
Linear Algebra 1, Solutions to exercises 1 to 25.
Epiphany 21/22.

1. Let T : R3 → R3 be the linear transformation defined by

T

xy
z

 =

x+ y + z
−2y − 2z
y + z

 .

Find the matrix which represents T with respect to:

(a) the standard basis in both copies of R3;

(b) the ordered basis consisting of 1
1
1

 ,

1
2
1

 ,

3
1
2


in both copies of R3.

Solution: (a) The matrix of T with respect to the standard basis of R3 is

A =

1 1 1
0 −2 −2
0 1 1

 .

(b) Let B be the matrix with respect to the new basis. Then B = P−1AP where

A =

1 1 1
0 −2 −2
0 1 1

 , P =

1 1 3
1 2 1
1 1 2

 .

First we find P−1:1 1 3 | 1 0 0
1 2 1 | 0 1 0
1 1 2 | 0 0 1

 →

1 1 3 | 1 0 0
1 2 1 | 0 1 0
0 0 1 | 1 0 −1


→

1 1 3 | 1 0 0
0 1 −2 | −1 1 0
0 0 1 | 1 0 −1

 →

1 1 0 | −2 0 3
0 1 0 | 1 1 −2
0 0 1 | 1 0 −1


→

1 0 0 | −3 −1 5
0 1 0 | 1 1 −2
0 0 1 | 1 0 −1

 .

Thus

P−1 =

−3 −1 5
1 1 −2
1 0 −1

 .

But then, since B = P−1AP ,

B =

−3 −1 5
1 1 −2
1 0 −1

1 1 1
0 −2 −2
0 1 1

1 1 3
1 2 1
1 1 2

 =

 5 9 3
−5 −8 −6
1 1 3

 .



2. * Find the characteristic polynomial of the matrix

M =

(
A C
0 B

)
,

where A denotes a n × n matrix, B a m ×m matrix, C a n ×m matrix, and 0 denotes
the zero matrix of the appropriate dimensions, in this case m× n.

Solution: The characteristic polynomial for M is

pM (x) = det(M − xI) = det

(
A− xIn C

0 B − xIm

)
,

where In, Im, denotes respectively the n× n, m×m, identity matrix. By observing that(
A− xIn C

0 B − xIm

)
=

(
In 0
0 B − xIm

)(
A− xIn C

0 Im

)
and using the fact that the determinant of the product of two matrices is the product of their
determinants we can write

pM (x) = det(A− xIn)det(B − xIm) = pA(x) · pB(x) .

3. Find the characteristic polynomials, the eigenvalues and the eigenspaces of the following
matrices

(i)

(
7 −4
−8 −7

)
, (ii)

 5 2 3
−13 −6 −11

4 2 4

 , (iii)

 3 1 1
−15 −5 −5

6 2 2

 .

Solution: (i) Characteristic polynomial : (x2 − 81) = (x − 9)(x + 9); eigenvalues 9,−9; corre-
sponding eigenspaces:

λ = −9 : span

{(
1
4

)}
; λ = 9 : span

{(
−2
1

)}
.

(ii) Characteristic polynomial : −x(x−1)(x−2); eigenvalues 0, 1, 2; corresponding eigenspaces:

λ = 0 : span


 1
−4
1

 ; λ = 1 : span


 1
−5
2

 . λ = 2 : span


 1
−3
1

 .

(iii) Characteristic polynomial : −x3; only eigenvalue 0; corresponding eigenspace:

λ = 0 : span


−1

0
3

 ,

−1
3
0

 .

(There are many possible choices of basis for V0 in this case).

4. Show that each of the following matrices is similar to a diagonal matrix.

(i)

 6 2 3
−13 −5 −11

4 2 5

 ; (ii)

(
1 + i 4 + 4i

0 −1− i

)
; (iii)


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

In each case write down an appropriate matrix which can be used to convert the given
matrix to diagonal form.



Solution: In each case we have M−1AM = D:

(i)

M =

 1 1 1
−4 −5 −3
1 2 1

 , D =

1 0 0
0 2 0
0 0 3

 ;

(ii)

M =

(
1 −2
0 1

)
, D =

(
1 + i 0

0 −1− i

)
;

(iii)

M =


−1 0 1 0
0 −1 0 1
0 1 0 1
1 0 1 0

 , D =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 .

Note that you might have found different matrices because the choice of eigenvectors is not
unique.

5. Prove that, if λ is an eigenvalue of the linear transformation T : V → V , then λk is an
eigenvalue of T k for each integer k > 0. Prove also that if p(t) is a polynomial, then p(λ)
is an eigenvalue of p(T ).

Solution: If T (v) = λv then, by induction, T k(v) = λkv and hence p(T )(v) = p(λ)v.

6. Show that the linear transformation S : R[x]n → R[x]n given by S
(
p(x)

)
= 1

x

∫ x
0
p(y) dy

is diagonalizable and find the eigenvalues and eigenvectors.

Solution: Suppose that p(x) = a0 +a1x+ · · ·+anx
n is an eigenvector of S. Then Sp(x) = λp(x)

for some λ ∈ R, that is

a0
1

+
a1x

2
+ · · ·+ an

n+ 1
xn = λ(a0 + a1x+ · · ·+ anx

n)

or, equivalently,
ak
k + 1

= λak, k = 0, . . . , n

So we can see that the possible eigenvalues are λk = 1
k+1 with eigenfunction pk(x) = xk, for

k = 0, ..., n.

7. If A is a 2 × 2 matrix with characteristic polynomial pA(x) = c0 + c1x + x2, show that
pA(x) = x2 − tr(A)x+ det(A).

Solution:

pA(x) = det(A− xI) = det

(
a11 − x a12
a21 a22 − x

)
and by expanding the determinant

pA(x) = x2 − tr(A)x+ det(A).

8. If A is a 3× 3 matrix with characteristic polynomial pA(x) = c0 + c1x+ c2x
2 − x3, show

that pA(x) = −x3 + tr(A)x2 +
(tr(A2)−(trA)2)

2
x+ det(A).



Solution:

pA(x) = det(A− xI) = det

a11 − x a12 a13
a21 a22 − x a23
a31 a32 a33 − x


and by expanding the determinant

pA(x) = −x3 + tr(A)x2 +

(
tr(A2)− (trA)2

)
2

x+ det(A).

9. Find the characteristic equation for

B =

 0 2 6
2 −8 −26
−2 2 8


and hence show that B9 = 28B. [Hint: use Cayley-Hamilton.]

Solution: The characteristic polynomial of B is

pB(x) = det

−x 2 6
2 −8− x −26
−2 2 8− x

 = −x3 + 4x.

ThereforeB3−4B = 0. Thus multiplying byB6 we getB9 = 4B7 = 4BB3B3 = 4B 4B 4B = 44B.

10. Which of the matrices 11 5 8
−30 −16 −30

9 5 10

 ,

−2 −1 −1
9 4 3
−3 −1 0

 ,

−4 −1 1
17 4 −5
−5 −1 2


are similar to diagonal matrices?

Solution: (i)

A =

 11 5 8
−30 −16 −30

9 5 10

 ,

Then pA(x) = −(x+ 1)(x− 2)(x− 4) so that the eigenvalues are real and distinct hence
the matrix is diagonalizable, i.e. it is similar to a diagonal matrix.
There is no need to compute the eigenvectors in this case but we will do it anyway as an
additional exercise. The eigenvalues and corresponding eigenvectors are as follows:

λ = −1: corresponding equations (Ax = −x)

11x1 + 5x2 + 8x3 = −x1,
−30x1 − 16x2 +−30x3 = −x2,

9x1 + x2 + 10x3 = −x3.

Thus the (−1)-eigenspace is 1-dimensional and equal to

span


 1
−4
1

 .



λ = 2: corresponding equations (Ax = 2x)

11x1 + 5x2 + 8x3 = 2x1,

−30x1 − 16x2 +−30x3 = 2x2,

9x1 + x2 + 10x3 = 2x3.

Thus the (2)-eigenspace is 1-dimensional and equal to

span


 1
−5
2

 .

λ = 4: corresponding equations (Ax = 4x)

11x1 + 5x2 + 8x3 = 4x1,

−30x1 − 16x2 +−30x3 = 4x2,

9x1 + x2 + 10x3 = 4x3.

Thus the (4)-eigenspace is 1-dimensional and equal to

span


 1
−3
1

 .

Thus the basis 
 1
−4
1

 ,

 1
−5
2

 ,

 1
−3
1

 .

diagonalizes A.

(ii)

A =

−2 −1 −1
9 4 3
−3 −1 0


Then pA(x) = −x(x − 1)2 so that the eigenvalues are real. The eigenvalues and corre-
sponding eigenvectors are as follows:

λ = 0: corresponding equations (Ax = 0)

−2x1 − x2 − x3 = 0,

9x1 + 4x2 + 3x3 = 0,

−3x1 − x2 = 0.

Thus, row reducing, we deduce that the (0)-eigenspace is the 1-dimensional subspace

span


 1
−3
1

 .

λ = 1: corresponding equations (Ax = x)

−2x1 − x2 − x3 = x1,

9x1 + 4x2 + 3x3 = x2,

−3x1 − x2 = x3.

Thus the (+1)-eigenspace is 2-dimensional and equal to

span


−1

0
3

 ,

−1
3
0

 .



Thus the subspace spanned by the eigenvectors

span


 1
−3
1

 ,

−1
0
3

 ,

−1
3
0


is 3-dimensional and A is hence diagonalizable.

(iii)

A =

−4 −1 1
17 4 −5
−5 −1 2

 .

Then once again pA(x) = −x(x − 1)2 so that the eigenvalues are real. The eigenvalues
and corresponding eigenvectors are as follows:

λ = 0: corresponding equations (Ax = 0)

−4x1 − x2 + x3 = 0,

17x1 + 4x2 − 5x3 = 0,

−5x1 − x2 + 2x3 = 0.

Thus, row reducing, we deduce that the (0)-eigenspace is the 1-dimensional subspace

span


 1
−3
1

 .

λ = 1: corresponding equations (Ax = x)

−4x1 − x2 + x3 = x1,

17x1 + 4x2 − 5x3 = x2,

−5x1 − x2 + 2x3 = x3.

Thus the (+1)-eigenspace is 1-dimensional and equal to

span


 1
−4
1

 .

Thus the subspace spanned by the eigenvectors is only 2-dimensional and so A is not
diagonalizable.

11. Prove that (
0 −4
−4 0

)
and

(
−1 −5
−3 1

)
are similar to each other.

Solution: Both have eigenvalues −4 and 4, so are similar to(
−4 0
0 4

)
.

12. Find two matrices A,B ∈ Mn(R) with same characteristic polynomial, same eigenvalues,
same determinant, same trace but not similar to one another.



Solution: Let A =

(
λ 0
0 λ

)
and B =

(
λ x
0 λ

)
with x ∈ R and x 6= 0. It is simple to check that

A and B have same characteristic polynomial, hence same eigenvalues, hence same trace and
same determinant. However A is similar to a diagonal matrix while B cannot be diagonalized,
hence it is not similar to A. [For more details see the final chapter of the notes on the Jordan
normal form]

13. Which of the matrices  −9 −3 −1
35 11 1
−11 −3 1

 ,

−1 2 0
−1 1 0
4 −2 1


are similar to diagonal matrices when we take (a) R, (b) C as the underlying field of
scalars?

Solution: For

A =

 −9 −3 −1
35 11 1
−11 −3 1


the characteristic polynomial is −(x+ 1)(x− 2)2 and the eigenvalues λ = −1, 2 are real. But
the eigenspace corresponding to λ = 2 is 1-dimensional, so A is not diagonalizable.

For

A =

−1 2 0
−1 1 0
4 −2 1


the characteristic polynomial is −(x − 1)(x2 + 1). Thus A has three distinct eigenvalues of
which exactly one is real, λ = 1, i,−i , and so A is diagonalizable over the complex numbers
but not over the reals.

14. Given

A =

(
−6 8
−4 6

)
,

find P such that P−1AP is diagonal. Hence compute A6.

Solution: The characteristic polynomial of

A =

(
−6 8
−4 6

)
is x2 − 4 with eigenvectors (

1
1

)
,

(
2
1

)
.

Let P be the matrix whose columns are these vectors. Thus

P−1AP = D :=

(
2 0
0 −2

)
, P =

(
1 2
1 1

)
.

Thus A = PDP−1 so

A6 = PD6P−1 = P

(
26 0
0 26

)
P−1

= 26
(

1 0
0 1

)
.

We could have arrived at the same conclusion by using Hamilton-Cayley: from the characteristic
polynomial we know that A2 = 4 I so, taking the cube of this equation, we get A6 = 64 I.
Generically by induction A2n = 4n I.



15. Let A be an n× n complex matrix. Suppose that A has only one eigenvalue. Prove that
if A is not of the form aI, then A is not similar to a diagonal matrix.

Solution: IfA is similar to diag(λ1, . . . , λn), then the characteristic polynomial is (x−λ1) . . . (x−λn).
And if A has only one eigenvalue, then λ1 = . . . = λn = λ, say, and so A is similar to λI. But
the only matrix similar to λI is λI.

16. Given the matrix

A =

 −9 −8 −15
37 32 59
−10 −8 −14

 .

find a matrix B such that B3 = A. Is this B unique?

Solution: We have A = M−1D3M where

M =

1 1 2
2 0 −2
3 1 1

 , D =

2 0 0
0 1 0
0 0 0

 , M−1 =

−1 −1/2 1
4 5/2 −3
−1 −1 1

 .

Thus if B = M−1DM then B3 = A. This gives

B =

−3 −2 −3
13 8 11
−4 −2 −2

 ,

This B is not unique, since either of the positive entries in D could acquire a phase ω such
that ω3 = 1 without changing D3.

17. Solve the system of first-order differential equations

ẋ1 = −3x1 − 2x2 − 6x3, ẋ2 = −8x1 − 3x2 − 12x3, ẋ3 = 5x1 + 2x2 + 8x3,

subject to the initial conditions

x1(0) = 1, x2(0) =
3

2
, x3(0) = −1.

Solution: Write the equations as ẋ = Ax where

A =

−3 −2 −6
−8 −3 −12
5 2 8

 .

Then A has eigenvalues 2, 1,−1 with corresponding eigenvectors−2
−4
3

 ,

 1
1
−1

 ,

 1
2
−1

 .

Thus, if

P =

−2 1 1
−4 1 2
3 −1 −1

 ,

then

P−1AP = D =

2 0 0
0 1 0
0 0 −1

 .



So, putting x = Py, the equations reduce to ẏ = Dy which have solutions

y1 = c1e
2t, y2 = c2e

t, y3 = c3e
−t.

Thus x1x2
x3

 =

−2 1 1
−4 1 2
3 −1 −1

c1e2tc2e
t

c3e
−t

 =

 −2c1e
2t + c2e

t + c3e
−t

−4c1e
2t + c2e

t + 2c3e
−t

3c1e
2t − c2et − c3e−t

 .

But then the initial conditions give −2c1 + c2 + c3
−4c1 + c2 + 2c3

3c1 − c2 − c3

 =

 1
3/2
−1

 ,

so that c1 = 0, c2 = 1/2, c3 = 1/2. Thus

x1 =
1

2
(et+e−t) = cosh t, x2 =

1

2
(et+2e−t) = cosh t+

e−t

2
, x3 = −1

2
(et+e−t) = − cosh t.

18. Find the eigenvalues and eigenvectors of the linear transformation T : R[x]4 → R[x]4
defined by T (p(x)) = x2

(
p(x+ 1)− 2p(x) + p(x− 1)

)
.

Solution: We take the standard basis {1, x, x2, x3, x4} of R[x]4 and find the matrix of T with
respect to this basis. Since

T (1) = 0, T (x) = 0, T (x2) = 2x2, T (x3) = 6x3, T (x4) = 12x4 + 2x2,

the required matrix is 
0 0 0 0 0
0 0 0 0 0
0 0 2 0 2
0 0 0 6 0
0 0 0 0 12

 .

The eigenvalues are 0, 0, 2, 6, 12. The polynomials in R[x]4 corresponding to each eigenvectors
in order:

1, x, x2, x3, x4 +
x2

5
.

19. Define T : Mn(R) → Mn(R) by T (A) = At. Prove that T has only two distinct eigen-
values, and that its eigenvectors span Mn(R). Here Mn(R) denotes the set of n× n real
matrices, and At denotes the transpose of A.

Solution: Clearly T 2 = I. If Tv = λv, then applying T again gives T 2v = λ2v; so λ2 = 1 and
hence λ = ±1. Now the λ = 1 eigenspace V1 consists of all the symmetric matrices, and the
λ = −1 eigenspace V−1 consists of all the antisymmetric matrices. Since each A ∈ Mn(R)
can be written in the form

A =
1

2
(A+At) +

1

2
(A−At),

it is clear that the eigenvectors span Mn(R). Indeed Mn(R) = V1⊕V−1. (Note the dimension
of V1 is n(n+ 1)/2, and the dimension of V−1 is n(n− 1)/2; these two numbers add up to n2

which is the dimension of Mn.)

20. Let S and T be linear transformations from an n-dimensional vector space to itself, and
assume that ST = TS. If v is an eigenvector of S, and if T (v) is not the zero vector, show
that T (v) is also an eigenvector of S. Hence show that if S has n distinct eigenvalues,
then S and T have the same eigenvectors.



Solution: Suppose that Sv = λv for some v 6= 0. Then STv = TSv = λTv. Thus if Tv 6= 0,
then Tv is also an eigenvector of S corresponding to the eigenvalue λ.

Now suppose that S has distinct eigenvalues λ1, . . . , λn with corresponding eigenvectors v1, . . . ,vn.
Thus Svi = λivi for i = 1, . . . , n, and the eigenspace Vi corresponding to λi is given by
Vi = span{vi}. (Note that Vi contains span{vi} but cannot be any bigger for dimensional
reasons.) If Tvi 6= 0 then Tvi ∈ Vi = span{vi}. Thus for all i = 1, . . . , n, Tvi = µivi
for some µi. But then {v1, . . . ,vn} is a basis for V and each element is an eigenvector of
T . Since T has at most n linearly independent eigenvectors, it follows that S and T have the
same eigenvectors.

Remark. Notice that in terms of matrices this may be stated as follows. If A and B are n× n
matrices such that AB = BA, and A has distinct eigenvalues, then there exists an invertible
matrix P such that P−1AP and P−1BP are both diagonal. The matrices A and B are said
to be “simultaneously diagonalizable”.

21. Compute the characteristic polynomial of

A =

16 14 10
−9 −9 −5
−2 13 −9

 ,

and deduce that A4 = 16 I. [Hint: Cayley-Hamilton.]

Solution: The characteristic polynomial is −x3 − 2x2 − 4x − 8. Thus by the Cayley-Hamilton
theorem, A3 + 2A2 + 4A+ 8I = 0. Multiplying by A− 2I then gives A4 − 16I = 0.

22. Find the general (real) solution of the system of first-order differential equations

ẋ1 = 5x1 + 5x2, ẋ2 = −5x1 − x2.

Solution: Write the equations as ẋ = Ax, where

A =

(
5 5
−5 −1

)
.

Then A has eigenvalues 2± 4i, with corresponding eigenvectors(
1∓ 2i
1± 2i

)
.

Thus, if

P =

(
1− 2i 1 + 2i
1 + 2i 1− 2i

)
,

then

P−1AP = D =

(
2 + 4i 0

0 2− 4i

)
.

So, putting x = Py, the equations reduce to ẏ = Dy, which have solutions

y1 = ae2te4it, y2 = āe2te−4it.

Here a is a complex constant. (We need y1 and y2 to be complex conjugates of each other, in
order for x1 and x2 to be real.) Transforming back to x then gives

x1 = 2e2t[(c1+2c2) cos(4t)+(2c1−c2) sin(4t)], x2 = 2e2t[(c1−2c2) cos(4t)−(2c1+c2) sin(4t)],

where c1 and c2 are real constants (with a = c1 + ic2).



23. * Let C be an element of Mn(R) of the form:

C =


c0 c1 c2 ... cn−1

cn−1 c0 c1 ... cn−2
...

. . .
...

c1 c2 ... cn−1 c0


where each row is just a cyclic shift of the row above it. In a succint way we can write
the entry Cij = c(i−j)modn where mod denotes the remainder of the integer division
modulo n. This is called a circulant matrix and it’s a particular type of a particular
set of matrices called Toeplitz matrices. Show that if ω is an n-th root of unity, i.e.
ωn = 1, then the vector v = (ω0, ω1, ..., ωn−1)t is an eigenvector of C and compute its
corresponding eigenvalue.

Solution: If we compute the k-th entry of the vector of Cv we have

(Cv)k =

k−1∑
i=0

cn−k+ivi +

n−1∑
i=k

ci−kvi

where for simplicity we start counting vectors components from zero, i.e. v = (v0, ..., vn−1)
t.

By changing dummy variables of summation we have

(Cv)k =
n−1∑
i=n−k

civi+k−n +
n−k−1∑
i=0

civk+i

=

n−k−1∑
i=0

civk+i +

n−1∑
i=n−k

civi+k−n

=
n−k−1∑
i=0

ciω
k+i +

n−1∑
i=n−k

ciω
i+k−n

= ωk
n−k−1∑
i=0

ciω
i + ωk−n

n−1∑
i=n−k

ciω
i =

(
n−1∑
i=0

ciω
i

)
ωk = λvk

where the eigenvalue is λ =
∑n−1

i=0 ciω
i and in the last line we used crucially the fact that ω is

an n-th root of unity, i.e. ωn = ω−n = 1. We can write all the roots of unity as ωm = e2πi
m
n

with m ∈ {0, ..., n− 1}, hence we have an eigenvalue of the form

λm =

n−1∑
k=0

ck exp(2πi
km

n
)

which is called Discrete Fourier Transform (DFT) of the sequence {ck}.

24. * The minimal polynomial of a square matrixA is the polynomial q(t) = tm+a1t
m−1+. . .+am

of least degree such that Am+a1A
m−1 + . . .+amI = 0. Show that if A ∈Mn(R), then the

subset R[A] of Mn(R) consisting of polynomials in A is a vector subspace whose dimension
is the degree of the minimal polynomial of A. Find the dimension of R[A] when

A =

 3 1 −2
−2 1 2
1 1 0

 .



Solution: Suppose that the degree of the minimal polynomial of A is m. Then

I, A, . . . , Am ∈ span{I, A, . . . , Am−1}

and hence, by induction,
Ak ∈ span{I, A, . . . , Am−1}

for all integers k ≥ 0. Thus I, A, . . . , Am−1 span R[A]. But I, A, . . . , Am−1 are linearly
independent for any linear dependence relation among them would give rise to a polynomial
equation for A of degree strictly less than m. Thus {I, A, . . . , Am−1} is a basis for R[A] and
so dimR[A] = m. In the case of the given matrix A the minimal polynomial is (x−1)2(x−2)
(cf. question 13), so that dimR[A] = 3.

25. (a) Let D be a diagonal 3 × 3 matrix with distinct entries. Prove that every diagonal
3× 3 matrix can be expressed as a linear combination of I,D,D2.

(b) Prove that for P ∈ GLn(R) (that is P an invertible n × n real matrix) the map
A 7→ P−1AP defines a nonsingular linear transformation from M3(R) to itself.

(c) Prove that if A ∈ M3(R) has distinct real eigenvalues, then the set R[A] of all
polynomials in A is a 3-dimensional subspace of M3(R).

Solution: (a) If
D = diag(λ1, λ2, λ3)

where λ1, λ2, λ3 are distinct, then I, D, D2 are linearly independent in M3(R), for other-
wise there would be a quadratic equation with three distinct solutions. Since the vector
subspace U of M3(R) consisting of diagonal matrices has dimension 3, it follows that I,
D, D2 is a basis.

(b) It is elementary to check linearity. The transformation is nonsingular since it has inverse
A 7→ PAP−1.

(c) First note that for any A, the set R[A] is a vector subspace of M3(R). If A ∈M3(R) has
distinct real eigenvalues λ1, λ2, λ3, then

D = diag(λ1, λ2, λ3) = P−1AP

for some invertible matrix P , and so by (b) the set R[A] is isomorphic to the vector
subspace U of diagonal matrices. By (a) this has dimension 3. In fact note that {I, A,A2}
is a basis for R[A].


