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Abstract

In this paper, we study the moduli space of unipotent Weil-Deligne rep-
resentations and characterise which irreducible components are smooth.
We also study a certain class of unions of irreducible components, and
prove that they are Cohen-Macaulay at points (®,N) with @ regular
semisimple. We apply the smoothness results proved earlier to show that
a certain space of ordinary automorphic forms is a locally generically free
module over the corresponding global deformation ring.
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1 Introduction and overview

Let F be a local p-adic field. and let G be a connected reductive algebraic group
over F. The local Langlands conjectures (proven for G L, by Harris and Taylor
in [HT99]) stipulate the existence of a natural map, with finite fibres

{smooth irreducible representations of G(F)}  {L-parameters of G}
{isomorphism} {G — conjugacy}

Let I be a prime, different to p. Let L — Q; be an l-adic field, and O its ring of
integers, with residue field F. Note, that later, we will be interested in relaxing
O to a slightly more general context. In recent years, by work of [BG19], [Hel21],
[DHKM?20], [Zhu20] and [FS21], there has been great interest in studying the
properties of a moduli space of L-parameters Loc@’o and a closely related space,
the moduli space of framed L-parameters, Locg o- That is, an algebraic stack

over O, which is the the stackification of the preétack whose R-points (R an O-
algebra) are naturally identified with the G-conjugacy classes of L-parameters,
and a scheme whose R-points are the set of L-parameters respectively.

Locg o (R) = {L-parameters of G, with R-coefficients} /=~

L (R) = {L-parameters of G, with R-coefficients}

0(:270

These spaces ought to have certain nice properties. Firstly, (and trivially)
Locg o = [LOCDCJ,O/G]

is a quotient stack. Secondly, the (completions of) local rings of LOCDC’,’O

local Galois deformation rings. In this way, it is hoped to better understand

Galois deformation rings, which is a crucial ingredient in the Taylor-Wiles-Kisin

and Calegari-Geraghty patching methods.

To define an L-parameter, one needs the notion of an L-homomorphism. Let
Wr be the Weil group of the field F', and for G a connected reductive group let
G be the Langlands dual group. An L-homomorphism with R-coefficients is a
homomorphism p: Wg — “G(R) := G(R) x W, such that the projection onto
the second factor gives the identity map on Wg. In this paper, we reduce to
the case where the action of Wx on G is trivial (this occurs, for example, when
G is split), and so we may view L-homomorphisms as plain homomorphisms
Wr — G. Historically, there are multiple definitions of L-parameters, with
varying degrees of usefulness. We interest ourselves in the moduli space of
Bellovin and Gee [BG19] and make the following definition.
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Definition 1.1. A Langlands parameter is a Weil-Deligne representation (r,N),
where r: Wp — LG is an L-homomorphism with open kernel, and N is an el-

ement of Lie(G) such that for any g € Wg, Ad(g)N = |g|N, where |.| : Wg —
F* - R0 is the valuation on Wg coming from local class field theory.

It is known, as in Proposition 2.6 of [DHKM?20], that this definition works
well for characteristic 0. In positive characteristic [, we can still get a similar
result, for [ > hg and I-“G-banal. In this case, we will have an isomorphism
between our moduli space and the unipotent connected component of the moduli
space of tame parameters seen in [DHKM20], via the exponential and logarithm
maps.

By Lemma 2.1.3 of [BG19], this moduli problem can be represented by an
algebraic stack over Qy, Locg%l, which is a disjoint union of quotient stacks,
indexed by the inertial type of the Weil Deligne representation. The moduli
problem of framed L-parameters, Locg q,, can further be represented by an
infinite disjoint union of affine varieties, indexed similarly by the inertial type.

From now on until chapter 4, we will denote by O a regular local ring of
residue characteristic [ or 0. In this paper, we seek to understand the geometry
of the scheme studied in [Hel21]. This is a reduced affine scheme of finite type
S0, over the ring O, whose R-points (R an O-algebra) are given by

Sc.0(R) ={(®,N) € G(R) x g(R)[Ad(®)N = gN}.

This is naturally the space of framed unipotent Weil-Deligne representations
over O, with values in G (following Definition 2.1.2 of [BG19]). We will in par-
ticular be interested when O is the ring of integers in a finite extension of Qy,
because the mp-adic completion of the local rings, R, of the closed points of this
scheme can be interpreted as local Galois deformation rings, for sufficiently large
! (In fact, whenever the exponential and logarithm maps of Grothendieck’s I-adic
monodromy theorem exist). We also note, that via Theorem 4.5 of [DHKM20],
it is actually sufficient to study Sg g, for various groups G to understand the
geometry of any connected component of Loca@l, so by restricting to this unipo-
tent case, we do not lose generality in characteristic 0, or whenever this is the
correct object of study when [ is well behaved.

In sections 2 and 3, we provide a description given by Proposition 2.1 of
[Hel21] of the irreducible components of S, as follows. Let N < g be the
nilpotent cone inside the lie algebra g. Let

p:Sc.o >N

be the projection map onto the second factor. Let C' = A be a locally closed
subscheme such that the base change C;, < N7, is a G-conjugacy class inside
NL. (We note that, in the case of GL,, these can be characterised by partitions
of n and in this situation we will denote the conjugacy class corresponding
to A by Cx.) We remark, that because S¢ o is flat over O, the irreducible

components biject naturally with those of Sg . Then p=1(C) € Sg,0 is a
union of irreducible components of S¢ o (and in the case of G = GLy,, is itself



irreducible). All irreducible components arise in this way. In section 3, I expand
on and generalise the results of Bellovin [Bell6] section 7.2 and Proposition 7.10
I prove theorems 3.1 and 3.3 which state:

Theorem 1.2. 1. Let C. € N be the regular adjoint orbit, and Cy = {0} <
N be the zero conjugacy class, and let Xog = p~1(Cy) and X, = p~1(C,.) be
the respective irreducible components of Sq.0. Then X is smooth over O,
and X, is a disjoint union of wo(Z) smooth connected components, where

Z is the centre of G.

2. Further, in the case G = GL,, these are the only smooth irreducible com-
ponents of Sq.0

In section 4, we turn our interest to certain unions of the components of
Sn,0 = Sav,,0. We will, for each partition p of n, define X, := p_l(C'p).
These varieties arise naturally as the support of certain patched modules. In
this section, we conjecture that such varieties are Cohen-Macaulay, and prove
it for the following dense subset of points, noted in the following theorem.

Theorem 1.3. Let Xi);eg be the open subscheme of X<, whose points (P, N)
have ® regular semisimple. Then ngeg 1s Cohen-Macaulay. Further, the local
ring at P = (®,N) € ngeg is Gorenstein if and only if either:

e p=1+1+...+1, and so X, is the unramified component of S, o, or
o the inclusion X<p = Sy, 0 defines an isomorphism on stalks at P.

In addition, we also prove some partial results towards removing the condi-
tion of ®-regular semisimplicity.

In sections 5 and 6 of this paper, I apply the smoothness result of section 3
via the patching method, in a situation very similar to that studied in [Ger18].
Let [ be a prime and K a finite extension of Q; with ring of integers O. Let
F* be a totally real global number field, and consider an imaginary quadratic
extension F' of F*. The Galois representations considered will correspond to
certain Hida families of ordinary automorphic forms on a unitary algebraic group
Gp/F*, which is a unitary form of a unit group of a division algebra, D/F*.
We will define a certain space of Hida families of ordinary automorphic forms
ST (1), L/O),, for Gp with Hecke operators T, and a corresponding de-
formation ring Rgm”. We will then use the Taylor-Wiles patching method to
deduce the following theorem:

Theorem 1.4. The module S (U (1), L/O)y,[1/1] is a finite locally free R&"[1/1]-
module.

As a consequence, we can deduce that R%"[1/l] =~ T[1/l], and that the
multiplicity of automorphic forms with a given characteristic zero Galois repre-
sentation is constant along connected components of R%"*[1/l]. In particular,
one can extend any such multiplicity results from the classical case to the case
of non-classical Hida families.



2 Considerateness and the relation to the stack
of L-parameters

Let O be a regular local ring, with residue field F of characteristic [ or 0 and
fraction field L. Let G be a connected reductive algebraic group over O (note
that for most of this paper, we will consider G = GL,,) and g its Lie algebra.
Throughout the paper, whenever [ is in play, we will necessarily assume that
I > h¢g, where hg is the Coxeter number of G.

Definition 2.1. Let hg be the Coxeter number of G. Let g € O* be an element
of O such that ¢* — 1 is invertible in O for all k < hg. When this occurs, we
say that q is considerate towards G over O.

In applications, O will either be a field, or will be the ring of integers in some
field extension of ;. Notice that in this case, ¢ being considerate towards G is
equivalent to all 1,q,¢?, ...,¢"¢ being distinct in the residue field & (in a sense,
q is ‘careful’ where it treads around G).

Proposition 2.2. Suppose that F is a field of positive characteristic | > hg.
Suppose further that G is split and one of GLy, SLy,, SPan, S02,11, or SOs,
with n > 1. Then, in the terminology of [DHKMZ20], | is “G-banal. Conversely,
when G = GL,, or SL,, then | is “G-banal implies q is considerate towards G
over O.

Proof. In the split non-exceptional case, Corollary 5.23 of [DHKM20] applies,
and thus, if | > hg, we see that [ is “G-banal if and only if [ is G-banal. By
Lemma 5.22 of [DHKM20], [ is G-banal if and only if [ does not divide the order
of G(kr), where kp is the residue field of F' (recall this is a finite field of order
q). The following identities can be found in [Sol65]

)= — (= D(¢* = 1).(¢" = 1)

) —1)(¢° = 1)..(¢" = 1)
#SPoy (k) = 4" (¢ —1)( LoD 1)

)

) =

- (¢ —1)( f-1) (P - 1)
(@ +1)g" (¢ = 1)(g* = 1)e(¢> 2~ 1)

Notice that in these cases, hg = n,n, 2n,2n,2n—2 for G = GL,,, SL,,, SP2,,,SO02,, 11
and SOq,, respectively. Thus, if [ is a prime that divides #G(kr), then it nec-
essarily divides one of the factors ¢' — 1 (or possibly ¢" + 1 if G = SOa,). As
in all cases but SOs,, ¢ < hq, this shows the order of ¢ in F; is < hg. When
G = S03,, we have that either that the order of ¢, 0;(q), is either 0;(q) < hg,
or divides 2n = hg + 2. Since any prime factors of 2n are < 2n — 2 (provided
n > 1), this completes the forward direction. When G = GL,, or SL,,, we also
see that the converse holds. O



We make the following definition.

Definition 2.3. We define the affine scheme S0 over O as the scheme whose
R-points (R, an O algebra) are {(®,N) e G(R) x g(R) : Ad(DP)N = ¢N}

Corollary 5.4 of [Bell6] shows that this is a reduced scheme, and hence is
a variety when O is a field. As discussed in the introduction, we may picture
Sa,0 as the moduli space of unipotent Weil-Deligne representations, (r, N') over
G(0O). The unipotent condition is equivalent to that of r(Ir) = 1.

Proposition 2.4. 1. Suppose q is considerate towards G,o. Then the nal-
ural map p: Sg — @ factors through the nilpotent cone Ng.

2. When G is split, and l > hg then S , 1s isomorphic to a closed subscheme

of the moduli space of tame parameters Z*(W%/Pr,Q)o (See section 1.2
of [DHKM20] for a definition of this space).

3. In addition, when [ is L@G-banal, this space is a connected component of
Z'(Wp/Pp,G)o

Proof. Since any Sg can be embedded into S, for some n where G — GL,
is a faithful embedding, we need only show that N is nilpotent for GL,,. Let
(®,N) € S,(R) be an R-point where R is an O-algebra. If M € gl is a matrix,
let s;(M) be the i-th coefficient of the characteristic polynomial of M. Notice
that s; is conjugate invariant, as the characteristic polynomial is.

Hence, we see that for each i, s;(®N®™') = s;(¢IN), so s;(N) = ¢'s;(N).
As q is considerate towards G,p, we have that ¢" — 1 is invertible in @, and
hence that s;(IN) = 0. We hence see that the characteristic polynomial of N is
X™. This shows that N is strongly nilpotent, and lies in the R-points of the
nilpotent cone.

When G is a split group, Z' = Zl(WF/PF7 G)o has a model as an affine
scheme, flat over O (since | # p) with R-points equal to

Z'(Wp/Pr.G)o(R) = {(¢,0) € G(R)*: gpo¢ ™! = 0},

Since | > hg, and we can invert by all primes < hqg, the exponential and
logarithm maps of section 6 of [BDP17] are well defined polynomials, and thus
we have an isomorphism between the nilpotent cone in Nz and unipotent cone
. Hence, we have a map

S0 = Z (Wp/PrG)o
(¢, N) = (¢,expN)

which is an isomorphism onto the closed subscheme of Z'(W2/PrG)eo given by
those elements (¢, o) with o € U < G, where U is the unipotent cone.

For part 2, suppose [ is “G-banal. Let {{* be the scheme-theoretic image of
ZY(WS/PrG)o through the second projection onto G. We note, that o € {*
necessarily has o conjugate to 9. Let T Gand W = W be a maximal split



torus and the Weyl group of G respectively. Consider the map G — é/ /G‘ =
T/W. The image of { through this map has image given by the scheme-
theoretic union S := |, ey {0 € T : 0¢ = Yo}, which is a finite flat scheme over
O. Thus, since the fibres of this map are conjugacy classes, they are connected,
and hence, the connected components of ${ are in bijection with those of S. If
! is “G-banal, then Zg is reduced, and thus, so is Sg. Hence, since S is finite
flat over O, we see that the connected components of the generic fibre are in
natural bijection with those of the special fibre, and thus the same is true for
Z'. Hence, as Sao defines a connected component over the generic fibre, it is
a connected component of Z1.

O

We quote some results.
Proposition 2.5. 1. Sg.0 is flat over O if q is considerate towards G o.

2. The algebraic group G acts on Sg via the simultaneous conjugation

g.(®,N) = (9®g~ ", Ad(9)N)

3. Sa,0 is complete intersection O-scheme of relative dimension dim G over

o

4. Define the second projection map p : S¢ — Ng as earlier. If C is a
G/ conjugacy class inside Ne.L € Ng, then the closed subscheme X¢ :=

p~1(C) < Sg is a union of irreducible components, and we have Sg =
Ue Xe-

5. If in addition G = GL,, the X¢ are irreducible components of S, .0 =
Sar.,.0, and these can be naturally identified with partitions of n. We call
the component corresponding to the partition p, X,.

Proof. 1. In this case, Sg,0 is a open subscheme of Z* which by [DHKM20)
is flat over O.

2. This is clear.

3. As Sg,0 is isomorphic to the fibre over 0 of the map G x g — g given
by (g,N) — Ad(g)N — ¢N, we see that each irreducible component is of
dimension at least dim(G) + dim(O). To show equality, we note that by
the previous proposition Sg o is a closed subvariety of Z'(W2/Pr, G)o,
which by corollary 2.4 of [DHKM20] has dimension dim(G)+dim(O). This
shows that S o is a complete intersection.

4. As Sg,0 is flat over O, the irreducible components of Sg o are exactly
those of the open subscheme S¢ 1, so we may without loss of generality
work with @ = L. The characteristic zero case is covered exactly by
Proposition 2.1 of [Hel21]. In the characteristic [ case, one must utilise



g-considerateness and part 1 of Proposition 2.4 to show that the map p
indeed factors through Ng before one can apply Proposition 2.1 of [Hel21].

5. For G = GL,,, choose a closed point J € C. Then the fibres of the map
p~1(C) — C over any closed point x are a Torsor over the centraliser
Car, (J). We remark that the map p~1(C) — C is flat with smooth
fibres, and thus is smooth, and open. Since centralisers inside GL,, are
irreducible, C is irreducible, and p is open , by [Sta23, Lemma 004Z], it
follows that p~1(C) is irreducible, and thus so is X¢. The final claim
follows from the theory of Jordan normal forms.

O

2.1 Lemmas in commutative algebra and algebraic geom-
etry

The remaining part of this section proves some lemmas from algebraic geometry
and commutative algebra that we will need later

Lemma 2.6. Let G be a smooth algebraic group over a scheme S, and let X be
an S scheme. Suppose we have a morphism m : G xg X — X defining a group
action of G on X. Then m is a smooth morphism.

Proof. First, since G is smooth, we have that G — S is smooth. Hence the
projection px : G xg X — X obtained by the base change of this map to X, is
a smooth morphism. Now, consider the automorphism, ¢ of G xg X given by
(9,2) = (g,9.7). as this is an isomorphism, it is a smooth morphism.

Now, observe that m = px o ¢ is a composite of smooth morphisms, and is
hence smooth. O

Lemma 2.7. Let P be one of the properties of local Noetherian rings: regular,
local complete intersection, Gorenstein or Cohen Macaulay. Then for (A,m) a
local Noetherian ring with maximal ideal m, A is P if and only if the m-adic
completion Ais P.

Proof. For the properties Cohen Macaulay and regular, this is [Sta23, Lemma
07NX] and [Sta23, Lemma 07NY] respectively. For a local complete intersection,
let A = R/{x1,...,xky, with R local regular. Since I:B/xl,...,xn ~ A, and by
[Sta23, Lemma 07NV], it follows easily that A is a local complete intersection
ring if and only if Ais. To prove the statement for the Gorenstein property,
notice that A is Cohen-Macaulay if and only if A is. Hence, after quotienting
by a maximal length regular sequence (x) in A, we see that it is sufficient
to prove that A/(x) is Gorenstein if and only if A/(x) =~ (A/(x)) is. But since
these rings are zero dimensional (and are hence, Artinian), the natural inclusion
A/(x) = (A/A(x)) is an isomorphism. This proves the Lemma. O

Lemma 2.8. Let P be one of the local properties: reqular, local complete inter-
section, Gorenstein or Cohen-Macaulay. Let f: X — Y be a smooth morphism
of schemes. Let pe X. Then'Y is P at f(p) if and only if X is P at p.



Proof. Suppose f has relative dimension n. Then by [Sta23, Lemma 054L] the
map f factors locally through

X 25 AL
N
;

with g étale. Thus, it suffices to prove the lemma in the case f étale, and in the
case Ay — Y. In the étale case, since étale morphisms induce isomorphisms on
the completions of stalks, and by the previous lemma, for a Noetherian local
ring, R is P if and only if the completion R is P, the result of the lemma follows
in the étale case. In the affine case, it suffices to note that a local ring R is P
if and only if R[z], is P. O

Lemma 2.9. Suppose (Q,p,]F) is a regular local ring and R is a Noetherian
local flat O-algebra, with R = R/p. Then R is Cohen Macaulay if and only if R
is Cohen Macaulay.

Proof. Suppose O has dimension d, and R has dimension n. Suppose R is Cohen
Macaulay. Let xq, ..., x4 be a regular sequence for @. Then this can be extended
to a maximal regular sequence for R, x1,...,24, Tgs1, ..., Tn. We see immediately
that since O is regular, that zq,1,..., 2, is a regular sequence for R of length
n —d, and since the dimension of this is also n — d, we see R is Cohen Macaulay.

Suppose conversely, that R is Cohen Macaulay. Then a maximal regular
sequence 71, ..., Yn—q for R can be lifted to a sequence y1, ..., yn—q in R, such that
Z1y ooy Tdy Y1, -+ Yn—d 1S a regular sequence for R. R is then Cohen Macaulay. O

Lemma 2.10. Let R be a finite local O-algebra, and let x, T be prime ideals of
R that give rise to the following commutative diagram.

R—+ O —— L=0[1}]
F
Then
R. ! ANRA
T lw: x

Proof. Notice that since R\z 2 R\Z u {7}, that Rz [%]x ~ R,. Further, since
R is of finite type over O, we have (1) z" = 0, and thus we have an injection
Rz — RZ. This gives us a local homomorphism inclusion

1 1
R.=Rz|-| =R, |-
] - il

We notice that R,/r = L, and that

o] o

@(R/x")/x] [1/1] = lim(R/ (") [1/1] = (lim O/1™)[1/1] = L.



Thus, by [? , Lemma 0394], we have that R} [%]2 is generated by the same
topology as R, and is a finite R2- module. It is now easy to see from looking
at the residue field that the natural map

1 A
o)
l xr
is a surjection. It is also an injection, because the two rings have the same
topology. In particular, if a sequence inside R, converges to zero inside R2 [%]: ,
then it must converge to zero inside R, . This shows that the kernel is zero, and
thus that the map is an isomorphism.
O

Corollary 2.11. Let A be a finite type O-algebras, and let Ry, R be finite type
A-algebras, and let R = RiQaRy. let x € Spec(R[1/1]) be a mazimal ideal.
Then (R1 ®@a R2)s = R[1/1]5. In particular, if R;[1/1] is smooth for each i,
then R[1/1] is smooth.

Proof. Set T as the maximal ideal of Ry ®5 R2. Then for any z as above, we get
a commutative diagram as in the statement of Lemma 2.10. Hence, by Lemma
2.10, we see that

(B1 @ Ro)[1/1]; = ((R1®a R2)x")[1/1]; = R[1/1]; .

To show the last part, it is sufficient to notice that since R1[1/1]®ap /1 R2[1/1], R[1/1]
are finite type over L, they are z-adically separated, and thus are regular at x
if and Only if Rl [1/[] ®A[1/l] Rg [l/l];\ s R[l/l]£ are. Since Rl [1/[] ®A[1/l] Rg [l/l]
is regular if and only if both R;[1/l] are, this completes the corollary. O

3 Smoothness results for X,

In section 7.2 in [Bell6], Bellovin proves in the case where O is a field of charac-
teristic 0, that the component X,, of Sqr,, 0 corresponding to the regular nilpo-
tent orbit is smooth. The following theorem generalises this result to general
connected reductive groups GG, and more general regular local rings. Let O be
a regular local ring with residue characteristic [ or 0 as before. For general con-
nected reductive groups GG, we can generalise the decomposition of Proposition
2.5, to give Sg.0 = |Jo X where for an adjoint orbit, C, of the nilpotent cone

n c g, Xc is the closure p~1(C') with p: Sg,0 — n the natural G-equivariant
projection. Note, that for more general groups GG, these may not be irreducible.
Indeed, if C is the regular nilpotent adjoint orbit of SLo, then X¢ is the union
of two connected components. The following theorem shows that in C is a
regular nilpotent conjugacy class, then X¢ is smooth, and thus the connected
components are the same as the irreducible components.

Theorem 3.1. Let G o be a smooth reductive group with smooth centre, Z, and
let g be the Lie algebra of G, and suppose q € O is considerate towards G over

10



O. Suppose that C = Ny, is either the 0 or the regular nilpotent adjoint orbit.
Then X¢ is smooth over O, and when C' is the reqular nilpotent orbit, X has
the same number of connected components as Z.

Proof. Consider first the case C = 0. Then X¢ = {(?,0) € Sg0} = G via
the map projecting to the ®-coordinate. Since G is smooth, this proves the
theorem.

For the regular nilpotent case, note that X¢ is flat and finitely generated
over O, so by [Sta23, Lemma 01V8] we have that X is smooth over O if and
only if it is smooth over every localisation. It is therefore sufficient to prove the
theorem after a localisation to a field. Without loss of generality, let k = k(p)
be a field for p € Spec(Q), and assume all subsequent schemes are schemes over
k. Consider now, the case C = N is regular nilpotent adjoint orbit. Since ¢J
and J are conjugate, there is an element ®; € G such that Ad(®;).J = ¢J. We
claim that ®; is regular semisimple.

Since J is regular nilpotent, there is a unique Borel subgroup, B, such that
J € Lie(B). Let II = {a, ..., } be the corresponding set of simple roots of G,
and let {e,} € g be the set of eigenvectors of g corresponding to the roots of G.
We can write J = >, . caa € g for co # 0. Hence, we see

Z GCata = qJ = Ad(D;)J = Z ca(Py)eq

a€ell a€ell

and so a(®;) = g for every simple root «. If 8 is a positive root of G, we see
that 2 is some positive combination of the c;. Suppose 8 = ), m;a;. Then
B(®;) = qmt-tmn As g is considerate towards G over O (and hence is
considerate towards G over k), we see that no 5(®;) = 1. Hence ®; is regular
semisimple by Lemma 12.2 of [Bor91].

Since ®; is regular semisimple, it is contained in a unique torus T < G.
Consider the k-scheme

Y =20;xT.J.

We first claim that this is a subscheme of X¢. Let (s® 5, Ad(t).J) e Z®; x T.J.
Then

Ad(s®;)(Ad(t)J) = Ad(sP st)J
=Ad(t®;s)J because T is abelian
= Ad(t)Ad(®,)J
= Ad(t)(¢/)
= qAd(t)J.
Hence, Z&; x T.N c X¢. Since X¢ is closed, we then see that the closure
ZO; xT.J=Zd;xT.N=Y c X¢.
We now claim that Y is smooth over k. This is clear, because Z,¢ is smooth
by hypothesis and T.J = Span(eq,, ..., €, ) is isomorphic to affine space, AZ.

11



Define the morphism

f:GxY - X¢o
(9,(®,N)) =~ (9®g ", Ad(g)N).

Consider the following commutative diagram

GxY — X¢

l |

Gx Z2®; — Z.Go,

where G'g, denotes the conjugacy class of ®; in G, the vertical maps come
from the “forget N” projections (g,s®;,N) € G xY ~ (g,5P;) € G x ZD;
and (®,N) e X¢ —» ® € ZGg, respectively and the horizontal maps are defined
via the conjugation action of g € G on Y so that the diagram commutes, and
is a pullback square. The bottom map, m, is flat with fibres isomorphic to
Stabg(® ), which is simply the Torus T, as ®; is regular semisimple. This
shows that m is smooth. Hence, since the map f is the base change of m to
X¢, by Proposition 10.1 of [Har77] we see that f is smooth.

Then by Lemma 2.8, since every point on G X Y is regular, this implies
that its image in X¢ is a smooth variety. To finish the proof, it is enough to
show that this map is surjective. This is the same as saying that every pair
(®,N) € X¢ is conjugate to something in Y.

Let (®',N) € |Xc|. Then there exists a regular nilpotent J’ such that
Ad(®")J" = ¢qJ'. Then J' is conjugate to .J by some element g € G0 (i.e.
Ad(g)J’ = J). Then if ® = g®'g~ ', we see Ad(®).J = ¢J. By conjugating by
an element of Stabg(J), we can assume without loss of generality that @ lies in
T. Hence, s = @' is an element of Stabz(J). We claim that Stabr(J) = Z.
It is clear that there is a closed immersion Z < Stabr(J), so we need only show
this is surjective (as Z is smooth). Since s € Stabp(J) commutes with J, we
see that Ad(s)J = J, and thus Y qcac(s)ea = X e Cala- Since e, form a
basis of g, we see that a(s) = 1 for each o € II. Since this is a base, we see
that B(s) =1 for all roots 8 of G. Hence, s acts as the identity on the adjoint
representation, and so lies in the centre s € Z. Since Ad(g)N conjugates with
® in the correct way, we see that N is a span of simple roots of G, and thus lies
in 7.J. This shows that (', N) is the image of (g7, (A®;,Ad(g)N)) e G x Y.
This proves the smoothness statement.

For the statement about the connected components, it suffices to notice that
since G is connected, that the connected components of G x Y biject with those
of Y, which in turn biject with the connected components of Z. Hence it suffices
to show that there is a bijection between the connected components of G xY and
Xc. Tt is sufficient to show that the fibres of the G equivariant map f:GxY —
X are connected. Since the action of G gives an isomorphism on fibres, it is
sufficient to show that the fibres of Y € X are connected. Let P = (®,N)e Y.
Then f~1(P) = {(g,®',N')e G xY : g®'g~ = & and Ad(g)(N’) = N}. Since
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O, 0 € ZO; — T are regular semisimple, any g € G such that g&g~! = &’ lies
in the normaliser Ng (7). Notice that for any simple root a of G, a(gPg~!) =
a(®’) = ¢ = a(P). This implies that g must actually lie in Zg(T) = T, and
thus we get a well defined isomorphism

f7H(P)eT
(9,9 ,N") =g
(9:®,Ad(g) " (N)) < g

Thus, since T' is connected, so is f~!(P). This proves the final part of the
theorem. O

The conditions that G has smooth centre and that ¢ € O is considerate
towards G/O are quite mild conditions. For example, if O is a field of charac-
teristic 0 and ¢ isn’t a root of unity, ¢ is automatically considerate. Further,
when ¢ € Z is a prime power, if the residue characteristic, I, of O is larger than
¢"©) | then ¢ is considerate. Since the centre of a reductive group G is smooth
in large enough characteristic, this also shows that X¢ is smooth over O with
sufficiently large residue characteristic.

One may hope that the previous result holds for all components of Sg. i.e.
that all components of S are smooth. When G = GLo, this is true since the
only two components are those arising from the nilpotent conjugacy classes of
N =0, and N = (J ), and both cases studied in the previous theorem, (see also
proposition 4.8.1 of [Pil08]). In [Bell6], Bellovin proves that this fails for GLg,
demonstrating that the component X»; is not smooth, and gives a description
of all the points where singularities exist. Theorem 3.3 generalises these results,
and shows us that, for G = GL,, and any partition p # 1", n, the component X,
is always singular.

We define some notation. For a an element of an (O-algebra R, and k a
positive integer, define the k& x k matrix,

ag" " .. 00
Mi(a) = 5 =26
0 ... 0 a

If k is a positive integer, and b = (by,...,bp_1) € R*"1 are a k — 1-tuple of
elements of R, then set the k& x k matrix

Lemma 3.2. Let R be a finitely generated O-algebra. Let p = ki + ko + ...+ kn,
be a partition of n. For a; € R*, and b, € RFi=1Y the pair

Mkl (al) 0 0 Jkl(él) 0 0
0 My, i, 0 A0 g G, 0 € Xp(R).
0 .. 0 My, (am) 0o .. 0 Tk (B,,)
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Proof. When each of the vectors b; lie in R*, the pair

o N M(k,a1) o0 Ay e 0 oR
(@, A)_<< 0 .j..M(kw:,,a,m)>’< 0 .i..)\J:km>>€p (Cp)(R)

is inside X, (R). Hence, we obtain a morphism of schemes over R:

™G R = p (Cyr

M(kqi,a1) ... 0 Jip (by) - 0
(l—)17"'7b7n) = <( O M : ) ) < : : ))
oo M (K sam) 0 . iy (b))

which is an isomorphism onto it’s scheme theoretic image and which extends
naturally to a map 7 : A%,""™ — S, g. Since the Zariski closure of an_)}i” inside
A%™ is Aj™, we see that the Zariski closure of the image of ' inside S, r
is the image of 7. Since X, g is the Zariski closure of p~*(C})g, it follows that
Xp,r contains the image of 7. The lemma then follows by looking at the R
points of the image of = and S, r. O

Theorem 3.3. Let G = GL,, and let p be a partition of n with p # 1", n. Then
X, is singular.

Proof. Let F be the residue field of O. Consider the following Cartesian diagram

Xpr — Spec(F)

| l

Xp,0 — Spec(O)

If the map X, 0 — Spec(O) were smooth, then by Proposition 10.1b) of [Har77]
the map X, 5 — Spec(F) would also be smooth. Hence, without loss of gener-
ality, it suffices to show that X, o is singular when O =T a field.

Choose any point P = (9g,0) € X, with @y semisimple. Define three
subvarieties of S,, that contain P as follows.

1. Let C = GL,,.P, be the GL,-orbit of P.

2. Let D be the variety of diagonal matrices inside GL,,, seen as a subvariety
of S,, via the inclusion ® ~ (®,0).

3. Let Ny = {N e gl, : oN®,' = gN} viewed as a closed subvariety of S,
via the inclusion N ~ (®g, N).

Let F[e] be the ring of dual numbers. The first claim we make, is that the tangent
space TpC' can be identified with the elements of X, (k[e]) that are GL,, (F[e])-
conjugate to P, and have image P under the base change of the natural map
Spec(F) — Spec(F[e]) which sends € — 0. Note that we have a smooth surjective
morphism GL,, — C, given by the conjugation action g — g.P, and so we have a
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surjection on the level of tangent spaces and a surjection GL,,(F[¢]) — C(F[¢]).
This shows that any element of C(F[e]) is conjugate to P via some element of
GL,,(IF). The rest of the claim is obvious.

Consider the tangent spaces of these varieties at P, TpC ,TpD and TpNy. We
claim that they form a direct sum inside TpS,. Let P’ = (®',0) e TpC nTpD.
Then @ is a diagonal matrix in GL,(F[e]), and is conjugate to ®y. Since
diagonal matrices are only conjugate to each other if they share the same entries,
this means that @ lies inside GL,,(F), and thus, P’ = P. To show that TpN
intersects at the origin with TpC or TpD, it suffices to notice that in either
case, an element of TpC or TpD takes the form P’ = (®’,0), while an element
P’ € TpNj takes the form P’ = (&g, N) € S,,(F[e]). For these to be equal, we
must have ® = @3 and N =0, so P/ = P. This proves the claim.

We split the proof of this theorem into two cases: the case where the parts
of p are not all the same and the case where p = k™ for integers k,m > 1 such
that km = n. In both cases, the following strategy will be to count the number
of linearly independent deformations in each of the subspaces of TpX,, TpC,
TpD nTpX, and TpNy n TpX, and combine to give a lower bound on the
dimension of TpX,,, showing that dimgTp > n? = dim Xp. This will prove the
theorem.

Consider the case p = (k1,...,kn) with k1 = k2 > ... = k,,, not all equal.
Consider the n x n diagonal matrix, ®; = Diag(¢" ™!, ...,q,1). Notice that ®
has distinct eigenvalues, so that the stabiliser of P = (®, 0) is the n dimensional
torus T},. By orbit-stabiliser, we then note that the orbit space must be n? —n
dimensional, and thus dimp(7pC) > n? — n. Consider now the deformations in
TpNy. Let (@, Me) € X, (F[e]) < S, (F[e]). The defining equation of Sy,  shows
that all non-zero entries of M must lie on the off-diagonal. Further, to ensure
(P, Me) lies on the component defined by p, one may choose, in accordance
with Lemma 2.7, M as a block diagonal matrix, with blocks of size ki, ks, ..., kmn,

each of the form
0 %
0
< . 0 *)
0

This leaves us with >, (k; — 1) = n — m different non-zero entries of M, each
of which defines a deformation, all of which are linearly independent, because
they are inside Tp(GLy, x gl,,) = gl2. Finally, consider the blocks of ® defined
by the partition p. For each 1 <4 < m, consider the matrix

Iy,
Iy,

02

(1 + E)Ik

i

I,

where [} denotes the k x k identity matrix.
We consider the deformation (®FE;,0) and note that this is contained in
X, (Fle]) via Lemma 2.7, because we can split ®E; into block diagonal parts
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of sizes ki,...,kn,. This gives us m further deformations, which are similarly
linearly independent because they are linearly independent inside T (GL,, x gl,,).
Finally, we note that we may reorder the blocks of the partition p, to give us
the deformation (®E,,+1,0) where
Epy1 = ((1 M, ) € M, (Rl[e])
n—km

By the same reasoning, this deformation also lies on X,(F[e]), and since k, <
k1, we see this adds a genuinely new deformation inside TpD, because the
deformations {(®PFE;): 1 <i < m + 1} are all linearly independent in Tp(GL,, x
al,).

Piecing everything together, we have at least (n?—n)+(n—m)+m+1 = n?+
1 > dim(X,) linearly independent deformations, which exceeds the dimension of
the variety X,. We conclude that dimg 7p X, > dim X, and that P is a singular
point.

Now, in the case p = k™, we instead choose a point

M (kg™ ("D L 0 0
(®,0) = 0 Mgy o |0 e Xu(R).
0 0 M (k,1)

so that @ is a diagonal matrix, with increasing powers of ¢ going up the diagonal,
with a single power of ¢ repeated, that being ¢"~!. Then the conjugation orbit
is n2 — (n—2+4) = n? —n—2 dimensional. The TpNj-space deformations give
us again, (k — 1)m deformations on the off-diagonal, and an additional two in
the entries marked with a o below, appearing because of the repeated power of
qin ®

Each of these deformations lie inside TpX,, because they are conjugate inside
GL,, r[¢ to pairs in the form of Lemma 2.7.

Now if we define E; as before, for i < m, we see by the lemma that (®E;,0) €
Xp(R) for each 4, and this gives us another m deformations. Finally, let Ey, 41
be as follows:

Ii(m—1)
1+
Byt = . € M, (F[e]).
(1 + E)Ik_l

Then, because ® ), 11 is conjugate to something of the form in Lemma 2.7, it lies
inside X, (F[e]). Notice that the deformations ®E; for i = 1,...,m+1 are linearly
independent, because they are linearly independent inside Tp(GL,) 2 TpD.
This gives a total of (n? —n—2)+ ((k—1)m+2)+(m+1)=n? —n+mk+1=
n?+1 > n? = dim(X,) deformations, and shows that X,, is singular at (®,0). O
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4 ®-Regular points of X, are Cohen-Macaulay

In this section, we take a closer study of certain unions of irreducible compo-
nents of S,, o which appear as the support of certain maximal Cohen-Macaulay
sheaves that appear as the outputs of patching functors.

4.1 Motivation

Let F/Q; be a finite field extension as before. Let Wg be the Weil group of F'
and let I be the inertia subgroup.

Recall the dominance partial order on the set of partitions of n, which can
be defined as follows: For p and ¢ two partitions of n, we say ¢ < p if their
corresponding nilpotent conjugacy classes C; and C), inside the nilpotent cone,
N, satisfy C, < C,. Equivalently, if p = (p1,...,px) and g = (q1, ..., @) and we
adopt the conventions that ¢; = 0 if ¢ > m and p; = 0 if 4 > k, then ¢ < p if and
only if for every j € N, 22:1 G < 2?:1 pi-We can make the following definition.

Definition 4.1. For a given partition p of n, let X<, = Uqu XS Sh.
We present a little motivation why these varieties are interesting to study.

Definition 4.2. An inertial type is an isomorphism class of continuous repre-
sentations 7 : Ip — GL(V) where V is a finite dimensional E = Q;-vector space,
that extends to a representation of Wg. A basic inertial type is an inertial type,
that extends to an irreducible representation of Wg. Let Iy be the set of all basic
inertial types.

Let Part,, be the set of all partitions of n, and Part = | J,, Part,,. In [Shol8§]
it is shown that there is a bijection between inertial types and the set Z of all
functions

P ZIO — Part

of finite support, where and Part is the set of all partitions. We will denote the
partition corresponding to 7 € Zy by P,. For a partition p € Part, we say that
the degree deg(p) is the number n that p partitions. We can extend deg to the
set Z by

deg(P)(70) = deg(P(70))

and we can extend the dominance ordering on Part by saying that two inertial
types P and Q have P > Q if and only if they have the same degree, and if
P(m0) = Q(1p) for each 7y € Zy.

Let p: Gp — GL,(F) be a representation with inertial type 7. Let R"(p) be
its framed deformation ring. and let R°(p,7) be the framed fixed inertial type
deformation ring.

In chapter 6 of [EGS14] (see section 6.1 for full details), the notion of a
patching functor (at least in the GLo case, though this notion can be gen-
eralised to more general connected reductive groups) is defined as an exact
covariant functor My, from the category of K = GL,(O) representations on
finite free O-modules to the category of coherent sheaves on a certain space
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Xo = Spec(®,Ro[[z1,...,z1]]) a finite product of local deformation rings,
with certain properties. One of the properties we expect is that a certain K-
representation o(7) (arising naturally from an inertial type 7) has the coherent
sheaf My (o(7)) supported on the closed subscheme X (7), of points in X
with inertial type < 7. Further, My (o(7)) is maximal Cohen-Macaulay over
X (7). We may hope then, since spaces arise as the supports of these patching
functors, that the spaces X4 (7) may be Cohen-Macaulay. This would happen
if we can prove that each X, is Cohen-Macaulay.

4.2 The main theorem

Let L be the fraction field of O as before. Let N, < gl,, be the nilpotent cone.
Recall there is a GL,-equivariant morphism, given by the second projection,
p2 : Sgr, — Ny,. For each partition p, we can find the locally closed subspace
C, € N, given by the preimage of the conjugacy class given by p inside (V)L
through the flat morphism N, = (AN,)z. Then C, is a union of conjugacy
classes in NV,,, and C), = U,<p Cq- We may henceforth view X, = Py (Cp) as
the preimage of C’_p under the projection ps. This is advantageous, as it shows
us that any additional equations specifying X<, as a subspace of S,, need only
have equations in the variables of N (namely, those equations that define the
subvariety Cp).

Definition 4.3. We define X%{};eg < X, to be the open subscheme over O

defined as the complement of the equation Disc(xeo (X)) = 0.

Remark. Let P € |X<p| lie in the fibre of a prime p € SpecO with residue
field K = k(p) and separable closure K*P and suppose P corresponds to a
(Galg-equivalence class of) pair of matrices (®,N) € X<, (K*P). We notice
that P € |X§;eg| if and only if Disc(xe(X)) € p, which occurs if and only if
Disc(xa (X)) # 0 inside the field £(P), which is equivalent to the eigenvalues of
® being distinct inside a separable closure k(P)%P, by virtue of char(k(P)) =0
orl>n.

Theorem 4.4. Suppose that q is considerate towards GL,, over O. Let p be a

partition of n. Then Xi’;eg is Cohen-Macaulay.

To approach this problem, we start by reducing the question to a ring Rp
(to be defined) with which we can make explicit calculations.

Let p € SpecO, and let K = k(p). Choose a separable closure K as be-
fore, and let P € |[(Xg,)| lie above p correspond to a pair of matrices (&, N) €
X i?eg (K*P). We may assume without loss of generality that P = (®,0) with
® semisimple. This is because the set of non-Cohen-Macaulay points is a closed
subspace of X¢,. If P = (®,N) € X, is a non-Cohen-Macaulay point, then the
action of GL,, on X, provides an isomorphism of local rings of any two points
in the orbit of P. Thus, any point in the orbit of P is non-Cohen-Macaulay. Fur-
ther, the semisimplification (®°%,0) is contained inside the closure of the orbit
of P, and thus, (®%%,0) is also a non-Cohen-Macaulay point. As a consequence,

18



if we show that every point (®,0) with ® semisimple is Cohen-Macaulay, we can
deduce that X, is Cohen-Macaulay, and thus we can reduce our attention to
points of this form.

Let M be the stabiliser of ® (necessarily M is of the form M =[], GLg,).
We may assume that ® has the form of a block diagonal matrix
® = Diag(aily,,aolk,, ...,aml, ) where Iy, are k x k identity matrices, and all
the a, are distinct with an ordering chosen such that a;/a; = ¢ inside K*®°P
implies that j =17 + 1.

We set Vi to be the subscheme of X, flat over O defined as {(®, N) € M x
gl, :®N®~1 = gN and N has conjugacy class < p}. We now set Rp := Oy, P
to be the local ring at P of this space.

Lemma 4.5. Let P be one of the properties of local rings: smooth/ a local
complete intersection/ Gorenstein/ Cohen-Macaulay. The scheme X<p, is P at
P if and only if Rp is P at P.

Proof. We have a pullback diagram of O-schemes

GLn X VM — Xgp

| |

where the map horizontal maps are given by conjugation (g,z) - grg~!, and
the vertical maps are ‘forget the second coordinate’. Localising and completing
along maximal ideals gives us a pushout diagram of complete local rings as
follows:

k[GL,]; ®Rp +—— R"

! |

k[GLn]; ®k[M]p «—— K[GL.]3

with R the local ring of P on X, Since this is a pushout diagram, the top
map is smooth if the bottom map is smooth. We claim that the bottom map
is smooth. Let Co be the category of complete Noetherian local O-algebras
with residue field k. We have T := k[GL,]p = O[[X1,..., X,2]] represents
the functor on Cop given by A € Co maps to those elements of GL,,(A) which
map to P in GL, (k). This is the same as the set P + gl,,(ma), where m4 is
the maximal ideal of A. likewise, k[M]p = O[[Y1,..., Yaim m]] represents the
functor A~ P + Lie(M)(ma).
Consider A = k[t]/t? € Co, then the map of Zariski tangent spaces

[1+ gl (ma)] x [P+ Lie(M)(ma)] =P + gl (ma)
(I+m,P+a)>I+z)(P+m)(I+x)""
=P+ [z,P]+m)

is a surjection because M = Stab(P).
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This provides us with an injection mr/m2 — m/m? where mpg is the max-
imal ideal of T' = k[GL,]p and m is the maximal ideal of k[GL,]; ®k[M]. Let
11, ..., T be a set of elements of m such that they form a basis of (m/m?)/(mg/m%).
Then, since T and k[GL,]; ®k[M]5 are both power series rings, we see that
k[GL,]; ®k[M]p = R[[T1, ..., T,]]. This shows that the bottom map is smooth,
and hence that the top map is smooth.

As a result,

Rp[[X1, ... Xn2]] = k[GL, ]} ®R}
is a power series ring in R”. Thus, if P is one of the properties in the lemma,
we see that R is P if and only if R" is P via lemma 2.7, if and only if
Rp[[X1, ..., Xpn2]] is P if and only if Rp is P. This completes the lemma.
O

Thus, to show that ngeg is Cohen Macaulay at P € Xi;eg it suffices to
show that Rp is Cohen-Macaulay. We now give an explicit description of Rp.

Consider the universal coordinates of Vi, which (in block matrix form blocks
of size ki,...,km:

ar (I, +Mi) 0 0 bi,1 bi2 ... bin
0 a2(1k2+M2) 0 b2,1 bgyg bgyn
: : ; 2 U R
0 0 cor @m (T, + Mo, bn1 b2 - bnn

Where each M; is a k; x k; matrix, and each b; ; is a k; x k; matrix.
The equation ®N = ¢N® gives us the following for each (3, j)

a;(Iy, + M;)b; j = qazb; j(Ix; + M;) =0
which in turn give us
(a; —qaj)b; ; + a; M;b; j — qajb; ;M; =0
when a; — ga; is non-zero in K®°P, it is invertible inside Oy, Hence
bij = —(a; — qaj)flaiMibiyj + (a; — qaj)flqaijij.

Let I be the ideal of Rp generated by the coordinates of b; ;. Then we see
from the above equation that I = mI where m is the maximal ideal of Rp.
Consequently by Nakayama’s lemma, we see that I = 0.

Thus, b; ; = 0 unless j =i+ 1 and a; = ga;41 in K*P. When a; — qa; 41 € p,
set ™ = a; ' (a; —qa;+1) € p, then we get that the equations given by ®N = gN &
give us exactly

(Mibiiv1 = bigy1Mig1) + by (I + Miy1) =0

inside Vjy. We will, from now on, write N; := b; ;41
As a result, we see that

Op[My, ... My, Ny, ..., Ny 1]

Rp =
P {AM;biiv1 — biigy1Mip1 + TN (I + M) 1@ <m} U {some equations only in N;})
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Where the equations in the coordinates of N; are those that describe the
conjugacy classes inside Cp. As O, is regular, and Rp is a Noetherian flat local
Og-algebra, by Lemma 2.9 we see that Rp is Cohen Macaulay if and only if the
ring

5 K[Mlv"'7MmaN17-'-7Nm—1]
Rp

B {AM;bi i1 — biig1Mip1 21 <m} U {some equations only in N;})

is Cohen Macaulay. Hence we reduce the problem to showing that Rp is Cohen
Macaulay.

When P = (®,0) is ® -regular, the M; and N; are 1 x 1-matrices and thus
commute, and so we can simplify even further. By setting \; = M; — M, 1, we
see that that A\;IV; = 0. We hence have reduced the problem to proving that this
explicit Rp is Cohen-Macaulay, and have proven most of the following lemma

Lemma 4.6. For S < {1,...,n—1}, define N5 :=[[,cg Ni. Let P be ®-regular,
and let Rp be as above. Then there exists a family F of subsets of {1,...,n— 1}
such that the local ring Rp has the following form:

_ KA, o A, Nyso Ny
RP _ ( [)‘17 7)‘ 1 1]> ,

Ip
where
IP = <{)\1N1|]. <1< n} U {Ni|ai/ai+1 #* q} v {Ns|S€ .7:}>,

and m is the maximal ideal (A\1,...;An, N1,...;Np_1y. Furthermore, every set
S € F has empty intersection with the set {i|b; # 0}.

Proof. We note that the only part left to prove is the statement about the
remaining equations in the NN; that describe the conjugacy class of nilpotent
matrix

ON; 0 .. 0
00 Nawo 0 _
S eCy
00 0 .. Ny
00 0 .. 0

in N,,. By Lemma 4.7 in the next section, the equations that cut out W, defined
as the closed subscheme of C_p with all non-zero entries on the off-diagonal, are
given by products of the form

o=[[™

€S
for some set S < {1,...,n — 1}. The Lemma follows.
O

4.3 Calculations of the families F that appear for a given
partition p

In this section, we study and calculate the equations that specify the union X,,.
We start off with a lemma.
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Lemma 4.7. Let W+ =~ A’é‘l be the subscheme of the scheme M, of n xn
matrices over O, consisting of matrices with entries only on the off-diagonal, so
that
0 Ny
W= {( R NM) : (N1, .y Npp_1) € A1}
0

Let W, be the subscheme W,, = (C,, nW*)™d. Then W, is cut out by squarefree
products of the N;.

Proof. Let f = f(Ny,..., Ny—1) be a polynomial in the N; such that f = 0. Since
W, is invariant under conjugation by the maximal torus 1" of GL,,, This action
defines an action on f via A.f(Ny,....Np_1) = f()\l)\glNl,...,)\n,l)\;an,l),
where A = (A1, ..., A,) € T, and we must have that f(INV) = 0 implies A.f(N) =
0. View f as a polynomial in IV;, and coefficients in the ring of polynomials
E[Ni,...;N;—1,Nit1,..., Np—1]. Consider the action of A\ = (Aq,...,\,) where
Aj=aek” forall j <iand A; =1 for all j > . Then this action preserves the
coefficients of f, and multiplies the NF term by a*. We hence see that all the
Nj-graded parts of f lie in the ideal. Since this is true for each i, we see that
there are generating equations, {f : s € I} such that each f; is a product of N;’s,
up to a constant coefficient, which we may forget without loss of generality. To
prove that the generators are squarefree, it is sufficient to note that W, is a
reduced scheme. O

We now give a complete description of the families F that occur. They
depend only on the partition p. We will denote the family obtained from Rp
by F),, as this only depends on p.

Remark. Notice that as written in Lemma 4.6, F has no dependence on (a;).
If we wanted to we could change this, and include {i} € F for each ¢ such that
{ilai/aiv1 # q}-

Let T< S < {1,...,n—1}. Then Np|Ng, so that we can enlarge F, to make
it an order ideal of P({1,..,n — 1}). With this, we can observe that we have an
order reversal, in that if ¢,p are partitions of n, and ¢ < p, then F, 2 F,, (this
happens, precisely because C, ép).

Proposition 4.8. There is an algorithm to calculate F, given a partition p of
n.

Proof. The algorithm consists of the following steps.

Step 1 Form the set Q of all ‘minimal breaking’ partitions ¢ = (g, ..., g.) defined
to be partitions of n such that there exists some integer s such that:

a) for every j < s, 23:1 ¢ < Zlepi.
b) Y= pi+1
¢) for each i€ (s,7], ¢; = 1.

Note that the minimal referred to here does not mean that ¢ is minimal
in the dominance order.
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Step 2 For each minimal breaking partition ¢ = (qu,...,¢r), form the family S,
of all subsets of {1,...,n — 1} that are a union of runs of length ¢; —
1,g2 — 1,...,qs — 1 of the following form. To clarify, let |a,q| be the set
{a,a+1,a+2,...,a+q—1} (we call this a run of length ¢). The sets inside S,
are exactly those of the form |a1, ¢, (1) —1|U|az, gy(2)—1[U...U|as, ¢o () — 1]
with a;41 > a; + q,(;) for every i, and some permutation o € Sym,.

Step 3 Take F;, to be the order ideal generated by the set | J .o Sq-

It can be seen that this produces F,, since the equations S, exclude, on
the level of points, any nilpotent matrix in the conjugacy class defined by gq.
Since any partition ¢’ = (q,...,¢.,) such that ¢’ is not dominated by p has
some minimal breaking partition g such that ¢ < ¢/, namely, if ¢’ has s the
smallest integer such that >))_; ¢, > >;_; pi, then ¢ = (¢},....qs_1, 20 pi +
1-— Zf;ll ¢i,1,...,1) does the job, we also see that any nilpotent matrix in the
conjugacy class defined by ¢ is also excluded. Since each ¢ is not dominated by
p, this shows that any matrix in the conjugacy class defined by p is not excluded,
and nor is any partition dominated by p. This shows that, at the level of points,
these equations determine W),. O

We now present an example of this calculation in the case of n = 6 and
p=(4,1,1), and a diagram that shows F, for each partition p of n = 6. On the
left of the diagram are the partitions of 6, ordered according to the dominance
order and on the right are the families F,, that correspond to p.

A brief remark about notation For clarity’s sake, instead of usual set
notation, I will denote the set containing the numbers 1,3 and 5 by the triple
135. Further, given sets 12,134,234, I will denote the order ideal F < P(1,...,4)
generated by 12,134 and 234 by angled bracket notation (12,134, 234). We note
that (&) = .

Example 1. Let n =06, and p = (4,1,1). Then the minimal breaking partitions
of p are (5,1),(4,2) and (3,3). Form S5 1) = {1234,2345}, the set of all runs of
length 4. The set Siy 0y = {1235,1345} is the set of all sets containing a run of
length 3 and a run of length 1, and the set S(3 3) = {1245} is the only set that con-
tains two runs of length 2. Thus, we see that F, = (1234,2345,1235,1345,1245).
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(D)

| |

51 (12345)
42 <1234, 2345>

3 412 (123,234,345) (all quadruples)
(123,234,345, 1245)

321
7N\ PN

31 2 (all triples) (12,23,34,45)
2212 (12,23, 34,45,135)
214 (all pairs)
16 {1,2,3,4,5)

4.4 Proof of Theorem 4.4

We prove a slight generalisation of Theorem 4.4:

Theorem 4.9. Suppose K is a field, let n €N and let F < P(1,....,n). Let
R:=K[M,...;\n, N1,..., Ny |/ T

where I is the ideal generated by the set
{1 <i<n}u{Ng|SeF}

where Ng = [[,.q N; as before. Suppose m < R is the mazimal homogeneous
ideal. Then depth(m,R) = n.

Lemma 4.10. Suppose R is a ring and x € R is a non-unit, such that for any
a € R, we have
22b=0 = 2b=0.
Define
. Bl
(zy)
Then y — x is a non-unit and not a zero divisor of T.
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Proof. There is a grading on T defined by T;, = Ry" for each ne N. Let feT.
Since x is not a unit, the degree 0 part of (y — x)f cannot be 1. Thus, y — x is
not a unit.

To show that it is a non-zero divisor, let f € T be such that (y —z)f = 0.
Write f = Z?:o a;y* for some n € N, and a; € R. Then:

n—1
0=(y—a)f =ay"' + Z (a; — va;41)y" " — zao (1)
=0
n—1 )
_ any’n+1 + Z aiyl+1 — zag (2)
=0
= fy —zao. (3)

Hence, fy = xag € Ty, and so fy € (@;fll T;) n Ty =0 and so fy =0. So each
of the constituents of the sum are zero too. Hence agy = 0.

So we have an element ag € R such that yag = xag =0 As yag =0 in T, we
must have that yag € (xy) < R[y]. So yag = zyb for some b € R[y], and since
deg(yag) = 1, have deg(zb) = 0, so we can choose b € R. Hence, (ag—xzb)y = 0 in
R[y], and so ag = zb in R. Hence 0 = wag = 22b. So by hypothesis, ag = zb = 0.
and so f =Y, a;y’.

Recall that fy =0. So fy =Y, a;y""" = 0. Then each of the terms a; = 0
in 9, so a; € {xy) in R[y]. So f =Y, a;y’ = 0. This shows that y —z is not a
zero divisor. O

Lemma 4.11. Let R be a ring, and J some finite indexing set, and a; € R for
jedJ. Let T = R[x]/I where I = {{za;|j € J}). Then = has the property that,
foranyaeT

22a=0 = za=0

Proof. First, we see that R[z] is a graded ring, and I is a homogeneous ideal
of degree 1, so T is also graded. Suppose a € T is such that z?a = 0. in S. We
may lift a to a’ € R[z], so that #2a’ € I. Then, for some b; € R[z],

22d = Z:mjbj,
JjeJ
and so
za = Zajbj.
jeJ
Consider the degree zero part of xa’. Then
0= Zajbj (O),
JjeJ

where b;(d) denotes the degree d part of b;. Therefore
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ra = Z Zajbj(d)xd

d=1jeJ
= Zxajcj el
jeJ
with ¢; == Y],-, bz~ € R[z]. Hence, za =0in S.
O

Proof of Theorem 4.9. We show explicitly that the sequence {A\;, — N; : ¢ =
1,...,n} is a regular sequence. Let J; = (A1 — N1,...,\;i—1 — N;_1), and let

R;:=R/J;
KA\, s Ay N1y ooy, Ny |
<{NS\S eFtu{M =Ny, hici — Nt P
A, Ny]
{{Ng|S eF and i e S}, \;N;)
(

A[N;]
Na ety ) M)

(AilNiy
where T is some finite indexing set, a; € A are some explicit elements of A, and

_ KA, Niyooy i1, N1, i1, Nigts oo Ay Ni
<{)\JN]‘] # Z} ) {)\1 _va'“a)\i—l — Ni—l} U {Ns‘s e F and ’L¢ S}>
A[N;]
= WNadteTy
an element of B such that N?’a = 0 == N;a = 0, for a € B. Hence, by
Lemma 4.10, A\; — N; is a non-unit, non-zero divisor in R;. It then follows that
A1 — N1, ..., A\ — N, is a regular sequence of length n. O

lle

Now, since B : is of the form in Lemma 4.11, we know N; is

We now prove Theorem 4.4.

Proof. Proof of Theorem 4.4 Recall from Lemma 4.6 that the local ring of a
PeX ;Dgeg is of the following form:

R K[)\lv" )‘nava Nn—l]
P NN <@ <n} U {Ni]ai/ai1 # g} v {\ilbi # 0} U {Ns|S e F}),,

with F a family of subsets of {1,...,n — 1}.

We first can make a simplification. Notice that, by expanding F to include
the sets {{i}|a;/a;+1 # q}, we may assume without loss of generality that the
second set of generators is empty. Reorder the 4, so that {i|b; # 0} = {k+ 1,k +
2,...,n — 1} for some k. Now, since for any S € F, S n {i|b; # 0} = J, we can
view F as a family of subsets of {1, ..., k}.Hence we see that

Rp e KA, oy Moy N1y vy Nig ]
- ANl <i<k}ou{Ng|Se F=P{L,....k}})

[Nit1, -oos Np—1, An -
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KA1y M6, N1, Nk ]
By Theorem 4.9, 75—~ = 3 S iRs 15 P2 P A DD
length k given by A1 — Ny, ..., A\ — Ni. We can now extend this regular sequence
by Ngt1yeees Np—1, Ap, to get a regular sequenceiof length n in mp < Rp. This
shows that depth(mp, Rp) = n. Further, since Rp is a local ring of a subvariety

: K[)\l7"‘7AH7N17'“7N7L71]
V' of the affine variety Spec ( SaNI=ien
see

has a regular sequence of

) which has dimension n, we

n < depth(Rp) < dim(Rp) <n

which implies equality throughout, Therefore Rp is Cohen-Macaulay of dimen-
sion n.
By the previous reductions, it follows that X i;eg is Cohen Macaulay. O

4.5 The Gorenstein condition

Once we know that our rings are Cohen-Macaulay, and we have a regular se-
quence for each of the rings, we can answer the question about when exactly
the ring Rp is Gorenstein.

Theorem 4.12. Suppose P € X;bl'feg. Then the local ring Rp is Gorenstein if
and only if either:

1. p=1"; or
2. Bvery component X, that contains P, has q¢ < p.

Proof. We prove that the rings in these two cases are Gorenstein first. In case 1,
X<p = GL,, is smooth, therefore is Gorenstein. In case 2, we notice that the
natural inclusion map X, < 5, induces an isomorphism of local rings at P.
Because S, is a complete intersection, this implies that the local ring Rp is a
complete intersection too, and thus is Gorenstein.

For the converse, suppose Rp is Gorenstein. Then Rp has type 1, ie, that

dim(Ext™™®* (Rp/m, Rp)) = 1.
Consider the maximal regular sequence
(Xl) = ()‘1 - va ceeey )‘k' - Nka Nk+17 ~--7Nn—la )\n)

of Rp given in the previous section. Extend it by a regular sequence of O to a
maximal regular sequence of Rp,

(X) = (y17'--7ydim07>‘1 - N17"">)‘/€ - NkaNk?-!-l?"'aNn—la)\n)-

Consider the Artinian ring Ry := Rp/(x) = <{N?f<[év<1;jj¥&’sl‘]36ﬂ> with F as

before. Let m be the maximal ideal of Rg. By Lemma 3.1.16 of [BH93], we note
that Ext™™ 7 (Rp/m, Rp) = Hom(Ro/m, Ry) = Soc(Ry). We can describe the
socle of Ry as the span of those monomials corresponding to the maximal sets in
the partially ordered set 7 = {S < {1,...,n — 1}|Ng # 0} (ordered by inclusion).
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So since Ry has one-dimensional socle, we see that 7 has a unique maximal
element.

Assume we are not in the case p = 1™. Then each singleton {i} € 7. And
thus, since 7 has a unique maximal element, the union {1,2,...n —1} € 7.
This shows that the family F = P(1,...,n — 1)\T is empty, and thus, that Rp
is isomorphic to the local ring of P in S,,. This shows the second condition.

O

4.6 The Cohen Macaulay-ness of non-®-regular points
When P = (®,N) is a non-®-regular point, we make the following conjecture.
Conjecture 4.13. Let p be a partition of n. Then X, is Cohen-Macaulay.

In other words, we conjecture that Theorem 4.4 should be true, without
the extra condition of ®-regularity. One can prove this in a special case strong
enough to prove the conjecture in the case n = 3.

Definition 4.14. Let ® € GL,, be an n x n matriz, Let X\ = (A1, ..., \r) be a list
of non-negative integers that add up to n. We say that ® has signature X\, if ®
has k distinct eigenvalues a, ..., ar where we require without loss of generality
that these eigenvalues are ordered in such a way, that whenever a;/a; = q, then
j=1+1, and the generalised a;-eigenspace is \;-dimensional.

Note that ® may not have a unique signature, because we only specify one
property the ordering of the a; should satisfy, which is not strong enough to
specify uniqueness.

It should also be noted that ® has signature (1,1,...,1) if and only if it is
regular. Thus we have shown already that points P = (®, N) such that ® has
signature (1,1,...,1) are Cohen-Macaulay.

For the following result, we need a tool from commutative algebra called
‘graded Hodge algebras’. We recall the definition and main result of these
objects, and I refer the interested reader to [BH93].

Let H be a finite set. Set N as the set of monomials in the variables H.
Notice that N7 naturally has a partial order on it defined by divisibility in the
R-algebra R[N#]. An ideal of monomials is an order ideal ¥ € N of the set of
monomials, as ordered by divisibility. A generator of ¥ is a minimal element,
in the divisibility partial order. We call the set of monomials outside ¥ the
standard monomials.

Definition 4.15. Let R be a ring and A an R-algebra. Let H be a partially
ordered finite set, with an inclusion into A.
We call A a graded Hodge algebra governed by X if the following axioms hold:

1. A is a free R-module, which admits the set of standard monomials NF\X
as a basis.
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2. For any generator of t € ¥, we can write t as a finite R-linear combination
of standard monomials
t= Z TsS,

seNH\T
such that for any divisor y € H of t, and for any s that appears in the

above sum, there is a divisor z € H of s for which z < y in the partial
order of H.

The equations found in axiom 2 are called the straightening laws. When all
straightening laws are trivial (ie, the right hand side is 0) we call this a discrete
graded Hodge algebra.

Let Ind(A) € H be the subset of H consisting of elements that appear on
the right hand side in one of the straightening law equations. Let h € Ind(A)
be a minimal element under the ordering of H. Give A the filtration defined by
Fil,, = (h™), and form the graded algebra

GrpA == P(Fil, /Fil, ).

This is a new graded Hodge algebra, governed by the same data as A, but
with every instance of h removed from the straightening laws (so Ind(Gr, A) <

Ind(A)\{h}).

Theorem 4.16. Let H be a partial order, and ¥ an order ideal in N . Let A
be a graded Hodge algebra with data (H,Y).
If Gri, A is Cohen-Macaulay, then so is A.

Proof. See the proof of Corollary 7.1.6 of [BH93]. O

Corollary 4.17. If the discrete Hodge algebra with data (H,X) is Cohen Macaulay,
then so is any graded Hodge algebra with data (H,X).

We can now continue with the following theorem.

Theorem 4.18. Suppose that k1, ks, m are all non-negative integers, and that
m > 0. Suppose that ® is of signature (ko,1™,k1). Then the local ring at a
point (®,N) € X<, is Cohen-Macaulay.

Proof. Let N;, A\;, v;; and ¢€; ; all be formal variables with appropriate indices.
The local deformations at (®,N) take the form

q" T (Tey +M2) Oky vy
4" (1+Xky +m) 0 Niky+m-—1
q(1+Xkq +1) 0 v,
Iy +M1) Oky
where
Aky  €kq,ki—1 " €ky,2  €kq,1
€k1—1,k; Akp—1 - €ky1—1,2 €k;—1,1
M, = : : o :
€2k €2k —1 " A2 €2,1
€1,k; €1,k —1 " €1,2 A1
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is a k1 x k1 matrix,

Aky+mtky  Vhoka—1 ° Vkg2 Vkg,1
Vky—1,ky Akqt+mtko—1 " Vkg—1,2 Vky—1,1
My = : : : :
V2,ky V2 ko—1 " Akyj+m+2 V2,1
V1,ky Viko—1 V1,2 Akj4+m+1

Np-1

is a ky x ko matrix, v, = ( ) is a ko-dimensional column vector and

Niy +m
v, = (N, - N1) is a kp-dimensional row vector.

Notice that because the N;’s are located on the block off-diagonal, there are
k1 +(m—1)+ ko =n—1 in total.

In this case, the equations take the form:

L. Movy = 0o Ak +m
2. Agyy1vy =0 My
3. )\i+lNk1+i = Nk1+i)\i forl<i<m

4. Some other equations in the variables N;, NV, and IV, which depend only
on the equations defining C_p, the closure of the nilpotent conjugacy class
of p. From section 4 of [Wey89], these equations are polynomials which
are simply sums of square-free monomials.

We give our ring the structure of a graded Hodge algebra. Consider the
generator set H = {\;,v; j,€ 5, N;} and give H any partial order such that

o for any i,j,a,b, N; > ¢; > €, > 1
® POp > Dp_1> . > Pk tmtl > e > P2 > P1L > D2 > > Py > Dk 41

Now take ¥ = N¥ to be the order ideal generated by {\; +1N; :i > ki } U {\N; :
i < k1} and finally, we consider the straightening laws, for each generator in the
above generating set:

k1
for i < kl; N,)\, = Ni)\k1+1 — Z NjVj,i
J=17j#i
for kv <i <ky+m; Nidiz1 = NoA\;
n
for i = k1 +m; NyAij1 = Nidgy4m — Z eiﬁij
j=ki+m+1,j#1

It is readily checked that these equations do form a straightening law, due
to our choice of order on the generating set, H.

Utilising Corollary 4.17, it can be seen that this ring is Cohen-Macaulay if the
corresponding discrete graded Hodge algebra (with the same data) is. However,
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since the discrete graded Hodge algebra Ry = O[\1, ..., An, N1, ..., N ]/I with
I={NNi:i<ki}u{\+1IN;:i>k})+J with J an ideal generated by
squarefree monomials in the IV; is of the form in Theorem 4.9, it follows that R
is Cohen-Macaulay.

O

Corollary 4.19. Let p be a partition of 3. Then X<p is a Cohen Macaulay
variety.

Proof. The cases p = 3 and p = 13 are a complete intersection and a smooth
variety respectively. This leaves only p = 21. Let P = (®,N) € X<21. Then ®
can have signature (1,1,1), (2,1), (1,2) or 3. The case (1,1,1) is the ®-regular
case, so is CM by Corollary 12. The signature (3) case also follows because P is
only on the component X3, which is smooth, ergo Cohen-Macaulay. The cases
(2,1) and (1,2) are covered by Theorem 4.18. a

5 Automorphic forms for unitary groups

We now turn to an application of the smoothness result found in section 3. In
this section, we define the space of ordinary automorphic forms, and the Hecke
algebra attached to it. We then state a freeness result, and prove it in the final
section of this paper.

Let [ be a prime. Suppose F'* is a totally real number field with an imaginary
quadratic extension F, such that for any prime v of '™ that lies above [, then
v splits in F. We will also make the rather strong assumption that F': F'" is an
unramified extension. Let S; be the set of all primes of ' that lie above I. Let
Gp+ and GF be the absolute Galois groups of F'* and F respectively. Let L be
a finite extension of Q; with ring of integers O, and residue field k. Let L be a
choice of algebraic closure. We will assume that L is large enough that it contains
all of the embeddings F = L lie inside L. Let c € Gal(F : F*) = Gp+/GF be
the unique non-trivial element, given by complex conjugation. For a € F', we
will denote c(a) by @ when convenient.

5.1 Unitary groups

Consider D/F a central simple algebra of F-dimension n?, and let Sp be a finite
set of primes of F'" that split in F. Suppose that

e D splits at places w of F' that do not lie above some place in Sp;
e There is an isomorphism D =~ D ®p . F of F-algebras;

e The intersection Sp N S; = &;

For all places w of F' above some place in Sp, D,, is a division algebra;

Either n is odd, or n is even and Z[F* : Q] + #Sp =0 (mod 2).
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By [HT99] section 3.3 we can find an involution of the second kind on D,
that is, because of the condition that either n is odd, or n is even with %[FJr :
Q] + #Sp =0 (mod 2), we may construct a map

*:D—>D
such that:

e *is an F'T linear anti-automorphism of D;

e (a*)* =a for all a € D;
e When restricted to F', * coincides with complex conjugation.

In addition, we assume that this involution of the second kind is positive,
that is, for any - € D\{0},

trp[trpsp(v7*)] > 0.

Such an involution gives rise to a Hermitian form {,) : D x D — D given
by {z,y) = z*y, and by [HT99] we may find such an involution such that the
Hermitian form is non-degenerate. We make the assumption that the involution
has this property.

Let Op be an order in D, such that OF = Op, and such that for any split
prime v of F*, Op , is a maximal order of D,. Such an order exists by section
3.3 of [CHTO08]. Define the unitary group over Op+, whose R-points (R an
Op+-algebra) are given by Gp = {g € (Op ®o,, R)* : g*g = 1}. Then Gp is
an algebraic group over Op+. By the positivity condition, we have that at each
infinite place v of F*, that Gp , = U(n).

For each prime v of F'™ that splits in I, choose a prime o of F lying above
v. This choice allows us to give an isomorphism iz : Gp(F,) — D®F Fj, which
restricts to an isomorphism Gp(Op+ ,) = Op 5 as in section 3.3 of [CHTOS].
Note that when v ¢ Sp is split in F' with w lying above v, Gp is split, so that
Gp(F}) = (D®p F5)* = GL,(Fy). If T is a set of primes of F* that splits in

F,set T = {v|veT}.

5.2 Automorphic forms of Gp

We define the automorphic forms for Gp as in [Gro99] and [CHTO0S].

Recall from the classification of representations of algebraic groups that finite
dimensional simple modules for a reductive group G over a field L are uniquely
determined by the highest weight in the character group of a maximal torus
Te € G X(Tg) :== Hom(T¢, G,,). Recall further, that there is a unique simple
module with highest weight A if and only if A is dominant.

In the case of GL,, the weights are naturally in correspondence with Z",
and the dominant weights are Z% := {A = (A,...,An) € Z" : Xy = N1 Vi}. We
set the L-vector space Wy to be the irreducible representation of weight \. We
will need to choose a O lattice of Wy. For A a dominant weight, we do this as
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in [Gerl8] by setting &, the representation Indgi" (woA) 0, for B, a choice of
Borel with maximal torus T,, € GL,, and wg the longest element of the Weyl
group. We denote by M, the representation given by the O-points of &y, so
that W), =~ M), ®o L.

Let L : Q; be the finite field extension defined before, with ring of inte-
gers O. The finite dimensional algebraic representations in L vector spaces of
Res(g+ Gp®Qr = [[,eq, Resgj (GL,,) are characterised by th~e sequence of domi-
nant weights, one for each embedding corresponding to w € S;. We define the set
as W = (Zﬁ)Hom(F+*L). For each p € W, we can now define the algebraic rep-
resentation of Gp/Op+ with highest weight p by M, = ®reHom(F+,L),O M,y _,
and W, = M, ®o L.

For each v € Sp, choose a finite-free O-module representation p, : Gp(Op+ ,)
GL(Mv) Set M{pn} = ® M,. We set MH7{PU} = M)\®M{pv}.

’UESD

Definition 5.1. Let A = (u,{py}) be as above. We define the space of auto-
morphic forms for Gp of weight A with A-coefficients Sx(A), where A is an
O-algebra or O-module, as the space of functions

[:Gp(FP)\Gp(AL,) = My ®o A

such that there is an open compact subgroup
Uc Gp(AR ™) x Gp(Op+)

with
u- f(gu) = f(g)

forall ge Gp(AR.) and u € U where u- denotes the action of u on My factoring
through [ [,.s Gp(F,").

Notice that Sy(A) is a smooth representation of Gp (A%, ), under the action
(hf)(g) = h- f(gh™') (again, the - action acting through the representation
of Gp(F[") x [1,es, Gp(F;) on My). We denote by Sx(U, A) = Sx(A)Y the
invariants under this action.

5.3 Hecke Operators

For much of the next two sections, the argument will be a slight adaptation on
that in [Ger18]. As such, the details can be found in sections 2 and 4 of [Ger18],
so this will just highlight the definitions and results needed, and refer to [Ger18|
for the proofs, which we will adapt into this case. Let T be a finite set of places
of F* containing Sp U S; such that every place in T splits in F, and let T’ be
a set of primes of I’ above those in T' as defined before. Fix an open compact
subgroup U = [], U, of Gp(A%.), such that for any split place v outside T,
U, =~ GL,(OF;) via the map ,, and such that for any place of F*, v, inert
in F, suppose U, is hyperspecial. Suppose further that U is sufficiently small,
that is, there is a place v such that U, contains no non-identity roots of unity.
We define the Hecke operators on the subspace Sy (U, A).
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Hecke operators at unramified places Let v be a place of '™ split in I
and w = U be a place in F. Let w,, be a uniformiser. We can define the Hecke
operators as the double coset operators:

T]Sz) _ |:’L;1 (GLn(OEw) <W8L [0_'> GLn(OF,w)) * UU]

Hecke operators at places dividing [ At places dividing the residual char-

acteristic of O, we set ozéi) = (wgli IO ‘>, and define

U = (wopy) (@)U U]

7Ry

where wy is the longest element of the Weyl group of GL,,, and p e W, with p,
the dominant weight for the embedding F'* — L.
We make the following adjustment to the group U.

Definition 5.2. For v a place of F* abovel, and b a positive integer, let Ib(f))
be the set of matrices in GL, (F?) which are upper triangular unipotent mod o°.
Define U(I?) = [Tes, I7(8) x U".

In the case with the group U(I%), further define the following diamond op-
erators:

Definition 5.3. Let T,, be the mazimal torus inside GL, as before. For v € Sy,
and uw € T,,(OF,), define {uy as the operator

(U uU )]

on S\(U(1%),A). Forue T0(Op+ 1) = [ Lues, Tn(OF,) = [ Loes, Tn(OF; ), define
() =T Tpes,(us)-

Define the Hecke algebra TT = TT (U (1%), A) as the A-subalgebra of End(Sy (U (1), A))
generated by all the operators {Tél), (Té"))_1)|v split in F outside of T},
(U Jve Si} and {(wylu e T, (Op+ )}

Notice that the map u ~ {(u) defines a group homomorphism
T (Op+ ) — THU), A)*

which factors through T, (Op+ ;/1°) = [Les, T (Op+ »/0°).

5.4 Big ordinary Hecke algebras and the action of A

From this point on, we wish to focus on the cases where A = O,L/O, or is a
finite module O/7"O.

Recall from Hida theory, as explained fully in section 2.4 of [Ger18], that for
(@) .

any place v € S, and any i, the operator e, := limnﬁoo(Ul(Z’zj

on Sy(U,A). We can further define the projection e = H“ eg'). We define the

)™ is a projection
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ordinary submodule Sgrd(U7 A) = e.S\(U, A) as the image of this projection.
Notice, since all the Hecke operators commute, that this is a Hecke invariant
submodule. We also define TT-°'4(U(1°), A) = eTT(U(1%), A).

Definition 5.4. Let T,, be the maximal torus of GL, as before. For b > 1, let
T, (I°) be the kernel of T,,(Op+ ;) — Tn(O/1).
We define the following algebras,

Ay = O[[To(1")]] = lim O[T, (1")/T0(1”)]

b'=b

A = O[[T.(]] = O[T, (1)]]

A" = O[[Tn(Op+ ]| = lim O[T (Op-+ 1)/ Tn(1¥)]-

b'=b

We denote by ay the kernel of the map A — O[T,,(1)/T,,(I")]. Notice that,
since U is sufficiently small, SS™(U(1*¢), A) is a free A/a;-module, through the
action of T,,(Op+ ), and hence we have an inclusion A/a, = T(U(I%),L/O) by
Proposition 2.5.3 of [Gerl18].

5.4.1 Infinite level

We need to consider the big ordinary Hecke algebra. Set

TT,ord(U(lOO)’A) _ @TT’Ord(U(lb’b),A)

b>0

and

Sord(U(lOO)7A) _ li_I)Hsord(U(lb’b),A).
b>0

Notice that because of the inclusions A/ay < TT*4(U(1*¢), L/©O), we get an in-
clusion A = TT0rd(U (1), L/O), and we see that S°4(U (1), L/O) is a discrete
A-module, so its Pontryagin dual is a compact A-module. (and in fact is finite
free, by Proposition 2.5.3 of [Ger18] since we assume U (l) is sufficiently small.)

We can now give a statement of a theorem that can be proved by the ap-
plication Theorem 3.1. Under certain hypotheses (to be determined in sec-
tion 6) we have Theorem 6.9, which states: The TT°*(U/(1*), L/O)-module
Serd(U (1), L/O)" is locally free over the generic fibre TZ°"4(U(1%), L/O)[1/1].

As a consequence, the multiplicity of S°*4(U(1%), L/O)" is the same at every
characteristic zero point of TZ°"4(U(1*), L/O), and thus, we expect the multi-
plicity of non-classical points (those corresponding to Hida families of ordinary
automorphic forms) is the same as at classical modular forms.
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6 Galois representations and deformation rings

6.1 Local deformation rings

We now define a deformation problem. Let v € Sp with residue field of size q,.
We say that an n-dimensional representation p: G+ — GL, (A) is Steinberg if
the map R — A determined by p factors through o fo

We note that this is equivalent to the statement, that the representation
p lies on the irreducible component X, (A4) of Sgr,, which in the case when
A = L is a characteristic 0 field, the Weil-Deligne representation obtained from
p, WD(p) = (r,N), then r is unramified and the eigenvalues of r(Frob,, ) are
in the ratio ¢~ :¢" 2 :..:¢q,: 1. Note that this definition puts p on the
irreducible component X,, of S,,.

Let Co be the category of Artinian local O-algebras with residue field F, as
in Mazur. For each v € Sp, and Steinberg representation g, : Gps — GL, (F)
define a functor

Dgf :Co — Get
A ~ {Steinberg liftings of p, to A}

This functor is pro-representable by the complete Noetherian local ring RJS" :=
Ox, 5- We notice that when we view X,, as a scheme over L, Theorem 3.1 tells
us, since ¢ is not a root of unity in L, that any localisation of R™*[1/I] is a
regular ring. This shows us that RJ**[1/I] is regular.

For p a deformation of p, to A, we say that p is of type X, if the map
RS — A defined by p factors through Ryt

We recall the definition of 7-discrete series found in section 2.4.5 in [CHTO08].

Let 7y : Gp5 — GLq(O) be a representation such that:

1. 7, ® k is absolutely irreducible (k the residue field of O;
2. Every irreducible subquotient of 7,|, is absolutely irreducible;
3. For each i =0,....m, T® k % 7 ® k(4).

For R an O algebra, we say a representation p : Gg 3 — GLj,q(R) is 7-discrete
series if there is an decreasing filtration {Fil'} of p by R-direct summands such
that

1. grip = gr%(i) for i =0,....,m—1

2. grl15 = 7|15 ®o R.

Proposition 6.1. Suppose | > hg. Let 7 be a rank d representation as above,
and let n be an integer with dn. Let X5, be the moduli space, defined over
O, of framed 7-discrete series representations of rank n. Then the base change,
Xinr, to L is smooth over L.
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Proof. Let S; be the moduli stack over O of n-dimensional 7-discrete represen-
tations, so that Sz =~ [X:/GL,] and let Sy be the stack of m := n/d-dimensional
1-discrete series representations. Let S;N D be the stack over L whose groupoid
over R consists of objects (p’, N) where p is a rank n = dm 7-discrete series
representation with open kernel, and N is an element of Endg(R") such that
o' Np'~t = ¢"N. Define S}*P analogously. Recall that there is a morphism
SWD . S: given by (p/,N) is sent to the unique representation p given by
g — p(g)exp(t;(g)) for g € I and p(Frob) = p'(Frob). Recall that this is an
isomorphism on the base change to L.

Then we have an morphism of algebraic stacks S}¥P — SWP given by the
morphism (p/, N) » (p/, N) ® 7. We claim that this is an isomorphism. By an
exercise in Clifford theory and by assumptions on 7, 7|; can be written as a
direct sum of pairwise non-isomorphic absolutely irreducible I-representations
T@roPE, .., @TFmbk_l for some k € N. As p’ is 7-discrete series in characteristic
zero, we see that p'|; = m(r @ 7F°P@, ...,@TFmbkfl). Let Vi(R) = End g (7™)
be the the space of I-equivariant maps of any representation in SWP7(R), and
define V1 (R) = Endg[;(1™) similarly. Note that the map

Vi(R) — Vi(R) (4)
N~ N ®id; (5)

is injective, and hence is isomorphic onto its image. We claim that if (p/, N) €
SWD(R), then N is in the image of this map.

First, note that N is I-equivariant. We calculate using Schur’s lemma that
Vi(R) = kM,,(R)*, since each 7F"°"" is absolutely irreducible, and we see the
above map corresponds to the diagonal map A : M,,(R) — M,,(R)*.

The space Vi(R) has a natural action of Frobenius on it, and under this
action N = (Ny, ..., Ni,) € M,,(R)* has Frob.(Ny, ..., Ny) = q(N1, ..., N.). Notice
that Frob induces an isomorphism of the underlying spaces 7 — (7FroP)m,

which gives us a commutative diagram

m Frob (TFrob ) m

lNl qu2

m FYOb; (TFrob)m
Hence, we see (¢Na,...,qNk,qN1) = q(N1, ..., Np—1, Ni), and thus N lies in the
image of the diagonal map. This proves the claim.

Let x7 = homy(7,7). Notice that this is an unramified character. We claim
that (Homz(7,) @ x; ', A7) : SWP — SWVD is an inverse defining the equiva-
lence.

For (©,N) € SYYP(R), the previous claim gives us an isomorphism on the
N-part of the stacks STYV D(R), so we focus on the representation part. Since
0|; acts through a finite quotient, and R is an algebra over a characteristic
0-field, we have that © is semisimple and hence we get a decomposition of
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I-representations:

k—1 ) )
M = @ Hom,(r™" 0) @ ;' @ P

=0

for some positive integer k. Since each 7Frob" Gecurs in © with equal multiplicity,

we see that each Hom; (77" ©) ~ Hom; (7, ©), and thus,

m—1
© =~ Hom,(1,0) @ x; ' ® @ 7" = Hom;(r,0) ®@ x; ' ®F

=0

As I representations. To see an isomorphism on the level of Wp-representations,
notice that we have an unramified character x defined over an algebraic closure
L such that for each i gr'© ~ 7 ® x(¢). Then

Homp(7,gr™(©)) = Homp /(7,7 ® X) = x7 ® X(i).
Since 7(i) # 7 for each 1 < i < m, © = P, gr'(7),s0 we get a L[Wp]| isomorphism
O®L = (Hom(7,0)®@x:' ®@7)®r L
Finally, since 7 is absolutely irreducible, this can be upgraded to an isomorphism
L-vector spaces. Hence, the composite SY'P(R) — S)VP(R) — SYP(R) is the
identity.

To show SYVP(R) — SYWP(R) — SVP(R) is the identity, let p € Sy (R). Then
the natural map

p — Hom; (1, p®7) (6)
v {wev@uw} (7)

defines an [ isomorphism. So we need only check that p® x7 and Hom; (7, p®7)
have the same action of Frobenius. This can be checked again, by looking at
the character gr;(p). Hence, we have exhibited an equivalence of categories
Sﬂ > S;

Given a choice of Frobenius, Frob, and a topological generator of the tame
inertia group, s, we can explicitly write an isomorphism of stacks

S1 = [Xn/GLp ]
p = (p(Frob), log(p(s)))
pa(Frob™z) = ®" exp(Nt;(x)) < (P, N)

As (X,,) 1 is a smooth scheme, it shows that Sy [1/1] is a smooth stack, and thus
that S3[1/1] and X 1 are smooth. O

In light of this proposition, if p: Grs — GL, (F) is 7-discrete series, we let
R;" be the universal lifting ring of 7-discrete series representations. By the
proposition, RY"[1/1] is regular at every maximal ideal.
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For v € S;, Let I be the inertia subgroup of G}‘},, and let I;(l) be the pro-I
part. As in chapter 3 of [Gerl8] we can define a lifting A; : O[[I;(1)]]-algebra
R%S. This is the quotient of the universal lifting ring R of pairs (p,{x;}),
such that a morphism r : R, — A corresponding to representation p : G, —
GL,(A) and a sequence of characters x; : I factors through RS if and only
if p is GL,(O)-conjugate to an upper triangular representation with diagonal
characters equal to x1, ..., X, when restricted to inertia.

Lemma 6.2. Suppose that p, : Grs — GL,(F) is an ordinary Galois repre-
sentation with diagonal characters X1, Xz, ---, Xn, Such that for no pair i < j is
Xi = X, with £ the cyclotomic character, then RS [1/1] is formally smooth.

Proof. We see that the dimension of R:[1/1] is n? + [F, : Ql]@ For any
choice of closed point x of SpecR:'[1/1], part 1 of Lemma 3.2.3 of [Ger18] tells
us that the dimension of the tangent space of R5:[1/1] is n? + [Fy, : Q] +
dim H?(Gp,,Fil’ad(V,)). From part 3 of Lemma 3.2.3, we also see that if
the diagonal characters of p, (;) have x;/x; # € for every pair ¢ < j, then
dim H?(Gp,, Fil’ad(V,)) = 0. Hence, the ring R2[1/1] is regular. O

6.2 Local-Global compatibility

We start by introducing the group G, from [CHTO08], defined as the group
scheme that is the semi-direct product of GL,, x GL; with Cy = {1, 5} where j
acts as
g™t = (ulg™)", ).

By Lemma 2.1.1 of [CHTO08], we have that representations r : Gp+ — G, (R)
such that r~1(GL,(R) x GL;(R)) = G correspond with pairs (p, x), where p is
an n-dimensional representation of Gp, and x is a character of G+, such that
p¢ = xpY,and ce G+ is sent to j.

For brevity, whenever we have a homomorphism r : Gp+ — G,(R), and
a subgroup H < Gp+, we use r|g, to mean the restriction, followed by the

projection to GL,. Typically, H will be the subgroup G or its localisations
Gp,-

Proposition 6.3. Suppose that m < TT°"(U(1°), 0) is a mazimal ideal, with
residue field F. Then there is a unique continuous semisimple representation

fm . GF g GLn(F)
such that:

1.

2. For any place v of F*, outside T, 7|y is unramified;
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3. If further, v splits as v = ww® in F, then the characteristic polynomial of
Tm(Froby,) is

n(n 1)

TOX" 4 +(=1)"N(w) =z T

iG=1
2

X" X" 4 (=1)! N (w)
modulo m;

4. Let 75 : Gg — GLy,, (O) be as in section 3.2 of [CHTO08] (note: this is
constructed from the smooth representation p, : Gp(F;t) — GL(M,) via
the Jacquet-Langlands and local Langlands correspondences). If v € Sp
and U, = Gp(OFp+ ), then T|ay., is Ts-discrete series.

Proof. Apart from statement 4, this is Propositions 2.7.3 in [Ger18], so we prove
only this part. By the argument of Proposition 2.7.3 in [Gerl18], the maximal
ideals of T are in bijection with those of T/mx. Hence, this proposition follows
immediately from the classical situation. The proof of this can be found in
Proposition 3.4.2 of [CHT08], which proves the proposition. O

Proposition 6.4. If m is non-Fisenstein, that is, Ty, is irreducible, then Ty, can
be extended to a representation T : Gp+ — G (F), and this representation can
be lifted to a representation

Tm: Gpe = Gu(TH U (1), O)m)

1-n m
O

the cyclotomic character, §p p+ is the non-trivial character of Gp+/GF,

and pm, € Z/2;

1. For v:G, — GLy, the second projection, vory, =€ where € is

2. For any place v¢ T of FT, Tl is unramified;

3. If further, v splits as v = ww® in F, then the characteristic polynomial of
Tm (Froby,) is

nnl

X T X1 (—1) N (w) T2 T X" 44 (1) N (w) T T,

4. If ve Sp, then rol|a, , is T5-discrete series.

Proof. As the previous proposition, apart from statement 4, this is Proposi-
tion 2.7.4 in [Gerl8], so we prove only this final statement. By the proof
of Proposition 2.7.4 of [Gerl8], we may find a sequence of maximal ideals
my < T (U (I%%),0) such that Ty = lim, TH4(U ("), O)p,, and we de-
fine ry = lim, ry,. By Lemma 3.4.4 of [CHTO8], each rw, |G, is Fg-discrete
series, and so now it remains to show that rp,|q, , is too. Since for each b > ¢
each rq, @ T YU (19¢),O)m, = rm,, if follows that the filtration, Fil; on 7y,
descends to a filtration Filj ® TT°"4(U (1), O)y, on rm,, and that the graded
parts have [gr!(rmp)] ® TT" (U (1), O)m, = gr'[rms) ® TT" (U (1), O)m, |-
It follows that Fil, ® T7°"4(U(1%¢), O)m, is a defining filtration on ry,. From
Lemma 2.4.25 of [CHTO08], such a filtration is unique, so we have a compatible
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system of filtrations on the ry, which lift to a filtration on rm|Gm. We see
from compatibility that gr;(rm) = lim, gr;(rm,), and so it is easy to check that
Tm|Gp, 18 Ty-discrete series.

a

6.3 Global deformation rings

Let F: F*, T = S;[[Sp[[ R, T all be as before. Let p: Gp — GL(F) be a
representation with local representations p,, = p|a;.,,, Where w is a place of F.
Assume that:

e the representation p is a irreducible automorphic representation, L.E.,
there is a non-Eisenstein maximal ideal m < TT:°"4(U (I, 0)) so that

P = Tm;

e the subgroup p(Gp+ () © Gn(F) is adequate in the sense of Definition
2.3 of [Thol2];

e the Level structure is minimal for p;

e the representation p is unramified outside T

e For each v € Sj, have Homg,, , (s, pse) = 0 for € the cyclotomic character.

As p = 7y is irreducible, via Proposition 6.4, p can be extended to a rep-
resentation p: Gp+ — G, (F) such that vop = el_"(ﬁ;':“FJr, and we fix such an
extension.

For each v e T, define Ry, as the framed deformation ring for p;. Set

o~ o~

R"¢:= (®O,UESZ R$)®O(®O7UESD Rsh)@o(@o,veRR:‘))

to be the local deformation ring for p. Our first observation, is that since each
Rﬁ is a Ag-module, we notice that R'°¢ inherits the structure of a ® Ay = A-

A; = A is inherited from the group isomor-

o vES)
module. The isomorphism )
phisms

’UESL

T,00) = [ [ 7.0p+ () = [ ] TnOrs()) = [ | L))"

VES VES VES

where the final isomorphism is given by local class field theory.

Notice, that by assumption on p and Lemma 6.2, that R5[1/l] is smooth.
We remark that R2" is the completion of a local ring on the moduli space of
rank n framed 7-discrete series representations, X7. Since the map X; — S:
given by ‘forgetting the framing’ is smooth, and the stack S7[1/l] is smooth
over L by Proposition 6.1, we see that Ox, 5[1/1] is regular, and hence, by an
application of Lemma 2.10, we see that Ry"[1/] is regular.

Since the Level U is minimal, for p we have further, that Rj, is regular for
each v € R. Hence, by Corollary 2.11, R'°[1/I] is regular.
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Let S be the following tuple

S=(F:F",T,T, "6 . {R> :ve S}, {R>* :ve Sp},{R):veR})

F/F+>
and say that p: Gp+ — G(A) is a lifting of p to A € Cy of type S if:
1. plap lifts 7y
2. p is unramified outside T

3. For v € Sp, p, is 7-discrete series and gives rise to the morphism R} — A
which factors through R;";

4. For v € §;, the restriction p, and the A-structure on A give a morphism
RS ® A — A which factors through RZ';

l—néﬂm

5. vop=c¢ Fre

By Proposition 2.2.9 of [CHTO08], we can construct the universal deformation
ring, Rgni", and the universal lifting ring Rg.

Let hg = [FT : Q]@ + [FT: Q]w, and let i be an integer
larger than both hg and dim[H}, (Gp+ 7,adp(1))]. (Here, H}. (Gp+ 7,adp(1))
is a particular subspace of the cohomology group H'(Gp+ r,adp(1)) of the
Galois group G g+ of the maximal extension of F* unramified outside of T,
defined in Proposition 4.4 of [Thol2].)

After Thorne [Thol2], we will call a triple, (Q,Q,{JJU}%Q a Taylor-Wiles

triple if:
1. Q is a set of primes of F* which split in F;
2. for each ve @, {[Nmp+ (v) — 1
3.1Q = h;
4. Q is the set {3|v e Q};

5. for each v € Q, p|g, splits as a direct sum into 5, ® v, with v the
generalised eigenspace with eigenvalue & € F of dimension d,,.

For any Taylor-Wiles set, @, we can define a deformation problem S(Q),
which is the same as S, but in addition, we now allow p; for v € @ to ramify in the
following way: pg splits as a direct sum s@®1, which lift 5 and ) respectively, such
that s is unramified, and ¢|g, : I, — GLg4, factors through the scalar action on
the underlying representation space. Using Proposition 2.2.9 in [CHTO08] again,
we can now take the universal deformation ring Rg‘(‘g). Because stipulating
that the local deformations at Taylor-Wiles primes are unramified is a closed
condition, this presents us with a surjection Rg‘(‘g’) —» Rg“i". Further, we also

have a natural map R!°¢ — Rgf(lg) given by restrictions to the local subgroups
at the level of functors.
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Proposition 6.5. For each N € N, we can find a Taylor-Wiles triple (Q, QN? {10 }oeq)

such that for allve Qn, IV ||Nmp(v) — 1, and the global deformation ring RS0

can be topologically generated over R'® by h — hg generators.

Proof. This follows from Lemma 4.4 of [Tho12] applied in the case of Theorem
8.6. O
In light of this proposition, set R, = R[[X1,..., X4]], Ry = Rgr(‘gN) and
Ry = Rg“iv so that we have surjections Ry, — Ry .
We now define some important subgroups of Gp(A%, )

Definition 6.6. For v e Qy, suppose that 7|, = 5@, as before, with ¢ a d,
dimensional semisimple unramified representation with all Frobenius eigenvalues
equal. We take the group U;(0) to be the subgroup of U, of elements that take

the form
wE % -
< 0 G[du) (modv)

with a =1 when i =1, and arbitrary when i = 0. Set U;(Q) = U" x [ [,cq Ui(?)

Set Ay be the maximal I-power quotient of Up(Qn)/U1(Qn) = [ [,cq, k(0)*.
veon K0 = (Z/IN)1. We
claim there is an action of Ax on the ring R;r(‘g). The map, detorifiv :
Ips — (ngr(‘g))x, given by the determinant of the universal deformation riiv :=

rgr(‘gN),ﬁ, factors through the kernel of (1’%2‘(‘5))X — F*, which is an abelian -

power group. By local class field theory, there is an isomorphism Ij}f’ﬁ — Of s
and the [-power quotient of this group is the [-power quotient of k(9)*. We hence

see that there is a map Ay — (Rgr(lgm) % and thus a ring map A[Ay] — Rg{gg),

so that Rg‘(‘gN) inherits the structure of a finitely generated A[An]-algebra.
Notice that if ay is the augmentation ideal of A[Ay], then Rg‘(lgN)/aN is the
ring of the universal deformation ring which parametrises Galois deformations
of type §. (These deformations are required to be unramified at places above
Qn.) Note, that by choice of Qy, that Ay = (Z/I"Z)".
As in Chapter 5, we can construct the Hecke operators Ty 1 := TTV@~ ({7 (Qn) (1%), O)

and through a map TTVON ' 4(T7 (Qn)(I7),0) — T YU (%), O) we can lift
our choice of maximal ideal m to a maximal ideal my < T ;. As in Proposi-
tion 6.4, we can construct a representation ry, : Gp+ — G, (Tx,1) which by the
proof of Theorem 6.8 of [Thol2| gives us an S(Qn)-lifting of 5. Hence, we get

univ

a surjection RS(Q) — T, for each N.

lIe

We may view Ay as the maximal [-quotient of ||

6.4 Patching
We now define a module Hy over TV~ 0177 (Q ) (1%), O),, for each set Q.
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Define the space of automorphic forms S*4(U;(Qn)(1%), L/O),, as before,
and set Hy = S"4(U(I1®), L/O)Y,. In Proposition 5.9 of [Thol2], Thorne de-
scribes a projection Pr, on S*Y(U;(Qn)(1%), L/O),,, and in Theorem 6.8, mod-
ules

Hiy = ] PHS™W(@0)I7),L/0)n]"

vEQ N

with the following properties:
Proposition 6.7. [Thol2]

1. Hy gy is a free A[Ag, ]-module, and restriction to S (Us(Qn)(1°), L/O)m
gives an isomorphism Hi g, /an = Ho.gy -

2. The map
(][] Pr)Y:Hoqy — Ho

veEQN

is an isomorphism.

Theorem 6.8 (Patching). Let R — T be a surjective A-algebra homomorphism,
with T a finite A-algebra. Suppose we have the following data:

1. Integerst,h > 1;
2. a finite T-module H;

3. Sn = A[(Z/I"Z)"] = A[Ag, ] with augmentation ideal ay, with inverse

limit Sl :=lim A[Aqy ] = A[[Y1,..., Y4]] ;
4. aring Sy = S, R0T, where T = O[[ X1, oo X|7n2]]
5. For each N =1 have

(a) Rn — Tn are Sn-algebra homomorphisms, such that reduction mod-
ulo an reduces the map to R — T.

(b) a finite T y-module Hy, which is finite and free over Sy, whose rank
is independent of N;

6. An Sy -algebra Ry, such that Ry, — Ry with kernel ker(Se, — Sn)Roo.
Then there is an Ry ® Son-module Hyy, such that

1. Hy/aHy = H,

2. Hy, is a finite free Sy -module.

8. The action of S, on Hy, factors through that of Ry.

Proof. The details of the Taylor-Wiles-Kisin patching method used here is es-
sentially no different to chapter 4.3 of [Gerl8]. One can also find details in
chapter 8 of [Thol2], under the heading ‘another patching argument’. O
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Theorem 6.9. The module Hy[1/1] is a finite locally free RE"[1/1]-module.

Proof. We calculate that dim(S.) = dim(A)+h+|T|n? = n[FT : Qn+h+|T|n?,
and that

1
dim(Re) = 1+ 3 ([F @l]% +n2) +n2|Sp U R| +h— h
vES)
1
N ALt BV S

=[F+:Q]”+\T|n2+h—[F+:Q]w

Consider the module H7,. Since H7 is a finite free S, module, and that the
action of Sy, factors through R., we see that

dim(Sy) = depthg (H3) < depthp (Hg) < dim(Ry)

and thus, the only possible way for this inequality to hold is if equality holds
throughout, and p,, = n mod 2, and Hj, is a maximal Cohen-Macaulay R
module.

Now, consider the generic fibre. Let m € Ry [1/1] be a maximal ideal. Since
localisation commutes with tensor products, we see that

(@ R) [1/1]= & (R[1/1]).

O, veT LveT
By Lemma 2.10, we see that

Rm[1/zm:(®o e Ro) (105, = ( ® R) [1/1]0

OweT

and so we see that R [1/1]), is a power series ring tensor product of formally
smooth rings. Since it is formally smooth, any finitely generated Ro[1/l]m-
module has finite projective dimension, and by the Auslander Buchsbaum for-
mula, is projective. This shows that HJ[1/l],, is a free Ry[1/l],-module,
this shows that H [1/] is a locally finite free Ry[1/]-module. It follows that
Ho[1/1] is a locally finite free R%"“[1/I]-module. O

Corollary 6.10. R%"™[1/l] = T[1/1].

Proof. Let I be the kernel of the surjection R"*[1/l] — T[1/l]. Choose any
maximal ideal m of R&""[1/1]. Since localisation is an exact functor, we get a
short exact sequence

0 — I, — R [1/1),, — T[1/l]n — O.

Note that the action of R&"[1/],, on Ho[1/l],, factors through T[1/l],,, so
that I,,, annihilates all of Ho[1/],,. Since this is a free module, this shows that
I, is trivial. Since this is true for every m, this shows that Supp(/) = & and
hence I = 0. Hence the surjection above is an isomorphism RE""[1/1] =~ T[1/1].
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Remark. We finally want to remark on an application of Theorem 6.9. Whenever
M is a locally free coherent sheaf on a connected space X, the rank function

X > Nu {0}
x ~ Rank, (M)

is locally constant. Therefore, the rank of a geometrically connected component
can be calculated by calculating the rank at any special point x € X. In our
special case, the rank of the module Hy[1/l] can be interpreted as the number
of distinct automorphic forms with a given set of Hecke eigenvalues. Which can
again, be interpreted as the multiplicity of the Galois representation determined
by said Hecke eigenvalues inside the space of automorphic forms. We have
shown that for these automorphic forms, the multiplicity is determined only by
the connected component that the representation p, lies on. By Lemma 4.2
of [Gerl8], we see that the minimal primes of Ry [1/] biject with the minimal
primes of A, and thus we have a bijection with those of R%"[1/I]. Thus, if
one could show that for each component of SpecA, there is an automorphic
form of some classical weight had multiplicity 1, then all the Hida families of
forms would also have multiplicity 1. Thus these results have an application to
‘multiplicity problems’.
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