Linear Algebra 1, Problem Sheet 2.
 Epiphany 21/22.

34. * Consider $V=\mathbb{R}^{n}$ with the following application

$$
\|\mathbf{v}\|_{\infty}=\max _{1 \leq i \leq n}\left|v_{i}\right|
$$

where $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$. Prove that $\|\cdot\|_{\infty}$ defines a norm on V. [This is called the ∞-norm, also called sup-norm, on V and it is not induced by an inner product.]
35. * Consider $V=\mathbb{R}^{n}$ with the following application

$$
\|\mathbf{v}\|_{1}=\sum_{i=1}^{n}\left|v_{i}\right|
$$

where $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$. Prove that $\|\cdot\|_{1}$ defines a norm on V. [This is called the ℓ_{1}-norm on V and it is not induced by an inner product.]
36. * Consider the vector space $V=C[a, b]$ of continuous functions on the interval $[a, b]$ with $-\infty<a<b<\infty$, and consider the application

$$
\|f\|_{1}=\int_{a}^{b} d x|f(x)|
$$

where $f \in V$. Prove that $\|\cdot\|_{1}$ defines a norm on V. [This is called the L_{1}-norm on V and it is not induced by an inner product.]
37. Apply Gram-Schmidt orthonormalisation to the basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\}$ of \mathbb{R}^{3} equipped with the standard inner product. (But first guess the answer.)
38. Apply Gram-Schmidt orthonormalisation to the basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ of \mathbb{R}^{3} equipped with the inner product defined by $(\mathbf{x}, \mathbf{y})=2 x_{1} y_{1}+2 x_{2} y_{2}+x_{3} y_{3}-x_{2} y_{3}-x_{3} y_{2}$.
39. If \mathbb{R}^{4} is given the standard inner product, find an orthonormal basis for the subspace determined by the equation $x_{1}+x_{2}+x_{3}+x_{4}=0$, and extend this basis to an orthonormal basis for all of \mathbb{R}^{4}.
40. If \mathbb{R}^{4} is given the standard inner product, find an orthonormal basis for the subspace determined by the equation $x_{1}+x_{2}-x_{3}-x_{4}=0$, and extend this basis to an orthonormal basis for all of \mathbb{R}^{4}.
41. * Let (,): $V \times V \mapsto \mathbb{R}$ be an inner product on the n-dimensional vector space V and let U, W denote two vector subspaces of V. Prove the following
(i) $W=W^{\perp \perp}$
(ii) $U^{\perp} \cap W^{\perp}=(U+W)^{\perp}$
(iii) $(U \cap W)^{\perp}=U^{\perp}+W^{\perp}$
42. Let $V=\mathbb{R}[t]_{2}$ be equipped with the inner product

$$
(p, q)=\int_{0}^{1} p(t) q(t) d t
$$

Use the Gram-Schmidt process to convert $\left\{1, t, t^{2}\right\}$ into an orthonormal basis $\left\{g_{1}, g_{2}, g_{3}\right\}$ for V.
43. Let $V=\mathbb{R}[t]_{2}$ be equipped with the inner product

$$
(f, g)=\int_{-1}^{1} f(t) g(t) d t
$$

and let $U=\{f \in V \mid f(-1)=f(1)=0\}$. Find a basis for the orthogonal complement of U in V.
44. Consider \mathbb{C}^{4} with the standard inner product. Find an orthonormal basis for the orthogonal complement of the subspace spanned by

$$
\left(\begin{array}{c}
2 \\
1-\mathrm{i} \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
\mathrm{i} \\
3
\end{array}\right) .
$$

45. Use the Gram-Schmidt process to show that every invertible $n \times n$ matrix A can be written in the form $A=B C$, where B is an orthogonal matrix and C is upper triangular. Find B, C when

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 3 \\
-1 & 1 & 3
\end{array}\right)
$$

[Hint: Think about the columns of A as vectors.]
46. Let S consist of the following vectors in \mathbb{R}^{4} with its standard inner product:

$$
\mathbf{u}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{c}
-1 \\
-1 \\
1 \\
1
\end{array}\right), \quad \mathbf{u}_{4}=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

(a) Show that these vectors are all mutually orthogonal to each others, and that they form a basis of \mathbb{R}^{4};
(b) Write $\mathbf{w}=(6,5,3,1)$ as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$.
47. Let U be the vector subspace of \mathbb{R}^{4} defined by

$$
x_{1}+x_{2}+x_{3}+x_{4}=0, \quad x_{1}-x_{2}+x_{3}-x_{4}=0 .
$$

Find orthonormal bases for U and its orthogonal complement, when \mathbb{R}^{4} is equipped with the standard inner product.
48. In \mathbb{R}^{4} equipped with the standard inner product, find the projection of $\mathbf{a}=(1,2,0,-1)$ on the plane V spanned by $\mathbf{v}_{1}=(1,0,0,1)$ and $\mathbf{v}_{2}=(1,1,2,0)$. (First construct an orthonormal basis for V.)
49. Let U be a vector subspace of \mathbb{R}^{n}, equipped with the standard inner product, and suppose that \mathbf{v} is an element of \mathbb{R}^{n} not in U. Then we know that there is a unique point \mathbf{u}_{0} in U such that, for all $\mathbf{u} \in U$, we have $\left\|\mathbf{v}-\mathbf{u}_{0}\right\| \leq\|\mathbf{v}-\mathbf{u}\|$; and $\mathbf{v}-\mathbf{u}_{0}$ is orthogonal to U. Find \mathbf{u}_{0} if U is the plane $x_{1}-2 x_{2}+2 x_{3}=0$ in \mathbb{R}^{3} and $\mathbf{v}=(1,0,0)$.
50. Let V be the space $C[-1,1]$ equipped with the inner product $(f, g)=\int_{-1}^{1} f(t) g(t) d t$. Let S be the subspace of V spanned by $\left\{1, t, t^{2}\right\}$. Construct an orthonormal basis $\left\{g_{1}, g_{2}, g_{3}\right\}$ for S, and find the function $h \in S$ closest to t^{3}.
51. Find the point in the 3-plane $2 x_{1}-x_{2}+2 x_{3}+2 x_{4}=0$ in \mathbb{R}^{4}, with standard Euclidean inner product, which is nearest to the point $\mathbf{a}=(1,2,1,2)$.
52. Find the point in the 2-plane in \mathbb{R}^{4} defined by $x_{1}+x_{2}+x_{3}+x_{4}=0, x_{1}-x_{2}+x_{3}-x_{4}=0$, which is nearest to the point $\mathbf{v}=(1,2,1,2)$ with standard Euclidean inner product.
53. If the vector space $C[-1,1]$ of continuous real valued functions on the interval $[-1,1]$ is equipped with the inner product defined by $(f, g)=\int_{-1}^{1} f(t) g(t) d t$, find the linear polynomial $g(t)$ nearest to $f(t)=e^{t}$.
54. Find an orthogonal matrix P such that $P^{t} A P$ is diagonal, when
(i) $\quad A=\left(\begin{array}{cc}11 & 8 \\ 8 & -1\end{array}\right)$,
(ii) $A=\left(\begin{array}{ccc}1 & 0 & -4 \\ 0 & 5 & 4 \\ -4 & 4 & 3\end{array}\right)$,
(iii) $\quad A=\left(\begin{array}{ccc}5 & 7 & 7 \\ 7 & 5 & -7 \\ 7 & -7 & 5\end{array}\right)$.
55. (i) Let A be a real symmetric matrix. Show that there exists a real symmetric matrix B such that $B^{2}=A$ if and only if the eigenvalues of A are all non-negative.
(ii) Find a real symmetric matrix C such that

$$
C^{5}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Some additional starred exercises

56. * Let V be an n-dimensional vector space over the reals and W a subspace of V with dimension $m \leq n$. Consider the set of linear transformations

$$
U=\{T: V \mapsto V \text { s.t. } T \text { is linear and } \forall \mathbf{w} \in W \exists \alpha \in \mathbb{R}: T(\mathbf{w})=\alpha \mathbf{w}\} .
$$

Show that U is a vector subspace of $M_{n}(\mathbb{R})$ and compute its dimension.
57. * Let V be a real vector space with dimension n and $T: V \mapsto V$ a linear transformation.
i) If $T^{2}=0$ show that $\operatorname{dim} \operatorname{Ker} T \geq \operatorname{dim} V / 2$.
ii) Show that $T^{2}=0$ and $\operatorname{dim} \operatorname{Ker} T=n / 2$ and $\operatorname{dim} V=n$ is even if and only if $\operatorname{Ker} T=\operatorname{Im} T$.
58. * [Nilpotency] A square matrix N is said to be nilpotent if $N^{k}=0$ for some positive integer $k \in \mathbb{N}$. The smallest such k such that $N^{k-1} \neq 0$ but $N^{k}=0$ is called the degree of nilpotency of N. Show that if N is nilpotent with degree k, then the matrix $A=I+N$ is invertible and its inverse is given by

$$
A^{-1}=I-N+N^{2}-N^{3}+\ldots+(-1)^{k-1} N^{k-1} .
$$

59. * Show that if N is a nilpotent matrix and λ is an eigenvalue of N with eigenvector $\mathbf{v} \neq \mathbf{0}$ then necessarily $\lambda=0$. In particular deduce that the characteristic polynomial of every $n \times n$ nilpotent matrix N is $p_{N}(t)=(-t)^{n}$. [i.e. a nilpotent matrix has only vanishing eigenvalues]
60. * Show that if N is nilpotent than $\operatorname{det}(I+N)=1$. Viceversa if N is a matrix such that $\operatorname{det}(I+x N)=1$ for every x then show that N is nilpotent. [Hint: use the previous exercise].
61. * [Quadratic forms] Let $V=\mathbb{R}^{2}$ with a bilinear form $Q(\mathbf{v}, \mathbf{w})$ which we assume symmetric, i.e. $Q(\mathbf{v}, \mathbf{w})=Q(\mathbf{w}, \mathbf{v})$, but not necessarily positive definite. The function $\phi_{Q}: V \mapsto \mathbb{R}$ defined by $\phi_{Q}(\mathbf{v})=Q(\mathbf{v}, \mathbf{v})$ is called the (associated) quadratic form, note: it is called quadratic because $\phi_{Q}(\lambda \mathbf{v})=\lambda^{2} \phi_{Q}(\mathbf{v})$. Show that in terms of the coordinates $\mathbf{v}=(x, y)^{t}$, the set of points satisfying $\phi_{Q}(\mathbf{v})=Q(\mathbf{v}, \mathbf{v})=1$ is either describing an ellipse, an hyperbola, two parallel lines or the empty set.
62. * [Dual space] Let V be an n-dimensional real vector space and consider the space $V^{*}=\{\phi: V \mapsto \mathbb{R}$, s.t. ϕ is linear $\}$. Show that V^{*} is a real vector space called the dual space of V. Show that if $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a basis for V then the set of $\phi^{(i)} \in V^{*}$, $i=1, \ldots, n$, defined by $\phi^{(i)}\left(\mathbf{v}_{\mathbf{j}}\right)=\delta_{j}^{i}$ span a basis for V^{*} called the dual basis, where δ_{j}^{i} is the Kronecker delta, so that V^{*} has exactly the same dimension as V.
63. * Consider a real n-dimensional inner product space $\{V,(\cdot, \cdot)\}$. Show that for every vector $\mathbf{v} \in V$ we can construct the application $\phi_{\mathbf{v}}: V \mapsto \mathbb{R}$ defined by $\phi_{\mathbf{v}}(\mathbf{w})=(\mathbf{w}, \mathbf{v})$. Prove that $\phi_{\mathbf{v}} \in V^{*}$. [This is telling you that V and V^{*} are isomorphic, however this is not a natural isomorphism in the sense that it dependes on your choice of inner product.]
64. * Consider a real n-dimensional vector space V, its dual V^{*} and the double-dual

$$
V^{* *}=\left\{\Phi: V^{*} \mapsto \mathbb{R} \text {, s.t. } \Phi \text { is linear }\right\} .
$$

Show that for every vector $\mathbf{v} \in V$, the application $\Phi_{\mathbf{v}}: V^{*} \mapsto \mathbb{R}$ defined by $\Phi_{\mathbf{v}}(\phi)=\phi(\mathbf{v})$, for every $\phi \in V^{*}$, is an element of $V^{* *}$, i.e. $\Phi_{\mathbf{v}} \in V^{* *}$. [This is telling you that there is a natural isomorphism between V and $V^{* *}$ given by evaluation on a specific vector.]

Note: Starred, e.g. 1. ${ }^{*}$, exercises are more advanced/complicated.

