Linear Algebra 1, Problem Sheet 1. Epiphany 21/22.

1. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

$$T\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x+y+z\\-2y-2z\\y+z\end{pmatrix}.$$

Find the matrix which represents T with respect to:

- (a) the standard basis in both copies of \mathbb{R}^3 ;
- (b) the ordered basis consisting of

$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \ \begin{pmatrix} 3\\1\\2 \end{pmatrix}$$

in both copies of \mathbb{R}^3 .

2. * Find the characteristic polynomial of the matrix

$$M = \begin{pmatrix} A & C \\ \mathbf{0} & B \end{pmatrix},$$

where A denotes a $n \times n$ matrix, B a $m \times m$ matrix, C a $n \times m$ matrix, and **0** denotes the zero matrix of the appropriate dimensions, in this case $m \times n$.

3. Find the characteristic polynomials, the eigenvalues and the eigenspaces of the following matrices

(i)
$$\begin{pmatrix} 7 & -4 \\ -8 & -7 \end{pmatrix}$$
, (ii) $\begin{pmatrix} 5 & 2 & 3 \\ -13 & -6 & -11 \\ 4 & 2 & 4 \end{pmatrix}$, (iii) $\begin{pmatrix} 3 & 1 & 1 \\ -15 & -5 & -5 \\ 6 & 2 & 2 \end{pmatrix}$.

4. Show that each of the following matrices is similar to a diagonal matrix.

(i)
$$\begin{pmatrix} 6 & 2 & 3 \\ -13 & -5 & -11 \\ 4 & 2 & 5 \end{pmatrix}$$
; (ii) $\begin{pmatrix} 1+i & 4+4i \\ 0 & -1-i \end{pmatrix}$; (iii) $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$.

In each case write down an appropriate matrix which can be used to convert the given matrix to diagonal form.

- 5. Prove that, if λ is an eigenvalue of the linear transformation $T: V \to V$, then λ^k is an eigenvalue of T^k for each integer k > 0. Prove also that if p(t) is a polynomial, then $p(\lambda)$ is an eigenvalue of p(T).
- 6. Show that the linear transformation $S : \mathbb{R}[x]_n \to \mathbb{R}[x]_n$ given by $S(p(x)) = \frac{1}{x} \int_0^x p(y) dy$ is diagonalizable and find the eigenvalues and eigenvectors.
- 7. If A is a 2 × 2 matrix with characteristic polynomial $p_A(x) = c_0 + c_1 x + x^2$, show that $p_A(x) = x^2 \operatorname{tr}(A)x + \det(A)$.
- 8. If A is a 3×3 matrix with characteristic polynomial $p_A(x) = c_0 + c_1 x + c_2 x^2 x^3$, show that $p_A(x) = -x^3 + \operatorname{tr}(A)x^2 + \frac{(\operatorname{tr}(A^2) (\operatorname{tr} A)^2)}{2}x + \det(A)$.
- 9. Find the characteristic equation for

$$B = \begin{pmatrix} 0 & 2 & 6\\ 2 & -8 & -26\\ -2 & 2 & 8 \end{pmatrix}$$

and hence show that $B^9 = 2^8 B$. [Hint: use Cayley-Hamilton.]

10. Which of the matrices

$$\begin{pmatrix} 11 & 5 & 8 \\ -30 & -16 & -30 \\ 9 & 5 & 10 \end{pmatrix}, \begin{pmatrix} -2 & -1 & -1 \\ 9 & 4 & 3 \\ -3 & -1 & 0 \end{pmatrix}, \begin{pmatrix} -4 & -1 & 1 \\ 17 & 4 & -5 \\ -5 & -1 & 2 \end{pmatrix}$$

are similar to diagonal matrices?

11. Prove that

$$\begin{pmatrix} 0 & -4 \\ -4 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} -1 & -5 \\ -3 & 1 \end{pmatrix}$$

are similar to each other.

- 12. Find two matrices $A, B \in M_n(\mathbb{R})$ with same characteristic polynomial, same eigenvalues, same determinant, same trace but not similar to one another.
- 13. Which of the matrices

$$\begin{pmatrix} -9 & -3 & -1 \\ 35 & 11 & 1 \\ -11 & -3 & 1 \end{pmatrix}, \qquad \begin{pmatrix} -1 & 2 & 0 \\ -1 & 1 & 0 \\ 4 & -2 & 1 \end{pmatrix}$$

are similar to diagonal matrices when we take (a) \mathbb{R} , (b) \mathbb{C} as the underlying field of scalars?

14. Given

$$A = \begin{pmatrix} -6 & 8\\ -4 & 6 \end{pmatrix},$$

find P such that $P^{-1}AP$ is diagonal. Hence compute A^6 .

15. Let A be an $n \times n$ complex matrix. Suppose that A has only one eigenvalue. Prove that if A is not of the form aI, then A is not similar to a diagonal matrix.

16. Given the matrix

$$A = \begin{pmatrix} -9 & -8 & -15\\ 37 & 32 & 59\\ -10 & -8 & -14 \end{pmatrix}.$$

find a matrix B such that $B^3 = A$. Is this B unique?

17. Solve the system of first-order differential equations

 $\dot{x}_1 = -3x_1 - 2x_2 - 6x_3, \quad \dot{x}_2 = -8x_1 - 3x_2 - 12x_3, \quad \dot{x}_3 = 5x_1 + 2x_2 + 8x_3,$

subject to the initial conditions

$$x_1(0) = 1$$
, $x_2(0) = \frac{3}{2}$, $x_3(0) = -1$.

- 18. Find the eigenvalues and eigenvectors of the linear transformation $T : \mathbb{R}[x]_4 \to \mathbb{R}[x]_4$ defined by $T(p(x)) = x^2 (p(x+1) - 2p(x) + p(x-1)).$
- 19. Define $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ by $T(A) = A^t$. Prove that T has only two distinct eigenvalues, and that its eigenvectors span $M_n(\mathbb{R})$. Here $M_n(\mathbb{R})$ denotes the set of $n \times n$ real matrices, and A^t denotes the transpose of A.
- 20. Let S and T be linear transformations from an n-dimensional vector space to itself, and assume that ST = TS. If **v** is an eigenvector of S, and if $T(\mathbf{v})$ is not the zero vector, show that $T(\mathbf{v})$ is also an eigenvector of S. Hence show that if S has n distinct eigenvalues, then S and T have the same eigenvectors.
- 21. Compute the characteristic polynomial of

$$A = \begin{pmatrix} 16 & 14 & 10\\ -9 & -9 & -5\\ -2 & 13 & -9 \end{pmatrix},$$

and deduce that $A^4 = 16 \, \text{I}$. [Hint: Cayley-Hamilton.]

22. Find the general (real) solution of the system of first-order differential equations

$$\dot{x}_1 = 5x_1 + 5x_2, \quad \dot{x}_2 = -5x_1 - x_2.$$

23. * Let C be an element of $M_n(\mathbb{R})$ of the form:

$$C = \begin{pmatrix} c_0 & c_1 & c_2 & \dots & c_{n-1} \\ c_{n-1} & c_0 & c_1 & \dots & c_{n-2} \\ \vdots & \ddots & & \vdots \\ c_1 & c_2 & \dots & c_{n-1} & c_0 \end{pmatrix}$$

where each row is a just cyclic shift of the row above it. In a succint way we can write the entry $C_{ij} = c_{(i-j) \mod n}$ where mod denotes the remainder of the integer division modulo n. This is called a *circulant* matrix and it's a particular type of a particular set of matrices called *Toeplitz* matrices. Show that if ω is an n-th root of unity, i.e. $\omega^n = 1$, then the vector $\mathbf{v} = (\omega^0, \omega^1, ..., \omega^{n-1})^t$ is an eigenvector of C and compute its corresponding eigenvalue. 24. * The minimal polynomial of a square matrix A is the polynomial $q(t) = t^m + a_1 t^{m-1} + \ldots + a_m$ of least degree such that $A^m + a_1 A^{m-1} + \ldots + a_m I = 0$. Show that if $A \in M_n(\mathbb{R})$, then the subset $\mathbb{R}[A]$ of $M_n(\mathbb{R})$ consisting of polynomials in A is a vector subspace whose dimension is the degree of the minimal polynomial of A. Find the dimension of $\mathbb{R}[A]$ when

$$A = \begin{pmatrix} 3 & 1 & -2 \\ -2 & 1 & 2 \\ 1 & 1 & 0 \end{pmatrix}.$$

- 25. (a) Let D be a diagonal 3×3 matrix with distinct entries. Prove that every diagonal 3×3 matrix can be expressed as a linear combination of I, D, D^2 .
 - (b) Prove that for $P \in GL_n(\mathbb{R})$ (that is P an invertible $n \times n$ real matrix) the map $A \mapsto P^{-1}AP$ defines a nonsingular linear transformation from $M_3(\mathbb{R})$ to itself.
 - (c) Prove that if $A \in M_3(\mathbb{R})$ has distinct real eigenvalues, then the set $\mathbb{R}[A]$ of all polynomials in A is a 3-dimensional subspace of $M_3(\mathbb{R})$.
- 26. Decide which of the following bilinear functions defines an inner product:
 - (i) $x_1y_1 x_1y_3 x_3y_1 + 2x_3y_3 + 4x_2y_2 + x_4y_4 + x_2y_4 + x_4y_2$ on \mathbb{R}^4 ;
 - (ii) $2x_1y_1 + x_2y_2 + 2x_3y_2 + x_2y_3$ on \mathbb{R}^3 ;
 - (iii) $2x_1y_1 + x_2y_2 2x_1y_3 2x_3y_1 x_2y_3 x_3y_2 + x_3y_3$ on \mathbb{R}^3 ;
 - (iv) $4x_1y_1 + 2x_2y_2 + 6x_2y_3 + 6x_3y_2 + 18x_3y_3$ on \mathbb{R}^3 ;
 - (v) $x_1y_1 + x_2y_2 x_1y_3 x_3y_1 + 3x_2y_3 + 3x_3y_2 + 11x_3y_3$ on \mathbb{R}^3 .
- 27. Show that the bilinear form on \mathbb{R}^3 defined by

$$(\mathbf{x}, \mathbf{y}) = 6x_1y_1 - x_1y_2 - x_2y_1 + x_2y_2 - x_1y_3 - x_3y_1 + x_3y_3$$

is an inner product on \mathbb{R}^3 , and find the lengths of the vectors

$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \quad \begin{pmatrix} 3\\-6\\3+3\sqrt{3} \end{pmatrix}$$

and the angle between them with respect to this inner product.

28. Find the angle between the vectors in \mathbb{R}^4 equipped with the standard inner product:

(i)
$$\begin{pmatrix} 1\\2\\1\\-1\\1 \end{pmatrix}$$
, $\begin{pmatrix} 2\\1\\-1\\1 \end{pmatrix}$; (ii) $\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$, $\begin{pmatrix} 8\\-4\\-4\\3 \end{pmatrix}$; (iii) $\begin{pmatrix} 6\\2\\-2\\2 \end{pmatrix}$, $\begin{pmatrix} 1\\-1\\-1\\3 \end{pmatrix}$.

29. * Consider the vector space M_n of the $n \times n$ matrices with real coefficients, and the application $(,): M_n \times M_n \mapsto \mathbb{R}$ given by

$$(A,B) = \operatorname{Tr}(A^t B),$$

where A^t denotes the transpose of A and Tr denotes the trace. Show that (,) defines an inner product on M_n .

30. Suppose that \mathbb{C}^3 is equipped with the standard inner product. Show that the vectors

$$\frac{1}{2} \begin{pmatrix} i \\ i \\ 1+i \end{pmatrix}, \quad \frac{1}{6} \begin{pmatrix} 3+3i \\ 1+i \\ -4 \end{pmatrix}$$

are mutually orthogonal unit vectors, and find an orthonormal basis for \mathbb{C}^3 which contains them.

- 31. Decide which of the following defines a Hermitian inner product on \mathbb{C}^2 :
 - (i) $3z_1\bar{w}_1 + 4z_2\bar{w}_2;$
 - (ii) $z_1 \bar{w}_2 + z_2 \bar{w}_1;$
 - (iii) $z_1 \bar{w}_1 + (1+i) z_2 \bar{w}_2;$
 - (iv) $z_1 \bar{w}_1 + z_2 \bar{w}_2 + z_1 w_2$.
- 32. Show that $z_1 \bar{w}_1 + 2z_2 \bar{w}_2 + \frac{1+i}{\sqrt{2}} z_1 \bar{w}_2 + \frac{1-i}{\sqrt{2}} z_2 \bar{w}_1$ defines a hermitian inner product on \mathbb{C}^2 . Using this inner product, find the norm of the vector

$$\mathbf{u} = \begin{pmatrix} -1\\\sqrt{2}i \end{pmatrix},$$

and determine all unit vectors which are orthogonal to it.

33. If the vector space $C[-\pi, \pi]$ of continuous complex valued functions on the interval $[-\pi, \pi]$ is equipped with the inner product defined by

$$(f,g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \,\overline{g(x)} \, dx,$$

where $\overline{g(x)}$ denotes the complex conjugate of g(x), show that

$$e^{inx}$$

with $n \in \mathbb{N}$, i.e. n = 0, 1, 2..., are mutually orthogonal unit vectors in $C[-\pi, \pi]$.

Note: Starred, e.g. 1.*, exercises are more advanced/complicated.