
Linear Algebra 1,Problem Sheet 2.
Epiphany 21/22.

34. * Consider V = Rn with the following application

||v||∞ = max
1≤i≤n

|vi| ,

where v = (v1, ..., vn). Prove that || · ||∞ defines a norm on V . [This is called the∞-norm,
also called sup-norm, on V and it is not induced by an inner product.]

35. * Consider V = Rn with the following application

||v||1 =
n∑

i=1

|vi| ,

where v = (v1, ..., vn). Prove that || · ||1 defines a norm on V . [This is called the `1-norm
on V and it is not induced by an inner product.]

36. * Consider the vector space V = C[a, b] of continuous functions on the interval [a, b] with
−∞ < a < b <∞, and consider the application

||f ||1 =

∫ b

a

dx |f(x)| ,

where f ∈ V . Prove that || · ||1 defines a norm on V . [This is called the L1-norm on V
and it is not induced by an inner product.]

37. Apply Gram-Schmidt orthonormalisation to the basis


1

0
0

 ,

1
2
0

 ,

1
2
3

 of R3 equipped

with the standard inner product. (But first guess the answer.)

38. Apply Gram-Schmidt orthonormalisation to the basis


1

0
0

 ,

0
1
0

 ,

0
0
1

 of R3 equipped

with the inner product defined by (x,y) = 2x1y1 + 2x2y2 + x3y3 − x2y3 − x3y2.

39. If R4 is given the standard inner product, find an orthonormal basis for the subspace
determined by the equation x1+x2+x3+x4 = 0, and extend this basis to an orthonormal
basis for all of R4.

40. If R4 is given the standard inner product, find an orthonormal basis for the subspace
determined by the equation x1+x2−x3−x4 = 0, and extend this basis to an orthonormal
basis for all of R4.

41. * Let ( , ) : V ×V 7→ R be an inner product on the n-dimensional vector space V and let
U,W denote two vector subspaces of V . Prove the following

(i) W = W⊥⊥

(ii) U⊥ ∩W⊥ = (U +W )⊥

(iii) (U ∩W )⊥ = U⊥ +W⊥



42. Let V = R[t]2 be equipped with the inner product

(p, q) =

∫ 1

0

p(t)q(t) dt.

Use the Gram-Schmidt process to convert {1, t, t2} into an orthonormal basis {g1, g2, g3}
for V .

43. Let V = R[t]2 be equipped with the inner product

(f, g) =

∫ 1

−1
f(t)g(t) dt,

and let U = {f ∈ V | f(−1) = f(1) = 0}. Find a basis for the orthogonal complement of
U in V .

44. Consider C4 with the standard inner product. Find an orthonormal basis for the orthog-
onal complement of the subspace spanned by

2
1− i

0
1

 ,


1
0
i
3

 .

45. Use the Gram-Schmidt process to show that every invertible n × n matrix A can be
written in the form A = BC, where B is an orthogonal matrix and C is upper triangular.
Find B,C when

A =

 1 0 −1
0 2 3
−1 1 3

 .

[Hint: Think about the columns of A as vectors.]

46. Let S consist of the following vectors in R4 with its standard inner product:

u1 =


1
1
1
1

 , u2 =


1
−1
1
−1

 , u3 =


−1
−1
1
1

 , u4 =


1
−1
−1
1

 .

(a) Show that these vectors are all mutually orthogonal to each others, and that they
form a basis of R4;

(b) Write w =
(
6, 5, 3, 1

)
as a linear combination of u1, u2, u3, u4.

47. Let U be the vector subspace of R4 defined by

x1 + x2 + x3 + x4 = 0, x1 − x2 + x3 − x4 = 0.

Find orthonormal bases for U and its orthogonal complement, when R4 is equipped with
the standard inner product.

48. In R4 equipped with the standard inner product, find the projection of a = (1, 2, 0,−1)
on the plane V spanned by v1 = (1, 0, 0, 1) and v2 = (1, 1, 2, 0). (First construct an
orthonormal basis for V .)



49. Let U be a vector subspace of Rn, equipped with the standard inner product, and suppose
that v is an element of Rn not in U . Then we know that there is a unique point u0 in U
such that, for all u ∈ U , we have ‖v − u0‖ ≤ ‖v − u‖; and v − u0 is orthogonal to U .
Find u0 if U is the plane x1 − 2x2 + 2x3 = 0 in R3 and v =

(
1, 0, 0

)
.

50. Let V be the space C[−1, 1] equipped with the inner product (f, g) =
∫ 1

−1 f(t)g(t) dt. Let

S be the subspace of V spanned by {1, t, t2}. Construct an orthonormal basis {g1, g2, g3}
for S, and find the function h ∈ S closest to t3.

51. Find the point in the 3-plane 2x1 − x2 + 2x3 + 2x4 = 0 in R4, with standard Euclidean
inner product, which is nearest to the point a = (1, 2, 1, 2).

52. Find the point in the 2-plane in R4 defined by x1 +x2 +x3 +x4 = 0, x1−x2 +x3−x4 = 0,
which is nearest to the point v = (1, 2, 1, 2) with standard Euclidean inner product.

53. If the vector space C[−1, 1] of continuous real valued functions on the interval [−1, 1]

is equipped with the inner product defined by (f, g) =
∫ 1

−1 f(t)g(t) dt, find the linear
polynomial g(t) nearest to f(t) = et.

54. Find an orthogonal matrix P such that P tAP is diagonal, when

(i) A =

(
11 8
8 −1

)
, (ii) A =

 1 0 −4
0 5 4
−4 4 3

 , (iii) A =

5 7 7
7 5 −7
7 −7 5

 .

55. (i) Let A be a real symmetric matrix. Show that there exists a real symmetric matrix
B such that B2 = A if and only if the eigenvalues of A are all non-negative.

(ii) Find a real symmetric matrix C such that

C5 =

0 1 1
1 0 1
1 1 0

 .

Some additional starred exercises

56. * Let V be an n-dimensional vector space over the reals and W a subspace of V with
dimension m ≤ n. Consider the set of linear transformations

U = {T : V 7→ V s.t.T is linear and ∀w ∈ W ∃α ∈ R : T (w) = αw} .

Show that U is a vector subspace of Mn(R) and compute its dimension.

57. * Let V be a real vector space with dimension n and T : V 7→ V a linear transformation.

i) If T 2 = 0 show that dim KerT ≥ dimV/2.

ii) Show that T 2 = 0 and dim KerT = n/2 and dimV = n is even if and only if
KerT = ImT .

58. * [Nilpotency] A square matrix N is said to be nilpotent if Nk = 0 for some positive
integer k ∈ N. The smallest such k such that Nk−1 6= 0 but Nk = 0 is called the degree of
nilpotency of N . Show that if N is nilpotent with degree k, then the matrix A = I + N
is invertible and its inverse is given by

A−1 = I −N +N2 −N3 + ...+ (−1)k−1Nk−1 .



59. * Show that if N is a nilpotent matrix and λ is an eigenvalue of N with eigenvector v 6= 0
then necessarily λ = 0. In particular deduce that the characteristic polynomial of every
n × n nilpotent matrix N is pN(t) = (−t)n. [i.e. a nilpotent matrix has only vanishing
eigenvalues]

60. * Show that if N is nilpotent than det (I +N) = 1. Viceversa if N is a matrix such that
det (I + xN) = 1 for every x then show that N is nilpotent. [Hint: use the previous
exercise].

61. * [Quadratic forms] Let V = R2 with a bilinear form Q(v,w) which we assume symmetric,
i.e. Q(v,w) = Q(w,v), but not necessarily positive definite. The function φQ : V 7→ R
defined by φQ(v) = Q(v,v) is called the (associated) quadratic form, note: it is called
quadratic because φQ(λv) = λ2φQ(v). Show that in terms of the coordinates v = (x, y)t,
the set of points satisfying φQ(v) = Q(v,v) = 1 is either describing an ellipse, an hyper-
bola, two parallel lines or the empty set.

62. * [Dual space] Let V be an n-dimensional real vector space and consider the space
V ∗ = {φ : V 7→ R , s.t. φ is linear}. Show that V ∗ is a real vector space called the
dual space of V . Show that if {v1, ...,vn} is a basis for V then the set of φ(i) ∈ V ∗,
i = 1, ..., n, defined by φ(i)(vj) = δij span a basis for V ∗ called the dual basis, where δij is
the Kronecker delta, so that V ∗ has exactly the same dimension as V .

63. * Consider a real n-dimensional inner product space {V, (·, ·)}. Show that for every vector
v ∈ V we can construct the application φv : V 7→ R defined by φv(w) = (w,v). Prove
that φv ∈ V ∗. [This is telling you that V and V ∗ are isomorphic, however this is not a
natural isomorphism in the sense that it dependes on your choice of inner product.]

64. * Consider a real n-dimensional vector space V , its dual V ∗ and the double-dual

V ∗∗ = {Φ : V ∗ 7→ R , s.t. Φ is linear} .

Show that for every vector v ∈ V , the application Φv : V ∗ 7→ R defined by Φv(φ) = φ(v),
for every φ ∈ V ∗, is an element of V ∗∗, i.e. Φv ∈ V ∗∗. [This is telling you that there is a
natural isomorphism between V and V ∗∗ given by evaluation on a specific vector.]

Note: Starred, e.g. 1. ∗, exercises are more advanced/complicated.


