Q8 -> Q9 -> try Q3 maybe ()5

Question 8: Explain how to sample from the bivariate normal distribution for which the mean vector and variance-covariance matrix are respectively

$$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$$
 and $\begin{pmatrix} 25 & 15 \\ 15 & 13 \end{pmatrix}$

You may assume that you have a supply of randomly sampled numbers from Normal(0,1).

Question 9: Suppose that I want to generate values for two exponentially distributed random variables, $X \sim \operatorname{Exp}(2)$ and $Y \sim \operatorname{Exp}(5)$, which are not independent. I decide to use the Gaussian copula with $\rho = 0.8$ to model the dependence. Given that 1.2 and 0.2 are two random values from $\operatorname{Normal}(0,1)$, generate a random value for the pair (X,Y).

Question 1:

1. Suppose that R and Θ are independent and that R has the standard Rayleigh distribution with density

$$f(r) = r \exp\left(-rac{r^2}{2}
ight), \quad r \in \mathbb{R}$$

and Θ is uniformly distributed on $[0,2\pi)$. Write down the joint probability density function for (R,Θ) .

- 2. Let $X_1=R\cos\Theta$ and $X_2=R\sin\Theta$. Deduce the joint probability distribution for (X_1,X_2) and hence show that X_1 and X_2 are independent and that each has the standard normal distribution.
- 3. Based on item 2 and question 7 in Exercise List I, write down a simple algorithm to obtain two independent values from Normal(0,1) using two uniform (on [0,1]) random numbers U_1 and U_2 .

Question 3:

1. How can I use 3 standard normal values Z_1 , Z_2 and Z_3 to sample a random point uniformly distributed on the surface of the unit sphere?

2. Prove that the method works.

Hint: consider the joint probability density function of Z_1 , Z_2 and Z_3 .

3. Suggest two ways to sample a random point uniformly distributed on the interior of the unit sphere.

Question 4: Let X_1, \ldots, X_n be a random sample from the cumulative distribution function F. Let $X_{(n)}$ denote the maximum of the sample.

- 1. $X_{(n)}$ is itself a random variable. Express the cumulative distribution function of $X_{(n)}$ in terms of F.
- 2. If the generalised inverse F^{-1} of F is easily computed, show how to sample a value for $X_{(n)}$ using the inverse transform method.

Question 5: The unit simplex in \mathbb{R}^3 is the set of points (x_1,x_2,x_3) for which each $x_i\geq 0$ and $x_1+x_2+x_3=1$.

- 1. Show that the simplex is a subset of the set of points (x_1, x_2, x_3) for which $x_1 \in [0, 1]$, $x_2 \in [0, 1]$ and $x_3 = 1 x_2 x_2$. How could you easily sample a random point from this set? How could you turn that into a method to sample from the unit simplex?
- 2. A more direct way to sample a point uniformly distributed on the unit simplex is to observe that the $\ensuremath{\mathsf{emph}}$ for a sample of size 2 from Uniform(0,1) divide [0,1] into three pieces. Can you turn that into an algorithm to sample a point on the unit simplex? Can you prove that your method results in uniformly distributed values on the simplex?

Note: the order statistics for a sample X_1, \ldots, X_n are the same values but sorted in increasing order. A common notation is $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ where $X_{(1)} = \min(X_1, \ldots, X_n)$ and $X_{(n)} = \max(X_1, \ldots, X_n)$.

