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Chapter 7

Probability

7.1 Introduction to Probability

7.1.1 What is probability?

Probability is how we quantify uncertainty; it is the extent to which an event is likely to occur. We use it

to study events whose outcomes we do not (yet) know, whether this is because they have not happened

yet, or because we have not yet observed them.

We quantify this uncertainty by assigning each event a number between 0 and 1. The higher the probability

of an event, the more likely it is to occur.

Historically, the early theory of probability was developed in the context of gambling. In the seventeenth

century, Blaise Pascal, Pierre de Fermat, and the Chevalier de Méré were interested in questions like “If

I roll a six-sided die four times, how likely am I to get at least one six?” and “if I roll a pair of dice

twenty-four times, how likely am I to get at least one pair of sixes?” Many of the examples we’ll see in

this course still use situations like rolling dice, drawing cards, or sticking your hand into a bag lled with

dierently-coloured tokens.

Nowadays, probability theory helps us to understand how the world around us works, such as in the study

of genetics and quantum mechanics; to model complex systems, such as population growth and nancial

markets, and to analyse data, via the theory of statistics.
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We’ll see a bit of statistical theory at the end of this chapter, but will mostly stay on the probabilistic side

of that line.

7.1.2 Events

As we noted above, we use probability theory to describe scenarios in which we don’t know what the

outcome will be. We call these scenarios experiments or trials.

The set of all possible outcomes of an experiment is its sample space, . Subsets of  are called events,

and may contain several dierent outcomes.

Example 7.1.2.1 In the experiment in which we roll a single six-sided die, we have:

• The sample space is  = {1, 2, 3, 4, 5, 6}

• An example of a possible outcome is 5 (or “we roll a ve”)

• An example of an event is  = {2, 4, 6} (or “we roll an even number”).

Because events are subsets of the sample space, we can treat them as sets.

Set operations

There are three basic operations we can use to combine and manipulate sets. If  and  are events, then

• The event not , which we write  (the  is for complement), is the set of all outcomes in  which

are not in .

• The event  or , which we write  ∪  and call the union of  and , is the set of all outcomes

which are in at least one of  and .

• The event  and , which we write  ∩  and call the intersection of  and , is the set of all

outcomes which are in both  and .
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Figure 7.1: Some nice pictures illustrating: (a) , (b)  ∪ , (c)  ∩ , (d)  ⧵ .

Working with events

When we want to consider all the outcomes in an event  which are not in , we write  ∩  =  ⧵ .

We say that two events are disjoint (or incompatible, or mutually exclusive) if they cannot occur at the

same time; in other words, if  and  are disjoint, then  ∩  contains no outcomes.

We write  ∩  = ∅, and we call ∅ the empty set.

If every outcome in an event  is also in an event , we say that  is a subset of , and we write  ⊆ .

For example, since all Single Maths students are fans of probability,

{Single Maths students} ⊆ {Fans of probability}.
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people

probability fans

SMB

Figure 7.2: Notice that the circle of “probability fans“ takes up quite a lot of the state space.

The following set of basic rules will be helpful when working with events.

Commutativity:

 ∪  =  ∪ ,  ∩  =  ∩ 

Associativity:

( ∪ ) ∪  =  ∪ ( ∪ ), ( ∩ ) ∩  =  ∩ ( ∩ )

Distributivity:

( ∩ ) ∪  = ( ∪ ) ∩ ( ∪ ), ( ∪ ) ∩  = ( ∩ ) ∪ ( ∩ )

De Morgan’s laws:

( ∪ ) =  ∩ 
, ( ∩ ) =  ∪ 

For example, if  = {Dinner is on time} and  = {Dinner is delicious}, then

( ∩ ) = {Dinner is either late or disappointing},

and

( ∪ ) = {Dinner is both late and disappointing}.

7.1.3 Axioms of Probability

Once we have decided what our experiment (and hence our sample space) should be, we assign a proba-

bility to each event  ⊆ . This probability is a number, which we write ℙ().
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Remember that  is an event, which is a set, and that ℙ() is a probability, which is a number. It makes

sense to take the union of sets, or to add numbers together - but not the other way around!

We need a system of rules (the axioms) for how the probabilities are assigned, to make sure everything

stays consistent. There are lots of such systems, but wewill use Kolmogorov’s axioms, from 1933. There’s

no particular reason to choose one system over another, but these are a popular choice.

The axioms are:

1. The probability of any event is a real number in the interval [0, 1]: 0 ≤ ℙ() ≤ 1.

2. The probability that something in  happens is 1: ℙ() = 1.

3. If  and  are disjoint events, then ℙ( ∪ ) = ℙ() + ℙ().

We can use set operations to see some immediate consequences of the axioms:

• Since  and  are disjoint, we have ℙ() = ℙ() − ℙ() = 1 − ℙ().

• Impossible events have probability zero: ℙ(∅) = 0.

• For (not necessarily disjoint) events  and , we have ℙ( ∪ ) = ℙ() + ℙ() − ℙ( ∩ ).

• If  ⊆ , then ℙ() ≤ ℙ().

Suggested exercises: Q1 – Q10.

7.1.4 Counting principles

When our experiment has  outcomes, each of which is equally likely, then for any event  we have

ℙ() =
||


=
number of ways A can occur

total no. of outcomes
.

In this section, we look at some dierent ways to count the number of outcomes in an event, when the

events are more complex than, say, a roll of a die.

The multiplication principle

If our experiment can be broken down into  parts, in which
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• the rst part has 1 equally-likely outcomes

• the second part has 2 equally-likely outcomes

• ⋯

• the th part has  equally-likely outcomes,

then there are

1 × 2 ×⋯ ×  =

∏
=1



possible, equally-likely, outcomes for the whole experiment.

Example 7.1.4.1 • If there are four dierent routes from Newcastle to Durham, and three dierent

routes from Durham to York, how many dierent routes are there from Newcastle to York?

• If I toss six coins (1p, 2p, 5p, 10p, 15p, and 20p), how many dierent ways are there to get one

‘heads’ and ve ‘tails’?

• In general, sampling  times with replacement from  options gives  dierent possiblities.

Permutations

When we select  items from a group of size , in order and without replacement, we call the result a

permutation of size  from .

The number of permutations of size  from  is

 × ( − 1) ×⋯ × ( −  + 1) =
!

( − )!
.

A special case is when we want to arrange the whole list. Then, there are

 × ( − 1) ×⋯ × 1 =
!

0!
= !

dierent permutations.

Example 7.1.4.2 • How many dierent ways are there to arrange six books on a shelf?

• In a society with twenty members, which must choose one president and one secretary, how many

dierent ways can these roles be lled?

90



• If six (six-sided) dice are rolled, what is the probability that each of the numbers 1-6 appears exactly

once?

Combinations

When we select  items from a group of size , without replacement, but not in any particular order, then

we have a combination of size  from .

There are







=

(!)

( − )!!

dierent ways to choose a combination of size  from  objects.

Two useful ways of thinking about combinations:

• You might notice that






=




−


. This is because we can also look at the combination of items

we don’t pick. It’s much easier (psychologically, at least) to list the dierent ways to leave 3 cards

in the deck than it is to list the dierent ways to draw 49 cards!

• There is a relationship between combinations and permutations:

the number of combinations =
1

!
× the number of permutations.

This is because each combination counted when the order doesn’tmatter comes up ! dierent times

when the order does matter.

Example 7.1.4.3 1. How many dierent ways are there to form a subcommittee of eight people, from

a group of twenty?

2. If I have  points on the circumference of a circle, how many dierent triangles can I form with

vertices among these points?

Remember: If we’re allowed repeated values, the only tool we need is the multiplication principle.

If there can be no repeats (sampling without replacement), then we use permutations if the objects are

all distinct, and combinations if they are not. Usually if we’re dealt a hand of cards, or draw a bunch of

things out of a bag, then they’re indistinguishable. But if we’re rolling several dice, or assigning objects

to people, then we can (hopefully) tell the dice or people apart.
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You might nd the owchart in Figure 7.3 helpful.

Can we have repeats?

Does the order matter?

Use a permutation Use a combination

Use the

multiplication

principle

Figure 7.3: A decision-making owchart for permutations, combinations, and the multplication principle.

Multinomial coecients

When we want to separate a group of size  into  ≥ 2 groups of possibly dierent sizes, we use multi-

nomial coecients. If the group sizes are 1, 2,… , , with 1 + 2 +⋯ +  = , then the number of

dierent ways to arrange the groups is given by the multinomial coecient




1, 2,… , 


=

!

1!2!… !
.

To see how this works, think about choosing the groups in order. There are



1


ways to choose the rst

group; then, there are

−1

2


ways to choose the second group from the remaining objects. Continuing

like this until all the groups are selected, by the multiplication principle there are




1


×


 − 1
2


×


 − 1 − 2

3


×⋯ ×


−1 + 
−1


×







ways to choose all the groups. Writing each binomial coecient in terms of factorials, and doing (lots of

nice) cancelling, we end up with our expression for the multinomial coecient.
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Example 7.1.4.4 • In how many dierent (that is, distinguishable) ways can you arrange the letters

in STATISTICS?

• If you arrange the letters S,S,S,T,T,T,I,I,A,C in a random order, what is the probability that they

spell ‘Statistics’?

Suggested exercises: Q11 – Q17.

7.1.5 Conditional Probability and Bayes’ Theorem

Sometimes, knowing whether or not one event has occurred can change the probability of another event.

For example, if we know that the score on a die was even, there is a one in three chance that we rolled a

two (rather than one in six). Gaining the knowledge that our score is even aects how likely it is that we

got each possible score.

We write ℙ( ∣ ) for the conditional probability of , given ; it is dened by

ℙ( ∣ ) =
ℙ( ∩ )

ℙ()
.

We can rearrange this expression to get

ℙ( ∩ ) = ℙ( ∣ ) ℙ() = ℙ( ∣ ) ℙ(),

which leads to Bayes’ theorem:

ℙ( ∣ ) =
ℙ( ∣ )ℙ()

ℙ()
.

Writing conditional probabilities in this way allows us to “invert” them; quite often, one of ℙ( ∣ ) and

ℙ( ∣ ) is easier to spot than the other.

7.1.6 Independence

We say that two events are independent if the occurrence of one has no bearing on the occurrence of the

other, that is,

ℙ( ∣ ) = ℙ().

Example 7.1.6.1 • The scores obtained from rolling two separate dice are independent
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• Height and shoe size of people are usually not independent

• Lecture attendance and exam grades are not independent!

When events  and  are independent, we have

ℙ( ∩ ) = ℙ()ℙ().

7.1.7 Partitions

Suppose we can separate our state space into  disjoint events 1,2,… ,: we know that exactly one

of these events must happen. We call the collection {1,2,… ,} a partition, and we can use it to

break down the probabilities of dierent events  ⊆ .

First, we can write

 = ( ∩ 1) ∪ ( ∩ 2) ∪⋯ ∪ ( ∩ ),

so that

ℙ() = ℙ( ∩ 1) + ℙ( ∩ 2) +⋯ + ℙ( ∩ ).

We can also introduce conditional probability, to get the partition theorem:

ℙ() = ℙ( ∣ 1) ℙ(1) + ℙ( ∣ 2) ℙ(2) +⋯ + ℙ( ∣ ) ℙ().

The partition theorem is useful whenever we can break an event down into cases, each of which is straight-

forward.

Example 7.1.7.1 One of the most well-known (especially recently!) examples of the partition theorem is

in testing for diseases.

Suppose that a disease aects one in 10,000 people. We have a test for this disease which correctly

identies 90% of people who do have the disease (so gives false negatives to 10% of people with the

disease), and gives false positives to 1% of people who do not have the disease.

If a random person is tested, what is the probability that their test result is positive?

Given that the test result is positive, what is the probability that they have the disease?

Suggested exercises: Q18 – Q26.
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7.2 Random variables

A random variable is a variable which takes dierent numerical values, according to the dierent pos-

sible outcomes of an experiment.

Example 7.2.0.1 If the experiment is “toss four coins”, then some of the elements of the state space are

HHHH, HHHT, HHTH, HHTT,... . One random variable we can dene is

 = Number of heads.

Then if our outcome is HHTT, we have  = 2.

We say that a random variable is discrete if we can list its possible values, or continuous if it can take

any value in a range.

7.2.1 Discrete random variables

To dene a discrete random variable, we need to know its probability distribution, which is sometimes

called a probability mass function.

The probability distribution is often displayed in a table, which shows the dierent values  can take,

along with the associated probabilities:

values 1 2 . . . 

probabilities ℙ( = 1) ℙ( = 2) . . . ℙ( = )

In a probability distribution, the values must be non-negative and must sum to 1. To nd the probability

that  lies in an interval [, ], we have

ℙ( ≤  ≤ ) =
∑

≤≤
ℙ( = ).

Joint and marginal distributions

When we have two (or more) discrete random variables,  and  (and  and...), the joint probability

distribution is the table of every possible (, ) value for  and  , with the associated probabilities

ℙ( = ,  = ):

95



1 . . . 

1 ℙ( = 1,  = 1) . . . ℙ( = ,  = 1)

⋮ ⋮ ⋱ ⋮

 ℙ( = 1,  = ) . . . ℙ( = ,  = )

We can nd themarginal probability distributions of and  from the joint distribution, by summing

across the rows or columns:

ℙ( = ) =
∑


ℙ( = ,  = ),

ℙ( = ) =
∑


ℙ( = ,  = ).

Example 7.2.1.1 Let be the random variable which takes value 3 when a fair coin lands heads up, and

takes value 0 otherwise. Let  be the value shown after rolling a fair die. Write down the distributions

of , and  , and the joint distribution of (,  ). You may assume that  and  are independent. Use

your table to nd the probability that  >  .

7.2.2 Continuous random variables

When our random variable is continuous, we can’t describe it using a list of probabilities. Instead. we use

a probability density function (pdf), (). The pdf describes a curve over the possible values taken by

the random variable.

In a density function, the values must be non-negative and integrate to 1. To nd the probability that 

lies in an interval [, ], we have

ℙ( ≤  ≤ ) = ∫




().

Remember that the density () is not the same thing as ℙ( = ). In fact, for every , we have

ℙ( = ) = 0.

Another way of specifying the distribution of a continuous random variable is through its cumulative

distribution function, or cdf, given by

 () = ℙ( ≤ ) = ∫


−∞

().
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Joint and marginal distributions

When we have two (or more) continuous random variables,  and  (and  and...), we describe them

via their joint probability density function , (, ). As it is a density, , is non-negative, and must

integrate to 1. The probability that  and  are in a region  of the -plane is

ℙ((,  ) ∈ ) = ∫ ∫


, (, ).

We can nd themarginal probability distributions of and  from the joint distribution, by integrating

out one of the variables:

() = ∫
∞

−∞

, (, )

 () = ∫
∞

−∞

, (, ).

Example 7.2.2.1 Let  be a continuous random variable with probability density function:

() =

⎧⎪⎨⎪⎩

− for  > 0,

0 for  ≤ 0.

Check that () is a valid probability density function when  > 0. Find the cdf of , and hence

ℙ( > 3).

Suggested exercises: Q27 – Q32.

7.3 Expectation and Variance

While the probability distribution or probability density function tells us everything about a random vari-

able, this can often be too much information. Summaries of the distribution can be useful to convey

information about our random variable without trying to describe it in its entirity.

Summaries of a distribution include the expectation, the variance, the skewness and the kurtosis. In this

course, we’re only interested in the expectation, which tells us about the location of the distribution, and

the variance, which tells us about its spread.
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7.3.1 Expectation

The expectation of a random variable  is given by

[] =
∑


 ℙ( = ) or [] = ∫
ℝ

() .

The expectation is sometimes called the mean or the average of .

Properties of Expectation

Linearity: If  is a random variable and  and  are (real) constants, then

[ + ] = [] + .

Additivity: If 1,2,… , are random variables, then

[1 +2 +⋯ +] = [1] + [2] +⋯ + [].

Positivity: If  is a positive random variable (ℙ( ≥ 0) = 1), then [] ≥ 0.

Independence: If  and  are independent random variables, then

[ ] = [][ ].

Expectation of a function: If  is a random variable and  is a (nice1) function of , then

[()] =
∑


()ℙ( = )  [()] = ∫
ℝ

()().

7.3.2 Variance

For a random variable  with expectation [] = , the variance of  is given by

Var() = [( − )2].

By expanding out the brackets and using the linearity of the expectation, we can rewrite the variance as

Var() = [2] − []2.

1Here ‘nice’ actually means ‘measurable’. It’s possible to come up with functions  for which this doesn’t work; luckily for

us, they’re usually quite weird and we won’t run into any of them.
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The variance is always positive, because it is the expectation of a positive random variable. The standard

deviation is the square root of the variance:

() =
√
Var().

Properties of Variance

Linear combinations: If  is a random variable and  and  are (real) constants, then

Var( + ) = 2Var().

Independence: If  and  are independent random variables, then

Var( +  ) = Var() + Var( ).

Example 7.3.2.1 Let  be a continuous random variable with probability density function:

() =

⎧⎪⎨⎪⎩

− for  > 0,

0 for  ≤ 0.

What are the expectation and variance of ?

Example 7.3.2.2 Let  be a random variable with the following probability distribution:

 1 2 3

ℙ( = )
1

6

2

6

3

6

Find [], Var(), and 
[

1



]
.

Suggested exercises: Revisit Q30; Q33 – Q37.

7.4 The Binomial Distribution

The Bernoulli distribution is used to describe the following situation:

Our experiment consists of a xed number () of trials, which either succeeds with probability , or fails

with probability 1 − .

99



If is the number of successes (0 or 1), we say that has a Bernoulli distribution with parameter , and

we write  ∼ Bern().

The expectation and variance of  are:

[] = 

Var() = (1 − ).

Suppose we have  Bernoulli-style trials, which succeed or fail independently of each other. All trials

have the same probability  of succeeding. We count the total number of successes across all the trials.

If  is this total, we say that  has a Binomial distribution with parameters  and , and we write  ∼

Bin(, ).

If 0 ≤  ≤ , we have

ℙ( = ) =







(1 − )−.

This is because each conguration of  successes and −  successes has probability (1− )−, by the

multiplication principple; and there are






dierent ways of arranging the  successes and −  failures

among the trials.

Exercise: Check that the probabilities in the Binomial distribution:

• are all non-negative

• sum to 1.

The expectation and variance of  are:

[ ] = 

Var( ) = (1 − ).

If  ∼ Bin(, ) and  ∼ Bin(, ), and  and  are independent, then  +  ∼ Bin( + , ).

Example 7.4.0.1 • If I toss six coins, the total number of heads has a Bin(6,
1

2
) distribution.

• If each SMB student decides to skip a lecture with probability 0.2, then the number of students who

turn up has a Bin(195, 0.8) distribution (assuming you all decide independently of each other!)
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7.5 The Poisson Distribution

While the Binomial distribution is about counting successes in a xed number of trials, the Poisson dis-

tribution lets us count how many times something happens without a xed upper limit. This is useful in

a lot of real-world contexts, for example:

• the number of people who visit a website

• the number of yeast cells in a sample (such as in experiments by Gossett at Guinness in the 1920s)

• the number of particles emitted from a radioactive sample.

The Poisson distribution is used to model scenarios in which events happen randomly, independently, and

at a constant rate . If is the total number of these events that happen in a time period of length , then

 has a Poisson distribution with parameter  = , and we write  ∼ Po().

If  ∈ ℕ, we have

ℙ( = ) = −


!
.

Exercise: Check that the probabilities in the Poisson distribution:

• are all non-negative

• sum to 1.

The expectation and variance of  are

[] = Var() = .

If  ∼ Po() and  ∼ Po(), and  and  are independent, then  +  ∼ Po( + ).

7.5.1 Using the Poisson distribution to approximate the Binomial distribution

Instead of thinking about our time period [0, ] as one long interval, we can split it up into  smaller ones

(each one will have length



).

Supposewe count the number of sub-intervals inwhich events occur. If the sub-intervals are small enough,

it is very unlikely that there will be multiple events in any of them, and the probability that there is one
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event will be  ≈



=




.

We can view the sub-intervals as  independent trials, and the total number of successes becomesBinomially-

distributed.

This is a good approximation because the probabilities in the Binomial and Poisson distributions are

similar:










 
1 −





−

=
( − 1)… ( −  + 1)

!
×



×

1 −





−

=
( − 1)… ( −  + 1)


×

1 −





−

×


!

≈ 1 × − ×


!
,

as long as  is big enough.

This approximation is good if  ≥ 20 and  ≤ 0.05, and excellent if  ≥ 100 and  ≤ 10. It is useful

because calculating − is often computationallymuchmore ecient than calculating






, especially when

 is large!

Suggested exercises: Revisit Q38 – Q41.

7.6 The Normal Distribution

Unlike the Binomial and Poisson distributions, the Normal (or Gaussian) distribution is continuous. It is

one of the most used (and most useful) distributions. Random variables whose “large-scale” randomness

comes frommany small-scale contributions is usually Normally distributed: for example, people’s heights

are determined by many dierent genetic and environmental factors. All of these dierent factors have

tiny impacts on your nal height; overall, the distribution of the height of a random person is roughly

Normal.

7.6.1 The standard Normal distribution

The rst version of the Normal distribution we will meet is the standard Normal. We say that a random

variable  has a standard Normal distribution, and we write  ∼  (0, 1), if

() =
1√
2


−

2

2 ∀ ∈ ℝ.
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Properties of the standard Normal distribution

• The density of the Normal distribution is symmetric about 0; so the variables  and − have the

same distribution.

• This symmetry also means that () is an odd function; so the expectation of  is zero.

• The variance of  is

Var() = [2] − 0

= ∫
∞

−∞

2()

=
1√
2

∫
∞

∞

2
−

2

2 

= 1.

(You can nd this via integration by parts)

The cumulative distribution function for 

The cumulative distribution function for  is denoted Φ() and is given by

Φ() = ℙ( ≤ ) = ∫


−∞

1√
2


−

2

2 .

There is no neat (“algebraic”) expression forΦ(): in practice, when we need to evaluate it we use numer-

ical methods to get (usually very good) approximations. These values are traditionally recorded in tables

but usually, they’re built into computer software and some calculators.

Some useful properties of Φ(), which reduce the number of values we need in the tables, are:

• Because () is symmetric,

ℙ( ≤ ) = ℙ(− ≤ ) = ℙ( ≥ −);

so Φ() = 1 − Φ(−).

• We have Φ(0) =
1

2
.

• ℙ( ≤  ≤ ) = Φ() − Φ().
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Interpolation: When the value we need to nd isn’t in a table we have access to, we can interpolate. If

 ≤  ≤  and we know Φ() and Φ(), we approximate:

Φ() ≈ Φ() +
 − 

 − 
(Φ() − Φ()) .

For example, most Normal tables only go to two decimal places, but Φ(0.553) will be approximately

3∕10ths of the way between Φ(0.55) and Φ(0.56).

7.6.2 General Normal Distributions

We say that  has a Normal distribution with parameters  and 2, and we write  ∼  (, 2), if the

variable  =
−


has a standard Normal distribution.

We can also write this in the other direction:  ∼  (, 2) if  =  + . Since the distribution of 

is symmetric, we use the convention  > 0.

Properties of general Normal distributions

• The expectation of  is

[] = [ + ]

=  + []

=  + 0 = .

• The variance of  is

Var() = Var( + )

= 2Var()

= 2
.

• The density of  is

() =
1





 − 




=

1


√
2

exp

{
1

2


 − 



2
}

.
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• The cdf of  is given by

ℙ( ≤ ) = ℙ


 − 


≤  − 





= ℙ


 ≤  − 





= Φ

 − 




.

We can use the table for the standard Normal distribution to evaluate the cdf of any Normal distri-

bution, by using this transformation.

Example 7.6.2.1 1. If  ∼  (12, 25), what is ℙ( ≤ 3)?

2. If  ∼  (1, 4), what is ℙ(−1 <  < 2)?

7.6.3 Using the Normal distribution to approximate the Binomial and Poisson

distributions

Just as we can use the Poisson distribution to approximate specic probabilities in the Binomial distri-

bution, we can use the Normal distribution to approximate cumulative probabilities. If  is large and

 ∼ Bin(, ), then approximately we have  ∼  (, (1 − )).

In particular,

ℙ( ≤ ) ≈ Φ

(
 − √
(1 − 

)
.

This is a useful approximation when both  and (1− ) are at least 10; as the two values increase, the

approximation gets better.

Example 7.6.3.1 A machine produces  = 1500 gadgets every day. Each individual gadget is defective

with probability  = 0.02. Find (approximately) the probability that more than 40 of the items produced

in one day are defective.

Similarly, we can use the Normal distribution to approximate the cumulative probabilities in the Poisson

distribution: if  ∼ Po(), then approximately we have  ∼  (, ) and

ℙ( ≤ ) ≈ Φ

(
 − √



)
.
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This is a useful approximation when  is at least 5, and gets better as  increases.

Suggested exercises: Q42–45.

7.7 The Central Limit Theorem

7.7.1 Experimental errors

When we are measuring a quantity whose “true value” is , our measurement takes the form  =  + ,

where  is the experimental error. Before we do the experiment, we can think of both  and as random

quantities. Afterwards, is a xed and known quantity, and  and  are xed but unknown quantities (to

us). Our goal is to use  to infer something about .

Assumption: Wewill assume that there are no systematic errors or bias in the experiment; in other words,

[] = 0.

If the variance of  is Var() = 2, then

[] =  + [] =  + 0 = 

Var() = 0 + Var() = 2
.

This means that, on average, the value of our measurement is a good estimate of the value of ; however,

if the variance of  is large, our measurement will have quite a high probability of being far from the true

value.

To improve our estimate, we can do one of two things:

• try to improve our measurement technique, to reduce the variance

• take more measurements!

7.7.2 The sample mean

We take  independent random variables 1,2,… ,, which all have the same distribution – for ex-

ample, we might repeat our measurement  times, or sample  people from a large population. We say

that 1,2,… , are independent and identically distributed (i.i.d.).
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The sample mean is the average of the values 1,2,… ,:

̄ =
1



∑
=1

 .

Before we take our measurements, this is also a random variable; afterwards, it is just a number. To

distinguish between the two situations, we use ̄ for the random variable, and ̄ for the number.

Assumption: We assume that 1,2,… , are i.i.d. with shared mean  and variance 2.

Then

[̄] =
1



∑
=1

[] =



 = 

Var(̄) =
1

2

∑
=1

Var() =


2
2 =

2


.

So the expectation of the sample mean is always : we call it an unbiased estimator for the mean. On

the other hand, the variance is always smaller than 2, and decreases as we increase . By taking a large

enough sample size, we can get as small a variance as we want.

If  is large enough, the sample mean will give an accurate estimate for the true mean . This result is

called the Law of Large Numbers, which says that ̄ converges to  as  → ∞. (The word “converges”

here is hiding quite a lot of probability theory).

7.7.3 The Central Limit Theorem

We know that the sample mean will be quite close to the true value  on average. The Central Limit

Theorem tells us more about the distribution of the error.

Assumption: We assume that 1,2,… , are i.i.d. with shared mean  and variance 2.

Then the sample mean ̄ is approximately Normally-distributed with mean  and variance
2


.

In other words, the random variable

 =
̄ − 

∕
√


has approximately a Standard Normal distribution.
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Here, when we say that the distribution is approximately Normal, we mean that

ℙ( ≤ ̄ ≤ ) ≈ Φ

(
 − 

∕
√


)
− Φ

(
 − 

∕
√


)
,

whatever the values of  and .

Example 7.7.3.1 • If the random variables 1,2,… ,10 are independent, and all are uniformly

distributed on the interval [0, 1], use the Central Limit Theorem to estimate ℙ(
10

=1
 > 7).

• Amanufacturing process is designed to produce bolts with a 0.5cm diameter. Once a day, a random

sample of 36 bolts is selected and the diameters recorded. If the average of the 36 values is less

than 0.49cm or greater than 0.51cm, then the process is shut down for inspection and adjustment.

The standard deviation for individual diameters is 0.02cm. Find approximately the probability that

the line will be shut down unnecessarily (i.e., if the true process mean really is 0.5cm).

Suggested exercises: Q46–Q50.
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