
Linear Algebra 1,Problem Sheet 3.
Epiphany 21/22.

65. If A is a real n× n matrix, show that A is skew-symmetric (anti-symmetric) if and only
if xtAx = 0 for all x ∈ Rn.

66. LetMn be the vector space of n×nmatrices with real coefficients. Show thatMn = Skewn⊕Symn

where Skewn = {A ∈ Mn |At = −A} and Symn = {A ∈ Mn |At = A}. What are the
dimensions of Mn, Skewn and Symn as vector spaces over the field of real numbers?

67. * Consider the vector space Mn of n × n matrices with real coefficients with the inner
product (A,B) = Tr(AtB). Find the orthogonal complement to the vector subspace Symn

with respect to this inner product.

68. * Let σ ∈ Sn denote a permutation of n elements, the matrix Rσ, with respect to the
standard basis {v1, ..., vn} of Rn, is associated with the linear transformation that per-
mutes the basis vector with σ, i.e. Rσvi = vσ(i). Prove that Rσ is orthogonal. [HINT:
How can you write (Rσ)−1 in terms of another permutation?]

69. If A is a complex n× n matrix, show that A is Hermitian if and only if x∗Ax is real for
all x ∈ Cn.

70. Find a unitary matrix P such that P ∗AP is diagonal when

A =

(
2 1 + i

1− i 3

)
.

71. Show that the determinant of a unitary matrix is of unit modulus.

72. A unitary matrix of determinant +1 is special unitary. Show that every unitary matrix
A can be written in the form A = kB where k ∈ C is of unit modulus and B is special
unitary.

73. Show that every special unitary 2× 2 matrix is of the form(
a −c̄
c ā

)
,

with a, c ∈ C and aā+ cc̄ = 1.

74. Show that, if n is odd, every real orthogonal n×n matrix A has det(A) as an eigenvalue.
(Note that, for any real orthogonal matrix A, det(A) = ±1).

75. Identify the polynomial f(x) = c0 + c1x + . . . + cn−1x
n−1 + xn for which the integral∫ 1

−1 f(x)2 dx has the smallest value. (Hint: Consider f(x) as a linear combination of

Legendre polynomials P0(x), . . . , Pn(x), taking Pk to be normalized by Pk(x) = xk + . . ..

76. (a) Verify by direct computation that the Laguerre operator

Ll = x
d2

dx2
+ (1− x)

d

dx

on the space R[x] of polynomials in x is symmetric with respect to the inner product
given by the formula (f, g) =

∫ +∞
0

f(x)g(x)e−xdx.



(b) Find the matrix and the characteristic polynomial of the Laguerre operator Ll on
the space R[x]2 (use the basis {1, x, x2}).

(c) What are all the eigenvalues of the Laguerre operator on R[x]?

(d) Find all the eigenfunctions of the Laguerre operator on the space R[x]2.

(e) Find the Laguerre polynomial of degree 5. (For simplicity use the convention in
which Laguerre polynomials have leading coefficient 1, even if this is not compatible
with them having unit norm.)

77. (a) Verify by direct computation that the Hermite operator

LH =
d2

dx2
− 2x

d

dx

on the space R[x] is symmetric with respect to the inner product given by the formula
(f, g) =

∫ +∞
−∞ f(x)g(x)e−x

2
dx.

(b) Find the matrix and the characteristic polynomial of the Hermite operator LH on
the space R[x]3 (use the basis {1, x, x2, x3}). What is the set of all eigenvalues of LH
as an operator on the space R[x]3?

(c) What are all the eigenvalues of the Hermite operator on R[x]?

(d) Find all eigenfunctions of the Hermite operator on the space R[x]3.

(e) Find the Hermite polynomial of degree 5. (For simplicity use the convention in which
Hermite polynomials have leading coefficient 1, even if this is not compatible with
them having unit norm.)

78. (a) Verify by direct computation that the Legendre operator

LL = (1− x2) d
2

dx2
− 2x

d

dx

on the space C[−1, 1] is symmetric with respect to the inner product given by the

formula (f, g) =
∫ 1

−1 f(x)g(x)dx.

(b) Find the characteristic polynomial of the Legendre operator LL on the space R[x]4.

(c) What is the set of all eigenvalues of LL as an operator on R[x]?

(d) Find the Legendre polynomial of degree 5. (For simplicity use the convention in
which Legendre polynomials have leading coefficient 1, even if this is not compatible
with them having unit norm.)

79. (a) Verify by direct computation that the Chebyshev-I operator

LI = (1− x2) d
2

dx2
− x d

dx

on the space C[−1, 1] is symmetric with respect to the inner product given by the

formula (f, g) =
∫ 1

−1 f(x)g(x)(1− x2)−1/2dx.

(b) Find the matrix and the characteristic polynomial of the Chebyshev-I operator LI
on the space R[x]3 (use the basis {1, x, x2, x3}).

(c) Hence find the Chebyshev-I polynomials of degree 2 and 3.

(d) What is the set of all eigenvalues of LI as an operator on the space of all polynomi-
als R[x]?



(e) Find the Chebyshev-I polynomial of degree 5. (For simplicity use the convention
in which Chebyshev-I polynomials have leading coefficient 1, even if this is not
compatible with them having unit norm.)

80. (a) Verify by direct computation that the Chebyshev-II operator

LII = (1− x2) d
2

dx2
− 3x

d

dx

on the space C[−1, 1] is symmetric with respect to the inner product given by the

formula (f, g) =
∫ 1

−1 f(x)g(x)(1− x2)1/2dx.

(b) Find the matrix and the characteristic polynomial of the Chebyshev-II operator LII
on the space R[x]4 (use the basis {1, x, x2, x3, x4}).

(c) What is the set of all eigenvalues of LII as an operator on the space of all polynomials
R[x]?

(d) Find the Chebyshev-II polynomial of degree 5. (For simplicity use the convention
in which Chebyshev-II polynomials have leading coefficient 1, even if this is not
compatible with them having unit norm.)

81. Let F [2π] be the vector space of all real 2π-periodic infinitely differentiable functions in
one variable t with the inner product (f, g) =

∫ π
−π f(t)g(t)dt.

(a) Prove that the operator L = d2/dt2 on F [2π] is symmetric.

(b) Find all eigenvalues and eigenfunctions of the above operator L on F [2π].

82. Let F [2π] be the vector space from the above problem 81 and consider the operator
L1 = d/dt on F [2π].

(a) Prove that L1 is skew-symmetric, i.e. for any f, g ∈ F [2π], we have (L1f, g) = −(f, L1g).

(b) Deduce that the only eigenfunctions for L1 in F [2π] are constant functions (with the
zero eigenvalue).

(c) Let FC[2π] be the complexification of the above F [2π]. Prove that the only eigenval-
ues for L1 on FC[2π] are complex numbers {ni | n ∈ Z} and for each such number
λn = ni, there is only one (up to a non-zero scalar factor) eigenfunction eint in
FC[2π].

(d) Prove that the functions 1, eit, e−it, e2it, e−2it, . . . , enit, e−int, . . . are orthogonal in
FC[2π]. What are the norms of those functions?

83. Prove that each of the following sets forms a group under ordinary multiplication.

(a) {2k} where k ∈ Z.

(b) {1+2m
1+2n
} where m, n ∈ Z.

(c) {cos θ + i sin θ} where θ runs over all rational numbers.

84. Think of the integers Z as points equally spaced along the real line. Define two kinds of
transformations on Z:

(1) Translations of the form Ta (where a is an integer) which have the effect of translating
Z a places to the right (if a ≥ 0; or −a places to the left if a < 0) using the formula
n 7→ n+ a.



(2) Reflections of the form Rc (where c is an integer) which have the effect of reflecting
Z in the point c

2
using the formula n 7→ c− n.

Work out the effect of composing the following pairs of transformations: (a) TbTa, (b)
RdTa, (c) TbRc, (d) RdRc. [In each case, because these are functions the compositions
have to be evaluated from right to left; e.g., TbTa means first do Ta and then do Tb.]

Now let A be the set of all such Ta and Rc. Show that A is a group and that we can find
examples of elements g, h ∈ A such that gh 6= hg, g2 = h2 = e and ∀s > 0, (gh)s 6= e.

85. Let G be the set of all 2× 2 matrices of the form

(
1 a
0 1

)
where a ∈ R. Show that G is

an abelian group under matrix multiplication. What is it isomorphic to?

86. (a) Let G be the set of all 2 × 2 matrices of the form

(
a b
0 d

)
where a, b, d ∈ R, and

ad 6= 0. Show that G is a group under matrix multiplication.

(b) With G as in part (a), define Z(G) = {g ∈ G | such that,∀h ∈ G, gh = hg}. Identify
the elements of Z(G) and show that it is also a group. [Z(G) is called the centre of
G.]

87. (a) The modular group is defined by SL(2,Z) = {A = (a
c
b
d
) with a, b, c, d ∈ Z and detA = 1}.

Show that SL(2,Z) is indeed a group under matrix multiplication (you may assume
associativity).

(b) Show that T = (1
0
1
1
) belongs to SL(2,Z) and compute T n with n ∈ Z (for negative

integers T−n means (T−1)n). What is the connection with Exercise 85 ?

88. Let G be a group such that for every element g ∈ G, g2 = e. Show that G is abelian (i.e.
gf = fg for any f, g ∈ G).

89. Show that the group Z×8 has order 4. Is it isomorphic either to Z4 or to the Klein
group V ?

90. Write down the group table of the multiplicative group Z×9 . Is this group isomorphic
to Zn for any n?

91. Write down the group table for Z2 × Z2, the direct product of two copies of the cyclic
group of order two, and compute its order. Is this group isomorphic to any group discussed
during lectures?

Note: Starred, e.g. 1. ∗, exercises are more advanced/complicated.


