Linear Algebra 1, Problem Sheet 1.

Epiphany 21/22.

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x+y+z \\
-2 y-2 z \\
y+z
\end{array}\right) .
$$

Find the matrix which represents T with respect to:
(a) the standard basis in both copies of \mathbb{R}^{3};
(b) the ordered basis consisting of

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)
$$

in both copies of \mathbb{R}^{3}.
2. * Find the characteristic polynomial of the matrix

$$
M=\left(\begin{array}{cc}
A & C \\
\mathbf{0} & B
\end{array}\right),
$$

where A denotes a $n \times n$ matrix, B a $m \times m$ matrix, C a $n \times m$ matrix, and $\mathbf{0}$ denotes the zero matrix of the appropriate dimensions, in this case $m \times n$.
3. Find the characteristic polynomials, the eigenvalues and the eigenspaces of the following matrices
(i) $\left(\begin{array}{cc}7 & -4 \\ -8 & -7\end{array}\right)$,
(ii) $\left(\begin{array}{ccc}5 & 2 & 3 \\ -13 & -6 & -11 \\ 4 & 2 & 4\end{array}\right)$,
(iii) $\left(\begin{array}{ccc}3 & 1 & 1 \\ -15 & -5 & -5 \\ 6 & 2 & 2\end{array}\right)$.
4. Show that each of the following matrices is similar to a diagonal matrix.
(i) $\left(\begin{array}{ccc}6 & 2 & 3 \\ -13 & -5 & -11 \\ 4 & 2 & 5\end{array}\right)$;
(ii) $\quad\left(\begin{array}{cc}1+i & 4+4 i \\ 0 & -1-i\end{array}\right)$;
(iii) $\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$.

In each case write down an appropriate matrix which can be used to convert the given matrix to diagonal form.
5. Prove that, if λ is an eigenvalue of the linear transformation $T: V \rightarrow V$, then λ^{k} is an eigenvalue of T^{k} for each integer $k>0$. Prove also that if $p(t)$ is a polynomial, then $p(\lambda)$ is an eigenvalue of $p(T)$.
6. Show that the linear transformation $S: \mathbb{R}[x]_{n} \rightarrow \mathbb{R}[x]_{n}$ given by $S(p(x))=\frac{1}{x} \int_{0}^{x} p(y) d y$ is diagonalizable and find the eigenvalues and eigenvectors.
7. If A is a 2×2 matrix with characteristic polynomial $p_{A}(x)=c_{0}+c_{1} x+x^{2}$, show that $p_{A}(x)=x^{2}-\operatorname{tr}(A) x+\operatorname{det}(A)$.
8. If A is a 3×3 matrix with characteristic polynomial $p_{A}(x)=c_{0}+c_{1} x+c_{2} x^{2}-x^{3}$, show that $p_{A}(x)=-x^{3}+\operatorname{tr}(A) x^{2}+\frac{\left(\operatorname{tr}\left(A^{2}\right)-(\operatorname{tr} A)^{2}\right)}{2} x+\operatorname{det}(A)$.
9. Find the characteristic equation for

$$
B=\left(\begin{array}{ccc}
0 & 2 & 6 \\
2 & -8 & -26 \\
-2 & 2 & 8
\end{array}\right)
$$

and hence show that $B^{9}=2^{8} B$. [Hint: use Cayley-Hamilton.]
10. Which of the matrices

$$
\left(\begin{array}{ccc}
11 & 5 & 8 \\
-30 & -16 & -30 \\
9 & 5 & 10
\end{array}\right), \quad\left(\begin{array}{ccc}
-2 & -1 & -1 \\
9 & 4 & 3 \\
-3 & -1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
-4 & -1 & 1 \\
17 & 4 & -5 \\
-5 & -1 & 2
\end{array}\right)
$$

are similar to diagonal matrices?
11. Prove that

$$
\left(\begin{array}{cc}
0 & -4 \\
-4 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
-1 & -5 \\
-3 & 1
\end{array}\right)
$$

are similar to each other.
12. Find two matrices $A, B \in M_{n}(\mathbb{R})$ with same characteristic polynomial, same eigenvalues, same determinant, same trace but not similar to one another.
13. Which of the matrices

$$
\left(\begin{array}{ccc}
-9 & -3 & -1 \\
35 & 11 & 1 \\
-11 & -3 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
-1 & 2 & 0 \\
-1 & 1 & 0 \\
4 & -2 & 1
\end{array}\right)
$$

are similar to diagonal matrices when we take (a) \mathbb{R}, (b) \mathbb{C} as the underlying field of scalars?
14. Given

$$
A=\left(\begin{array}{ll}
-6 & 8 \\
-4 & 6
\end{array}\right)
$$

find P such that $P^{-1} A P$ is diagonal. Hence compute A^{6}.
15. Let A be an $n \times n$ complex matrix. Suppose that A has only one eigenvalue. Prove that if A is not of the form $a I$, then A is not similar to a diagonal matrix.
16. Given the matrix

$$
A=\left(\begin{array}{ccc}
-9 & -8 & -15 \\
37 & 32 & 59 \\
-10 & -8 & -14
\end{array}\right)
$$

find a matrix B such that $B^{3}=A$. Is this B unique?
17. Solve the system of first-order differential equations

$$
\dot{x}_{1}=-3 x_{1}-2 x_{2}-6 x_{3}, \quad \dot{x}_{2}=-8 x_{1}-3 x_{2}-12 x_{3}, \quad \dot{x}_{3}=5 x_{1}+2 x_{2}+8 x_{3},
$$

subject to the initial conditions

$$
x_{1}(0)=1, \quad x_{2}(0)=\frac{3}{2}, \quad x_{3}(0)=-1 .
$$

18. Find the eigenvalues and eigenvectors of the linear transformation $T: \mathbb{R}[x]_{4} \rightarrow \mathbb{R}[x]_{4}$ defined by $T(p(x))=x^{2}(p(x+1)-2 p(x)+p(x-1))$.
19. Define $T: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$ by $T(A)=A^{t}$. Prove that T has only two distinct eigenvalues, and that its eigenvectors span $M_{n}(\mathbb{R})$. Here $M_{n}(\mathbb{R})$ denotes the set of $n \times n$ real matrices, and A^{t} denotes the transpose of A.
20. Let S and T be linear transformations from an n-dimensional vector space to itself, and assume that $S T=T S$. If \mathbf{v} is an eigenvector of S, and if $T(\mathbf{v})$ is not the zero vector, show that $T(\mathbf{v})$ is also an eigenvector of S. Hence show that if S has n distinct eigenvalues, then S and T have the same eigenvectors.
21. Compute the characteristic polynomial of

$$
A=\left(\begin{array}{ccc}
16 & 14 & 10 \\
-9 & -9 & -5 \\
-2 & 13 & -9
\end{array}\right)
$$

and deduce that $A^{4}=16 \mathbf{I}$. [Hint: Cayley-Hamilton.]
22. Find the general (real) solution of the system of first-order differential equations

$$
\dot{x}_{1}=5 x_{1}+5 x_{2}, \quad \dot{x}_{2}=-5 x_{1}-x_{2} .
$$

23. * Let C be an element of $M_{n}(\mathbb{R})$ of the form:

$$
C=\left(\begin{array}{ccccc}
c_{0} & c_{1} & c_{2} & \ldots & c_{n-1} \\
c_{n-1} & c_{0} & c_{1} & \ldots & c_{n-2} \\
\vdots & & \ddots & & \vdots \\
c_{1} & c_{2} & \ldots & c_{n-1} & c_{0}
\end{array}\right)
$$

where each row is a just cyclic shift of the row above it. In a succint way we can write the entry $C_{i j}=c_{(i-j) \bmod n}$ where mod denotes the remainder of the integer division modulo n. This is called a circulant matrix and it's a particular type of a particular set of matrices called Toeplitz matrices. Show that if ω is an n-th root of unity, i.e. $\omega^{n}=1$, then the vector $\mathbf{v}=\left(\omega^{\mathbf{0}}, \omega^{\mathbf{1}}, \ldots, \omega^{\mathbf{n}-\mathbf{1}}\right)^{\mathbf{t}}$ is an eigenvector of C and compute its corresponding eigenvalue.
24. * The minimal polynomial of a square matrix A is the polynomial $q(t)=t^{m}+a_{1} t^{m-1}+\ldots+a_{m}$ of least degree such that $A^{m}+a_{1} A^{m-1}+\ldots+a_{m} I=0$. Show that if $A \in M_{n}(\mathbb{R})$, then the subset $\mathbb{R}[A]$ of $M_{n}(\mathbb{R})$ consisting of polynomials in A is a vector subspace whose dimension is the degree of the minimal polynomial of A. Find the dimension of $\mathbb{R}[A]$ when

$$
A=\left(\begin{array}{ccc}
3 & 1 & -2 \\
-2 & 1 & 2 \\
1 & 1 & 0
\end{array}\right)
$$

25. (a) Let D be a diagonal 3×3 matrix with distinct entries. Prove that every diagonal 3×3 matrix can be expressed as a linear combination of I, D, D^{2}.
(b) Prove that for $P \in G L_{n}(\mathbb{R})$ (that is P an invertible $n \times n$ real matrix) the map $A \mapsto P^{-1} A P$ defines a nonsingular linear transformation from $M_{3}(\mathbb{R})$ to itself.
(c) Prove that if $A \in M_{3}(\mathbb{R})$ has distinct real eigenvalues, then the set $\mathbb{R}[A]$ of all polynomials in A is a 3 -dimensional subspace of $M_{3}(\mathbb{R})$.
26. Decide which of the following bilinear functions defines an inner product:
(i) $x_{1} y_{1}-x_{1} y_{3}-x_{3} y_{1}+2 x_{3} y_{3}+4 x_{2} y_{2}+x_{4} y_{4}+x_{2} y_{4}+x_{4} y_{2}$ on \mathbb{R}^{4};
(ii) $2 x_{1} y_{1}+x_{2} y_{2}+2 x_{3} y_{2}+x_{2} y_{3}$ on \mathbb{R}^{3};
(iii) $2 x_{1} y_{1}+x_{2} y_{2}-2 x_{1} y_{3}-2 x_{3} y_{1}-x_{2} y_{3}-x_{3} y_{2}+x_{3} y_{3}$ on \mathbb{R}^{3};
(iv) $4 x_{1} y_{1}+2 x_{2} y_{2}+6 x_{2} y_{3}+6 x_{3} y_{2}+18 x_{3} y_{3}$ on \mathbb{R}^{3};
(v) $x_{1} y_{1}+x_{2} y_{2}-x_{1} y_{3}-x_{3} y_{1}+3 x_{2} y_{3}+3 x_{3} y_{2}+11 x_{3} y_{3}$ on \mathbb{R}^{3}.
27. Show that the bilinear form on \mathbb{R}^{3} defined by

$$
(\mathbf{x}, \mathbf{y})=6 x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+x_{2} y_{2}-x_{1} y_{3}-x_{3} y_{1}+x_{3} y_{3}
$$

is an inner product on \mathbb{R}^{3}, and find the lengths of the vectors

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
3 \\
-6 \\
3+3 \sqrt{3}
\end{array}\right)
$$

and the angle between them with respect to this inner product.
28. Find the angle between the vectors in \mathbb{R}^{4} equipped with the standard inner product:

$$
\text { (i) }\left(\begin{array}{c}
1 \\
2 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
2 \\
1 \\
-1 \\
1
\end{array}\right) ; \quad \text { (ii) } \quad\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right),\left(\begin{array}{c}
8 \\
-4 \\
-4 \\
3
\end{array}\right) ; \quad \text { (iii) } \quad\left(\begin{array}{c}
6 \\
2 \\
-2 \\
2
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
3
\end{array}\right) \text {. }
$$

29. * Consider the vector space M_{n} of the $n \times n$ matrices with real coefficients, and the $\operatorname{application}():, M_{n} \times M_{n} \mapsto \mathbb{R}$ given by

$$
(A, B)=\operatorname{Tr}\left(A^{t} B\right)
$$

where A^{t} denotes the transpose of A and Tr denotes the trace. Show that (,) defines an inner product on M_{n}.
30. Suppose that \mathbb{C}^{3} is equipped with the standard inner product. Show that the vectors

$$
\frac{1}{2}\left(\begin{array}{c}
i \\
i \\
1+i
\end{array}\right), \quad \frac{1}{6}\left(\begin{array}{c}
3+3 i \\
1+i \\
-4
\end{array}\right)
$$

are mutually orthogonal unit vectors, and find an orthonormal basis for \mathbb{C}^{3} which contains them.
31. Decide which of the following defines a Hermitian inner product on \mathbb{C}^{2} :
(i) $3 z_{1} \bar{w}_{1}+4 z_{2} \bar{w}_{2}$;
(ii) $z_{1} \bar{w}_{2}+z_{2} \bar{w}_{1}$;
(iii) $z_{1} \bar{w}_{1}+(1+i) z_{2} \bar{w}_{2}$;
(iv) $z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}+z_{1} w_{2}$.
32. Show that $z_{1} \bar{w}_{1}+2 z_{2} \bar{w}_{2}+\frac{1+i}{\sqrt{2}} z_{1} \bar{w}_{2}+\frac{1-i}{\sqrt{2}} z_{2} \bar{w}_{1}$ defines a hermitian inner product on \mathbb{C}^{2}. Using this inner product, find the norm of the vector

$$
\mathbf{u}=\binom{-1}{\sqrt{2} i}
$$

and determine all unit vectors which are orthogonal to it.
33. If the vector space $C[-\pi, \pi]$ of continuous complex valued functions on the interval $[-\pi, \pi]$ is equipped with the inner product defined by

$$
(f, g)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

where $\overline{g(x)}$ denotes the complex conjugate of $g(x)$, show that

$$
e^{i n x}
$$

with $n \in \mathbb{N}$, i.e. $n=0,1,2 \ldots$, are mutually orthogonal unit vectors in $C[-\pi, \pi]$.
Note: Starred, e.g. 1. ${ }^{*}$, exercises are more advanced/complicated.

