|(2,3) = (2𝑥𝑒𝑥𝑦 + 𝑥2𝑦𝑒𝑥𝑦) |(2,3) = 16𝑒6

𝑓𝑥𝑦|(2,3) = (2𝑦𝑒𝑥𝑦 + 𝑥𝑦2𝑒𝑥𝑦) |(2,3) = 24𝑒6 .

So then

𝑓(𝑥, 𝑦) = 𝑒6 [ 3 + 9(𝑥 − 2) + 7(𝑦 − 3)

+ 1
2

(27(𝑥 − 2)2 + 48(𝑥 − 2)(𝑦 − 3) + 16(𝑦 − 3)2) .

Suggested questions: Q10-12.

3.3 Critical points

Recap of 1-dimensional case

The critical points of a function 𝑓 ∶ ℝ → ℝ are all the points with 𝑓𝑥 = 0. If 𝑓𝑥𝑥 > 0 it is a local minimum.
If 𝑓𝑥𝑥 < 0 it is a local maximum. If 𝑓𝑥𝑥 = 0 (e.g. 𝑓 = 𝑥4 at 𝑥 = 0) more analysis is needed.

3.3.1 2-dimensional case

We wish to generalise this to find critical points, and say whether they are local maxima, minima, or
saddle-points in 2 or more dimensions. A critical point is a point at which both 𝑓𝑥 = 0 and 𝑓𝑦 = 0. Or
equivalently, ∇𝑓 = 0.

Examples

1: 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2.
The graph of 𝑧 = 𝑓(𝑥, 𝑦) is a parabolic cylinder.

𝑓𝑥 = 2𝑥 ; 𝑓𝑦 = 2𝑦

The point (0,0) is the only critical point. Before getting into fancy definitions, it already seems clear
that this critical point is a minimum.
2: 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2.
The graph of 𝑧 = 𝑓(𝑥, 𝑦) is a saddle – it is a critical point, but it is neither a maximum, nor a
minimum!

𝑓𝑥 = 2𝑥 ; 𝑓𝑦 = −2𝑦

The point (0,0) is the only critical point. It is quite clear from the functional form that it increases
away from origin for fixed 𝑦 but decreases for fixed 𝑦.
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Distinguishing local maxima and minima using the Taylor expansion:

Let us now be somewhat more formal.

Definition

• A point (𝑎, 𝑏) is said to be a local maximum if 𝑓(𝑎, 𝑏) > 𝑓(𝑥, 𝑦) for all points (𝑥, 𝑦) in a
sufficiently small neighbourhood surrounding (𝑎, 𝑏).

• A point (𝑎, 𝑏) is said to be a local minimum if 𝑓(𝑎, 𝑏) < 𝑓(𝑥, 𝑦) for all points (𝑥, 𝑦) in a
sufficiently small neighbourhood surrounding (𝑎, 𝑏).

Critical points where neither of the two above criteria are true – i.e. a critical point that is neither a
maximum nor a minimum – are called “saddle points”, based on the intuition above.

We can use the Taylor expansion about (𝑎, 𝑏) to tell us about the nature of the point there. To simplify
things call ℎ = 𝑥 − 𝑎 and 𝑘 = 𝑦 − 𝑏 and call

𝑃 = 𝑓𝑥𝑥(𝑎, 𝑏)
𝑄 = 𝑓𝑥𝑦(𝑎, 𝑏)
𝑅 = 𝑓𝑦𝑦(𝑎, 𝑏).

Then using the Taylor expansion, we can write

𝑓(𝑥, 𝑦) = 𝑓(𝑎, 𝑏) + ℎ𝑓𝑥(𝑎, 𝑏) + 𝑘𝑓𝑦(𝑎, 𝑏) + 1
2

(ℎ2𝑃 + 2ℎ𝑘𝑄 + 𝑘2𝑅) + …

A necessary condition for a local maximum, local minimum or saddle point is that 𝑓𝑥 = 𝑓𝑦 = 0.

The test for what sort of critical point it is:

� Key idea

Let 𝑀 = 𝑃𝑅 − 𝑄2 = 𝑓𝑥𝑥(𝑎, 𝑏)𝑓𝑦𝑦(𝑎, 𝑏) − 𝑓𝑥𝑦(𝑎, 𝑏)2.

• If 𝑀 > 0 and 𝑃 = 𝑓𝑥𝑥(𝑎, 𝑏) > 0 then we have a local minimum.

• If 𝑀 > 0 and 𝑃 = 𝑓𝑥𝑥(𝑎, 𝑏) < 0 then we have a local maximum.

• If 𝑀 < 0 then we have a saddle point.

• If 𝑀 = 0 then the test is inconclusive.

Proof: From the Taylor expansion, the value of the function near (𝑎, 𝑏) can be approximated by a quadratic
polynomial (whose linear term vanishes because (𝑎, 𝑏) is a critical point):

𝑓(𝑎 + ℎ, 𝑏 + 𝑘) ≈ 𝑓(𝑎, 𝑏) + 1
2𝑃

(ℎ2𝑃 2 + 2ℎ𝑘𝑄𝑃 + 𝑘2𝑅𝑃)

= 𝑓(𝑎, 𝑏) + 1
2𝑃

((ℎ𝑃 + 𝑘𝑄)2 + 𝑘2𝑀).

If 𝑃 > 0 and 𝑀 > 0 then 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎, 𝑏) > 0 and 𝑓(𝑎, 𝑏) is a minimum. If 𝑃 < 0 then the reverse
is true. If 𝑀 < 0 then for some values of ℎ, 𝑘 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎, 𝑏) is positive and for others it’s negative;
thus we have a saddle point.
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� Try it out

Find and classify the critical point(s) of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2.
Answer:
The graph of 𝑧 = 𝑓(𝑥, 𝑦) is a bowl, with a minimum at 𝑥 = 𝑦 = 0. The partial derivatives are

𝑓𝑥 = 2𝑥, 𝑓𝑦 = 2𝑦,

so
𝑓𝑥𝑥 = 2 𝑓𝑦𝑦 = 2 𝑓𝑥𝑦 = 0.

Now 𝑀 = 2 × 2 − 0 = 4 with 𝑃 = 2 - so we do have a minimum!

� Try it out

Find and classify the critical point(s) of 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2

Answer:
Looking at the graph, we should find that (0, 0) is a saddle. We have

𝑓𝑥𝑥 = 2 𝑓𝑦𝑦 = −2 𝑓𝑥𝑦 = 0,

and then 𝑀 = −4 - as we’d expect!

� Try it out

Find and classify the critical point(s) of 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2 + 𝑦4 + 𝑥2𝑦2.
Answer:
First find where 𝑓𝑥 = 𝑓𝑦 = 0.

𝑓𝑥 = 2𝑥(1 + 𝑦2)
𝑓𝑦 = 2𝑦(𝑥2 + 2𝑦2 − 1)

𝑓𝑥𝑥 = 2(1 + 𝑦2)
𝑓𝑦𝑦 = 2(𝑥2 + 6𝑦2 − 1)
𝑓𝑥𝑦 = 4𝑥𝑦

Solving 𝑓𝑥 = 𝑓𝑦 = 0 gives 𝑥 = 0 and 𝑦 = 0,± 1√
2 (since 𝑦2 + 1 ≥ 1 then 𝑓𝑥 can only give 𝑥 = 0) so

have
(𝑥, 𝑦) = (0, 0) 𝑜𝑟 (0, 1√

2
) 𝑜𝑟 (0, − 1√

2
)

which I’ll label 𝐴, 𝐵 and 𝐶.

• At 𝐴 we have 𝑃 = 2, 𝑅 = −2, 𝑄 = 0 so 𝑀 = −4 and 𝐴 is a saddle

• At 𝐵 and 𝐶 we have 𝑃 = 3 ,𝑅 = 4, 𝑄 = 0 so 𝑀 = 12 > 0. Also 𝑃 > 0 so that 𝐵, 𝐶 are minima.

� Try it out

Investigate the critical point(s) of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 𝑥𝑦 − 𝑥 + 𝑦.
Answer:
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First we find where 𝑓𝑥 = 𝑓𝑦 = 0:
𝑓𝑥 = 2𝑥 + 𝑦 − 1
𝑓𝑦 = 2𝑦 + 𝑥 + 1.

We must have 𝑦 = 1 − 2𝑥, so 2 − 3𝑥 + 1 = 3 − 3𝑥 = 0; 𝑥 = 1 and 𝑦 = −1.
At the point (1, −1) we have

𝑀 = 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓2
𝑥𝑦

= 2 × 2 − 12 = 3 > 0.

Since 𝑃 > 0 we have a local minimum.

� Try it out

You are a box manufacturer. You need to make a rectangular box open at the top with a volume of
32𝑚3. What are the dimensions in order to make the surface area as small as possible?
Answer:
First write the expressions for the volume and surface area if the base width height are 𝑥, 𝑦, 𝑧;

𝑉 (𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧
̃𝑆(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 2𝑥𝑧 + 2𝑦𝑧.

Given 𝑉 (𝑥, 𝑦, 𝑧) = 32, we determine that 𝑧 = 32
𝑥𝑦 . Under this constraint, the surface area ̃𝑆 can be

rewritten as a function of two variables

𝑆(𝑥, 𝑦) = ̃𝑆(𝑥, 𝑦, 32
𝑧 ) = 𝑥𝑦 + 64

𝑦
+ 64

𝑥
.

The extrema of 𝑆(𝑥, 𝑦) occur where 𝑆𝑥 = 𝑆𝑦 = 0: that is, where

0 = 𝑆𝑥 = 𝑦 − 64
𝑥2 ,

0 = 𝑆𝑦 = 𝑥 − 64
𝑦2 .

Solving this gives 𝑥 = 𝑦 and then 𝑥3 = 64. Hence, 𝑥 = 𝑦 = (64) 1
3 = 4𝑚 and 𝑧 = 1

2(2𝑉 ) 1
3 = 2𝑚,

which yield a surface area 𝑆(4, 4) = 48𝑚2.
Our goal was to find the minimal surface area, so we need to look at the second derivatives of
𝑆(𝑥, 𝑦). We have 𝑆𝑥𝑥 = 2(64)

𝑥3 , 𝑆𝑦𝑦 = 2(64)
𝑦3 and 𝑆𝑥𝑦 = 1, so 𝑃 = 𝑆𝑥𝑥(4, 4) = 2, 𝑄 = 𝑆𝑥𝑦(4, 4) = 1 and

𝑅 = 𝑆𝑦𝑦(4, 4) = 2. Therefore, 𝑀 = 𝑃 𝑅 − 𝑄2 = 3 > 0 and 𝑃 > 0, so the surface area 𝑆(4, 4) = 48𝑚2

is indeed the minimum.

3.3.2 𝑛-dimensional case

Not examined: just for completeness.

We can generalise this to any number of dimensions. Let 𝑓 ∶ ℝ𝑛 → ℝ. Critical points are given by
∇𝑓(𝑎) = 0. To determine their nature, define the Hessian:

𝐻𝑖𝑗 = 𝜕2𝑓
𝜕𝑥𝑖 𝜕𝑥𝑗

.
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The Taylor expansion in 𝑛 dimensions near that point x = a is given by the following expression, which is
a generalization to multiple variables of Equation 3.4:

𝑓(x) =
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑎𝑖)
𝜕𝑓
𝜕𝑥𝑖 (a) + 1

2

𝑛
∑
𝑖,𝑗=1

𝐻𝑖𝑗(a)(𝑥𝑖 − 𝑎𝑖)(𝑥𝑗 − 𝑎𝑗)

At a critical point the first term vanishes. So to figure out what happens we need to understand the term
with the 𝐻𝑖𝑗. We now need to know a little bit of linear algebra – consider the 𝑛 eigenvalues of 𝐻𝑖𝑗. If
they are all positive (i.e. 𝐻𝑖𝑗 is positive definite) then it is a local minimum. All negative (i.e. 𝐻𝑖𝑗 is
negative definite) it is a maximum. If there are both positive and negative eigenvalues it is a saddle. Note

that in two dimensions we have 𝐻𝑖𝑗 = ( 𝑃 𝑄
𝑄 𝑅 ), and positive or negative definiteness is guaranteed by

𝑀 = det 𝐻 > 0, giving precisely the criteria specified above.

Suggested questions: Q8, Q13.
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