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Linear Algebra 1,Problem Sheet 2.
Epiphany 21/22.

* Consider V' = R" with the following application

[[V]]oe = g.ﬁglvih

where v = (vy, ..., v,). Prove that ||- || defines a norm on V. [This is called the co-norm,
also called sup-norm, on V' and it is not induced by an inner product.]

* Consider V' = R" with the following application

n
Vil =) Juil,
i=1

where v = (vq,...,v,). Prove that || - ||; defines a norm on V. [This is called the ¢;-norm
on V and it is not induced by an inner product.]

* Consider the vector space V' = C|a, b] of continuous functions on the interval [a, b] with
—00 < a < b < 00, and consider the application
b
1Al = [ dolf@),
where f € V. Prove that || - ||; defines a norm on V. [This is called the L;-norm on V'
and it is not induced by an inner product.]
1 1 1
Apply Gram-Schmidt orthonormalisation to the basis 01,112,112 of R? equipped
0 0 3
with the standard inner product. (But first guess the answer.)
1 0 0
Apply Gram-Schmidt orthonormalisation to the basis 01,111,110 of R? equipped
0 0 1

with the inner product defined by (x,y) = 2x1y1 + 222y2 + T3Yy3 — T2ys — T3Ys.

If R* is given the standard inner product, find an orthonormal basis for the subspace

determined by the equation z; + x5+ x3+ 24 = 0, and extend this basis to an orthonormal
basis for all of R%.

If R* is given the standard inner product, find an orthonormal basis for the subspace
determined by the equation z; + x5 —x3—124 = 0, and extend this basis to an orthonormal
basis for all of R*.

*Let (,):V xV = R be an inner product on the n-dimensional vector space V' and let
U, W denote two vector subspaces of V. Prove the following

(i) W=wtt
(i) UtNnwWt = U+ W)+
(iil) (UNW)t=Ur+ W+t
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Let V = R[t], be equipped with the inner product

(PaQ)Z/O p(t)q(t) dt.

Use the Gram-Schmidt process to convert {1,¢,¢*} into an orthonormal basis {g1, g2, g3}
for V.

Let V = RJ[t]z be equipped with the inner product
1
(ro)= [ e
-1

and let U = {f € V| f(—=1) = f(1) = 0}. Find a basis for the orthogonal complement of
UinV.

Consider C* with the standard inner product. Find an orthonormal basis for the orthog-
onal complement of the subspace spanned by
2 1
1—i 0
0 ’ i
1 3

Use the Gram-Schmidt process to show that every invertible n x n matrix A can be
written in the form A = BC', where B is an orthogonal matrix and C' is upper triangular.
Find B, C when
1 0 -1
A= 0 2 3
-1 1 3

[Hint: Think about the columns of A as vectors.|

Let S consist of the following vectors in R* with its standard inner product:
1 1 -1 1
|1 -1 -1 !
u; = 1 ) Uy = 1 ) us = 1 ’ Uy = 1
1 -1 1 1

(a) Show that these vectors are all mutually orthogonal to each others, and that they
form a basis of R*;

(b) Write w = (6, 5,3, 1) as a linear combination of u;, u,, us, uy.
Let U be the vector subspace of R* defined by
SL’1+$2+SL’3+$4:0, Il—I2+JJ3—$4:0.

Find orthonormal bases for U and its orthogonal complement, when R* is equipped with
the standard inner product.

In R* equipped with the standard inner product, find the projection of a = (1,2,0, —1)
on the plane V spanned by v; = (1,0,0,1) and vo = (1,1,2,0). (First construct an
orthonormal basis for V.)
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Let U be a vector subspace of R", equipped with the standard inner product, and suppose
that v is an element of R” not in U. Then we know that there is a unique point ug in U
such that, for all u € U, we have ||[v — ug|| < |[v — u]|; and v — uy is orthogonal to U.
Find ug if U is the plane z; — 225 + 223 = 0 in R® and v = (1,0,0).

Let V' be the space C[—1, 1] equipped with the inner product (f, g) f f(t)g(t)dt. Let
S be the subspace of V spanned by {1,¢,#*}. Construct an orthonormal ba51s { 91,92, 93}
for S, and find the function h € S closest to 3.

Find the point in the 3-plane 2x; — x5 + 2235 + 224 = 0 in R*, with standard Euclidean
inner product, which is nearest to the point a = (1,2, 1, 2).

Find the point in the 2-plane in R* defined by 1 +x9 +25+24 = 0, 71 — 29+ 23— 24 = 0,
which is nearest to the point v = (1,2, 1,2) with standard Euclidean inner product.

If the vector space C[—1,1] of continuous real valued functions on the interval [—1,1]
is equipped with the inner product defined by (f,9) f f(t)g(t)dt, find the linear
polynomial g(t) nearest to f(t) = €.

54. Find an orthogonal matrix P such that P'AP is diagonal, when
T 1 0 —4 5 7T 7
(i) A:<8 _1>, i) A=(0 5 4|, i) A=|[7 b5 =7
—4 4 3 T =7 5
55. (i) Let A be a real symmetric matrix. Show that there exists a real symmetric matrix
B such that B? = A if and only if the eigenvalues of A are all non-negative.
(ii) Find a real symmetric matrix C' such that
0 11
C°=1(101
1 10
Some additional starred exercises
56. * Let V be an n-dimensional vector space over the reals and W a subspace of V' with
dimension m < n. Consider the set of linear transformations
U={T:V — Vs.t.Tis lincar and Yw € W3a e R: T'(w) = aw}.
Show that U is a vector subspace of M, (R) and compute its dimension.
57. * Let V be a real vector space with dimension n and T : V +— V a linear transformation.
i) If T? = 0 show that dim Ker 7" > dimV//2.
ii) Show that 7% = 0 and dimKerT = n/2 and dimV = n is even if and only if
KerT =ImT.
58. * [Nilpotency] A square matrix N is said to be nilpotent if N* = 0 for some positive

integer k € N. The smallest such k such that N*~! # 0 but N* = 0 is called the degree of
nilpotency of N. Show that if N is nilpotent with degree k, then the matrix A =1+ N
is invertible and its inverse is given by

AV =T - N4+ N> - N34 4 (=1)F'NFL
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* Show that if N is a nilpotent matrix and A is an eigenvalue of N with eigenvector v £ 0
then necessarily A = 0. In particular deduce that the characteristic polynomial of every
n X n nilpotent matrix N is py(t) = (—t)". [i.e. a nilpotent matrix has only vanishing
eigenvalues]

* Show that if IV is nilpotent than det (I + N) = 1. Viceversa if N is a matrix such that
det (I +2N) = 1 for every = then show that N is nilpotent. [Hint: use the previous
exercise].

* [Quadratic forms| Let V' = R? with a bilinear form Q(v, w) which we assume symmetric,
ie. Q(v,w) = Q(w, V), but not necessarily positive definite. The function ¢g : V — R
defined by ¢g(v) = Q(v,V) is called the (associated) quadratic form, note: it is called
quadratic because ¢g(Av) = Npg(v). Show that in terms of the coordinates v = (x, )",
the set of points satisfying ¢g(v) = Q(v,v) = 1 is either describing an ellipse, an hyper-
bola, two parallel lines or the empty set.

* [Dual space|] Let V' be an n-dimensional real vector space and consider the space
V¥ ={¢ : V = R, s.t. ¢islinear}. Show that V* is a real vector space called the
dual space of V. Show that if {vy,...,v,} is a basis for V then the set of ¢ € V*,
i =1,...,n, defined by ¢ (v;j) = 0% span a basis for V* called the dual basis, where ¢} is
the Kronecker delta, so that VV* has exactly the same dimension as V.

* Consider a real n-dimensional inner product space {V, (-, -)}. Show that for every vector
v € V we can construct the application ¢, : V — R defined by ¢,(w) = (w,v). Prove
that ¢, € V*. [This is telling you that V' and V* are isomorphic, however this is not a
natural isomorphism in the sense that it dependes on your choice of inner product.]

* Consider a real n-dimensional vector space V, its dual V* and the double-dual
V*={®: V" — R, st. ¢ is linear}.

Show that for every vector v € V', the application @y, : V* — R defined by ®(¢) = ¢(v),
for every ¢ € V*, is an element of V**, i.e. ®, € V**. [This is telling you that there is a
natural isomorphism between V' and V** given by evaluation on a specific vector.]

Note: Starred, e.g. 1.*, exercises are more advanced/complicated.



